diff options
Diffstat (limited to 'drivers/webp/enc/quant.c')
-rw-r--r-- | drivers/webp/enc/quant.c | 458 |
1 files changed, 116 insertions, 342 deletions
diff --git a/drivers/webp/enc/quant.c b/drivers/webp/enc/quant.c index e1d202b5a3..ea153849c8 100644 --- a/drivers/webp/enc/quant.c +++ b/drivers/webp/enc/quant.c @@ -1,10 +1,8 @@ // Copyright 2011 Google Inc. All Rights Reserved. // -// Use of this source code is governed by a BSD-style license -// that can be found in the COPYING file in the root of the source -// tree. An additional intellectual property rights grant can be found -// in the file PATENTS. All contributing project authors may -// be found in the AUTHORS file in the root of the source tree. +// This code is licensed under the same terms as WebM: +// Software License Agreement: http://www.webmproject.org/license/software/ +// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Quantization @@ -13,7 +11,6 @@ #include <assert.h> #include <math.h> -#include <stdlib.h> // for abs() #include "./vp8enci.h" #include "./cost.h" @@ -25,78 +22,16 @@ #define MID_ALPHA 64 // neutral value for susceptibility #define MIN_ALPHA 30 // lowest usable value for susceptibility -#define MAX_ALPHA 100 // higher meaningful value for susceptibility +#define MAX_ALPHA 100 // higher meaninful value for susceptibility #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP // power-law modulation. Must be strictly less than 1. -#define I4_PENALTY 4000 // Rate-penalty for quick i4/i16 decision - -// number of non-zero coeffs below which we consider the block very flat -// (and apply a penalty to complex predictions) -#define FLATNESS_LIMIT_I16 10 // I16 mode -#define FLATNESS_LIMIT_I4 3 // I4 mode -#define FLATNESS_LIMIT_UV 2 // UV mode -#define FLATNESS_PENALTY 140 // roughly ~1bit per block - #define MULT_8B(a, b) (((a) * (b) + 128) >> 8) -// #define DEBUG_BLOCK - -//------------------------------------------------------------------------------ - -#if defined(DEBUG_BLOCK) - -#include <stdio.h> -#include <stdlib.h> - -static void PrintBlockInfo(const VP8EncIterator* const it, - const VP8ModeScore* const rd) { - int i, j; - const int is_i16 = (it->mb_->type_ == 1); - printf("SOURCE / OUTPUT / ABS DELTA\n"); - for (j = 0; j < 24; ++j) { - if (j == 16) printf("\n"); // newline before the U/V block - for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_in_[i + j * BPS]); - printf(" "); - for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_out_[i + j * BPS]); - printf(" "); - for (i = 0; i < 16; ++i) { - printf("%1d ", abs(it->yuv_out_[i + j * BPS] - it->yuv_in_[i + j * BPS])); - } - printf("\n"); - } - printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n", - (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz, - (int)rd->score); - if (is_i16) { - printf("Mode: %d\n", rd->mode_i16); - printf("y_dc_levels:"); - for (i = 0; i < 16; ++i) printf("%3d ", rd->y_dc_levels[i]); - printf("\n"); - } else { - printf("Modes[16]: "); - for (i = 0; i < 16; ++i) printf("%d ", rd->modes_i4[i]); - printf("\n"); - } - printf("y_ac_levels:\n"); - for (j = 0; j < 16; ++j) { - for (i = is_i16 ? 1 : 0; i < 16; ++i) { - printf("%4d ", rd->y_ac_levels[j][i]); - } - printf("\n"); - } - printf("\n"); - printf("uv_levels (mode=%d):\n", rd->mode_uv); - for (j = 0; j < 8; ++j) { - for (i = 0; i < 16; ++i) { - printf("%4d ", rd->uv_levels[j][i]); - } - printf("\n"); - } -} - -#endif // DEBUG_BLOCK +#if defined(__cplusplus) || defined(c_plusplus) +extern "C" { +#endif //------------------------------------------------------------------------------ @@ -165,13 +100,31 @@ static const uint16_t kAcTable2[128] = { 385, 393, 401, 409, 416, 424, 432, 440 }; -static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac] - { 96, 110 }, { 96, 108 }, { 110, 115 } +static const uint16_t kCoeffThresh[16] = { + 0, 10, 20, 30, + 10, 20, 30, 30, + 20, 30, 30, 30, + 30, 30, 30, 30 +}; + +// TODO(skal): tune more. Coeff thresholding? +static const uint8_t kBiasMatrices[3][16] = { // [3] = [luma-ac,luma-dc,chroma] + { 96, 96, 96, 96, + 96, 96, 96, 96, + 96, 96, 96, 96, + 96, 96, 96, 96 }, + { 96, 96, 96, 96, + 96, 96, 96, 96, + 96, 96, 96, 96, + 96, 96, 96, 96 }, + { 96, 96, 96, 96, + 96, 96, 96, 96, + 96, 96, 96, 96, + 96, 96, 96, 96 } }; -// Sharpening by (slightly) raising the hi-frequency coeffs. +// Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis). // Hack-ish but helpful for mid-bitrate range. Use with care. -#define SHARPEN_BITS 11 // number of descaling bits for sharpening bias static const uint8_t kFreqSharpening[16] = { 0, 30, 60, 90, 30, 60, 90, 90, @@ -184,30 +137,20 @@ static const uint8_t kFreqSharpening[16] = { // Returns the average quantizer static int ExpandMatrix(VP8Matrix* const m, int type) { - int i, sum; - for (i = 0; i < 2; ++i) { - const int is_ac_coeff = (i > 0); - const int bias = kBiasMatrices[type][is_ac_coeff]; - m->iq_[i] = (1 << QFIX) / m->q_[i]; - m->bias_[i] = BIAS(bias); - // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is: - // * zero if coeff <= zthresh - // * non-zero if coeff > zthresh - m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i]; - } + int i; + int sum = 0; for (i = 2; i < 16; ++i) { m->q_[i] = m->q_[1]; - m->iq_[i] = m->iq_[1]; - m->bias_[i] = m->bias_[1]; - m->zthresh_[i] = m->zthresh_[1]; } - for (sum = 0, i = 0; i < 16; ++i) { - if (type == 0) { // we only use sharpening for AC luma coeffs - m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS; - } else { - m->sharpen_[i] = 0; - } - sum += m->q_[i]; + for (i = 0; i < 16; ++i) { + const int j = kZigzag[i]; + const int bias = kBiasMatrices[type][j]; + m->iq_[j] = (1 << QFIX) / m->q_[j]; + m->bias_[j] = BIAS(bias); + // TODO(skal): tune kCoeffThresh[] + m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8; + m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11; + sum += m->q_[j]; } return (sum + 8) >> 4; } @@ -235,17 +178,17 @@ static void SetupMatrices(VP8Encoder* enc) { q16 = ExpandMatrix(&m->y2_, 1); quv = ExpandMatrix(&m->uv_, 2); - m->lambda_i4_ = (3 * q4 * q4) >> 7; - m->lambda_i16_ = (3 * q16 * q16); - m->lambda_uv_ = (3 * quv * quv) >> 6; - m->lambda_mode_ = (1 * q4 * q4) >> 7; - m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3; - m->lambda_trellis_i16_ = (q16 * q16) >> 2; - m->lambda_trellis_uv_ = (quv *quv) << 1; - m->tlambda_ = (tlambda_scale * q4) >> 5; - - m->min_disto_ = 10 * m->y1_.q_[0]; // quantization-aware min disto - m->max_edge_ = 0; + // TODO: Switch to kLambda*[] tables? + { + m->lambda_i4_ = (3 * q4 * q4) >> 7; + m->lambda_i16_ = (3 * q16 * q16); + m->lambda_uv_ = (3 * quv * quv) >> 6; + m->lambda_mode_ = (1 * q4 * q4) >> 7; + m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3; + m->lambda_trellis_i16_ = (q16 * q16) >> 2; + m->lambda_trellis_uv_ = (quv *quv) << 1; + m->tlambda_ = (tlambda_scale * q4) >> 5; + } } } @@ -254,21 +197,16 @@ static void SetupMatrices(VP8Encoder* enc) { // Very small filter-strength values have close to no visual effect. So we can // save a little decoding-CPU by turning filtering off for these. -#define FSTRENGTH_CUTOFF 2 +#define FSTRENGTH_CUTOFF 3 static void SetupFilterStrength(VP8Encoder* const enc) { int i; - // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering. - const int level0 = 5 * enc->config_->filter_strength; + const int level0 = enc->config_->filter_strength; for (i = 0; i < NUM_MB_SEGMENTS; ++i) { - VP8SegmentInfo* const m = &enc->dqm_[i]; - // We focus on the quantization of AC coeffs. - const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2; - const int base_strength = - VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep); - // Segments with lower complexity ('beta') will be less filtered. - const int f = base_strength * level0 / (256 + m->beta_); - m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; + // Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS) + const int level = level0 * 256 * enc->dqm_[i].quant_ / 128; + const int f = level / (256 + enc->dqm_[i].beta_); + enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; } // We record the initial strength (mainly for the case of 1-segment only). enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; @@ -286,90 +224,28 @@ static void SetupFilterStrength(VP8Encoder* const enc) { // We want to emulate jpeg-like behaviour where the expected "good" quality // is around q=75. Internally, our "good" middle is around c=50. So we // map accordingly using linear piece-wise function -static double QualityToCompression(double c) { - const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; - // The file size roughly scales as pow(quantizer, 3.). Actually, the - // exponent is somewhere between 2.8 and 3.2, but we're mostly interested - // in the mid-quant range. So we scale the compressibility inversely to - // this power-law: quant ~= compression ^ 1/3. This law holds well for - // low quant. Finer modeling for high-quant would make use of kAcTable[] - // more explicitly. - const double v = pow(linear_c, 1 / 3.); - return v; -} - -static double QualityToJPEGCompression(double c, double alpha) { - // We map the complexity 'alpha' and quality setting 'c' to a compression - // exponent empirically matched to the compression curve of libjpeg6b. - // On average, the WebP output size will be roughly similar to that of a - // JPEG file compressed with same quality factor. - const double amin = 0.30; - const double amax = 0.85; - const double exp_min = 0.4; - const double exp_max = 0.9; - const double slope = (exp_min - exp_max) / (amax - amin); - // Linearly interpolate 'expn' from exp_min to exp_max - // in the [amin, amax] range. - const double expn = (alpha > amax) ? exp_min - : (alpha < amin) ? exp_max - : exp_max + slope * (alpha - amin); - const double v = pow(c, expn); - return v; -} - -static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1, - const VP8SegmentInfo* const S2) { - return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_); -} - -static void SimplifySegments(VP8Encoder* const enc) { - int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 }; - const int num_segments = enc->segment_hdr_.num_segments_; - int num_final_segments = 1; - int s1, s2; - for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments - const VP8SegmentInfo* const S1 = &enc->dqm_[s1]; - int found = 0; - // check if we already have similar segment - for (s2 = 0; s2 < num_final_segments; ++s2) { - const VP8SegmentInfo* const S2 = &enc->dqm_[s2]; - if (SegmentsAreEquivalent(S1, S2)) { - found = 1; - break; - } - } - map[s1] = s2; - if (!found) { - if (num_final_segments != s1) { - enc->dqm_[num_final_segments] = enc->dqm_[s1]; - } - ++num_final_segments; - } - } - if (num_final_segments < num_segments) { // Remap - int i = enc->mb_w_ * enc->mb_h_; - while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_]; - enc->segment_hdr_.num_segments_ = num_final_segments; - // Replicate the trailing segment infos (it's mostly cosmetics) - for (i = num_final_segments; i < num_segments; ++i) { - enc->dqm_[i] = enc->dqm_[num_final_segments - 1]; - } - } +static double QualityToCompression(double q) { + const double c = q / 100.; + return (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; } void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { int i; int dq_uv_ac, dq_uv_dc; - const int num_segments = enc->segment_hdr_.num_segments_; + const int num_segments = enc->config_->segments; const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; - const double Q = quality / 100.; - const double c_base = enc->config_->emulate_jpeg_size ? - QualityToJPEGCompression(Q, enc->alpha_ / 255.) : - QualityToCompression(Q); + const double c_base = QualityToCompression(quality); for (i = 0; i < num_segments; ++i) { - // We modulate the base coefficient to accommodate for the quantization - // susceptibility and allow denser segments to be quantized more. - const double expn = 1. - amp * enc->dqm_[i].alpha_; + // The file size roughly scales as pow(quantizer, 3.). Actually, the + // exponent is somewhere between 2.8 and 3.2, but we're mostly interested + // in the mid-quant range. So we scale the compressibility inversely to + // this power-law: quant ~= compression ^ 1/3. This law holds well for + // low quant. Finer modelling for high-quant would make use of kAcTable[] + // more explicitely. + // Additionally, we modulate the base exponent 1/3 to accommodate for the + // quantization susceptibility and allow denser segments to be quantized + // more. + const double expn = (1. - amp * enc->dqm_[i].alpha_) / 3.; const double c = pow(c_base, expn); const int q = (int)(127. * (1. - c)); assert(expn > 0.); @@ -405,11 +281,9 @@ void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { enc->dq_uv_dc_ = dq_uv_dc; enc->dq_uv_ac_ = dq_uv_ac; - SetupFilterStrength(enc); // initialize segments' filtering, eventually - - if (num_segments > 1) SimplifySegments(enc); + SetupMatrices(enc); - SetupMatrices(enc); // finalize quantization matrices + SetupFilterStrength(enc); // initialize segments' filtering, eventually } //------------------------------------------------------------------------------ @@ -425,14 +299,16 @@ const int VP8I4ModeOffsets[NUM_BMODES] = { }; void VP8MakeLuma16Preds(const VP8EncIterator* const it) { - const uint8_t* const left = it->x_ ? it->y_left_ : NULL; - const uint8_t* const top = it->y_ ? it->y_top_ : NULL; + const VP8Encoder* const enc = it->enc_; + const uint8_t* const left = it->x_ ? enc->y_left_ : NULL; + const uint8_t* const top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL; VP8EncPredLuma16(it->yuv_p_, left, top); } void VP8MakeChroma8Preds(const VP8EncIterator* const it) { - const uint8_t* const left = it->x_ ? it->u_left_ : NULL; - const uint8_t* const top = it->y_ ? it->uv_top_ : NULL; + const VP8Encoder* const enc = it->enc_; + const uint8_t* const left = it->x_ ? enc->u_left_ : NULL; + const uint8_t* const top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL; VP8EncPredChroma8(it->yuv_p_, left, top); } @@ -488,7 +364,6 @@ static void InitScore(VP8ModeScore* const rd) { rd->D = 0; rd->SD = 0; rd->R = 0; - rd->H = 0; rd->nz = 0; rd->score = MAX_COST; } @@ -497,7 +372,6 @@ static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { dst->D = src->D; dst->SD = src->SD; dst->R = src->R; - dst->H = src->H; dst->nz = src->nz; // note that nz is not accumulated, but just copied. dst->score = src->score; } @@ -506,7 +380,6 @@ static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { dst->D += src->D; dst->SD += src->SD; dst->R += src->R; - dst->H += src->H; dst->nz |= src->nz; // here, new nz bits are accumulated. dst->score += src->score; } @@ -535,7 +408,7 @@ typedef struct { static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) { // TODO: incorporate the "* 256" in the tables? - rd->score = (rd->R + rd->H) * lambda + 256 * (rd->D + rd->SD); + rd->score = rd->R * lambda + 256 * (rd->D + rd->SD); } static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, @@ -598,10 +471,11 @@ static int TrellisQuantizeBlock(const VP8EncIterator* const it, // note: it's important to take sign of the _original_ coeff, // so we don't have to consider level < 0 afterward. const int sign = (in[j] < 0); - const int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; - int level0 = QUANTDIV(coeff0, iQ, B); - if (level0 > MAX_LEVEL) level0 = MAX_LEVEL; + int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; + int level0; + if (coeff0 > 2047) coeff0 = 2047; + level0 = QUANTDIV(coeff0, iQ, B); // test all alternate level values around level0. for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { Node* const cur = &NODE(n, m); @@ -613,7 +487,7 @@ static int TrellisQuantizeBlock(const VP8EncIterator* const it, cur->sign = sign; cur->level = level; cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2; - if (level > MAX_LEVEL || level < 0) { // node is dead? + if (level >= 2048 || level < 0) { // node is dead? cur->cost = MAX_COST; continue; } @@ -706,10 +580,10 @@ static int ReconstructIntra16(VP8EncIterator* const it, VP8ModeScore* const rd, uint8_t* const yuv_out, int mode) { - VP8Encoder* const enc = it->enc_; + const VP8Encoder* const enc = it->enc_; const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; const uint8_t* const src = it->yuv_in_ + Y_OFF; - VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; + const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; int nz = 0; int n; int16_t tmp[16][16], dc_tmp[16]; @@ -718,7 +592,7 @@ static int ReconstructIntra16(VP8EncIterator* const it, VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); } VP8FTransformWHT(tmp[0], dc_tmp); - nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24; + nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24; if (DO_TRELLIS_I16 && it->do_trellis_) { int x, y; @@ -813,18 +687,7 @@ static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, //------------------------------------------------------------------------------ // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. -// Pick the mode is lower RD-cost = Rate + lambda * Distortion. - -static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) { - // We look at the first three AC coefficients to determine what is the average - // delta between each sub-4x4 block. - const int v0 = abs(DCs[1]); - const int v1 = abs(DCs[4]); - const int v2 = abs(DCs[5]); - int max_v = (v0 > v1) ? v1 : v0; - max_v = (v2 > max_v) ? v2 : max_v; - if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v; -} +// Pick the mode is lower RD-cost = Rate + lamba * Distortion. static void SwapPtr(uint8_t** a, uint8_t** b) { uint8_t* const tmp = *a; @@ -836,23 +699,9 @@ static void SwapOut(VP8EncIterator* const it) { SwapPtr(&it->yuv_out_, &it->yuv_out2_); } -static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) { - score_t score = 0; - while (num_blocks-- > 0) { // TODO(skal): refine positional scoring? - int i; - for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC - score += (levels[i] != 0); - if (score > thresh) return 0; - } - levels += 16; - } - return 1; -} - static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { - const int kNumBlocks = 16; - VP8Encoder* const enc = it->enc_; - VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; + const VP8Encoder* const enc = it->enc_; + const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; const int lambda = dqm->lambda_i16_; const int tlambda = dqm->tlambda_; const uint8_t* const src = it->yuv_in_ + Y_OFF; @@ -860,7 +709,7 @@ static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { int mode; rd->mode_i16 = -1; - for (mode = 0; mode < NUM_PRED_MODES; ++mode) { + for (mode = 0; mode < 4; ++mode) { uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer int nz; @@ -871,13 +720,8 @@ static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { rd16.D = VP8SSE16x16(src, tmp_dst); rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) : 0; - rd16.H = VP8FixedCostsI16[mode]; rd16.R = VP8GetCostLuma16(it, &rd16); - if (mode > 0 && - IsFlat(rd16.y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) { - // penalty to avoid flat area to be mispredicted by complex mode - rd16.R += FLATNESS_PENALTY * kNumBlocks; - } + rd16.R += VP8FixedCostsI16[mode]; // Since we always examine Intra16 first, we can overwrite *rd directly. SetRDScore(lambda, &rd16); @@ -892,13 +736,6 @@ static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { } SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. VP8SetIntra16Mode(it, rd->mode_i16); - - // we have a blocky macroblock (only DCs are non-zero) with fairly high - // distortion, record max delta so we can later adjust the minimal filtering - // strength needed to smooth these blocks out. - if ((rd->nz & 0xffff) == 0 && rd->D > dqm->min_disto_) { - StoreMaxDelta(dqm, rd->y_dc_levels); - } } //------------------------------------------------------------------------------ @@ -928,11 +765,9 @@ static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { } InitScore(&rd_best); - rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145) - SetRDScore(dqm->lambda_mode_, &rd_best); + rd_best.score = 211; // '211' is the value of VP8BitCost(0, 145) VP8IteratorStartI4(it); do { - const int kNumBlocks = 1; VP8ModeScore rd_i4; int mode; int best_mode = -1; @@ -956,11 +791,8 @@ static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { rd_tmp.SD = tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) : 0; - rd_tmp.H = mode_costs[mode]; rd_tmp.R = VP8GetCostLuma4(it, tmp_levels); - if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) { - rd_tmp.R += FLATNESS_PENALTY * kNumBlocks; - } + rd_tmp.R += mode_costs[mode]; SetRDScore(lambda, &rd_tmp); if (best_mode < 0 || rd_tmp.score < rd_i4.score) { @@ -972,17 +804,14 @@ static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { } SetRDScore(dqm->lambda_mode_, &rd_i4); AddScore(&rd_best, &rd_i4); - if (rd_best.score >= rd->score) { - return 0; - } - total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode]; - if (total_header_bits > enc->max_i4_header_bits_) { + total_header_bits += mode_costs[best_mode]; + if (rd_best.score >= rd->score || + total_header_bits > enc->max_i4_header_bits_) { return 0; } // Copy selected samples if not in the right place already. - if (best_block != best_blocks + VP8Scan[it->i4_]) { + if (best_block != best_blocks + VP8Scan[it->i4_]) VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); - } rd->modes_i4[it->i4_] = best_mode; it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); } while (VP8IteratorRotateI4(it, best_blocks)); @@ -998,7 +827,6 @@ static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { //------------------------------------------------------------------------------ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { - const int kNumBlocks = 8; const VP8Encoder* const enc = it->enc_; const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; const int lambda = dqm->lambda_uv_; @@ -1010,7 +838,7 @@ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { rd->mode_uv = -1; InitScore(&rd_best); - for (mode = 0; mode < NUM_PRED_MODES; ++mode) { + for (mode = 0; mode < 4; ++mode) { VP8ModeScore rd_uv; // Reconstruct @@ -1019,11 +847,8 @@ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { // Compute RD-score rd_uv.D = VP8SSE16x8(src, tmp_dst); rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas. - rd_uv.H = VP8FixedCostsUV[mode]; rd_uv.R = VP8GetCostUV(it, &rd_uv); - if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) { - rd_uv.R += FLATNESS_PENALTY * kNumBlocks; - } + rd_uv.R += VP8FixedCostsUV[mode]; SetRDScore(lambda, &rd_uv); if (mode == 0 || rd_uv.score < rd_best.score) { @@ -1042,10 +867,10 @@ static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { const VP8Encoder* const enc = it->enc_; - const int is_i16 = (it->mb_->type_ == 1); + const int i16 = (it->mb_->type_ == 1); int nz = 0; - if (is_i16) { + if (i16) { nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]); } else { VP8IteratorStartI4(it); @@ -1064,66 +889,11 @@ static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { rd->nz = nz; } -// Refine intra16/intra4 sub-modes based on distortion only (not rate). -static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) { - const int is_i16 = (it->mb_->type_ == 1); - score_t best_score = MAX_COST; - - if (try_both_i4_i16 || is_i16) { - int mode; - int best_mode = -1; - for (mode = 0; mode < NUM_PRED_MODES; ++mode) { - const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; - const uint8_t* const src = it->yuv_in_ + Y_OFF; - const score_t score = VP8SSE16x16(src, ref); - if (score < best_score) { - best_mode = mode; - best_score = score; - } - } - VP8SetIntra16Mode(it, best_mode); - } - if (try_both_i4_i16 || !is_i16) { - uint8_t modes_i4[16]; - // We don't evaluate the rate here, but just account for it through a - // constant penalty (i4 mode usually needs more bits compared to i16). - score_t score_i4 = (score_t)I4_PENALTY; - - VP8IteratorStartI4(it); - do { - int mode; - int best_sub_mode = -1; - score_t best_sub_score = MAX_COST; - const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; - - // TODO(skal): we don't really need the prediction pixels here, - // but just the distortion against 'src'. - VP8MakeIntra4Preds(it); - for (mode = 0; mode < NUM_BMODES; ++mode) { - const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; - const score_t score = VP8SSE4x4(src, ref); - if (score < best_sub_score) { - best_sub_mode = mode; - best_sub_score = score; - } - } - modes_i4[it->i4_] = best_sub_mode; - score_i4 += best_sub_score; - if (score_i4 >= best_score) break; - } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); - if (score_i4 < best_score) { - VP8SetIntra4Mode(it, modes_i4); - } - } -} - //------------------------------------------------------------------------------ // Entry point -int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, - VP8RDLevel rd_opt) { +int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) { int is_skipped; - const int method = it->enc_->method_; InitScore(rd); @@ -1132,21 +902,22 @@ int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, VP8MakeLuma16Preds(it); VP8MakeChroma8Preds(it); - if (rd_opt > RD_OPT_NONE) { - it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL); + // for rd_opt = 2, we perform trellis-quant on the final decision only. + // for rd_opt > 2, we use it for every scoring (=much slower). + if (rd_opt > 0) { + it->do_trellis_ = (rd_opt > 2); PickBestIntra16(it, rd); - if (method >= 2) { + if (it->enc_->method_ >= 2) { PickBestIntra4(it, rd); } PickBestUV(it, rd); - if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now + if (rd_opt == 2) { it->do_trellis_ = 1; SimpleQuantize(it, rd); } } else { - // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower). - // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode). - DistoRefine(it, (method >= 2)); + // TODO: for method_ == 2, pick the best intra4/intra16 based on SSE + it->do_trellis_ = (it->enc_->method_ == 2); SimpleQuantize(it, rd); } is_skipped = (rd->nz == 0); @@ -1154,3 +925,6 @@ int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, return is_skipped; } +#if defined(__cplusplus) || defined(c_plusplus) +} // extern "C" +#endif |