diff options
Diffstat (limited to 'drivers/webp/enc/picture_csp.c')
-rw-r--r-- | drivers/webp/enc/picture_csp.c | 1168 |
1 files changed, 0 insertions, 1168 deletions
diff --git a/drivers/webp/enc/picture_csp.c b/drivers/webp/enc/picture_csp.c deleted file mode 100644 index 607a6240b0..0000000000 --- a/drivers/webp/enc/picture_csp.c +++ /dev/null @@ -1,1168 +0,0 @@ -// Copyright 2014 Google Inc. All Rights Reserved. -// -// Use of this source code is governed by a BSD-style license -// that can be found in the COPYING file in the root of the source -// tree. An additional intellectual property rights grant can be found -// in the file PATENTS. All contributing project authors may -// be found in the AUTHORS file in the root of the source tree. -// ----------------------------------------------------------------------------- -// -// WebPPicture utils for colorspace conversion -// -// Author: Skal (pascal.massimino@gmail.com) - -#include <assert.h> -#include <stdlib.h> -#include <math.h> - -#include "./vp8enci.h" -#include "../utils/random.h" -#include "../utils/utils.h" -#include "../dsp/yuv.h" - -// Uncomment to disable gamma-compression during RGB->U/V averaging -#define USE_GAMMA_COMPRESSION - -// If defined, use table to compute x / alpha. -#define USE_INVERSE_ALPHA_TABLE - -static const union { - uint32_t argb; - uint8_t bytes[4]; -} test_endian = { 0xff000000u }; -#define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff) - -//------------------------------------------------------------------------------ -// Detection of non-trivial transparency - -// Returns true if alpha[] has non-0xff values. -static int CheckNonOpaque(const uint8_t* alpha, int width, int height, - int x_step, int y_step) { - if (alpha == NULL) return 0; - while (height-- > 0) { - int x; - for (x = 0; x < width * x_step; x += x_step) { - if (alpha[x] != 0xff) return 1; // TODO(skal): check 4/8 bytes at a time. - } - alpha += y_step; - } - return 0; -} - -// Checking for the presence of non-opaque alpha. -int WebPPictureHasTransparency(const WebPPicture* picture) { - if (picture == NULL) return 0; - if (!picture->use_argb) { - return CheckNonOpaque(picture->a, picture->width, picture->height, - 1, picture->a_stride); - } else { - int x, y; - const uint32_t* argb = picture->argb; - if (argb == NULL) return 0; - for (y = 0; y < picture->height; ++y) { - for (x = 0; x < picture->width; ++x) { - if (argb[x] < 0xff000000u) return 1; // test any alpha values != 0xff - } - argb += picture->argb_stride; - } - } - return 0; -} - -//------------------------------------------------------------------------------ -// Code for gamma correction - -#if defined(USE_GAMMA_COMPRESSION) - -// gamma-compensates loss of resolution during chroma subsampling -#define kGamma 0.80 // for now we use a different gamma value than kGammaF -#define kGammaFix 12 // fixed-point precision for linear values -#define kGammaScale ((1 << kGammaFix) - 1) -#define kGammaTabFix 7 // fixed-point fractional bits precision -#define kGammaTabScale (1 << kGammaTabFix) -#define kGammaTabRounder (kGammaTabScale >> 1) -#define kGammaTabSize (1 << (kGammaFix - kGammaTabFix)) - -static int kLinearToGammaTab[kGammaTabSize + 1]; -static uint16_t kGammaToLinearTab[256]; -static volatile int kGammaTablesOk = 0; - -static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTables(void) { - if (!kGammaTablesOk) { - int v; - const double scale = (double)(1 << kGammaTabFix) / kGammaScale; - const double norm = 1. / 255.; - for (v = 0; v <= 255; ++v) { - kGammaToLinearTab[v] = - (uint16_t)(pow(norm * v, kGamma) * kGammaScale + .5); - } - for (v = 0; v <= kGammaTabSize; ++v) { - kLinearToGammaTab[v] = (int)(255. * pow(scale * v, 1. / kGamma) + .5); - } - kGammaTablesOk = 1; - } -} - -static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { - return kGammaToLinearTab[v]; -} - -static WEBP_INLINE int Interpolate(int v) { - const int tab_pos = v >> (kGammaTabFix + 2); // integer part - const int x = v & ((kGammaTabScale << 2) - 1); // fractional part - const int v0 = kLinearToGammaTab[tab_pos]; - const int v1 = kLinearToGammaTab[tab_pos + 1]; - const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate - assert(tab_pos + 1 < kGammaTabSize + 1); - return y; -} - -// Convert a linear value 'v' to YUV_FIX+2 fixed-point precision -// U/V value, suitable for RGBToU/V calls. -static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { - const int y = Interpolate(base_value << shift); // final uplifted value - return (y + kGammaTabRounder) >> kGammaTabFix; // descale -} - -#else - -static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTables(void) {} -static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; } -static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { - return (int)(base_value << shift); -} - -#endif // USE_GAMMA_COMPRESSION - -//------------------------------------------------------------------------------ -// RGB -> YUV conversion - -static int RGBToY(int r, int g, int b, VP8Random* const rg) { - return (rg == NULL) ? VP8RGBToY(r, g, b, YUV_HALF) - : VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX)); -} - -static int RGBToU(int r, int g, int b, VP8Random* const rg) { - return (rg == NULL) ? VP8RGBToU(r, g, b, YUV_HALF << 2) - : VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); -} - -static int RGBToV(int r, int g, int b, VP8Random* const rg) { - return (rg == NULL) ? VP8RGBToV(r, g, b, YUV_HALF << 2) - : VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); -} - -//------------------------------------------------------------------------------ -// Smart RGB->YUV conversion - -static const int kNumIterations = 6; -static const int kMinDimensionIterativeConversion = 4; - -// We could use SFIX=0 and only uint8_t for fixed_y_t, but it produces some -// banding sometimes. Better use extra precision. -#define SFIX 2 // fixed-point precision of RGB and Y/W -typedef int16_t fixed_t; // signed type with extra SFIX precision for UV -typedef uint16_t fixed_y_t; // unsigned type with extra SFIX precision for W - -#define SHALF (1 << SFIX >> 1) -#define MAX_Y_T ((256 << SFIX) - 1) -#define SROUNDER (1 << (YUV_FIX + SFIX - 1)) - -#if defined(USE_GAMMA_COMPRESSION) - -// float variant of gamma-correction -// We use tables of different size and precision, along with a 'real-world' -// Gamma value close to ~2. -#define kGammaF 2.2 -static float kGammaToLinearTabF[MAX_Y_T + 1]; // size scales with Y_FIX -static float kLinearToGammaTabF[kGammaTabSize + 2]; -static volatile int kGammaTablesFOk = 0; - -static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) { - if (!kGammaTablesFOk) { - int v; - const double norm = 1. / MAX_Y_T; - const double scale = 1. / kGammaTabSize; - for (v = 0; v <= MAX_Y_T; ++v) { - kGammaToLinearTabF[v] = (float)pow(norm * v, kGammaF); - } - for (v = 0; v <= kGammaTabSize; ++v) { - kLinearToGammaTabF[v] = (float)(MAX_Y_T * pow(scale * v, 1. / kGammaF)); - } - // to prevent small rounding errors to cause read-overflow: - kLinearToGammaTabF[kGammaTabSize + 1] = kLinearToGammaTabF[kGammaTabSize]; - kGammaTablesFOk = 1; - } -} - -static WEBP_INLINE float GammaToLinearF(int v) { - return kGammaToLinearTabF[v]; -} - -static WEBP_INLINE int LinearToGammaF(float value) { - const float v = value * kGammaTabSize; - const int tab_pos = (int)v; - const float x = v - (float)tab_pos; // fractional part - const float v0 = kLinearToGammaTabF[tab_pos + 0]; - const float v1 = kLinearToGammaTabF[tab_pos + 1]; - const float y = v1 * x + v0 * (1.f - x); // interpolate - return (int)(y + .5); -} - -#else - -static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) {} -static WEBP_INLINE float GammaToLinearF(int v) { - const float norm = 1.f / MAX_Y_T; - return norm * v; -} -static WEBP_INLINE int LinearToGammaF(float value) { - return (int)(MAX_Y_T * value + .5); -} - -#endif // USE_GAMMA_COMPRESSION - -//------------------------------------------------------------------------------ - -static uint8_t clip_8b(fixed_t v) { - return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u; -} - -static fixed_y_t clip_y(int y) { - return (!(y & ~MAX_Y_T)) ? (fixed_y_t)y : (y < 0) ? 0 : MAX_Y_T; -} - -//------------------------------------------------------------------------------ - -static int RGBToGray(int r, int g, int b) { - const int luma = 19595 * r + 38470 * g + 7471 * b + YUV_HALF; - return (luma >> YUV_FIX); -} - -static float RGBToGrayF(float r, float g, float b) { - return 0.299f * r + 0.587f * g + 0.114f * b; -} - -static int ScaleDown(int a, int b, int c, int d) { - const float A = GammaToLinearF(a); - const float B = GammaToLinearF(b); - const float C = GammaToLinearF(c); - const float D = GammaToLinearF(d); - return LinearToGammaF(0.25f * (A + B + C + D)); -} - -static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int len) { - while (len-- > 0) { - const float R = GammaToLinearF(src[0]); - const float G = GammaToLinearF(src[1]); - const float B = GammaToLinearF(src[2]); - const float Y = RGBToGrayF(R, G, B); - *dst++ = (fixed_y_t)LinearToGammaF(Y); - src += 3; - } -} - -static int UpdateChroma(const fixed_y_t* src1, - const fixed_y_t* src2, - fixed_t* dst, fixed_y_t* tmp, int len) { - int diff = 0; - while (len--> 0) { - const int r = ScaleDown(src1[0], src1[3], src2[0], src2[3]); - const int g = ScaleDown(src1[1], src1[4], src2[1], src2[4]); - const int b = ScaleDown(src1[2], src1[5], src2[2], src2[5]); - const int W = RGBToGray(r, g, b); - const int r_avg = (src1[0] + src1[3] + src2[0] + src2[3] + 2) >> 2; - const int g_avg = (src1[1] + src1[4] + src2[1] + src2[4] + 2) >> 2; - const int b_avg = (src1[2] + src1[5] + src2[2] + src2[5] + 2) >> 2; - dst[0] = (fixed_t)(r - W); - dst[1] = (fixed_t)(g - W); - dst[2] = (fixed_t)(b - W); - dst += 3; - src1 += 6; - src2 += 6; - if (tmp != NULL) { - tmp[0] = tmp[1] = clip_y(W); - tmp += 2; - } - diff += abs(RGBToGray(r_avg, g_avg, b_avg) - W); - } - return diff; -} - -//------------------------------------------------------------------------------ - -static WEBP_INLINE int Filter(const fixed_t* const A, const fixed_t* const B, - int rightwise) { - int v; - if (!rightwise) { - v = (A[0] * 9 + A[-3] * 3 + B[0] * 3 + B[-3]); - } else { - v = (A[0] * 9 + A[+3] * 3 + B[0] * 3 + B[+3]); - } - return (v + 8) >> 4; -} - -static WEBP_INLINE int Filter2(int A, int B) { return (A * 3 + B + 2) >> 2; } - -//------------------------------------------------------------------------------ - -static WEBP_INLINE fixed_y_t UpLift(uint8_t a) { // 8bit -> SFIX - return ((fixed_y_t)a << SFIX) | SHALF; -} - -static void ImportOneRow(const uint8_t* const r_ptr, - const uint8_t* const g_ptr, - const uint8_t* const b_ptr, - int step, - int pic_width, - fixed_y_t* const dst) { - int i; - for (i = 0; i < pic_width; ++i) { - const int off = i * step; - dst[3 * i + 0] = UpLift(r_ptr[off]); - dst[3 * i + 1] = UpLift(g_ptr[off]); - dst[3 * i + 2] = UpLift(b_ptr[off]); - } - if (pic_width & 1) { // replicate rightmost pixel - memcpy(dst + 3 * pic_width, dst + 3 * (pic_width - 1), 3 * sizeof(*dst)); - } -} - -static void InterpolateTwoRows(const fixed_y_t* const best_y, - const fixed_t* const prev_uv, - const fixed_t* const cur_uv, - const fixed_t* const next_uv, - int w, - fixed_y_t* const out1, - fixed_y_t* const out2) { - int i, k; - { // special boundary case for i==0 - const int W0 = best_y[0]; - const int W1 = best_y[w]; - for (k = 0; k <= 2; ++k) { - out1[k] = clip_y(Filter2(cur_uv[k], prev_uv[k]) + W0); - out2[k] = clip_y(Filter2(cur_uv[k], next_uv[k]) + W1); - } - } - for (i = 1; i < w - 1; ++i) { - const int W0 = best_y[i + 0]; - const int W1 = best_y[i + w]; - const int off = 3 * (i >> 1); - for (k = 0; k <= 2; ++k) { - const int tmp0 = Filter(cur_uv + off + k, prev_uv + off + k, i & 1); - const int tmp1 = Filter(cur_uv + off + k, next_uv + off + k, i & 1); - out1[3 * i + k] = clip_y(tmp0 + W0); - out2[3 * i + k] = clip_y(tmp1 + W1); - } - } - { // special boundary case for i == w - 1 - const int W0 = best_y[i + 0]; - const int W1 = best_y[i + w]; - const int off = 3 * (i >> 1); - for (k = 0; k <= 2; ++k) { - out1[3 * i + k] = clip_y(Filter2(cur_uv[off + k], prev_uv[off + k]) + W0); - out2[3 * i + k] = clip_y(Filter2(cur_uv[off + k], next_uv[off + k]) + W1); - } - } -} - -static WEBP_INLINE uint8_t ConvertRGBToY(int r, int g, int b) { - const int luma = 16839 * r + 33059 * g + 6420 * b + SROUNDER; - return clip_8b(16 + (luma >> (YUV_FIX + SFIX))); -} - -static WEBP_INLINE uint8_t ConvertRGBToU(int r, int g, int b) { - const int u = -9719 * r - 19081 * g + 28800 * b + SROUNDER; - return clip_8b(128 + (u >> (YUV_FIX + SFIX))); -} - -static WEBP_INLINE uint8_t ConvertRGBToV(int r, int g, int b) { - const int v = +28800 * r - 24116 * g - 4684 * b + SROUNDER; - return clip_8b(128 + (v >> (YUV_FIX + SFIX))); -} - -static int ConvertWRGBToYUV(const fixed_y_t* const best_y, - const fixed_t* const best_uv, - WebPPicture* const picture) { - int i, j; - const int w = (picture->width + 1) & ~1; - const int h = (picture->height + 1) & ~1; - const int uv_w = w >> 1; - const int uv_h = h >> 1; - for (j = 0; j < picture->height; ++j) { - for (i = 0; i < picture->width; ++i) { - const int off = 3 * ((i >> 1) + (j >> 1) * uv_w); - const int off2 = i + j * picture->y_stride; - const int W = best_y[i + j * w]; - const int r = best_uv[off + 0] + W; - const int g = best_uv[off + 1] + W; - const int b = best_uv[off + 2] + W; - picture->y[off2] = ConvertRGBToY(r, g, b); - } - } - for (j = 0; j < uv_h; ++j) { - uint8_t* const dst_u = picture->u + j * picture->uv_stride; - uint8_t* const dst_v = picture->v + j * picture->uv_stride; - for (i = 0; i < uv_w; ++i) { - const int off = 3 * (i + j * uv_w); - const int r = best_uv[off + 0]; - const int g = best_uv[off + 1]; - const int b = best_uv[off + 2]; - dst_u[i] = ConvertRGBToU(r, g, b); - dst_v[i] = ConvertRGBToV(r, g, b); - } - } - return 1; -} - -//------------------------------------------------------------------------------ -// Main function - -#define SAFE_ALLOC(W, H, T) ((T*)WebPSafeMalloc((W) * (H), sizeof(T))) - -static int PreprocessARGB(const uint8_t* const r_ptr, - const uint8_t* const g_ptr, - const uint8_t* const b_ptr, - int step, int rgb_stride, - WebPPicture* const picture) { - // we expand the right/bottom border if needed - const int w = (picture->width + 1) & ~1; - const int h = (picture->height + 1) & ~1; - const int uv_w = w >> 1; - const int uv_h = h >> 1; - int i, j, iter; - - // TODO(skal): allocate one big memory chunk. But for now, it's easier - // for valgrind debugging to have several chunks. - fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch - fixed_y_t* const best_y = SAFE_ALLOC(w, h, fixed_y_t); - fixed_y_t* const target_y = SAFE_ALLOC(w, h, fixed_y_t); - fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t); - fixed_t* const best_uv = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); - fixed_t* const target_uv = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); - fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t); - int ok; - int diff_sum = 0; - const int first_diff_threshold = (int)(2.5 * w * h); - const int min_improvement = 5; // stop if improvement is below this % - const int min_first_improvement = 80; - - if (best_y == NULL || best_uv == NULL || - target_y == NULL || target_uv == NULL || - best_rgb_y == NULL || best_rgb_uv == NULL || - tmp_buffer == NULL) { - ok = WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); - goto End; - } - assert(picture->width >= kMinDimensionIterativeConversion); - assert(picture->height >= kMinDimensionIterativeConversion); - - // Import RGB samples to W/RGB representation. - for (j = 0; j < picture->height; j += 2) { - const int is_last_row = (j == picture->height - 1); - fixed_y_t* const src1 = tmp_buffer; - fixed_y_t* const src2 = tmp_buffer + 3 * w; - const int off1 = j * rgb_stride; - const int off2 = off1 + rgb_stride; - const int uv_off = (j >> 1) * 3 * uv_w; - fixed_y_t* const dst_y = best_y + j * w; - - // prepare two rows of input - ImportOneRow(r_ptr + off1, g_ptr + off1, b_ptr + off1, - step, picture->width, src1); - if (!is_last_row) { - ImportOneRow(r_ptr + off2, g_ptr + off2, b_ptr + off2, - step, picture->width, src2); - } else { - memcpy(src2, src1, 3 * w * sizeof(*src2)); - } - UpdateW(src1, target_y + (j + 0) * w, w); - UpdateW(src2, target_y + (j + 1) * w, w); - diff_sum += UpdateChroma(src1, src2, target_uv + uv_off, dst_y, uv_w); - memcpy(best_uv + uv_off, target_uv + uv_off, 3 * uv_w * sizeof(*best_uv)); - memcpy(dst_y + w, dst_y, w * sizeof(*dst_y)); - } - - // Iterate and resolve clipping conflicts. - for (iter = 0; iter < kNumIterations; ++iter) { - int k; - const fixed_t* cur_uv = best_uv; - const fixed_t* prev_uv = best_uv; - const int old_diff_sum = diff_sum; - diff_sum = 0; - for (j = 0; j < h; j += 2) { - fixed_y_t* const src1 = tmp_buffer; - fixed_y_t* const src2 = tmp_buffer + 3 * w; - { - const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0); - InterpolateTwoRows(best_y + j * w, prev_uv, cur_uv, next_uv, - w, src1, src2); - prev_uv = cur_uv; - cur_uv = next_uv; - } - - UpdateW(src1, best_rgb_y + 0 * w, w); - UpdateW(src2, best_rgb_y + 1 * w, w); - diff_sum += UpdateChroma(src1, src2, best_rgb_uv, NULL, uv_w); - - // update two rows of Y and one row of RGB - for (i = 0; i < 2 * w; ++i) { - const int off = i + j * w; - const int diff_y = target_y[off] - best_rgb_y[i]; - const int new_y = (int)best_y[off] + diff_y; - best_y[off] = clip_y(new_y); - } - for (i = 0; i < uv_w; ++i) { - const int off = 3 * (i + (j >> 1) * uv_w); - int W; - for (k = 0; k <= 2; ++k) { - const int diff_uv = (int)target_uv[off + k] - best_rgb_uv[3 * i + k]; - best_uv[off + k] += diff_uv; - } - W = RGBToGray(best_uv[off + 0], best_uv[off + 1], best_uv[off + 2]); - for (k = 0; k <= 2; ++k) { - best_uv[off + k] -= W; - } - } - } - // test exit condition - if (diff_sum > 0) { - const int improvement = 100 * abs(diff_sum - old_diff_sum) / diff_sum; - // Check if first iteration gave good result already, without a large - // jump of improvement (otherwise it means we need to try few extra - // iterations, just to be sure). - if (iter == 0 && diff_sum < first_diff_threshold && - improvement < min_first_improvement) { - break; - } - // then, check if improvement is stalling. - if (improvement < min_improvement) { - break; - } - } else { - break; - } - } - - // final reconstruction - ok = ConvertWRGBToYUV(best_y, best_uv, picture); - - End: - WebPSafeFree(best_y); - WebPSafeFree(best_uv); - WebPSafeFree(target_y); - WebPSafeFree(target_uv); - WebPSafeFree(best_rgb_y); - WebPSafeFree(best_rgb_uv); - WebPSafeFree(tmp_buffer); - return ok; -} -#undef SAFE_ALLOC - -//------------------------------------------------------------------------------ -// "Fast" regular RGB->YUV - -#define SUM4(ptr, step) LinearToGamma( \ - GammaToLinear((ptr)[0]) + \ - GammaToLinear((ptr)[(step)]) + \ - GammaToLinear((ptr)[rgb_stride]) + \ - GammaToLinear((ptr)[rgb_stride + (step)]), 0) \ - -#define SUM2(ptr) \ - LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1) - -#define SUM2ALPHA(ptr) ((ptr)[0] + (ptr)[rgb_stride]) -#define SUM4ALPHA(ptr) (SUM2ALPHA(ptr) + SUM2ALPHA((ptr) + 4)) - -#if defined(USE_INVERSE_ALPHA_TABLE) - -static const int kAlphaFix = 19; -// Following table is (1 << kAlphaFix) / a. The (v * kInvAlpha[a]) >> kAlphaFix -// formula is then equal to v / a in most (99.6%) cases. Note that this table -// and constant are adjusted very tightly to fit 32b arithmetic. -// In particular, they use the fact that the operands for 'v / a' are actually -// derived as v = (a0.p0 + a1.p1 + a2.p2 + a3.p3) and a = a0 + a1 + a2 + a3 -// with ai in [0..255] and pi in [0..1<<kGammaFix). The constraint to avoid -// overflow is: kGammaFix + kAlphaFix <= 31. -static const uint32_t kInvAlpha[4 * 0xff + 1] = { - 0, /* alpha = 0 */ - 524288, 262144, 174762, 131072, 104857, 87381, 74898, 65536, - 58254, 52428, 47662, 43690, 40329, 37449, 34952, 32768, - 30840, 29127, 27594, 26214, 24966, 23831, 22795, 21845, - 20971, 20164, 19418, 18724, 18078, 17476, 16912, 16384, - 15887, 15420, 14979, 14563, 14169, 13797, 13443, 13107, - 12787, 12483, 12192, 11915, 11650, 11397, 11155, 10922, - 10699, 10485, 10280, 10082, 9892, 9709, 9532, 9362, - 9198, 9039, 8886, 8738, 8594, 8456, 8322, 8192, - 8065, 7943, 7825, 7710, 7598, 7489, 7384, 7281, - 7182, 7084, 6990, 6898, 6808, 6721, 6636, 6553, - 6472, 6393, 6316, 6241, 6168, 6096, 6026, 5957, - 5890, 5825, 5761, 5698, 5637, 5577, 5518, 5461, - 5405, 5349, 5295, 5242, 5190, 5140, 5090, 5041, - 4993, 4946, 4899, 4854, 4809, 4766, 4723, 4681, - 4639, 4599, 4559, 4519, 4481, 4443, 4405, 4369, - 4332, 4297, 4262, 4228, 4194, 4161, 4128, 4096, - 4064, 4032, 4002, 3971, 3942, 3912, 3883, 3855, - 3826, 3799, 3771, 3744, 3718, 3692, 3666, 3640, - 3615, 3591, 3566, 3542, 3518, 3495, 3472, 3449, - 3426, 3404, 3382, 3360, 3339, 3318, 3297, 3276, - 3256, 3236, 3216, 3196, 3177, 3158, 3139, 3120, - 3102, 3084, 3066, 3048, 3030, 3013, 2995, 2978, - 2962, 2945, 2928, 2912, 2896, 2880, 2864, 2849, - 2833, 2818, 2803, 2788, 2774, 2759, 2744, 2730, - 2716, 2702, 2688, 2674, 2661, 2647, 2634, 2621, - 2608, 2595, 2582, 2570, 2557, 2545, 2532, 2520, - 2508, 2496, 2484, 2473, 2461, 2449, 2438, 2427, - 2416, 2404, 2394, 2383, 2372, 2361, 2351, 2340, - 2330, 2319, 2309, 2299, 2289, 2279, 2269, 2259, - 2250, 2240, 2231, 2221, 2212, 2202, 2193, 2184, - 2175, 2166, 2157, 2148, 2139, 2131, 2122, 2114, - 2105, 2097, 2088, 2080, 2072, 2064, 2056, 2048, - 2040, 2032, 2024, 2016, 2008, 2001, 1993, 1985, - 1978, 1971, 1963, 1956, 1949, 1941, 1934, 1927, - 1920, 1913, 1906, 1899, 1892, 1885, 1879, 1872, - 1865, 1859, 1852, 1846, 1839, 1833, 1826, 1820, - 1814, 1807, 1801, 1795, 1789, 1783, 1777, 1771, - 1765, 1759, 1753, 1747, 1741, 1736, 1730, 1724, - 1718, 1713, 1707, 1702, 1696, 1691, 1685, 1680, - 1675, 1669, 1664, 1659, 1653, 1648, 1643, 1638, - 1633, 1628, 1623, 1618, 1613, 1608, 1603, 1598, - 1593, 1588, 1583, 1579, 1574, 1569, 1565, 1560, - 1555, 1551, 1546, 1542, 1537, 1533, 1528, 1524, - 1519, 1515, 1510, 1506, 1502, 1497, 1493, 1489, - 1485, 1481, 1476, 1472, 1468, 1464, 1460, 1456, - 1452, 1448, 1444, 1440, 1436, 1432, 1428, 1424, - 1420, 1416, 1413, 1409, 1405, 1401, 1398, 1394, - 1390, 1387, 1383, 1379, 1376, 1372, 1368, 1365, - 1361, 1358, 1354, 1351, 1347, 1344, 1340, 1337, - 1334, 1330, 1327, 1323, 1320, 1317, 1314, 1310, - 1307, 1304, 1300, 1297, 1294, 1291, 1288, 1285, - 1281, 1278, 1275, 1272, 1269, 1266, 1263, 1260, - 1257, 1254, 1251, 1248, 1245, 1242, 1239, 1236, - 1233, 1230, 1227, 1224, 1222, 1219, 1216, 1213, - 1210, 1208, 1205, 1202, 1199, 1197, 1194, 1191, - 1188, 1186, 1183, 1180, 1178, 1175, 1172, 1170, - 1167, 1165, 1162, 1159, 1157, 1154, 1152, 1149, - 1147, 1144, 1142, 1139, 1137, 1134, 1132, 1129, - 1127, 1125, 1122, 1120, 1117, 1115, 1113, 1110, - 1108, 1106, 1103, 1101, 1099, 1096, 1094, 1092, - 1089, 1087, 1085, 1083, 1081, 1078, 1076, 1074, - 1072, 1069, 1067, 1065, 1063, 1061, 1059, 1057, - 1054, 1052, 1050, 1048, 1046, 1044, 1042, 1040, - 1038, 1036, 1034, 1032, 1030, 1028, 1026, 1024, - 1022, 1020, 1018, 1016, 1014, 1012, 1010, 1008, - 1006, 1004, 1002, 1000, 998, 996, 994, 992, - 991, 989, 987, 985, 983, 981, 979, 978, - 976, 974, 972, 970, 969, 967, 965, 963, - 961, 960, 958, 956, 954, 953, 951, 949, - 948, 946, 944, 942, 941, 939, 937, 936, - 934, 932, 931, 929, 927, 926, 924, 923, - 921, 919, 918, 916, 914, 913, 911, 910, - 908, 907, 905, 903, 902, 900, 899, 897, - 896, 894, 893, 891, 890, 888, 887, 885, - 884, 882, 881, 879, 878, 876, 875, 873, - 872, 870, 869, 868, 866, 865, 863, 862, - 860, 859, 858, 856, 855, 853, 852, 851, - 849, 848, 846, 845, 844, 842, 841, 840, - 838, 837, 836, 834, 833, 832, 830, 829, - 828, 826, 825, 824, 823, 821, 820, 819, - 817, 816, 815, 814, 812, 811, 810, 809, - 807, 806, 805, 804, 802, 801, 800, 799, - 798, 796, 795, 794, 793, 791, 790, 789, - 788, 787, 786, 784, 783, 782, 781, 780, - 779, 777, 776, 775, 774, 773, 772, 771, - 769, 768, 767, 766, 765, 764, 763, 762, - 760, 759, 758, 757, 756, 755, 754, 753, - 752, 751, 750, 748, 747, 746, 745, 744, - 743, 742, 741, 740, 739, 738, 737, 736, - 735, 734, 733, 732, 731, 730, 729, 728, - 727, 726, 725, 724, 723, 722, 721, 720, - 719, 718, 717, 716, 715, 714, 713, 712, - 711, 710, 709, 708, 707, 706, 705, 704, - 703, 702, 701, 700, 699, 699, 698, 697, - 696, 695, 694, 693, 692, 691, 690, 689, - 688, 688, 687, 686, 685, 684, 683, 682, - 681, 680, 680, 679, 678, 677, 676, 675, - 674, 673, 673, 672, 671, 670, 669, 668, - 667, 667, 666, 665, 664, 663, 662, 661, - 661, 660, 659, 658, 657, 657, 656, 655, - 654, 653, 652, 652, 651, 650, 649, 648, - 648, 647, 646, 645, 644, 644, 643, 642, - 641, 640, 640, 639, 638, 637, 637, 636, - 635, 634, 633, 633, 632, 631, 630, 630, - 629, 628, 627, 627, 626, 625, 624, 624, - 623, 622, 621, 621, 620, 619, 618, 618, - 617, 616, 616, 615, 614, 613, 613, 612, - 611, 611, 610, 609, 608, 608, 607, 606, - 606, 605, 604, 604, 603, 602, 601, 601, - 600, 599, 599, 598, 597, 597, 596, 595, - 595, 594, 593, 593, 592, 591, 591, 590, - 589, 589, 588, 587, 587, 586, 585, 585, - 584, 583, 583, 582, 581, 581, 580, 579, - 579, 578, 578, 577, 576, 576, 575, 574, - 574, 573, 572, 572, 571, 571, 570, 569, - 569, 568, 568, 567, 566, 566, 565, 564, - 564, 563, 563, 562, 561, 561, 560, 560, - 559, 558, 558, 557, 557, 556, 555, 555, - 554, 554, 553, 553, 552, 551, 551, 550, - 550, 549, 548, 548, 547, 547, 546, 546, - 545, 544, 544, 543, 543, 542, 542, 541, - 541, 540, 539, 539, 538, 538, 537, 537, - 536, 536, 535, 534, 534, 533, 533, 532, - 532, 531, 531, 530, 530, 529, 529, 528, - 527, 527, 526, 526, 525, 525, 524, 524, - 523, 523, 522, 522, 521, 521, 520, 520, - 519, 519, 518, 518, 517, 517, 516, 516, - 515, 515, 514, 514 -}; - -// Note that LinearToGamma() expects the values to be premultiplied by 4, -// so we incorporate this factor 4 inside the DIVIDE_BY_ALPHA macro directly. -#define DIVIDE_BY_ALPHA(sum, a) (((sum) * kInvAlpha[(a)]) >> (kAlphaFix - 2)) - -#else - -#define DIVIDE_BY_ALPHA(sum, a) (4 * (sum) / (a)) - -#endif // USE_INVERSE_ALPHA_TABLE - -static WEBP_INLINE int LinearToGammaWeighted(const uint8_t* src, - const uint8_t* a_ptr, - uint32_t total_a, int step, - int rgb_stride) { - const uint32_t sum = - a_ptr[0] * GammaToLinear(src[0]) + - a_ptr[step] * GammaToLinear(src[step]) + - a_ptr[rgb_stride] * GammaToLinear(src[rgb_stride]) + - a_ptr[rgb_stride + step] * GammaToLinear(src[rgb_stride + step]); - assert(total_a > 0 && total_a <= 4 * 0xff); -#if defined(USE_INVERSE_ALPHA_TABLE) - assert((uint64_t)sum * kInvAlpha[total_a] < ((uint64_t)1 << 32)); -#endif - return LinearToGamma(DIVIDE_BY_ALPHA(sum, total_a), 0); -} - -static WEBP_INLINE void ConvertRowToY(const uint8_t* const r_ptr, - const uint8_t* const g_ptr, - const uint8_t* const b_ptr, - int step, - uint8_t* const dst_y, - int width, - VP8Random* const rg) { - int i, j; - for (i = 0, j = 0; i < width; i += 1, j += step) { - dst_y[i] = RGBToY(r_ptr[j], g_ptr[j], b_ptr[j], rg); - } -} - -static WEBP_INLINE void AccumulateRGBA(const uint8_t* const r_ptr, - const uint8_t* const g_ptr, - const uint8_t* const b_ptr, - const uint8_t* const a_ptr, - int rgb_stride, - uint16_t* dst, int width) { - int i, j; - // we loop over 2x2 blocks and produce one R/G/B/A value for each. - for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * 4, dst += 4) { - const uint32_t a = SUM4ALPHA(a_ptr + j); - int r, g, b; - if (a == 4 * 0xff || a == 0) { - r = SUM4(r_ptr + j, 4); - g = SUM4(g_ptr + j, 4); - b = SUM4(b_ptr + j, 4); - } else { - r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 4, rgb_stride); - g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 4, rgb_stride); - b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 4, rgb_stride); - } - dst[0] = r; - dst[1] = g; - dst[2] = b; - dst[3] = a; - } - if (width & 1) { - const uint32_t a = 2u * SUM2ALPHA(a_ptr + j); - int r, g, b; - if (a == 4 * 0xff || a == 0) { - r = SUM2(r_ptr + j); - g = SUM2(g_ptr + j); - b = SUM2(b_ptr + j); - } else { - r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 0, rgb_stride); - g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 0, rgb_stride); - b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 0, rgb_stride); - } - dst[0] = r; - dst[1] = g; - dst[2] = b; - dst[3] = a; - } -} - -static WEBP_INLINE void AccumulateRGB(const uint8_t* const r_ptr, - const uint8_t* const g_ptr, - const uint8_t* const b_ptr, - int step, int rgb_stride, - uint16_t* dst, int width) { - int i, j; - for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * step, dst += 4) { - dst[0] = SUM4(r_ptr + j, step); - dst[1] = SUM4(g_ptr + j, step); - dst[2] = SUM4(b_ptr + j, step); - } - if (width & 1) { - dst[0] = SUM2(r_ptr + j); - dst[1] = SUM2(g_ptr + j); - dst[2] = SUM2(b_ptr + j); - } -} - -static WEBP_INLINE void ConvertRowsToUV(const uint16_t* rgb, - uint8_t* const dst_u, - uint8_t* const dst_v, - int width, - VP8Random* const rg) { - int i; - for (i = 0; i < width; i += 1, rgb += 4) { - const int r = rgb[0], g = rgb[1], b = rgb[2]; - dst_u[i] = RGBToU(r, g, b, rg); - dst_v[i] = RGBToV(r, g, b, rg); - } -} - -static int ImportYUVAFromRGBA(const uint8_t* const r_ptr, - const uint8_t* const g_ptr, - const uint8_t* const b_ptr, - const uint8_t* const a_ptr, - int step, // bytes per pixel - int rgb_stride, // bytes per scanline - float dithering, - int use_iterative_conversion, - WebPPicture* const picture) { - int y; - const int width = picture->width; - const int height = picture->height; - const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride); - const int is_rgb = (r_ptr < b_ptr); // otherwise it's bgr - - picture->colorspace = has_alpha ? WEBP_YUV420A : WEBP_YUV420; - picture->use_argb = 0; - - // disable smart conversion if source is too small (overkill). - if (width < kMinDimensionIterativeConversion || - height < kMinDimensionIterativeConversion) { - use_iterative_conversion = 0; - } - - if (!WebPPictureAllocYUVA(picture, width, height)) { - return 0; - } - if (has_alpha) { - WebPInitAlphaProcessing(); - assert(step == 4); -#if defined(USE_GAMMA_COMPRESSION) && defined(USE_INVERSE_ALPHA_TABLE) - assert(kAlphaFix + kGammaFix <= 31); -#endif - } - - if (use_iterative_conversion) { - InitGammaTablesF(); - if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) { - return 0; - } - if (has_alpha) { - WebPExtractAlpha(a_ptr, rgb_stride, width, height, - picture->a, picture->a_stride); - } - } else { - const int uv_width = (width + 1) >> 1; - int use_dsp = (step == 3); // use special function in this case - // temporary storage for accumulated R/G/B values during conversion to U/V - uint16_t* const tmp_rgb = - (uint16_t*)WebPSafeMalloc(4 * uv_width, sizeof(*tmp_rgb)); - uint8_t* dst_y = picture->y; - uint8_t* dst_u = picture->u; - uint8_t* dst_v = picture->v; - uint8_t* dst_a = picture->a; - - VP8Random base_rg; - VP8Random* rg = NULL; - if (dithering > 0.) { - VP8InitRandom(&base_rg, dithering); - rg = &base_rg; - use_dsp = 0; // can't use dsp in this case - } - WebPInitConvertARGBToYUV(); - InitGammaTables(); - - if (tmp_rgb == NULL) return 0; // malloc error - - // Downsample Y/U/V planes, two rows at a time - for (y = 0; y < (height >> 1); ++y) { - int rows_have_alpha = has_alpha; - const int off1 = (2 * y + 0) * rgb_stride; - const int off2 = (2 * y + 1) * rgb_stride; - if (use_dsp) { - if (is_rgb) { - WebPConvertRGB24ToY(r_ptr + off1, dst_y, width); - WebPConvertRGB24ToY(r_ptr + off2, dst_y + picture->y_stride, width); - } else { - WebPConvertBGR24ToY(b_ptr + off1, dst_y, width); - WebPConvertBGR24ToY(b_ptr + off2, dst_y + picture->y_stride, width); - } - } else { - ConvertRowToY(r_ptr + off1, g_ptr + off1, b_ptr + off1, step, - dst_y, width, rg); - ConvertRowToY(r_ptr + off2, g_ptr + off2, b_ptr + off2, step, - dst_y + picture->y_stride, width, rg); - } - dst_y += 2 * picture->y_stride; - if (has_alpha) { - rows_have_alpha &= !WebPExtractAlpha(a_ptr + off1, rgb_stride, - width, 2, - dst_a, picture->a_stride); - dst_a += 2 * picture->a_stride; - } - // Collect averaged R/G/B(/A) - if (!rows_have_alpha) { - AccumulateRGB(r_ptr + off1, g_ptr + off1, b_ptr + off1, - step, rgb_stride, tmp_rgb, width); - } else { - AccumulateRGBA(r_ptr + off1, g_ptr + off1, b_ptr + off1, a_ptr + off1, - rgb_stride, tmp_rgb, width); - } - // Convert to U/V - if (rg == NULL) { - WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width); - } else { - ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg); - } - dst_u += picture->uv_stride; - dst_v += picture->uv_stride; - } - if (height & 1) { // extra last row - const int off = 2 * y * rgb_stride; - int row_has_alpha = has_alpha; - if (use_dsp) { - if (r_ptr < b_ptr) { - WebPConvertRGB24ToY(r_ptr + off, dst_y, width); - } else { - WebPConvertBGR24ToY(b_ptr + off, dst_y, width); - } - } else { - ConvertRowToY(r_ptr + off, g_ptr + off, b_ptr + off, step, - dst_y, width, rg); - } - if (row_has_alpha) { - row_has_alpha &= !WebPExtractAlpha(a_ptr + off, 0, width, 1, dst_a, 0); - } - // Collect averaged R/G/B(/A) - if (!row_has_alpha) { - // Collect averaged R/G/B - AccumulateRGB(r_ptr + off, g_ptr + off, b_ptr + off, - step, /* rgb_stride = */ 0, tmp_rgb, width); - } else { - AccumulateRGBA(r_ptr + off, g_ptr + off, b_ptr + off, a_ptr + off, - /* rgb_stride = */ 0, tmp_rgb, width); - } - if (rg == NULL) { - WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width); - } else { - ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg); - } - } - WebPSafeFree(tmp_rgb); - } - return 1; -} - -#undef SUM4 -#undef SUM2 -#undef SUM4ALPHA -#undef SUM2ALPHA - -//------------------------------------------------------------------------------ -// call for ARGB->YUVA conversion - -static int PictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace, - float dithering, int use_iterative_conversion) { - if (picture == NULL) return 0; - if (picture->argb == NULL) { - return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); - } else if ((colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { - return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); - } else { - const uint8_t* const argb = (const uint8_t*)picture->argb; - const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1; - const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2; - const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3; - const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0; - - picture->colorspace = WEBP_YUV420; - return ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, - dithering, use_iterative_conversion, picture); - } -} - -int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace, - float dithering) { - return PictureARGBToYUVA(picture, colorspace, dithering, 0); -} - -int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) { - return PictureARGBToYUVA(picture, colorspace, 0.f, 0); -} - -int WebPPictureSmartARGBToYUVA(WebPPicture* picture) { - return PictureARGBToYUVA(picture, WEBP_YUV420, 0.f, 1); -} - -//------------------------------------------------------------------------------ -// call for YUVA -> ARGB conversion - -int WebPPictureYUVAToARGB(WebPPicture* picture) { - if (picture == NULL) return 0; - if (picture->y == NULL || picture->u == NULL || picture->v == NULL) { - return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); - } - if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) { - return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); - } - if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { - return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); - } - // Allocate a new argb buffer (discarding the previous one). - if (!WebPPictureAllocARGB(picture, picture->width, picture->height)) return 0; - picture->use_argb = 1; - - // Convert - { - int y; - const int width = picture->width; - const int height = picture->height; - const int argb_stride = 4 * picture->argb_stride; - uint8_t* dst = (uint8_t*)picture->argb; - const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y; - WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST); - - // First row, with replicated top samples. - upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); - cur_y += picture->y_stride; - dst += argb_stride; - // Center rows. - for (y = 1; y + 1 < height; y += 2) { - const uint8_t* const top_u = cur_u; - const uint8_t* const top_v = cur_v; - cur_u += picture->uv_stride; - cur_v += picture->uv_stride; - upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v, - dst, dst + argb_stride, width); - cur_y += 2 * picture->y_stride; - dst += 2 * argb_stride; - } - // Last row (if needed), with replicated bottom samples. - if (height > 1 && !(height & 1)) { - upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); - } - // Insert alpha values if needed, in replacement for the default 0xff ones. - if (picture->colorspace & WEBP_CSP_ALPHA_BIT) { - for (y = 0; y < height; ++y) { - uint32_t* const argb_dst = picture->argb + y * picture->argb_stride; - const uint8_t* const src = picture->a + y * picture->a_stride; - int x; - for (x = 0; x < width; ++x) { - argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24); - } - } - } - } - return 1; -} - -//------------------------------------------------------------------------------ -// automatic import / conversion - -static int Import(WebPPicture* const picture, - const uint8_t* const rgb, int rgb_stride, - int step, int swap_rb, int import_alpha) { - int y; - const uint8_t* const r_ptr = rgb + (swap_rb ? 2 : 0); - const uint8_t* const g_ptr = rgb + 1; - const uint8_t* const b_ptr = rgb + (swap_rb ? 0 : 2); - const uint8_t* const a_ptr = import_alpha ? rgb + 3 : NULL; - const int width = picture->width; - const int height = picture->height; - - if (!picture->use_argb) { - return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride, - 0.f /* no dithering */, 0, picture); - } - if (!WebPPictureAlloc(picture)) return 0; - - VP8EncDspARGBInit(); - - if (import_alpha) { - assert(step == 4); - for (y = 0; y < height; ++y) { - uint32_t* const dst = &picture->argb[y * picture->argb_stride]; - const int offset = y * rgb_stride; - VP8PackARGB(a_ptr + offset, r_ptr + offset, g_ptr + offset, - b_ptr + offset, width, dst); - } - } else { - assert(step >= 3); - for (y = 0; y < height; ++y) { - uint32_t* const dst = &picture->argb[y * picture->argb_stride]; - const int offset = y * rgb_stride; - VP8PackRGB(r_ptr + offset, g_ptr + offset, b_ptr + offset, - width, step, dst); - } - } - return 1; -} - -// Public API - -int WebPPictureImportRGB(WebPPicture* picture, - const uint8_t* rgb, int rgb_stride) { - return (picture != NULL && rgb != NULL) - ? Import(picture, rgb, rgb_stride, 3, 0, 0) - : 0; -} - -int WebPPictureImportBGR(WebPPicture* picture, - const uint8_t* rgb, int rgb_stride) { - return (picture != NULL && rgb != NULL) - ? Import(picture, rgb, rgb_stride, 3, 1, 0) - : 0; -} - -int WebPPictureImportRGBA(WebPPicture* picture, - const uint8_t* rgba, int rgba_stride) { - return (picture != NULL && rgba != NULL) - ? Import(picture, rgba, rgba_stride, 4, 0, 1) - : 0; -} - -int WebPPictureImportBGRA(WebPPicture* picture, - const uint8_t* rgba, int rgba_stride) { - return (picture != NULL && rgba != NULL) - ? Import(picture, rgba, rgba_stride, 4, 1, 1) - : 0; -} - -int WebPPictureImportRGBX(WebPPicture* picture, - const uint8_t* rgba, int rgba_stride) { - return (picture != NULL && rgba != NULL) - ? Import(picture, rgba, rgba_stride, 4, 0, 0) - : 0; -} - -int WebPPictureImportBGRX(WebPPicture* picture, - const uint8_t* rgba, int rgba_stride) { - return (picture != NULL && rgba != NULL) - ? Import(picture, rgba, rgba_stride, 4, 1, 0) - : 0; -} - -//------------------------------------------------------------------------------ |