diff options
Diffstat (limited to 'drivers/webpold/dec/frame.c')
-rw-r--r-- | drivers/webpold/dec/frame.c | 679 |
1 files changed, 679 insertions, 0 deletions
diff --git a/drivers/webpold/dec/frame.c b/drivers/webpold/dec/frame.c new file mode 100644 index 0000000000..9c91a48e17 --- /dev/null +++ b/drivers/webpold/dec/frame.c @@ -0,0 +1,679 @@ +// Copyright 2010 Google Inc. All Rights Reserved. +// +// This code is licensed under the same terms as WebM: +// Software License Agreement: http://www.webmproject.org/license/software/ +// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ +// ----------------------------------------------------------------------------- +// +// Frame-reconstruction function. Memory allocation. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <stdlib.h> +#include "./vp8i.h" +#include "../utils/utils.h" + +#if defined(__cplusplus) || defined(c_plusplus) +extern "C" { +#endif + +#define ALIGN_MASK (32 - 1) + +//------------------------------------------------------------------------------ +// Filtering + +// kFilterExtraRows[] = How many extra lines are needed on the MB boundary +// for caching, given a filtering level. +// Simple filter: up to 2 luma samples are read and 1 is written. +// Complex filter: up to 4 luma samples are read and 3 are written. Same for +// U/V, so it's 8 samples total (because of the 2x upsampling). +static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; + +static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) { + if (keyframe) { + return (level >= 40) ? 2 : (level >= 15) ? 1 : 0; + } else { + return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0; + } +} + +static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { + const VP8ThreadContext* const ctx = &dec->thread_ctx_; + const int y_bps = dec->cache_y_stride_; + VP8FInfo* const f_info = ctx->f_info_ + mb_x; + uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16; + const int level = f_info->f_level_; + const int ilevel = f_info->f_ilevel_; + const int limit = 2 * level + ilevel; + if (level == 0) { + return; + } + if (dec->filter_type_ == 1) { // simple + if (mb_x > 0) { + VP8SimpleHFilter16(y_dst, y_bps, limit + 4); + } + if (f_info->f_inner_) { + VP8SimpleHFilter16i(y_dst, y_bps, limit); + } + if (mb_y > 0) { + VP8SimpleVFilter16(y_dst, y_bps, limit + 4); + } + if (f_info->f_inner_) { + VP8SimpleVFilter16i(y_dst, y_bps, limit); + } + } else { // complex + const int uv_bps = dec->cache_uv_stride_; + uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8; + uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8; + const int hev_thresh = + hev_thresh_from_level(level, dec->frm_hdr_.key_frame_); + if (mb_x > 0) { + VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); + VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); + } + if (f_info->f_inner_) { + VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); + VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); + } + if (mb_y > 0) { + VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); + VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); + } + if (f_info->f_inner_) { + VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); + VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); + } + } +} + +// Filter the decoded macroblock row (if needed) +static void FilterRow(const VP8Decoder* const dec) { + int mb_x; + const int mb_y = dec->thread_ctx_.mb_y_; + assert(dec->thread_ctx_.filter_row_); + for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { + DoFilter(dec, mb_x, mb_y); + } +} + +//------------------------------------------------------------------------------ + +void VP8StoreBlock(VP8Decoder* const dec) { + if (dec->filter_type_ > 0) { + VP8FInfo* const info = dec->f_info_ + dec->mb_x_; + const int skip = dec->mb_info_[dec->mb_x_].skip_; + int level = dec->filter_levels_[dec->segment_]; + if (dec->filter_hdr_.use_lf_delta_) { + // TODO(skal): only CURRENT is handled for now. + level += dec->filter_hdr_.ref_lf_delta_[0]; + if (dec->is_i4x4_) { + level += dec->filter_hdr_.mode_lf_delta_[0]; + } + } + level = (level < 0) ? 0 : (level > 63) ? 63 : level; + info->f_level_ = level; + + if (dec->filter_hdr_.sharpness_ > 0) { + if (dec->filter_hdr_.sharpness_ > 4) { + level >>= 2; + } else { + level >>= 1; + } + if (level > 9 - dec->filter_hdr_.sharpness_) { + level = 9 - dec->filter_hdr_.sharpness_; + } + } + + info->f_ilevel_ = (level < 1) ? 1 : level; + info->f_inner_ = (!skip || dec->is_i4x4_); + } + { + // Transfer samples to row cache + int y; + const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_; + const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_; + uint8_t* const ydst = dec->cache_y_ + dec->mb_x_ * 16 + y_offset; + uint8_t* const udst = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset; + uint8_t* const vdst = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset; + for (y = 0; y < 16; ++y) { + memcpy(ydst + y * dec->cache_y_stride_, + dec->yuv_b_ + Y_OFF + y * BPS, 16); + } + for (y = 0; y < 8; ++y) { + memcpy(udst + y * dec->cache_uv_stride_, + dec->yuv_b_ + U_OFF + y * BPS, 8); + memcpy(vdst + y * dec->cache_uv_stride_, + dec->yuv_b_ + V_OFF + y * BPS, 8); + } + } +} + +//------------------------------------------------------------------------------ +// This function is called after a row of macroblocks is finished decoding. +// It also takes into account the following restrictions: +// * In case of in-loop filtering, we must hold off sending some of the bottom +// pixels as they are yet unfiltered. They will be when the next macroblock +// row is decoded. Meanwhile, we must preserve them by rotating them in the +// cache area. This doesn't hold for the very bottom row of the uncropped +// picture of course. +// * we must clip the remaining pixels against the cropping area. The VP8Io +// struct must have the following fields set correctly before calling put(): + +#define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB + +// Finalize and transmit a complete row. Return false in case of user-abort. +static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { + int ok = 1; + const VP8ThreadContext* const ctx = &dec->thread_ctx_; + const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; + const int ysize = extra_y_rows * dec->cache_y_stride_; + const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; + const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_; + const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_; + uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; + uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; + uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; + const int first_row = (ctx->mb_y_ == 0); + const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1); + int y_start = MACROBLOCK_VPOS(ctx->mb_y_); + int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1); + + if (ctx->filter_row_) { + FilterRow(dec); + } + + if (io->put) { + if (!first_row) { + y_start -= extra_y_rows; + io->y = ydst; + io->u = udst; + io->v = vdst; + } else { + io->y = dec->cache_y_ + y_offset; + io->u = dec->cache_u_ + uv_offset; + io->v = dec->cache_v_ + uv_offset; + } + + if (!last_row) { + y_end -= extra_y_rows; + } + if (y_end > io->crop_bottom) { + y_end = io->crop_bottom; // make sure we don't overflow on last row. + } + io->a = NULL; + if (dec->alpha_data_ != NULL && y_start < y_end) { + // TODO(skal): several things to correct here: + // * testing presence of alpha with dec->alpha_data_ is not a good idea + // * we're actually decompressing the full plane only once. It should be + // more obvious from signature. + // * we could free alpha_data_ right after this call, but we don't own. + io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); + if (io->a == NULL) { + return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, + "Could not decode alpha data."); + } + } + if (y_start < io->crop_top) { + const int delta_y = io->crop_top - y_start; + y_start = io->crop_top; + assert(!(delta_y & 1)); + io->y += dec->cache_y_stride_ * delta_y; + io->u += dec->cache_uv_stride_ * (delta_y >> 1); + io->v += dec->cache_uv_stride_ * (delta_y >> 1); + if (io->a != NULL) { + io->a += io->width * delta_y; + } + } + if (y_start < y_end) { + io->y += io->crop_left; + io->u += io->crop_left >> 1; + io->v += io->crop_left >> 1; + if (io->a != NULL) { + io->a += io->crop_left; + } + io->mb_y = y_start - io->crop_top; + io->mb_w = io->crop_right - io->crop_left; + io->mb_h = y_end - y_start; + ok = io->put(io); + } + } + // rotate top samples if needed + if (ctx->id_ + 1 == dec->num_caches_) { + if (!last_row) { + memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); + memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); + memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); + } + } + + return ok; +} + +#undef MACROBLOCK_VPOS + +//------------------------------------------------------------------------------ + +int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { + int ok = 1; + VP8ThreadContext* const ctx = &dec->thread_ctx_; + if (!dec->use_threads_) { + // ctx->id_ and ctx->f_info_ are already set + ctx->mb_y_ = dec->mb_y_; + ctx->filter_row_ = dec->filter_row_; + ok = FinishRow(dec, io); + } else { + WebPWorker* const worker = &dec->worker_; + // Finish previous job *before* updating context + ok &= WebPWorkerSync(worker); + assert(worker->status_ == OK); + if (ok) { // spawn a new deblocking/output job + ctx->io_ = *io; + ctx->id_ = dec->cache_id_; + ctx->mb_y_ = dec->mb_y_; + ctx->filter_row_ = dec->filter_row_; + if (ctx->filter_row_) { // just swap filter info + VP8FInfo* const tmp = ctx->f_info_; + ctx->f_info_ = dec->f_info_; + dec->f_info_ = tmp; + } + WebPWorkerLaunch(worker); + if (++dec->cache_id_ == dec->num_caches_) { + dec->cache_id_ = 0; + } + } + } + return ok; +} + +//------------------------------------------------------------------------------ +// Finish setting up the decoding parameter once user's setup() is called. + +VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { + // Call setup() first. This may trigger additional decoding features on 'io'. + // Note: Afterward, we must call teardown() not matter what. + if (io->setup && !io->setup(io)) { + VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); + return dec->status_; + } + + // Disable filtering per user request + if (io->bypass_filtering) { + dec->filter_type_ = 0; + } + // TODO(skal): filter type / strength / sharpness forcing + + // Define the area where we can skip in-loop filtering, in case of cropping. + // + // 'Simple' filter reads two luma samples outside of the macroblock and + // and filters one. It doesn't filter the chroma samples. Hence, we can + // avoid doing the in-loop filtering before crop_top/crop_left position. + // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. + // Means: there's a dependency chain that goes all the way up to the + // top-left corner of the picture (MB #0). We must filter all the previous + // macroblocks. + // TODO(skal): add an 'approximate_decoding' option, that won't produce + // a 1:1 bit-exactness for complex filtering? + { + const int extra_pixels = kFilterExtraRows[dec->filter_type_]; + if (dec->filter_type_ == 2) { + // For complex filter, we need to preserve the dependency chain. + dec->tl_mb_x_ = 0; + dec->tl_mb_y_ = 0; + } else { + // For simple filter, we can filter only the cropped region. + // We include 'extra_pixels' on the other side of the boundary, since + // vertical or horizontal filtering of the previous macroblock can + // modify some abutting pixels. + dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; + dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; + if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; + if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; + } + // We need some 'extra' pixels on the right/bottom. + dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; + dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; + if (dec->br_mb_x_ > dec->mb_w_) { + dec->br_mb_x_ = dec->mb_w_; + } + if (dec->br_mb_y_ > dec->mb_h_) { + dec->br_mb_y_ = dec->mb_h_; + } + } + return VP8_STATUS_OK; +} + +int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { + int ok = 1; + if (dec->use_threads_) { + ok = WebPWorkerSync(&dec->worker_); + } + + if (io->teardown) { + io->teardown(io); + } + return ok; +} + +//------------------------------------------------------------------------------ +// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. +// +// Reason is: the deblocking filter cannot deblock the bottom horizontal edges +// immediately, and needs to wait for first few rows of the next macroblock to +// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending +// on strength). +// With two threads, the vertical positions of the rows being decoded are: +// Decode: [ 0..15][16..31][32..47][48..63][64..79][... +// Deblock: [ 0..11][12..27][28..43][44..59][... +// If we use two threads and two caches of 16 pixels, the sequence would be: +// Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... +// Deblock: [ 0..11][12..27!!][-4..11][12..27][... +// The problem occurs during row [12..15!!] that both the decoding and +// deblocking threads are writing simultaneously. +// With 3 cache lines, one get a safe write pattern: +// Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. +// Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... +// Note that multi-threaded output _without_ deblocking can make use of two +// cache lines of 16 pixels only, since there's no lagging behind. The decoding +// and output process have non-concurrent writing: +// Decode: [ 0..15][16..31][ 0..15][16..31][... +// io->put: [ 0..15][16..31][ 0..15][... + +#define MT_CACHE_LINES 3 +#define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case + +// Initialize multi/single-thread worker +static int InitThreadContext(VP8Decoder* const dec) { + dec->cache_id_ = 0; + if (dec->use_threads_) { + WebPWorker* const worker = &dec->worker_; + if (!WebPWorkerReset(worker)) { + return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, + "thread initialization failed."); + } + worker->data1 = dec; + worker->data2 = (void*)&dec->thread_ctx_.io_; + worker->hook = (WebPWorkerHook)FinishRow; + dec->num_caches_ = + (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; + } else { + dec->num_caches_ = ST_CACHE_LINES; + } + return 1; +} + +#undef MT_CACHE_LINES +#undef ST_CACHE_LINES + +//------------------------------------------------------------------------------ +// Memory setup + +static int AllocateMemory(VP8Decoder* const dec) { + const int num_caches = dec->num_caches_; + const int mb_w = dec->mb_w_; + // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. + const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); + const size_t top_size = (16 + 8 + 8) * mb_w; + const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); + const size_t f_info_size = + (dec->filter_type_ > 0) ? + mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo) + : 0; + const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); + const size_t coeffs_size = 384 * sizeof(*dec->coeffs_); + const size_t cache_height = (16 * num_caches + + kFilterExtraRows[dec->filter_type_]) * 3 / 2; + const size_t cache_size = top_size * cache_height; + // alpha_size is the only one that scales as width x height. + const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? + (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; + const uint64_t needed = (uint64_t)intra_pred_mode_size + + top_size + mb_info_size + f_info_size + + yuv_size + coeffs_size + + cache_size + alpha_size + ALIGN_MASK; + uint8_t* mem; + + if (needed != (size_t)needed) return 0; // check for overflow + if (needed > dec->mem_size_) { + free(dec->mem_); + dec->mem_size_ = 0; + dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); + if (dec->mem_ == NULL) { + return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, + "no memory during frame initialization."); + } + // down-cast is ok, thanks to WebPSafeAlloc() above. + dec->mem_size_ = (size_t)needed; + } + + mem = (uint8_t*)dec->mem_; + dec->intra_t_ = (uint8_t*)mem; + mem += intra_pred_mode_size; + + dec->y_t_ = (uint8_t*)mem; + mem += 16 * mb_w; + dec->u_t_ = (uint8_t*)mem; + mem += 8 * mb_w; + dec->v_t_ = (uint8_t*)mem; + mem += 8 * mb_w; + + dec->mb_info_ = ((VP8MB*)mem) + 1; + mem += mb_info_size; + + dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; + mem += f_info_size; + dec->thread_ctx_.id_ = 0; + dec->thread_ctx_.f_info_ = dec->f_info_; + if (dec->use_threads_) { + // secondary cache line. The deblocking process need to make use of the + // filtering strength from previous macroblock row, while the new ones + // are being decoded in parallel. We'll just swap the pointers. + dec->thread_ctx_.f_info_ += mb_w; + } + + mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK); + assert((yuv_size & ALIGN_MASK) == 0); + dec->yuv_b_ = (uint8_t*)mem; + mem += yuv_size; + + dec->coeffs_ = (int16_t*)mem; + mem += coeffs_size; + + dec->cache_y_stride_ = 16 * mb_w; + dec->cache_uv_stride_ = 8 * mb_w; + { + const int extra_rows = kFilterExtraRows[dec->filter_type_]; + const int extra_y = extra_rows * dec->cache_y_stride_; + const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; + dec->cache_y_ = ((uint8_t*)mem) + extra_y; + dec->cache_u_ = dec->cache_y_ + + 16 * num_caches * dec->cache_y_stride_ + extra_uv; + dec->cache_v_ = dec->cache_u_ + + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; + dec->cache_id_ = 0; + } + mem += cache_size; + + // alpha plane + dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; + mem += alpha_size; + + // note: left-info is initialized once for all. + memset(dec->mb_info_ - 1, 0, mb_info_size); + + // initialize top + memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); + + return 1; +} + +static void InitIo(VP8Decoder* const dec, VP8Io* io) { + // prepare 'io' + io->mb_y = 0; + io->y = dec->cache_y_; + io->u = dec->cache_u_; + io->v = dec->cache_v_; + io->y_stride = dec->cache_y_stride_; + io->uv_stride = dec->cache_uv_stride_; + io->a = NULL; +} + +int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) { + if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. + if (!AllocateMemory(dec)) return 0; + InitIo(dec, io); + VP8DspInit(); // Init critical function pointers and look-up tables. + return 1; +} + +//------------------------------------------------------------------------------ +// Main reconstruction function. + +static const int kScan[16] = { + 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, + 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, + 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, + 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS +}; + +static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) { + if (mode == B_DC_PRED) { + if (dec->mb_x_ == 0) { + return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; + } else { + return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; + } + } + return mode; +} + +static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) { + *(uint32_t*)dst = *(uint32_t*)src; +} + +void VP8ReconstructBlock(VP8Decoder* const dec) { + uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; + uint8_t* const u_dst = dec->yuv_b_ + U_OFF; + uint8_t* const v_dst = dec->yuv_b_ + V_OFF; + + // Rotate in the left samples from previously decoded block. We move four + // pixels at a time for alignment reason, and because of in-loop filter. + if (dec->mb_x_ > 0) { + int j; + for (j = -1; j < 16; ++j) { + Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); + } + for (j = -1; j < 8; ++j) { + Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); + Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); + } + } else { + int j; + for (j = 0; j < 16; ++j) { + y_dst[j * BPS - 1] = 129; + } + for (j = 0; j < 8; ++j) { + u_dst[j * BPS - 1] = 129; + v_dst[j * BPS - 1] = 129; + } + // Init top-left sample on left column too + if (dec->mb_y_ > 0) { + y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; + } + } + { + // bring top samples into the cache + uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16; + uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8; + uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8; + const int16_t* coeffs = dec->coeffs_; + int n; + + if (dec->mb_y_ > 0) { + memcpy(y_dst - BPS, top_y, 16); + memcpy(u_dst - BPS, top_u, 8); + memcpy(v_dst - BPS, top_v, 8); + } else if (dec->mb_x_ == 0) { + // we only need to do this init once at block (0,0). + // Afterward, it remains valid for the whole topmost row. + memset(y_dst - BPS - 1, 127, 16 + 4 + 1); + memset(u_dst - BPS - 1, 127, 8 + 1); + memset(v_dst - BPS - 1, 127, 8 + 1); + } + + // predict and add residuals + + if (dec->is_i4x4_) { // 4x4 + uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); + + if (dec->mb_y_ > 0) { + if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border + top_right[0] = top_y[15] * 0x01010101u; + } else { + memcpy(top_right, top_y + 16, sizeof(*top_right)); + } + } + // replicate the top-right pixels below + top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; + + // predict and add residues for all 4x4 blocks in turn. + for (n = 0; n < 16; n++) { + uint8_t* const dst = y_dst + kScan[n]; + VP8PredLuma4[dec->imodes_[n]](dst); + if (dec->non_zero_ac_ & (1 << n)) { + VP8Transform(coeffs + n * 16, dst, 0); + } else if (dec->non_zero_ & (1 << n)) { // only DC is present + VP8TransformDC(coeffs + n * 16, dst); + } + } + } else { // 16x16 + const int pred_func = CheckMode(dec, dec->imodes_[0]); + VP8PredLuma16[pred_func](y_dst); + if (dec->non_zero_) { + for (n = 0; n < 16; n++) { + uint8_t* const dst = y_dst + kScan[n]; + if (dec->non_zero_ac_ & (1 << n)) { + VP8Transform(coeffs + n * 16, dst, 0); + } else if (dec->non_zero_ & (1 << n)) { // only DC is present + VP8TransformDC(coeffs + n * 16, dst); + } + } + } + } + { + // Chroma + const int pred_func = CheckMode(dec, dec->uvmode_); + VP8PredChroma8[pred_func](u_dst); + VP8PredChroma8[pred_func](v_dst); + + if (dec->non_zero_ & 0x0f0000) { // chroma-U + const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16; + if (dec->non_zero_ac_ & 0x0f0000) { + VP8TransformUV(u_coeffs, u_dst); + } else { + VP8TransformDCUV(u_coeffs, u_dst); + } + } + if (dec->non_zero_ & 0xf00000) { // chroma-V + const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16; + if (dec->non_zero_ac_ & 0xf00000) { + VP8TransformUV(v_coeffs, v_dst); + } else { + VP8TransformDCUV(v_coeffs, v_dst); + } + } + + // stash away top samples for next block + if (dec->mb_y_ < dec->mb_h_ - 1) { + memcpy(top_y, y_dst + 15 * BPS, 16); + memcpy(top_u, u_dst + 7 * BPS, 8); + memcpy(top_v, v_dst + 7 * BPS, 8); + } + } + } +} + +//------------------------------------------------------------------------------ + +#if defined(__cplusplus) || defined(c_plusplus) +} // extern "C" +#endif |