summaryrefslogtreecommitdiff
path: root/drivers/webpold/dec/vp8l.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/webpold/dec/vp8l.c')
-rw-r--r--drivers/webpold/dec/vp8l.c1200
1 files changed, 1200 insertions, 0 deletions
diff --git a/drivers/webpold/dec/vp8l.c b/drivers/webpold/dec/vp8l.c
new file mode 100644
index 0000000000..897e4395c7
--- /dev/null
+++ b/drivers/webpold/dec/vp8l.c
@@ -0,0 +1,1200 @@
+// Copyright 2012 Google Inc. All Rights Reserved.
+//
+// This code is licensed under the same terms as WebM:
+// Software License Agreement: http://www.webmproject.org/license/software/
+// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
+// -----------------------------------------------------------------------------
+//
+// main entry for the decoder
+//
+// Authors: Vikas Arora (vikaas.arora@gmail.com)
+// Jyrki Alakuijala (jyrki@google.com)
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "./vp8li.h"
+#include "../dsp/lossless.h"
+#include "../dsp/yuv.h"
+#include "../utils/huffman.h"
+#include "../utils/utils.h"
+
+#if defined(__cplusplus) || defined(c_plusplus)
+extern "C" {
+#endif
+
+#define NUM_ARGB_CACHE_ROWS 16
+
+static const int kCodeLengthLiterals = 16;
+static const int kCodeLengthRepeatCode = 16;
+static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
+static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
+
+// -----------------------------------------------------------------------------
+// Five Huffman codes are used at each meta code:
+// 1. green + length prefix codes + color cache codes,
+// 2. alpha,
+// 3. red,
+// 4. blue, and,
+// 5. distance prefix codes.
+typedef enum {
+ GREEN = 0,
+ RED = 1,
+ BLUE = 2,
+ ALPHA = 3,
+ DIST = 4
+} HuffIndex;
+
+static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
+ NUM_LITERAL_CODES + NUM_LENGTH_CODES,
+ NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
+ NUM_DISTANCE_CODES
+};
+
+
+#define NUM_CODE_LENGTH_CODES 19
+static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
+ 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
+};
+
+#define CODE_TO_PLANE_CODES 120
+static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
+ 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
+ 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
+ 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
+ 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
+ 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
+ 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
+ 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
+ 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
+ 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
+ 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
+ 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
+ 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
+};
+
+static int DecodeImageStream(int xsize, int ysize,
+ int is_level0,
+ VP8LDecoder* const dec,
+ uint32_t** const decoded_data);
+
+//------------------------------------------------------------------------------
+
+int VP8LCheckSignature(const uint8_t* const data, size_t size) {
+ return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
+}
+
+static int ReadImageInfo(VP8LBitReader* const br,
+ int* const width, int* const height,
+ int* const has_alpha) {
+ const uint8_t signature = VP8LReadBits(br, 8);
+ if (!VP8LCheckSignature(&signature, 1)) {
+ return 0;
+ }
+ *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
+ *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
+ *has_alpha = VP8LReadBits(br, 1);
+ VP8LReadBits(br, VP8L_VERSION_BITS); // Read/ignore the version number.
+ return 1;
+}
+
+int VP8LGetInfo(const uint8_t* data, size_t data_size,
+ int* const width, int* const height, int* const has_alpha) {
+ if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
+ return 0; // not enough data
+ } else {
+ int w, h, a;
+ VP8LBitReader br;
+ VP8LInitBitReader(&br, data, data_size);
+ if (!ReadImageInfo(&br, &w, &h, &a)) {
+ return 0;
+ }
+ if (width != NULL) *width = w;
+ if (height != NULL) *height = h;
+ if (has_alpha != NULL) *has_alpha = a;
+ return 1;
+ }
+}
+
+//------------------------------------------------------------------------------
+
+static WEBP_INLINE int GetCopyDistance(int distance_symbol,
+ VP8LBitReader* const br) {
+ int extra_bits, offset;
+ if (distance_symbol < 4) {
+ return distance_symbol + 1;
+ }
+ extra_bits = (distance_symbol - 2) >> 1;
+ offset = (2 + (distance_symbol & 1)) << extra_bits;
+ return offset + VP8LReadBits(br, extra_bits) + 1;
+}
+
+static WEBP_INLINE int GetCopyLength(int length_symbol,
+ VP8LBitReader* const br) {
+ // Length and distance prefixes are encoded the same way.
+ return GetCopyDistance(length_symbol, br);
+}
+
+static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
+ if (plane_code > CODE_TO_PLANE_CODES) {
+ return plane_code - CODE_TO_PLANE_CODES;
+ } else {
+ const int dist_code = code_to_plane_lut[plane_code - 1];
+ const int yoffset = dist_code >> 4;
+ const int xoffset = 8 - (dist_code & 0xf);
+ const int dist = yoffset * xsize + xoffset;
+ return (dist >= 1) ? dist : 1;
+ }
+}
+
+//------------------------------------------------------------------------------
+// Decodes the next Huffman code from bit-stream.
+// FillBitWindow(br) needs to be called at minimum every second call
+// to ReadSymbolUnsafe.
+static int ReadSymbolUnsafe(const HuffmanTree* tree, VP8LBitReader* const br) {
+ const HuffmanTreeNode* node = tree->root_;
+ assert(node != NULL);
+ while (!HuffmanTreeNodeIsLeaf(node)) {
+ node = HuffmanTreeNextNode(node, VP8LReadOneBitUnsafe(br));
+ }
+ return node->symbol_;
+}
+
+static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
+ VP8LBitReader* const br) {
+ const int read_safe = (br->pos_ + 8 > br->len_);
+ if (!read_safe) {
+ return ReadSymbolUnsafe(tree, br);
+ } else {
+ const HuffmanTreeNode* node = tree->root_;
+ assert(node != NULL);
+ while (!HuffmanTreeNodeIsLeaf(node)) {
+ node = HuffmanTreeNextNode(node, VP8LReadOneBit(br));
+ }
+ return node->symbol_;
+ }
+}
+
+static int ReadHuffmanCodeLengths(
+ VP8LDecoder* const dec, const int* const code_length_code_lengths,
+ int num_symbols, int* const code_lengths) {
+ int ok = 0;
+ VP8LBitReader* const br = &dec->br_;
+ int symbol;
+ int max_symbol;
+ int prev_code_len = DEFAULT_CODE_LENGTH;
+ HuffmanTree tree;
+
+ if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
+ NUM_CODE_LENGTH_CODES)) {
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
+ return 0;
+ }
+
+ if (VP8LReadBits(br, 1)) { // use length
+ const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
+ max_symbol = 2 + VP8LReadBits(br, length_nbits);
+ if (max_symbol > num_symbols) {
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
+ goto End;
+ }
+ } else {
+ max_symbol = num_symbols;
+ }
+
+ symbol = 0;
+ while (symbol < num_symbols) {
+ int code_len;
+ if (max_symbol-- == 0) break;
+ VP8LFillBitWindow(br);
+ code_len = ReadSymbol(&tree, br);
+ if (code_len < kCodeLengthLiterals) {
+ code_lengths[symbol++] = code_len;
+ if (code_len != 0) prev_code_len = code_len;
+ } else {
+ const int use_prev = (code_len == kCodeLengthRepeatCode);
+ const int slot = code_len - kCodeLengthLiterals;
+ const int extra_bits = kCodeLengthExtraBits[slot];
+ const int repeat_offset = kCodeLengthRepeatOffsets[slot];
+ int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
+ if (symbol + repeat > num_symbols) {
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
+ goto End;
+ } else {
+ const int length = use_prev ? prev_code_len : 0;
+ while (repeat-- > 0) code_lengths[symbol++] = length;
+ }
+ }
+ }
+ ok = 1;
+
+ End:
+ HuffmanTreeRelease(&tree);
+ return ok;
+}
+
+static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
+ HuffmanTree* const tree) {
+ int ok = 0;
+ VP8LBitReader* const br = &dec->br_;
+ const int simple_code = VP8LReadBits(br, 1);
+
+ if (simple_code) { // Read symbols, codes & code lengths directly.
+ int symbols[2];
+ int codes[2];
+ int code_lengths[2];
+ const int num_symbols = VP8LReadBits(br, 1) + 1;
+ const int first_symbol_len_code = VP8LReadBits(br, 1);
+ // The first code is either 1 bit or 8 bit code.
+ symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
+ codes[0] = 0;
+ code_lengths[0] = num_symbols - 1;
+ // The second code (if present), is always 8 bit long.
+ if (num_symbols == 2) {
+ symbols[1] = VP8LReadBits(br, 8);
+ codes[1] = 1;
+ code_lengths[1] = num_symbols - 1;
+ }
+ ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
+ alphabet_size, num_symbols);
+ } else { // Decode Huffman-coded code lengths.
+ int* code_lengths = NULL;
+ int i;
+ int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
+ const int num_codes = VP8LReadBits(br, 4) + 4;
+ if (num_codes > NUM_CODE_LENGTH_CODES) {
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
+ return 0;
+ }
+
+ code_lengths =
+ (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
+ if (code_lengths == NULL) {
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
+ return 0;
+ }
+
+ for (i = 0; i < num_codes; ++i) {
+ code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
+ }
+ ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
+ code_lengths);
+ if (ok) {
+ ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
+ }
+ free(code_lengths);
+ }
+ ok = ok && !br->error_;
+ if (!ok) {
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
+ return 0;
+ }
+ return 1;
+}
+
+static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
+ if (htree_groups != NULL) {
+ int i, j;
+ for (i = 0; i < num_htree_groups; ++i) {
+ HuffmanTree* const htrees = htree_groups[i].htrees_;
+ for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
+ HuffmanTreeRelease(&htrees[j]);
+ }
+ }
+ free(htree_groups);
+ }
+}
+
+static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
+ int color_cache_bits, int allow_recursion) {
+ int i, j;
+ VP8LBitReader* const br = &dec->br_;
+ VP8LMetadata* const hdr = &dec->hdr_;
+ uint32_t* huffman_image = NULL;
+ HTreeGroup* htree_groups = NULL;
+ int num_htree_groups = 1;
+
+ if (allow_recursion && VP8LReadBits(br, 1)) {
+ // use meta Huffman codes.
+ const int huffman_precision = VP8LReadBits(br, 3) + 2;
+ const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
+ const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
+ const int huffman_pixs = huffman_xsize * huffman_ysize;
+ if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
+ &huffman_image)) {
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
+ goto Error;
+ }
+ hdr->huffman_subsample_bits_ = huffman_precision;
+ for (i = 0; i < huffman_pixs; ++i) {
+ // The huffman data is stored in red and green bytes.
+ const int index = (huffman_image[i] >> 8) & 0xffff;
+ huffman_image[i] = index;
+ if (index >= num_htree_groups) {
+ num_htree_groups = index + 1;
+ }
+ }
+ }
+
+ if (br->error_) goto Error;
+
+ assert(num_htree_groups <= 0x10000);
+ htree_groups =
+ (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
+ sizeof(*htree_groups));
+ if (htree_groups == NULL) {
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
+ goto Error;
+ }
+
+ for (i = 0; i < num_htree_groups; ++i) {
+ HuffmanTree* const htrees = htree_groups[i].htrees_;
+ for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
+ int alphabet_size = kAlphabetSize[j];
+ if (j == 0 && color_cache_bits > 0) {
+ alphabet_size += 1 << color_cache_bits;
+ }
+ if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
+ }
+ }
+
+ // All OK. Finalize pointers and return.
+ hdr->huffman_image_ = huffman_image;
+ hdr->num_htree_groups_ = num_htree_groups;
+ hdr->htree_groups_ = htree_groups;
+ return 1;
+
+ Error:
+ free(huffman_image);
+ DeleteHtreeGroups(htree_groups, num_htree_groups);
+ return 0;
+}
+
+//------------------------------------------------------------------------------
+// Scaling.
+
+static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
+ const int num_channels = 4;
+ const int in_width = io->mb_w;
+ const int out_width = io->scaled_width;
+ const int in_height = io->mb_h;
+ const int out_height = io->scaled_height;
+ const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
+ int32_t* work; // Rescaler work area.
+ const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
+ uint32_t* scaled_data; // Temporary storage for scaled BGRA data.
+ const uint64_t memory_size = sizeof(*dec->rescaler) +
+ work_size * sizeof(*work) +
+ scaled_data_size * sizeof(*scaled_data);
+ uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
+ if (memory == NULL) {
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
+ return 0;
+ }
+ assert(dec->rescaler_memory == NULL);
+ dec->rescaler_memory = memory;
+
+ dec->rescaler = (WebPRescaler*)memory;
+ memory += sizeof(*dec->rescaler);
+ work = (int32_t*)memory;
+ memory += work_size * sizeof(*work);
+ scaled_data = (uint32_t*)memory;
+
+ WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
+ out_width, out_height, 0, num_channels,
+ in_width, out_width, in_height, out_height, work);
+ return 1;
+}
+
+//------------------------------------------------------------------------------
+// Export to ARGB
+
+// We have special "export" function since we need to convert from BGRA
+static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
+ int rgba_stride, uint8_t* const rgba) {
+ const uint32_t* const src = (const uint32_t*)rescaler->dst;
+ const int dst_width = rescaler->dst_width;
+ int num_lines_out = 0;
+ while (WebPRescalerHasPendingOutput(rescaler)) {
+ uint8_t* const dst = rgba + num_lines_out * rgba_stride;
+ WebPRescalerExportRow(rescaler);
+ VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
+ ++num_lines_out;
+ }
+ return num_lines_out;
+}
+
+// Emit scaled rows.
+static int EmitRescaledRows(const VP8LDecoder* const dec,
+ const uint32_t* const data, int in_stride, int mb_h,
+ uint8_t* const out, int out_stride) {
+ const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
+ const uint8_t* const in = (const uint8_t*)data;
+ int num_lines_in = 0;
+ int num_lines_out = 0;
+ while (num_lines_in < mb_h) {
+ const uint8_t* const row_in = in + num_lines_in * in_stride;
+ uint8_t* const row_out = out + num_lines_out * out_stride;
+ num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
+ row_in, in_stride);
+ num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
+ }
+ return num_lines_out;
+}
+
+// Emit rows without any scaling.
+static int EmitRows(WEBP_CSP_MODE colorspace,
+ const uint32_t* const data, int in_stride,
+ int mb_w, int mb_h,
+ uint8_t* const out, int out_stride) {
+ int lines = mb_h;
+ const uint8_t* row_in = (const uint8_t*)data;
+ uint8_t* row_out = out;
+ while (lines-- > 0) {
+ VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
+ row_in += in_stride;
+ row_out += out_stride;
+ }
+ return mb_h; // Num rows out == num rows in.
+}
+
+//------------------------------------------------------------------------------
+// Export to YUVA
+
+static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
+ const WebPDecBuffer* const output) {
+ const WebPYUVABuffer* const buf = &output->u.YUVA;
+ // first, the luma plane
+ {
+ int i;
+ uint8_t* const y = buf->y + y_pos * buf->y_stride;
+ for (i = 0; i < width; ++i) {
+ const uint32_t p = src[i];
+ y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
+ }
+ }
+
+ // then U/V planes
+ {
+ uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
+ uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
+ const int uv_width = width >> 1;
+ int i;
+ for (i = 0; i < uv_width; ++i) {
+ const uint32_t v0 = src[2 * i + 0];
+ const uint32_t v1 = src[2 * i + 1];
+ // VP8RGBToU/V expects four accumulated pixels. Hence we need to
+ // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
+ const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
+ const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe);
+ const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe);
+ if (!(y_pos & 1)) { // even lines: store values
+ u[i] = VP8RGBToU(r, g, b);
+ v[i] = VP8RGBToV(r, g, b);
+ } else { // odd lines: average with previous values
+ const int tmp_u = VP8RGBToU(r, g, b);
+ const int tmp_v = VP8RGBToV(r, g, b);
+ // Approximated average-of-four. But it's an acceptable diff.
+ u[i] = (u[i] + tmp_u + 1) >> 1;
+ v[i] = (v[i] + tmp_v + 1) >> 1;
+ }
+ }
+ if (width & 1) { // last pixel
+ const uint32_t v0 = src[2 * i + 0];
+ const int r = (v0 >> 14) & 0x3fc;
+ const int g = (v0 >> 6) & 0x3fc;
+ const int b = (v0 << 2) & 0x3fc;
+ if (!(y_pos & 1)) { // even lines
+ u[i] = VP8RGBToU(r, g, b);
+ v[i] = VP8RGBToV(r, g, b);
+ } else { // odd lines (note: we could just skip this)
+ const int tmp_u = VP8RGBToU(r, g, b);
+ const int tmp_v = VP8RGBToV(r, g, b);
+ u[i] = (u[i] + tmp_u + 1) >> 1;
+ v[i] = (v[i] + tmp_v + 1) >> 1;
+ }
+ }
+ }
+ // Lastly, store alpha if needed.
+ if (buf->a != NULL) {
+ int i;
+ uint8_t* const a = buf->a + y_pos * buf->a_stride;
+ for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
+ }
+}
+
+static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
+ WebPRescaler* const rescaler = dec->rescaler;
+ const uint32_t* const src = (const uint32_t*)rescaler->dst;
+ const int dst_width = rescaler->dst_width;
+ int num_lines_out = 0;
+ while (WebPRescalerHasPendingOutput(rescaler)) {
+ WebPRescalerExportRow(rescaler);
+ ConvertToYUVA(src, dst_width, y_pos, dec->output_);
+ ++y_pos;
+ ++num_lines_out;
+ }
+ return num_lines_out;
+}
+
+static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
+ const uint32_t* const data,
+ int in_stride, int mb_h) {
+ const uint8_t* const in = (const uint8_t*)data;
+ int num_lines_in = 0;
+ int y_pos = dec->last_out_row_;
+ while (num_lines_in < mb_h) {
+ const uint8_t* const row_in = in + num_lines_in * in_stride;
+ num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
+ row_in, in_stride);
+ y_pos += ExportYUVA(dec, y_pos);
+ }
+ return y_pos;
+}
+
+static int EmitRowsYUVA(const VP8LDecoder* const dec,
+ const uint32_t* const data, int in_stride,
+ int mb_w, int num_rows) {
+ int y_pos = dec->last_out_row_;
+ const uint8_t* row_in = (const uint8_t*)data;
+ while (num_rows-- > 0) {
+ ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
+ row_in += in_stride;
+ ++y_pos;
+ }
+ return y_pos;
+}
+
+//------------------------------------------------------------------------------
+// Cropping.
+
+// Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
+// crop options. Also updates the input data pointer, so that it points to the
+// start of the cropped window.
+// Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
+// Returns true if the crop window is not empty.
+static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
+ const uint32_t** const in_data, int pixel_stride) {
+ assert(y_start < y_end);
+ assert(io->crop_left < io->crop_right);
+ if (y_end > io->crop_bottom) {
+ y_end = io->crop_bottom; // make sure we don't overflow on last row.
+ }
+ if (y_start < io->crop_top) {
+ const int delta = io->crop_top - y_start;
+ y_start = io->crop_top;
+ *in_data += pixel_stride * delta;
+ }
+ if (y_start >= y_end) return 0; // Crop window is empty.
+
+ *in_data += io->crop_left;
+
+ io->mb_y = y_start - io->crop_top;
+ io->mb_w = io->crop_right - io->crop_left;
+ io->mb_h = y_end - y_start;
+ return 1; // Non-empty crop window.
+}
+
+//------------------------------------------------------------------------------
+
+static WEBP_INLINE int GetMetaIndex(
+ const uint32_t* const image, int xsize, int bits, int x, int y) {
+ if (bits == 0) return 0;
+ return image[xsize * (y >> bits) + (x >> bits)];
+}
+
+static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
+ int x, int y) {
+ const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
+ hdr->huffman_subsample_bits_, x, y);
+ assert(meta_index < hdr->num_htree_groups_);
+ return hdr->htree_groups_ + meta_index;
+}
+
+//------------------------------------------------------------------------------
+// Main loop, with custom row-processing function
+
+typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
+
+static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
+ const uint32_t* const rows) {
+ int n = dec->next_transform_;
+ const int cache_pixs = dec->width_ * num_rows;
+ const int start_row = dec->last_row_;
+ const int end_row = start_row + num_rows;
+ const uint32_t* rows_in = rows;
+ uint32_t* const rows_out = dec->argb_cache_;
+
+ // Inverse transforms.
+ // TODO: most transforms only need to operate on the cropped region only.
+ memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
+ while (n-- > 0) {
+ VP8LTransform* const transform = &dec->transforms_[n];
+ VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
+ rows_in = rows_out;
+ }
+}
+
+// Processes (transforms, scales & color-converts) the rows decoded after the
+// last call.
+static void ProcessRows(VP8LDecoder* const dec, int row) {
+ const uint32_t* const rows = dec->argb_ + dec->width_ * dec->last_row_;
+ const int num_rows = row - dec->last_row_;
+
+ if (num_rows <= 0) return; // Nothing to be done.
+ ApplyInverseTransforms(dec, num_rows, rows);
+
+ // Emit output.
+ {
+ VP8Io* const io = dec->io_;
+ const uint32_t* rows_data = dec->argb_cache_;
+ if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
+ // Nothing to output (this time).
+ } else {
+ const WebPDecBuffer* const output = dec->output_;
+ const int in_stride = io->width * sizeof(*rows_data);
+ if (output->colorspace < MODE_YUV) { // convert to RGBA
+ const WebPRGBABuffer* const buf = &output->u.RGBA;
+ uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
+ const int num_rows_out = io->use_scaling ?
+ EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
+ rgba, buf->stride) :
+ EmitRows(output->colorspace, rows_data, in_stride,
+ io->mb_w, io->mb_h, rgba, buf->stride);
+ // Update 'last_out_row_'.
+ dec->last_out_row_ += num_rows_out;
+ } else { // convert to YUVA
+ dec->last_out_row_ = io->use_scaling ?
+ EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
+ EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
+ }
+ assert(dec->last_out_row_ <= output->height);
+ }
+ }
+
+ // Update 'last_row_'.
+ dec->last_row_ = row;
+ assert(dec->last_row_ <= dec->height_);
+}
+
+static int DecodeImageData(VP8LDecoder* const dec,
+ uint32_t* const data, int width, int height,
+ ProcessRowsFunc process_func) {
+ int ok = 1;
+ int col = 0, row = 0;
+ VP8LBitReader* const br = &dec->br_;
+ VP8LMetadata* const hdr = &dec->hdr_;
+ HTreeGroup* htree_group = hdr->htree_groups_;
+ uint32_t* src = data;
+ uint32_t* last_cached = data;
+ uint32_t* const src_end = data + width * height;
+ const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
+ const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
+ VP8LColorCache* const color_cache =
+ (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
+ const int mask = hdr->huffman_mask_;
+
+ assert(htree_group != NULL);
+
+ while (!br->eos_ && src < src_end) {
+ int code;
+ // Only update when changing tile. Note we could use the following test:
+ // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
+ // but that's actually slower and requires storing the previous col/row
+ if ((col & mask) == 0) {
+ htree_group = GetHtreeGroupForPos(hdr, col, row);
+ }
+ VP8LFillBitWindow(br);
+ code = ReadSymbol(&htree_group->htrees_[GREEN], br);
+ if (code < NUM_LITERAL_CODES) { // Literal.
+ int red, green, blue, alpha;
+ red = ReadSymbol(&htree_group->htrees_[RED], br);
+ green = code;
+ VP8LFillBitWindow(br);
+ blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
+ alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
+ *src = (alpha << 24) + (red << 16) + (green << 8) + blue;
+ AdvanceByOne:
+ ++src;
+ ++col;
+ if (col >= width) {
+ col = 0;
+ ++row;
+ if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
+ process_func(dec, row);
+ }
+ if (color_cache != NULL) {
+ while (last_cached < src) {
+ VP8LColorCacheInsert(color_cache, *last_cached++);
+ }
+ }
+ }
+ } else if (code < len_code_limit) { // Backward reference
+ int dist_code, dist;
+ const int length_sym = code - NUM_LITERAL_CODES;
+ const int length = GetCopyLength(length_sym, br);
+ const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
+ VP8LFillBitWindow(br);
+ dist_code = GetCopyDistance(dist_symbol, br);
+ dist = PlaneCodeToDistance(width, dist_code);
+ if (src - data < dist || src_end - src < length) {
+ ok = 0;
+ goto End;
+ }
+ {
+ int i;
+ for (i = 0; i < length; ++i) src[i] = src[i - dist];
+ src += length;
+ }
+ col += length;
+ while (col >= width) {
+ col -= width;
+ ++row;
+ if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
+ process_func(dec, row);
+ }
+ }
+ if (src < src_end) {
+ htree_group = GetHtreeGroupForPos(hdr, col, row);
+ if (color_cache != NULL) {
+ while (last_cached < src) {
+ VP8LColorCacheInsert(color_cache, *last_cached++);
+ }
+ }
+ }
+ } else if (code < color_cache_limit) { // Color cache.
+ const int key = code - len_code_limit;
+ assert(color_cache != NULL);
+ while (last_cached < src) {
+ VP8LColorCacheInsert(color_cache, *last_cached++);
+ }
+ *src = VP8LColorCacheLookup(color_cache, key);
+ goto AdvanceByOne;
+ } else { // Not reached.
+ ok = 0;
+ goto End;
+ }
+ ok = !br->error_;
+ if (!ok) goto End;
+ }
+ // Process the remaining rows corresponding to last row-block.
+ if (process_func != NULL) process_func(dec, row);
+
+ End:
+ if (br->error_ || !ok || (br->eos_ && src < src_end)) {
+ ok = 0;
+ dec->status_ = (!br->eos_) ?
+ VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED;
+ } else if (src == src_end) {
+ dec->state_ = READ_DATA;
+ }
+
+ return ok;
+}
+
+// -----------------------------------------------------------------------------
+// VP8LTransform
+
+static void ClearTransform(VP8LTransform* const transform) {
+ free(transform->data_);
+ transform->data_ = NULL;
+}
+
+// For security reason, we need to remap the color map to span
+// the total possible bundled values, and not just the num_colors.
+static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
+ int i;
+ const int final_num_colors = 1 << (8 >> transform->bits_);
+ uint32_t* const new_color_map =
+ (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
+ sizeof(*new_color_map));
+ if (new_color_map == NULL) {
+ return 0;
+ } else {
+ uint8_t* const data = (uint8_t*)transform->data_;
+ uint8_t* const new_data = (uint8_t*)new_color_map;
+ new_color_map[0] = transform->data_[0];
+ for (i = 4; i < 4 * num_colors; ++i) {
+ // Equivalent to AddPixelEq(), on a byte-basis.
+ new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
+ }
+ for (; i < 4 * final_num_colors; ++i)
+ new_data[i] = 0; // black tail.
+ free(transform->data_);
+ transform->data_ = new_color_map;
+ }
+ return 1;
+}
+
+static int ReadTransform(int* const xsize, int const* ysize,
+ VP8LDecoder* const dec) {
+ int ok = 1;
+ VP8LBitReader* const br = &dec->br_;
+ VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
+ const VP8LImageTransformType type =
+ (VP8LImageTransformType)VP8LReadBits(br, 2);
+
+ // Each transform type can only be present once in the stream.
+ if (dec->transforms_seen_ & (1U << type)) {
+ return 0; // Already there, let's not accept the second same transform.
+ }
+ dec->transforms_seen_ |= (1U << type);
+
+ transform->type_ = type;
+ transform->xsize_ = *xsize;
+ transform->ysize_ = *ysize;
+ transform->data_ = NULL;
+ ++dec->next_transform_;
+ assert(dec->next_transform_ <= NUM_TRANSFORMS);
+
+ switch (type) {
+ case PREDICTOR_TRANSFORM:
+ case CROSS_COLOR_TRANSFORM:
+ transform->bits_ = VP8LReadBits(br, 3) + 2;
+ ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
+ transform->bits_),
+ VP8LSubSampleSize(transform->ysize_,
+ transform->bits_),
+ 0, dec, &transform->data_);
+ break;
+ case COLOR_INDEXING_TRANSFORM: {
+ const int num_colors = VP8LReadBits(br, 8) + 1;
+ const int bits = (num_colors > 16) ? 0
+ : (num_colors > 4) ? 1
+ : (num_colors > 2) ? 2
+ : 3;
+ *xsize = VP8LSubSampleSize(transform->xsize_, bits);
+ transform->bits_ = bits;
+ ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
+ ok = ok && ExpandColorMap(num_colors, transform);
+ break;
+ }
+ case SUBTRACT_GREEN:
+ break;
+ default:
+ assert(0); // can't happen
+ break;
+ }
+
+ return ok;
+}
+
+// -----------------------------------------------------------------------------
+// VP8LMetadata
+
+static void InitMetadata(VP8LMetadata* const hdr) {
+ assert(hdr);
+ memset(hdr, 0, sizeof(*hdr));
+}
+
+static void ClearMetadata(VP8LMetadata* const hdr) {
+ assert(hdr);
+
+ free(hdr->huffman_image_);
+ DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
+ VP8LColorCacheClear(&hdr->color_cache_);
+ InitMetadata(hdr);
+}
+
+// -----------------------------------------------------------------------------
+// VP8LDecoder
+
+VP8LDecoder* VP8LNew(void) {
+ VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
+ if (dec == NULL) return NULL;
+ dec->status_ = VP8_STATUS_OK;
+ dec->action_ = READ_DIM;
+ dec->state_ = READ_DIM;
+ return dec;
+}
+
+void VP8LClear(VP8LDecoder* const dec) {
+ int i;
+ if (dec == NULL) return;
+ ClearMetadata(&dec->hdr_);
+
+ free(dec->argb_);
+ dec->argb_ = NULL;
+ for (i = 0; i < dec->next_transform_; ++i) {
+ ClearTransform(&dec->transforms_[i]);
+ }
+ dec->next_transform_ = 0;
+ dec->transforms_seen_ = 0;
+
+ free(dec->rescaler_memory);
+ dec->rescaler_memory = NULL;
+
+ dec->output_ = NULL; // leave no trace behind
+}
+
+void VP8LDelete(VP8LDecoder* const dec) {
+ if (dec != NULL) {
+ VP8LClear(dec);
+ free(dec);
+ }
+}
+
+static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
+ VP8LMetadata* const hdr = &dec->hdr_;
+ const int num_bits = hdr->huffman_subsample_bits_;
+ dec->width_ = width;
+ dec->height_ = height;
+
+ hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
+ hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
+}
+
+static int DecodeImageStream(int xsize, int ysize,
+ int is_level0,
+ VP8LDecoder* const dec,
+ uint32_t** const decoded_data) {
+ int ok = 1;
+ int transform_xsize = xsize;
+ int transform_ysize = ysize;
+ VP8LBitReader* const br = &dec->br_;
+ VP8LMetadata* const hdr = &dec->hdr_;
+ uint32_t* data = NULL;
+ int color_cache_bits = 0;
+
+ // Read the transforms (may recurse).
+ if (is_level0) {
+ while (ok && VP8LReadBits(br, 1)) {
+ ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
+ }
+ }
+
+ // Color cache
+ if (ok && VP8LReadBits(br, 1)) {
+ color_cache_bits = VP8LReadBits(br, 4);
+ ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
+ if (!ok) {
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
+ goto End;
+ }
+ }
+
+ // Read the Huffman codes (may recurse).
+ ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
+ color_cache_bits, is_level0);
+ if (!ok) {
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
+ goto End;
+ }
+
+ // Finish setting up the color-cache
+ if (color_cache_bits > 0) {
+ hdr->color_cache_size_ = 1 << color_cache_bits;
+ if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
+ ok = 0;
+ goto End;
+ }
+ } else {
+ hdr->color_cache_size_ = 0;
+ }
+ UpdateDecoder(dec, transform_xsize, transform_ysize);
+
+ if (is_level0) { // level 0 complete
+ dec->state_ = READ_HDR;
+ goto End;
+ }
+
+ {
+ const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
+ data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
+ if (data == NULL) {
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
+ ok = 0;
+ goto End;
+ }
+ }
+
+ // Use the Huffman trees to decode the LZ77 encoded data.
+ ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
+ ok = ok && !br->error_;
+
+ End:
+
+ if (!ok) {
+ free(data);
+ ClearMetadata(hdr);
+ // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
+ // status appropriately.
+ if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
+ dec->status_ = VP8_STATUS_SUSPENDED;
+ }
+ } else {
+ if (decoded_data != NULL) {
+ *decoded_data = data;
+ } else {
+ // We allocate image data in this function only for transforms. At level 0
+ // (that is: not the transforms), we shouldn't have allocated anything.
+ assert(data == NULL);
+ assert(is_level0);
+ }
+ if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind.
+ }
+ return ok;
+}
+
+//------------------------------------------------------------------------------
+// Allocate dec->argb_ and dec->argb_cache_ using dec->width_ and dec->height_
+
+static int AllocateARGBBuffers(VP8LDecoder* const dec, int final_width) {
+ const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
+ // Scratch buffer corresponding to top-prediction row for transforming the
+ // first row in the row-blocks.
+ const uint64_t cache_top_pixels = final_width;
+ // Scratch buffer for temporary BGRA storage.
+ const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
+ const uint64_t total_num_pixels =
+ num_pixels + cache_top_pixels + cache_pixels;
+
+ assert(dec->width_ <= final_width);
+ dec->argb_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(*dec->argb_));
+ if (dec->argb_ == NULL) {
+ dec->argb_cache_ = NULL; // for sanity check
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
+ return 0;
+ }
+ dec->argb_cache_ = dec->argb_ + num_pixels + cache_top_pixels;
+ return 1;
+}
+
+//------------------------------------------------------------------------------
+// Special row-processing that only stores the alpha data.
+
+static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
+ const int num_rows = row - dec->last_row_;
+ const uint32_t* const in = dec->argb_ + dec->width_ * dec->last_row_;
+
+ if (num_rows <= 0) return; // Nothing to be done.
+ ApplyInverseTransforms(dec, num_rows, in);
+
+ // Extract alpha (which is stored in the green plane).
+ {
+ const int width = dec->io_->width; // the final width (!= dec->width_)
+ const int cache_pixs = width * num_rows;
+ uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
+ const uint32_t* const src = dec->argb_cache_;
+ int i;
+ for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
+ }
+
+ dec->last_row_ = dec->last_out_row_ = row;
+}
+
+int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
+ size_t data_size, uint8_t* const output) {
+ VP8Io io;
+ int ok = 0;
+ VP8LDecoder* const dec = VP8LNew();
+ if (dec == NULL) return 0;
+
+ dec->width_ = width;
+ dec->height_ = height;
+ dec->io_ = &io;
+
+ VP8InitIo(&io);
+ WebPInitCustomIo(NULL, &io); // Just a sanity Init. io won't be used.
+ io.opaque = output;
+ io.width = width;
+ io.height = height;
+
+ dec->status_ = VP8_STATUS_OK;
+ VP8LInitBitReader(&dec->br_, data, data_size);
+
+ dec->action_ = READ_HDR;
+ if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;
+
+ // Allocate output (note that dec->width_ may have changed here).
+ if (!AllocateARGBBuffers(dec, width)) goto Err;
+
+ // Decode (with special row processing).
+ dec->action_ = READ_DATA;
+ ok = DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
+ ExtractAlphaRows);
+
+ Err:
+ VP8LDelete(dec);
+ return ok;
+}
+
+//------------------------------------------------------------------------------
+
+int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
+ int width, height, has_alpha;
+
+ if (dec == NULL) return 0;
+ if (io == NULL) {
+ dec->status_ = VP8_STATUS_INVALID_PARAM;
+ return 0;
+ }
+
+ dec->io_ = io;
+ dec->status_ = VP8_STATUS_OK;
+ VP8LInitBitReader(&dec->br_, io->data, io->data_size);
+ if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
+ goto Error;
+ }
+ dec->state_ = READ_DIM;
+ io->width = width;
+ io->height = height;
+
+ dec->action_ = READ_HDR;
+ if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
+ return 1;
+
+ Error:
+ VP8LClear(dec);
+ assert(dec->status_ != VP8_STATUS_OK);
+ return 0;
+}
+
+int VP8LDecodeImage(VP8LDecoder* const dec) {
+ VP8Io* io = NULL;
+ WebPDecParams* params = NULL;
+
+ // Sanity checks.
+ if (dec == NULL) return 0;
+
+ io = dec->io_;
+ assert(io != NULL);
+ params = (WebPDecParams*)io->opaque;
+ assert(params != NULL);
+ dec->output_ = params->output;
+ assert(dec->output_ != NULL);
+
+ // Initialization.
+ if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
+ dec->status_ = VP8_STATUS_INVALID_PARAM;
+ goto Err;
+ }
+
+ if (!AllocateARGBBuffers(dec, io->width)) goto Err;
+
+ if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
+
+ // Decode.
+ dec->action_ = READ_DATA;
+ if (!DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
+ ProcessRows)) {
+ goto Err;
+ }
+
+ // Cleanup.
+ params->last_y = dec->last_out_row_;
+ VP8LClear(dec);
+ return 1;
+
+ Err:
+ VP8LClear(dec);
+ assert(dec->status_ != VP8_STATUS_OK);
+ return 0;
+}
+
+//------------------------------------------------------------------------------
+
+#if defined(__cplusplus) || defined(c_plusplus)
+} // extern "C"
+#endif