diff options
Diffstat (limited to 'drivers/webp/enc/quant.c')
-rw-r--r-- | drivers/webp/enc/quant.c | 811 |
1 files changed, 536 insertions, 275 deletions
diff --git a/drivers/webp/enc/quant.c b/drivers/webp/enc/quant.c index ea153849c8..002c326b82 100644 --- a/drivers/webp/enc/quant.c +++ b/drivers/webp/enc/quant.c @@ -1,8 +1,10 @@ // Copyright 2011 Google Inc. All Rights Reserved. // -// This code is licensed under the same terms as WebM: -// Software License Agreement: http://www.webmproject.org/license/software/ -// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Quantization @@ -11,6 +13,7 @@ #include <assert.h> #include <math.h> +#include <stdlib.h> // for abs() #include "./vp8enci.h" #include "./cost.h" @@ -22,16 +25,78 @@ #define MID_ALPHA 64 // neutral value for susceptibility #define MIN_ALPHA 30 // lowest usable value for susceptibility -#define MAX_ALPHA 100 // higher meaninful value for susceptibility +#define MAX_ALPHA 100 // higher meaningful value for susceptibility #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP // power-law modulation. Must be strictly less than 1. +#define I4_PENALTY 4000 // Rate-penalty for quick i4/i16 decision + +// number of non-zero coeffs below which we consider the block very flat +// (and apply a penalty to complex predictions) +#define FLATNESS_LIMIT_I16 10 // I16 mode +#define FLATNESS_LIMIT_I4 3 // I4 mode +#define FLATNESS_LIMIT_UV 2 // UV mode +#define FLATNESS_PENALTY 140 // roughly ~1bit per block + #define MULT_8B(a, b) (((a) * (b) + 128) >> 8) -#if defined(__cplusplus) || defined(c_plusplus) -extern "C" { -#endif +// #define DEBUG_BLOCK + +//------------------------------------------------------------------------------ + +#if defined(DEBUG_BLOCK) + +#include <stdio.h> +#include <stdlib.h> + +static void PrintBlockInfo(const VP8EncIterator* const it, + const VP8ModeScore* const rd) { + int i, j; + const int is_i16 = (it->mb_->type_ == 1); + printf("SOURCE / OUTPUT / ABS DELTA\n"); + for (j = 0; j < 24; ++j) { + if (j == 16) printf("\n"); // newline before the U/V block + for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_in_[i + j * BPS]); + printf(" "); + for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_out_[i + j * BPS]); + printf(" "); + for (i = 0; i < 16; ++i) { + printf("%1d ", abs(it->yuv_out_[i + j * BPS] - it->yuv_in_[i + j * BPS])); + } + printf("\n"); + } + printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n", + (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz, + (int)rd->score); + if (is_i16) { + printf("Mode: %d\n", rd->mode_i16); + printf("y_dc_levels:"); + for (i = 0; i < 16; ++i) printf("%3d ", rd->y_dc_levels[i]); + printf("\n"); + } else { + printf("Modes[16]: "); + for (i = 0; i < 16; ++i) printf("%d ", rd->modes_i4[i]); + printf("\n"); + } + printf("y_ac_levels:\n"); + for (j = 0; j < 16; ++j) { + for (i = is_i16 ? 1 : 0; i < 16; ++i) { + printf("%4d ", rd->y_ac_levels[j][i]); + } + printf("\n"); + } + printf("\n"); + printf("uv_levels (mode=%d):\n", rd->mode_uv); + for (j = 0; j < 8; ++j) { + for (i = 0; i < 16; ++i) { + printf("%4d ", rd->uv_levels[j][i]); + } + printf("\n"); + } +} + +#endif // DEBUG_BLOCK //------------------------------------------------------------------------------ @@ -100,31 +165,13 @@ static const uint16_t kAcTable2[128] = { 385, 393, 401, 409, 416, 424, 432, 440 }; -static const uint16_t kCoeffThresh[16] = { - 0, 10, 20, 30, - 10, 20, 30, 30, - 20, 30, 30, 30, - 30, 30, 30, 30 -}; - -// TODO(skal): tune more. Coeff thresholding? -static const uint8_t kBiasMatrices[3][16] = { // [3] = [luma-ac,luma-dc,chroma] - { 96, 96, 96, 96, - 96, 96, 96, 96, - 96, 96, 96, 96, - 96, 96, 96, 96 }, - { 96, 96, 96, 96, - 96, 96, 96, 96, - 96, 96, 96, 96, - 96, 96, 96, 96 }, - { 96, 96, 96, 96, - 96, 96, 96, 96, - 96, 96, 96, 96, - 96, 96, 96, 96 } +static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac] + { 96, 110 }, { 96, 108 }, { 110, 115 } }; -// Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis). +// Sharpening by (slightly) raising the hi-frequency coeffs. // Hack-ish but helpful for mid-bitrate range. Use with care. +#define SHARPEN_BITS 11 // number of descaling bits for sharpening bias static const uint8_t kFreqSharpening[16] = { 0, 30, 60, 90, 30, 60, 90, 90, @@ -137,20 +184,30 @@ static const uint8_t kFreqSharpening[16] = { // Returns the average quantizer static int ExpandMatrix(VP8Matrix* const m, int type) { - int i; - int sum = 0; + int i, sum; + for (i = 0; i < 2; ++i) { + const int is_ac_coeff = (i > 0); + const int bias = kBiasMatrices[type][is_ac_coeff]; + m->iq_[i] = (1 << QFIX) / m->q_[i]; + m->bias_[i] = BIAS(bias); + // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is: + // * zero if coeff <= zthresh + // * non-zero if coeff > zthresh + m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i]; + } for (i = 2; i < 16; ++i) { m->q_[i] = m->q_[1]; + m->iq_[i] = m->iq_[1]; + m->bias_[i] = m->bias_[1]; + m->zthresh_[i] = m->zthresh_[1]; } - for (i = 0; i < 16; ++i) { - const int j = kZigzag[i]; - const int bias = kBiasMatrices[type][j]; - m->iq_[j] = (1 << QFIX) / m->q_[j]; - m->bias_[j] = BIAS(bias); - // TODO(skal): tune kCoeffThresh[] - m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8; - m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11; - sum += m->q_[j]; + for (sum = 0, i = 0; i < 16; ++i) { + if (type == 0) { // we only use sharpening for AC luma coeffs + m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS; + } else { + m->sharpen_[i] = 0; + } + sum += m->q_[i]; } return (sum + 8) >> 4; } @@ -178,17 +235,17 @@ static void SetupMatrices(VP8Encoder* enc) { q16 = ExpandMatrix(&m->y2_, 1); quv = ExpandMatrix(&m->uv_, 2); - // TODO: Switch to kLambda*[] tables? - { - m->lambda_i4_ = (3 * q4 * q4) >> 7; - m->lambda_i16_ = (3 * q16 * q16); - m->lambda_uv_ = (3 * quv * quv) >> 6; - m->lambda_mode_ = (1 * q4 * q4) >> 7; - m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3; - m->lambda_trellis_i16_ = (q16 * q16) >> 2; - m->lambda_trellis_uv_ = (quv *quv) << 1; - m->tlambda_ = (tlambda_scale * q4) >> 5; - } + m->lambda_i4_ = (3 * q4 * q4) >> 7; + m->lambda_i16_ = (3 * q16 * q16); + m->lambda_uv_ = (3 * quv * quv) >> 6; + m->lambda_mode_ = (1 * q4 * q4) >> 7; + m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3; + m->lambda_trellis_i16_ = (q16 * q16) >> 2; + m->lambda_trellis_uv_ = (quv *quv) << 1; + m->tlambda_ = (tlambda_scale * q4) >> 5; + + m->min_disto_ = 10 * m->y1_.q_[0]; // quantization-aware min disto + m->max_edge_ = 0; } } @@ -197,16 +254,21 @@ static void SetupMatrices(VP8Encoder* enc) { // Very small filter-strength values have close to no visual effect. So we can // save a little decoding-CPU by turning filtering off for these. -#define FSTRENGTH_CUTOFF 3 +#define FSTRENGTH_CUTOFF 2 static void SetupFilterStrength(VP8Encoder* const enc) { int i; - const int level0 = enc->config_->filter_strength; + // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering. + const int level0 = 5 * enc->config_->filter_strength; for (i = 0; i < NUM_MB_SEGMENTS; ++i) { - // Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS) - const int level = level0 * 256 * enc->dqm_[i].quant_ / 128; - const int f = level / (256 + enc->dqm_[i].beta_); - enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; + VP8SegmentInfo* const m = &enc->dqm_[i]; + // We focus on the quantization of AC coeffs. + const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2; + const int base_strength = + VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep); + // Segments with lower complexity ('beta') will be less filtered. + const int f = base_strength * level0 / (256 + m->beta_); + m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; } // We record the initial strength (mainly for the case of 1-segment only). enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; @@ -224,28 +286,90 @@ static void SetupFilterStrength(VP8Encoder* const enc) { // We want to emulate jpeg-like behaviour where the expected "good" quality // is around q=75. Internally, our "good" middle is around c=50. So we // map accordingly using linear piece-wise function -static double QualityToCompression(double q) { - const double c = q / 100.; - return (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; +static double QualityToCompression(double c) { + const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; + // The file size roughly scales as pow(quantizer, 3.). Actually, the + // exponent is somewhere between 2.8 and 3.2, but we're mostly interested + // in the mid-quant range. So we scale the compressibility inversely to + // this power-law: quant ~= compression ^ 1/3. This law holds well for + // low quant. Finer modeling for high-quant would make use of kAcTable[] + // more explicitly. + const double v = pow(linear_c, 1 / 3.); + return v; +} + +static double QualityToJPEGCompression(double c, double alpha) { + // We map the complexity 'alpha' and quality setting 'c' to a compression + // exponent empirically matched to the compression curve of libjpeg6b. + // On average, the WebP output size will be roughly similar to that of a + // JPEG file compressed with same quality factor. + const double amin = 0.30; + const double amax = 0.85; + const double exp_min = 0.4; + const double exp_max = 0.9; + const double slope = (exp_min - exp_max) / (amax - amin); + // Linearly interpolate 'expn' from exp_min to exp_max + // in the [amin, amax] range. + const double expn = (alpha > amax) ? exp_min + : (alpha < amin) ? exp_max + : exp_max + slope * (alpha - amin); + const double v = pow(c, expn); + return v; +} + +static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1, + const VP8SegmentInfo* const S2) { + return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_); +} + +static void SimplifySegments(VP8Encoder* const enc) { + int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 }; + const int num_segments = enc->segment_hdr_.num_segments_; + int num_final_segments = 1; + int s1, s2; + for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments + const VP8SegmentInfo* const S1 = &enc->dqm_[s1]; + int found = 0; + // check if we already have similar segment + for (s2 = 0; s2 < num_final_segments; ++s2) { + const VP8SegmentInfo* const S2 = &enc->dqm_[s2]; + if (SegmentsAreEquivalent(S1, S2)) { + found = 1; + break; + } + } + map[s1] = s2; + if (!found) { + if (num_final_segments != s1) { + enc->dqm_[num_final_segments] = enc->dqm_[s1]; + } + ++num_final_segments; + } + } + if (num_final_segments < num_segments) { // Remap + int i = enc->mb_w_ * enc->mb_h_; + while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_]; + enc->segment_hdr_.num_segments_ = num_final_segments; + // Replicate the trailing segment infos (it's mostly cosmetics) + for (i = num_final_segments; i < num_segments; ++i) { + enc->dqm_[i] = enc->dqm_[num_final_segments - 1]; + } + } } void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { int i; int dq_uv_ac, dq_uv_dc; - const int num_segments = enc->config_->segments; + const int num_segments = enc->segment_hdr_.num_segments_; const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; - const double c_base = QualityToCompression(quality); + const double Q = quality / 100.; + const double c_base = enc->config_->emulate_jpeg_size ? + QualityToJPEGCompression(Q, enc->alpha_ / 255.) : + QualityToCompression(Q); for (i = 0; i < num_segments; ++i) { - // The file size roughly scales as pow(quantizer, 3.). Actually, the - // exponent is somewhere between 2.8 and 3.2, but we're mostly interested - // in the mid-quant range. So we scale the compressibility inversely to - // this power-law: quant ~= compression ^ 1/3. This law holds well for - // low quant. Finer modelling for high-quant would make use of kAcTable[] - // more explicitely. - // Additionally, we modulate the base exponent 1/3 to accommodate for the - // quantization susceptibility and allow denser segments to be quantized - // more. - const double expn = (1. - amp * enc->dqm_[i].alpha_) / 3.; + // We modulate the base coefficient to accommodate for the quantization + // susceptibility and allow denser segments to be quantized more. + const double expn = 1. - amp * enc->dqm_[i].alpha_; const double c = pow(c_base, expn); const int q = (int)(127. * (1. - c)); assert(expn > 0.); @@ -271,7 +395,7 @@ void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV); // We also boost the dc-uv-quant a little, based on sns-strength, since // U/V channels are quite more reactive to high quants (flat DC-blocks - // tend to appear, and are displeasant). + // tend to appear, and are unpleasant). dq_uv_dc = -4 * enc->config_->sns_strength / 100; dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed @@ -281,9 +405,11 @@ void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { enc->dq_uv_dc_ = dq_uv_dc; enc->dq_uv_ac_ = dq_uv_ac; - SetupMatrices(enc); - SetupFilterStrength(enc); // initialize segments' filtering, eventually + + if (num_segments > 1) SimplifySegments(enc); + + SetupMatrices(enc); // finalize quantization matrices } //------------------------------------------------------------------------------ @@ -299,16 +425,14 @@ const int VP8I4ModeOffsets[NUM_BMODES] = { }; void VP8MakeLuma16Preds(const VP8EncIterator* const it) { - const VP8Encoder* const enc = it->enc_; - const uint8_t* const left = it->x_ ? enc->y_left_ : NULL; - const uint8_t* const top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL; + const uint8_t* const left = it->x_ ? it->y_left_ : NULL; + const uint8_t* const top = it->y_ ? it->y_top_ : NULL; VP8EncPredLuma16(it->yuv_p_, left, top); } void VP8MakeChroma8Preds(const VP8EncIterator* const it) { - const VP8Encoder* const enc = it->enc_; - const uint8_t* const left = it->x_ ? enc->u_left_ : NULL; - const uint8_t* const top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL; + const uint8_t* const left = it->x_ ? it->u_left_ : NULL; + const uint8_t* const top = it->y_ ? it->uv_top_ : NULL; VP8EncPredChroma8(it->yuv_p_, left, top); } @@ -320,23 +444,21 @@ void VP8MakeIntra4Preds(const VP8EncIterator* const it) { // Quantize // Layout: -// +----+ -// |YYYY| 0 -// |YYYY| 4 -// |YYYY| 8 -// |YYYY| 12 -// +----+ -// |UUVV| 16 -// |UUVV| 20 -// +----+ - -const int VP8Scan[16 + 4 + 4] = { - // Luma +// +----+----+ +// |YYYY|UUVV| 0 +// |YYYY|UUVV| 4 +// |YYYY|....| 8 +// |YYYY|....| 12 +// +----+----+ + +const int VP8Scan[16] = { // Luma 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, +}; +static const int VP8ScanUV[4 + 4] = { 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V }; @@ -364,6 +486,7 @@ static void InitScore(VP8ModeScore* const rd) { rd->D = 0; rd->SD = 0; rd->R = 0; + rd->H = 0; rd->nz = 0; rd->score = MAX_COST; } @@ -372,6 +495,7 @@ static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { dst->D = src->D; dst->SD = src->SD; dst->R = src->R; + dst->H = src->H; dst->nz = src->nz; // note that nz is not accumulated, but just copied. dst->score = src->score; } @@ -380,6 +504,7 @@ static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { dst->D += src->D; dst->SD += src->SD; dst->R += src->R; + dst->H += src->H; dst->nz |= src->nz; // here, new nz bits are accumulated. dst->score += src->score; } @@ -387,28 +512,31 @@ static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { //------------------------------------------------------------------------------ // Performs trellis-optimized quantization. -// Trellis - +// Trellis node typedef struct { - int prev; // best previous - int level; // level - int sign; // sign of coeff_i - score_t cost; // bit cost - score_t error; // distortion = sum of (|coeff_i| - level_i * Q_i)^2 - int ctx; // context (only depends on 'level'. Could be spared.) + int8_t prev; // best previous node + int8_t sign; // sign of coeff_i + int16_t level; // level } Node; +// Score state +typedef struct { + score_t score; // partial RD score + const uint16_t* costs; // shortcut to cost tables +} ScoreState; + // If a coefficient was quantized to a value Q (using a neutral bias), // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA] // We don't test negative values though. #define MIN_DELTA 0 // how much lower level to try #define MAX_DELTA 1 // how much higher #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA) -#define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA]) +#define NODE(n, l) (nodes[(n)][(l) + MIN_DELTA]) +#define SCORE_STATE(n, l) (score_states[n][(l) + MIN_DELTA]) static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) { // TODO: incorporate the "* 256" in the tables? - rd->score = rd->R * lambda + 256 * (rd->D + rd->SD); + rd->score = (rd->R + rd->H) * lambda + 256 * (rd->D + rd->SD); } static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, @@ -416,34 +544,37 @@ static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, return rate * lambda + 256 * distortion; } -static int TrellisQuantizeBlock(const VP8EncIterator* const it, +static int TrellisQuantizeBlock(const VP8Encoder* const enc, int16_t in[16], int16_t out[16], int ctx0, int coeff_type, const VP8Matrix* const mtx, int lambda) { - ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type]; - CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type]; + const ProbaArray* const probas = enc->proba_.coeffs_[coeff_type]; + CostArrayPtr const costs = + (CostArrayPtr)enc->proba_.remapped_costs_[coeff_type]; const int first = (coeff_type == 0) ? 1 : 0; - Node nodes[17][NUM_NODES]; + Node nodes[16][NUM_NODES]; + ScoreState score_states[2][NUM_NODES]; + ScoreState* ss_cur = &SCORE_STATE(0, MIN_DELTA); + ScoreState* ss_prev = &SCORE_STATE(1, MIN_DELTA); int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous score_t best_score; - int best_node; - int last = first - 1; - int n, m, p, nz; + int n, m, p, last; { score_t cost; - score_t max_error; const int thresh = mtx->q_[1] * mtx->q_[1] / 4; - const int last_proba = last_costs[VP8EncBands[first]][ctx0][0]; + const int last_proba = probas[VP8EncBands[first]][ctx0][0]; - // compute maximal distortion. - max_error = 0; - for (n = first; n < 16; ++n) { - const int j = kZigzag[n]; + // compute the position of the last interesting coefficient + last = first - 1; + for (n = 15; n >= first; --n) { + const int j = kZigzag[n]; const int err = in[j] * in[j]; - max_error += kWeightTrellis[j] * err; - if (err > thresh) last = n; + if (err > thresh) { + last = n; + break; + } } // we don't need to go inspect up to n = 16 coeffs. We can just go up // to last + 1 (inclusive) without losing much. @@ -451,93 +582,95 @@ static int TrellisQuantizeBlock(const VP8EncIterator* const it, // compute 'skip' score. This is the max score one can do. cost = VP8BitCost(0, last_proba); - best_score = RDScoreTrellis(lambda, cost, max_error); + best_score = RDScoreTrellis(lambda, cost, 0); // initialize source node. - n = first - 1; for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { - NODE(n, m).cost = 0; - NODE(n, m).error = max_error; - NODE(n, m).ctx = ctx0; + const score_t rate = (ctx0 == 0) ? VP8BitCost(1, last_proba) : 0; + ss_cur[m].score = RDScoreTrellis(lambda, rate, 0); + ss_cur[m].costs = costs[first][ctx0]; } } // traverse trellis. for (n = first; n <= last; ++n) { - const int j = kZigzag[n]; - const int Q = mtx->q_[j]; - const int iQ = mtx->iq_[j]; - const int B = BIAS(0x00); // neutral bias + const int j = kZigzag[n]; + const uint32_t Q = mtx->q_[j]; + const uint32_t iQ = mtx->iq_[j]; + const uint32_t B = BIAS(0x00); // neutral bias // note: it's important to take sign of the _original_ coeff, // so we don't have to consider level < 0 afterward. const int sign = (in[j] < 0); - int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; - int level0; - if (coeff0 > 2047) coeff0 = 2047; + const uint32_t coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; + int level0 = QUANTDIV(coeff0, iQ, B); + if (level0 > MAX_LEVEL) level0 = MAX_LEVEL; + + { // Swap current and previous score states + ScoreState* const tmp = ss_cur; + ss_cur = ss_prev; + ss_prev = tmp; + } - level0 = QUANTDIV(coeff0, iQ, B); // test all alternate level values around level0. for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { Node* const cur = &NODE(n, m); - int delta_error, new_error; - score_t cur_score = MAX_COST; int level = level0 + m; - int last_proba; - - cur->sign = sign; - cur->level = level; - cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2; - if (level >= 2048 || level < 0) { // node is dead? - cur->cost = MAX_COST; + const int ctx = (level > 2) ? 2 : level; + const int band = VP8EncBands[n + 1]; + score_t base_score, last_pos_score; + score_t best_cur_score = MAX_COST; + int best_prev = 0; // default, in case + + ss_cur[m].score = MAX_COST; + ss_cur[m].costs = costs[n + 1][ctx]; + if (level > MAX_LEVEL || level < 0) { // node is dead? continue; } - last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0]; - // Compute delta_error = how much coding this level will - // subtract as distortion to max_error - new_error = coeff0 - level * Q; - delta_error = - kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error); + // Compute extra rate cost if last coeff's position is < 15 + { + const score_t last_pos_cost = + (n < 15) ? VP8BitCost(0, probas[band][ctx][0]) : 0; + last_pos_score = RDScoreTrellis(lambda, last_pos_cost, 0); + } + + { + // Compute delta_error = how much coding this level will + // subtract to max_error as distortion. + // Here, distortion = sum of (|coeff_i| - level_i * Q_i)^2 + const int new_error = coeff0 - level * Q; + const int delta_error = + kWeightTrellis[j] * (new_error * new_error - coeff0 * coeff0); + base_score = RDScoreTrellis(lambda, 0, delta_error); + } // Inspect all possible non-dead predecessors. Retain only the best one. for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) { - const Node* const prev = &NODE(n - 1, p); - const int prev_ctx = prev->ctx; - const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx]; - const score_t total_error = prev->error - delta_error; - score_t cost, base_cost, score; - - if (prev->cost >= MAX_COST) { // dead node? - continue; - } - - // Base cost of both terminal/non-terminal - base_cost = prev->cost + VP8LevelCost(tcost, level); - + // Dead nodes (with ss_prev[p].score >= MAX_COST) are automatically + // eliminated since their score can't be better than the current best. + const score_t cost = VP8LevelCost(ss_prev[p].costs, level); // Examine node assuming it's a non-terminal one. - cost = base_cost; - if (level && n < 15) { - cost += VP8BitCost(1, last_proba); + const score_t score = + base_score + ss_prev[p].score + RDScoreTrellis(lambda, cost, 0); + if (score < best_cur_score) { + best_cur_score = score; + best_prev = p; } - score = RDScoreTrellis(lambda, cost, total_error); - if (score < cur_score) { - cur_score = score; - cur->cost = cost; - cur->error = total_error; - cur->prev = p; - } - - // Now, record best terminal node (and thus best entry in the graph). - if (level) { - cost = base_cost; - if (n < 15) cost += VP8BitCost(0, last_proba); - score = RDScoreTrellis(lambda, cost, total_error); - if (score < best_score) { - best_score = score; - best_path[0] = n; // best eob position - best_path[1] = m; // best level - best_path[2] = p; // best predecessor - } + } + // Store best finding in current node. + cur->sign = sign; + cur->level = level; + cur->prev = best_prev; + ss_cur[m].score = best_cur_score; + + // Now, record best terminal node (and thus best entry in the graph). + if (level != 0) { + const score_t score = best_cur_score + last_pos_score; + if (score < best_score) { + best_score = score; + best_path[0] = n; // best eob position + best_path[1] = m; // best node index + best_path[2] = best_prev; // best predecessor } } } @@ -550,23 +683,25 @@ static int TrellisQuantizeBlock(const VP8EncIterator* const it, return 0; // skip! } - // Unwind the best path. - // Note: best-prev on terminal node is not necessarily equal to the - // best_prev for non-terminal. So we patch best_path[2] in. - n = best_path[0]; - best_node = best_path[1]; - NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal - nz = 0; - - for (; n >= first; --n) { - const Node* const node = &NODE(n, best_node); - const int j = kZigzag[n]; - out[n] = node->sign ? -node->level : node->level; - nz |= (node->level != 0); - in[j] = out[n] * mtx->q_[j]; - best_node = node->prev; + { + // Unwind the best path. + // Note: best-prev on terminal node is not necessarily equal to the + // best_prev for non-terminal. So we patch best_path[2] in. + int nz = 0; + int best_node = best_path[1]; + n = best_path[0]; + NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal + + for (; n >= first; --n) { + const Node* const node = &NODE(n, best_node); + const int j = kZigzag[n]; + out[n] = node->sign ? -node->level : node->level; + nz |= node->level; + in[j] = out[n] * mtx->q_[j]; + best_node = node->prev; + } + return (nz != 0); } - return nz; } #undef NODE @@ -582,17 +717,17 @@ static int ReconstructIntra16(VP8EncIterator* const it, int mode) { const VP8Encoder* const enc = it->enc_; const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; - const uint8_t* const src = it->yuv_in_ + Y_OFF; + const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; int nz = 0; int n; int16_t tmp[16][16], dc_tmp[16]; - for (n = 0; n < 16; ++n) { - VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); + for (n = 0; n < 16; n += 2) { + VP8FTransform2(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); } VP8FTransformWHT(tmp[0], dc_tmp); - nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24; + nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24; if (DO_TRELLIS_I16 && it->do_trellis_) { int x, y; @@ -601,20 +736,26 @@ static int ReconstructIntra16(VP8EncIterator* const it, for (x = 0; x < 4; ++x, ++n) { const int ctx = it->top_nz_[x] + it->left_nz_[y]; const int non_zero = - TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0, - &dqm->y1_, dqm->lambda_trellis_i16_); + TrellisQuantizeBlock(enc, tmp[n], rd->y_ac_levels[n], ctx, 0, + &dqm->y1_, dqm->lambda_trellis_i16_); it->top_nz_[x] = it->left_nz_[y] = non_zero; + rd->y_ac_levels[n][0] = 0; nz |= non_zero << n; } } } else { - for (n = 0; n < 16; ++n) { - nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n; + for (n = 0; n < 16; n += 2) { + // Zero-out the first coeff, so that: a) nz is correct below, and + // b) finding 'last' non-zero coeffs in SetResidualCoeffs() is simplified. + tmp[n][0] = tmp[n + 1][0] = 0; + nz |= VP8EncQuantize2Blocks(tmp[n], rd->y_ac_levels[n], &dqm->y1_) << n; + assert(rd->y_ac_levels[n + 0][0] == 0); + assert(rd->y_ac_levels[n + 1][0] == 0); } } // Transform back - VP8ITransformWHT(dc_tmp, tmp[0]); + VP8TransformWHT(dc_tmp, tmp[0]); for (n = 0; n < 16; n += 2) { VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1); } @@ -637,10 +778,10 @@ static int ReconstructIntra4(VP8EncIterator* const it, if (DO_TRELLIS_I4 && it->do_trellis_) { const int x = it->i4_ & 3, y = it->i4_ >> 2; const int ctx = it->top_nz_[x] + it->left_nz_[y]; - nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_, + nz = TrellisQuantizeBlock(enc, tmp, levels, ctx, 3, &dqm->y1_, dqm->lambda_trellis_i4_); } else { - nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_); + nz = VP8EncQuantizeBlock(tmp, levels, &dqm->y1_); } VP8ITransform(ref, tmp, yuv_out, 0); return nz; @@ -650,14 +791,14 @@ static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, uint8_t* const yuv_out, int mode) { const VP8Encoder* const enc = it->enc_; const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; - const uint8_t* const src = it->yuv_in_ + U_OFF; + const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; int nz = 0; int n; int16_t tmp[8][16]; - for (n = 0; n < 8; ++n) { - VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]); + for (n = 0; n < 8; n += 2) { + VP8FTransform2(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]); } if (DO_TRELLIS_UV && it->do_trellis_) { int ch, x, y; @@ -666,28 +807,45 @@ static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, for (x = 0; x < 2; ++x, ++n) { const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; const int non_zero = - TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2, - &dqm->uv_, dqm->lambda_trellis_uv_); + TrellisQuantizeBlock(enc, tmp[n], rd->uv_levels[n], ctx, 2, + &dqm->uv_, dqm->lambda_trellis_uv_); it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero; nz |= non_zero << n; } } } } else { - for (n = 0; n < 8; ++n) { - nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n; + for (n = 0; n < 8; n += 2) { + nz |= VP8EncQuantize2Blocks(tmp[n], rd->uv_levels[n], &dqm->uv_) << n; } } for (n = 0; n < 8; n += 2) { - VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n], 1); + VP8ITransform(ref + VP8ScanUV[n], tmp[n], yuv_out + VP8ScanUV[n], 1); } return (nz << 16); } //------------------------------------------------------------------------------ // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. -// Pick the mode is lower RD-cost = Rate + lamba * Distortion. +// Pick the mode is lower RD-cost = Rate + lambda * Distortion. + +static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) { + // We look at the first three AC coefficients to determine what is the average + // delta between each sub-4x4 block. + const int v0 = abs(DCs[1]); + const int v1 = abs(DCs[4]); + const int v2 = abs(DCs[5]); + int max_v = (v0 > v1) ? v1 : v0; + max_v = (v2 > max_v) ? v2 : max_v; + if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v; +} + +static void SwapModeScore(VP8ModeScore** a, VP8ModeScore** b) { + VP8ModeScore* const tmp = *a; + *a = *b; + *b = tmp; +} static void SwapPtr(uint8_t** a, uint8_t** b) { uint8_t* const tmp = *a; @@ -699,43 +857,69 @@ static void SwapOut(VP8EncIterator* const it) { SwapPtr(&it->yuv_out_, &it->yuv_out2_); } -static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { - const VP8Encoder* const enc = it->enc_; - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; +static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) { + score_t score = 0; + while (num_blocks-- > 0) { // TODO(skal): refine positional scoring? + int i; + for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC + score += (levels[i] != 0); + if (score > thresh) return 0; + } + levels += 16; + } + return 1; +} + +static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* rd) { + const int kNumBlocks = 16; + VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; const int lambda = dqm->lambda_i16_; const int tlambda = dqm->tlambda_; - const uint8_t* const src = it->yuv_in_ + Y_OFF; - VP8ModeScore rd16; + const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; + VP8ModeScore rd_tmp; + VP8ModeScore* rd_cur = &rd_tmp; + VP8ModeScore* rd_best = rd; int mode; rd->mode_i16 = -1; - for (mode = 0; mode < 4; ++mode) { - uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer - int nz; + for (mode = 0; mode < NUM_PRED_MODES; ++mode) { + uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC; // scratch buffer + rd_cur->mode_i16 = mode; // Reconstruct - nz = ReconstructIntra16(it, &rd16, tmp_dst, mode); + rd_cur->nz = ReconstructIntra16(it, rd_cur, tmp_dst, mode); // Measure RD-score - rd16.D = VP8SSE16x16(src, tmp_dst); - rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) - : 0; - rd16.R = VP8GetCostLuma16(it, &rd16); - rd16.R += VP8FixedCostsI16[mode]; + rd_cur->D = VP8SSE16x16(src, tmp_dst); + rd_cur->SD = + tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) : 0; + rd_cur->H = VP8FixedCostsI16[mode]; + rd_cur->R = VP8GetCostLuma16(it, rd_cur); + if (mode > 0 && + IsFlat(rd_cur->y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) { + // penalty to avoid flat area to be mispredicted by complex mode + rd_cur->R += FLATNESS_PENALTY * kNumBlocks; + } // Since we always examine Intra16 first, we can overwrite *rd directly. - SetRDScore(lambda, &rd16); - if (mode == 0 || rd16.score < rd->score) { - CopyScore(rd, &rd16); - rd->mode_i16 = mode; - rd->nz = nz; - memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels)); - memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels)); + SetRDScore(lambda, rd_cur); + if (mode == 0 || rd_cur->score < rd_best->score) { + SwapModeScore(&rd_cur, &rd_best); SwapOut(it); } } + if (rd_best != rd) { + memcpy(rd, rd_best, sizeof(*rd)); + } SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. VP8SetIntra16Mode(it, rd->mode_i16); + + // we have a blocky macroblock (only DCs are non-zero) with fairly high + // distortion, record max delta so we can later adjust the minimal filtering + // strength needed to smooth these blocks out. + if ((rd->nz & 0xffff) == 0 && rd->D > dqm->min_disto_) { + StoreMaxDelta(dqm, rd->y_dc_levels); + } } //------------------------------------------------------------------------------ @@ -755,8 +939,8 @@ static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; const int lambda = dqm->lambda_i4_; const int tlambda = dqm->tlambda_; - const uint8_t* const src0 = it->yuv_in_ + Y_OFF; - uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF; + const uint8_t* const src0 = it->yuv_in_ + Y_OFF_ENC; + uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF_ENC; int total_header_bits = 0; VP8ModeScore rd_best; @@ -765,9 +949,11 @@ static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { } InitScore(&rd_best); - rd_best.score = 211; // '211' is the value of VP8BitCost(0, 145) + rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145) + SetRDScore(dqm->lambda_mode_, &rd_best); VP8IteratorStartI4(it); do { + const int kNumBlocks = 1; VP8ModeScore rd_i4; int mode; int best_mode = -1; @@ -791,27 +977,44 @@ static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { rd_tmp.SD = tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) : 0; - rd_tmp.R = VP8GetCostLuma4(it, tmp_levels); - rd_tmp.R += mode_costs[mode]; + rd_tmp.H = mode_costs[mode]; + + // Add flatness penalty + if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) { + rd_tmp.R = FLATNESS_PENALTY * kNumBlocks; + } else { + rd_tmp.R = 0; + } + // early-out check SetRDScore(lambda, &rd_tmp); + if (best_mode >= 0 && rd_tmp.score >= rd_i4.score) continue; + + // finish computing score + rd_tmp.R += VP8GetCostLuma4(it, tmp_levels); + SetRDScore(lambda, &rd_tmp); + if (best_mode < 0 || rd_tmp.score < rd_i4.score) { CopyScore(&rd_i4, &rd_tmp); best_mode = mode; SwapPtr(&tmp_dst, &best_block); - memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels)); + memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, + sizeof(rd_best.y_ac_levels[it->i4_])); } } SetRDScore(dqm->lambda_mode_, &rd_i4); AddScore(&rd_best, &rd_i4); - total_header_bits += mode_costs[best_mode]; - if (rd_best.score >= rd->score || - total_header_bits > enc->max_i4_header_bits_) { + if (rd_best.score >= rd->score) { + return 0; + } + total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode]; + if (total_header_bits > enc->max_i4_header_bits_) { return 0; } // Copy selected samples if not in the right place already. - if (best_block != best_blocks + VP8Scan[it->i4_]) + if (best_block != best_blocks + VP8Scan[it->i4_]) { VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); + } rd->modes_i4[it->i4_] = best_mode; it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); } while (VP8IteratorRotateI4(it, best_blocks)); @@ -827,18 +1030,19 @@ static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { //------------------------------------------------------------------------------ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { - const VP8Encoder* const enc = it->enc_; - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; + const int kNumBlocks = 8; + const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; const int lambda = dqm->lambda_uv_; - const uint8_t* const src = it->yuv_in_ + U_OFF; - uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer - uint8_t* const dst0 = it->yuv_out_ + U_OFF; + const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; + uint8_t* tmp_dst = it->yuv_out2_ + U_OFF_ENC; // scratch buffer + uint8_t* dst0 = it->yuv_out_ + U_OFF_ENC; + uint8_t* dst = dst0; VP8ModeScore rd_best; int mode; rd->mode_uv = -1; InitScore(&rd_best); - for (mode = 0; mode < 4; ++mode) { + for (mode = 0; mode < NUM_PRED_MODES; ++mode) { VP8ModeScore rd_uv; // Reconstruct @@ -847,19 +1051,25 @@ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { // Compute RD-score rd_uv.D = VP8SSE16x8(src, tmp_dst); rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas. + rd_uv.H = VP8FixedCostsUV[mode]; rd_uv.R = VP8GetCostUV(it, &rd_uv); - rd_uv.R += VP8FixedCostsUV[mode]; + if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) { + rd_uv.R += FLATNESS_PENALTY * kNumBlocks; + } SetRDScore(lambda, &rd_uv); if (mode == 0 || rd_uv.score < rd_best.score) { CopyScore(&rd_best, &rd_uv); rd->mode_uv = mode; memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels)); - memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ? + SwapPtr(&dst, &tmp_dst); } } VP8SetIntraUVMode(it, rd->mode_uv); AddScore(rd, &rd_best); + if (dst != dst0) { // copy 16x8 block if needed + VP8Copy16x8(dst, dst0); + } } //------------------------------------------------------------------------------ @@ -867,33 +1077,88 @@ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { const VP8Encoder* const enc = it->enc_; - const int i16 = (it->mb_->type_ == 1); + const int is_i16 = (it->mb_->type_ == 1); int nz = 0; - if (i16) { - nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]); + if (is_i16) { + nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]); } else { VP8IteratorStartI4(it); do { const int mode = it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_]; - const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; - uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_]; + const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; + uint8_t* const dst = it->yuv_out_ + Y_OFF_ENC + VP8Scan[it->i4_]; VP8MakeIntra4Preds(it); nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], src, dst, mode) << it->i4_; - } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF)); + } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF_ENC)); } - nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_); + nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_); rd->nz = nz; } +// Refine intra16/intra4 sub-modes based on distortion only (not rate). +static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) { + const int is_i16 = (it->mb_->type_ == 1); + score_t best_score = MAX_COST; + + if (try_both_i4_i16 || is_i16) { + int mode; + int best_mode = -1; + for (mode = 0; mode < NUM_PRED_MODES; ++mode) { + const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; + const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; + const score_t score = VP8SSE16x16(src, ref); + if (score < best_score) { + best_mode = mode; + best_score = score; + } + } + VP8SetIntra16Mode(it, best_mode); + } + if (try_both_i4_i16 || !is_i16) { + uint8_t modes_i4[16]; + // We don't evaluate the rate here, but just account for it through a + // constant penalty (i4 mode usually needs more bits compared to i16). + score_t score_i4 = (score_t)I4_PENALTY; + + VP8IteratorStartI4(it); + do { + int mode; + int best_sub_mode = -1; + score_t best_sub_score = MAX_COST; + const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; + + // TODO(skal): we don't really need the prediction pixels here, + // but just the distortion against 'src'. + VP8MakeIntra4Preds(it); + for (mode = 0; mode < NUM_BMODES; ++mode) { + const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; + const score_t score = VP8SSE4x4(src, ref); + if (score < best_sub_score) { + best_sub_mode = mode; + best_sub_score = score; + } + } + modes_i4[it->i4_] = best_sub_mode; + score_i4 += best_sub_score; + if (score_i4 >= best_score) break; + } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF_ENC)); + if (score_i4 < best_score) { + VP8SetIntra4Mode(it, modes_i4); + } + } +} + //------------------------------------------------------------------------------ // Entry point -int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) { +int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, + VP8RDLevel rd_opt) { int is_skipped; + const int method = it->enc_->method_; InitScore(rd); @@ -902,22 +1167,21 @@ int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) { VP8MakeLuma16Preds(it); VP8MakeChroma8Preds(it); - // for rd_opt = 2, we perform trellis-quant on the final decision only. - // for rd_opt > 2, we use it for every scoring (=much slower). - if (rd_opt > 0) { - it->do_trellis_ = (rd_opt > 2); + if (rd_opt > RD_OPT_NONE) { + it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL); PickBestIntra16(it, rd); - if (it->enc_->method_ >= 2) { + if (method >= 2) { PickBestIntra4(it, rd); } PickBestUV(it, rd); - if (rd_opt == 2) { + if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now it->do_trellis_ = 1; SimpleQuantize(it, rd); } } else { - // TODO: for method_ == 2, pick the best intra4/intra16 based on SSE - it->do_trellis_ = (it->enc_->method_ == 2); + // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower). + // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode). + DistoRefine(it, (method >= 2)); SimpleQuantize(it, rd); } is_skipped = (rd->nz == 0); @@ -925,6 +1189,3 @@ int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) { return is_skipped; } -#if defined(__cplusplus) || defined(c_plusplus) -} // extern "C" -#endif |