summaryrefslogtreecommitdiff
path: root/drivers/webp/enc/histogram.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/webp/enc/histogram.c')
-rw-r--r--drivers/webp/enc/histogram.c980
1 files changed, 736 insertions, 244 deletions
diff --git a/drivers/webp/enc/histogram.c b/drivers/webp/enc/histogram.c
index ca838e064d..62c320d809 100644
--- a/drivers/webp/enc/histogram.c
+++ b/drivers/webp/enc/histogram.c
@@ -1,38 +1,82 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
-// This code is licensed under the same terms as WebM:
-// Software License Agreement: http://www.webmproject.org/license/software/
-// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
#ifdef HAVE_CONFIG_H
-#include "config.h"
+#include "../webp/config.h"
#endif
#include <math.h>
-#include <stdio.h>
#include "./backward_references.h"
#include "./histogram.h"
#include "../dsp/lossless.h"
#include "../utils/utils.h"
+#define MAX_COST 1.e38
+
+// Number of partitions for the three dominant (literal, red and blue) symbol
+// costs.
+#define NUM_PARTITIONS 4
+// The size of the bin-hash corresponding to the three dominant costs.
+#define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
+// Maximum number of histograms allowed in greedy combining algorithm.
+#define MAX_HISTO_GREEDY 100
+
static void HistogramClear(VP8LHistogram* const p) {
- memset(p->literal_, 0, sizeof(p->literal_));
- memset(p->red_, 0, sizeof(p->red_));
- memset(p->blue_, 0, sizeof(p->blue_));
- memset(p->alpha_, 0, sizeof(p->alpha_));
- memset(p->distance_, 0, sizeof(p->distance_));
- p->bit_cost_ = 0;
+ uint32_t* const literal = p->literal_;
+ const int cache_bits = p->palette_code_bits_;
+ const int histo_size = VP8LGetHistogramSize(cache_bits);
+ memset(p, 0, histo_size);
+ p->palette_code_bits_ = cache_bits;
+ p->literal_ = literal;
+}
+
+// Swap two histogram pointers.
+static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
+ VP8LHistogram* const tmp = *A;
+ *A = *B;
+ *B = tmp;
+}
+
+static void HistogramCopy(const VP8LHistogram* const src,
+ VP8LHistogram* const dst) {
+ uint32_t* const dst_literal = dst->literal_;
+ const int dst_cache_bits = dst->palette_code_bits_;
+ const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
+ assert(src->palette_code_bits_ == dst_cache_bits);
+ memcpy(dst, src, histo_size);
+ dst->literal_ = dst_literal;
+}
+
+int VP8LGetHistogramSize(int cache_bits) {
+ const int literal_size = VP8LHistogramNumCodes(cache_bits);
+ const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
+ assert(total_size <= (size_t)0x7fffffff);
+ return (int)total_size;
+}
+
+void VP8LFreeHistogram(VP8LHistogram* const histo) {
+ WebPSafeFree(histo);
+}
+
+void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
+ WebPSafeFree(histo);
}
void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
VP8LHistogram* const histo) {
- int i;
- for (i = 0; i < refs->size; ++i) {
- VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
+ VP8LRefsCursor c = VP8LRefsCursorInit(refs);
+ while (VP8LRefsCursorOk(&c)) {
+ VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos);
+ VP8LRefsCursorNext(&c);
}
}
@@ -51,13 +95,25 @@ void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
HistogramClear(p);
}
+VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
+ VP8LHistogram* histo = NULL;
+ const int total_size = VP8LGetHistogramSize(cache_bits);
+ uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
+ if (memory == NULL) return NULL;
+ histo = (VP8LHistogram*)memory;
+ // literal_ won't necessary be aligned.
+ histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
+ VP8LHistogramInit(histo, cache_bits);
+ return histo;
+}
+
VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
int i;
VP8LHistogramSet* set;
- VP8LHistogram* bulk;
- const uint64_t total_size = (uint64_t)sizeof(*set)
- + size * sizeof(*set->histograms)
- + size * sizeof(**set->histograms);
+ const int histo_size = VP8LGetHistogramSize(cache_bits);
+ const size_t total_size =
+ sizeof(*set) + size * (sizeof(*set->histograms) +
+ histo_size + WEBP_ALIGN_CST);
uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
if (memory == NULL) return NULL;
@@ -65,12 +121,15 @@ VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
memory += sizeof(*set);
set->histograms = (VP8LHistogram**)memory;
memory += size * sizeof(*set->histograms);
- bulk = (VP8LHistogram*)memory;
set->max_size = size;
set->size = size;
for (i = 0; i < size; ++i) {
- set->histograms[i] = bulk + i;
+ memory = (uint8_t*)WEBP_ALIGN(memory);
+ set->histograms[i] = (VP8LHistogram*)memory;
+ // literal_ won't necessary be aligned.
+ set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
VP8LHistogramInit(set->histograms[i], cache_bits);
+ memory += histo_size;
}
return set;
}
@@ -85,151 +144,183 @@ void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
++histo->literal_[PixOrCopyLiteral(v, 1)];
++histo->blue_[PixOrCopyLiteral(v, 0)];
} else if (PixOrCopyIsCacheIdx(v)) {
- int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
+ const int literal_ix =
+ NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
++histo->literal_[literal_ix];
} else {
- int code, extra_bits_count, extra_bits_value;
- PrefixEncode(PixOrCopyLength(v),
- &code, &extra_bits_count, &extra_bits_value);
- ++histo->literal_[256 + code];
- PrefixEncode(PixOrCopyDistance(v),
- &code, &extra_bits_count, &extra_bits_value);
+ int code, extra_bits;
+ VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
+ ++histo->literal_[NUM_LITERAL_CODES + code];
+ VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
++histo->distance_[code];
}
}
+// -----------------------------------------------------------------------------
+// Various histogram combine/cost-eval functions
+
+static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
+ const VP8LHistogram* const b,
+ double cost_threshold,
+ double* cost) {
+ const int palette_code_bits = a->palette_code_bits_;
+ assert(a->palette_code_bits_ == b->palette_code_bits_);
+ *cost += VP8LGetCombinedEntropy(a->literal_, b->literal_,
+ VP8LHistogramNumCodes(palette_code_bits));
+ *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
+ b->literal_ + NUM_LITERAL_CODES,
+ NUM_LENGTH_CODES);
+ if (*cost > cost_threshold) return 0;
+
+ *cost += VP8LGetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES);
+ if (*cost > cost_threshold) return 0;
+
+ *cost += VP8LGetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES);
+ if (*cost > cost_threshold) return 0;
+
+ *cost += VP8LGetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES);
+ if (*cost > cost_threshold) return 0;
+
+ *cost += VP8LGetCombinedEntropy(a->distance_, b->distance_,
+ NUM_DISTANCE_CODES);
+ *cost += VP8LExtraCostCombined(a->distance_, b->distance_,
+ NUM_DISTANCE_CODES);
+ if (*cost > cost_threshold) return 0;
+
+ return 1;
+}
-
-static double BitsEntropy(const int* const array, int n) {
- double retval = 0.;
- int sum = 0;
- int nonzeros = 0;
- int max_val = 0;
- int i;
- double mix;
- for (i = 0; i < n; ++i) {
- if (array[i] != 0) {
- sum += array[i];
- ++nonzeros;
- retval -= VP8LFastSLog2(array[i]);
- if (max_val < array[i]) {
- max_val = array[i];
- }
- }
+// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
+// to the threshold value 'cost_threshold'. The score returned is
+// Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
+// Since the previous score passed is 'cost_threshold', we only need to compare
+// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
+// early.
+static double HistogramAddEval(const VP8LHistogram* const a,
+ const VP8LHistogram* const b,
+ VP8LHistogram* const out,
+ double cost_threshold) {
+ double cost = 0;
+ const double sum_cost = a->bit_cost_ + b->bit_cost_;
+ cost_threshold += sum_cost;
+
+ if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
+ VP8LHistogramAdd(a, b, out);
+ out->bit_cost_ = cost;
+ out->palette_code_bits_ = a->palette_code_bits_;
+ out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) ?
+ a->trivial_symbol_ : VP8L_NON_TRIVIAL_SYM;
}
- retval += VP8LFastSLog2(sum);
- if (nonzeros < 5) {
- if (nonzeros <= 1) {
- return 0;
- }
- // Two symbols, they will be 0 and 1 in a Huffman code.
- // Let's mix in a bit of entropy to favor good clustering when
- // distributions of these are combined.
- if (nonzeros == 2) {
- return 0.99 * sum + 0.01 * retval;
- }
- // No matter what the entropy says, we cannot be better than min_limit
- // with Huffman coding. I am mixing a bit of entropy into the
- // min_limit since it produces much better (~0.5 %) compression results
- // perhaps because of better entropy clustering.
- if (nonzeros == 3) {
- mix = 0.95;
- } else {
- mix = 0.7; // nonzeros == 4.
- }
- } else {
- mix = 0.627;
- }
+ return cost - sum_cost;
+}
- {
- double min_limit = 2 * sum - max_val;
- min_limit = mix * min_limit + (1.0 - mix) * retval;
- return (retval < min_limit) ? min_limit : retval;
- }
+// Same as HistogramAddEval(), except that the resulting histogram
+// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
+// the term C(b) which is constant over all the evaluations.
+static double HistogramAddThresh(const VP8LHistogram* const a,
+ const VP8LHistogram* const b,
+ double cost_threshold) {
+ double cost = -a->bit_cost_;
+ GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
+ return cost;
}
-double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
- double retval = BitsEntropy(&p->literal_[0], VP8LHistogramNumCodes(p))
- + BitsEntropy(&p->red_[0], 256)
- + BitsEntropy(&p->blue_[0], 256)
- + BitsEntropy(&p->alpha_[0], 256)
- + BitsEntropy(&p->distance_[0], NUM_DISTANCE_CODES);
- // Compute the extra bits cost.
- int i;
- for (i = 2; i < NUM_LENGTH_CODES - 2; ++i) {
- retval +=
- (i >> 1) * p->literal_[256 + i + 2];
- }
- for (i = 2; i < NUM_DISTANCE_CODES - 2; ++i) {
- retval += (i >> 1) * p->distance_[i + 2];
- }
- return retval;
-}
-
-
-// Returns the cost encode the rle-encoded entropy code.
-// The constants in this function are experimental.
-static double HuffmanCost(const int* const population, int length) {
- // Small bias because Huffman code length is typically not stored in
- // full length.
- static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
- static const double kSmallBias = 9.1;
- double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
- int streak = 0;
- int i = 0;
- for (; i < length - 1; ++i) {
- ++streak;
- if (population[i] == population[i + 1]) {
- continue;
- }
- last_streak_hack:
- // population[i] points now to the symbol in the streak of same values.
- if (streak > 3) {
- if (population[i] == 0) {
- retval += 1.5625 + 0.234375 * streak;
- } else {
- retval += 2.578125 + 0.703125 * streak;
- }
- } else {
- if (population[i] == 0) {
- retval += 1.796875 * streak;
- } else {
- retval += 3.28125 * streak;
- }
- }
- streak = 0;
- }
- if (i == length - 1) {
- ++streak;
- goto last_streak_hack;
+// -----------------------------------------------------------------------------
+
+// The structure to keep track of cost range for the three dominant entropy
+// symbols.
+// TODO(skal): Evaluate if float can be used here instead of double for
+// representing the entropy costs.
+typedef struct {
+ double literal_max_;
+ double literal_min_;
+ double red_max_;
+ double red_min_;
+ double blue_max_;
+ double blue_min_;
+} DominantCostRange;
+
+static void DominantCostRangeInit(DominantCostRange* const c) {
+ c->literal_max_ = 0.;
+ c->literal_min_ = MAX_COST;
+ c->red_max_ = 0.;
+ c->red_min_ = MAX_COST;
+ c->blue_max_ = 0.;
+ c->blue_min_ = MAX_COST;
+}
+
+static void UpdateDominantCostRange(
+ const VP8LHistogram* const h, DominantCostRange* const c) {
+ if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
+ if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
+ if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
+ if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
+ if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
+ if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
+}
+
+static void UpdateHistogramCost(VP8LHistogram* const h) {
+ uint32_t alpha_sym, red_sym, blue_sym;
+ const double alpha_cost = VP8LPopulationCost(h->alpha_, NUM_LITERAL_CODES,
+ &alpha_sym);
+ const double distance_cost =
+ VP8LPopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
+ VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
+ const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
+ h->literal_cost_ = VP8LPopulationCost(h->literal_, num_codes, NULL) +
+ VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
+ NUM_LENGTH_CODES);
+ h->red_cost_ = VP8LPopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
+ h->blue_cost_ = VP8LPopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
+ h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
+ alpha_cost + distance_cost;
+ if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
+ h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
+ } else {
+ h->trivial_symbol_ =
+ ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
}
- return retval;
}
-// Estimates the Huffman dictionary + other block overhead size.
-static double HistogramEstimateBitsHeader(const VP8LHistogram* const p) {
- return HuffmanCost(&p->alpha_[0], 256) +
- HuffmanCost(&p->red_[0], 256) +
- HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) +
- HuffmanCost(&p->blue_[0], 256) +
- HuffmanCost(&p->distance_[0], NUM_DISTANCE_CODES);
+static int GetBinIdForEntropy(double min, double max, double val) {
+ const double range = max - min + 1e-6;
+ const double delta = val - min;
+ return (int)(NUM_PARTITIONS * delta / range);
}
-double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
- return HistogramEstimateBitsHeader(p) + VP8LHistogramEstimateBitsBulk(p);
+static int GetHistoBinIndexLowEffort(
+ const VP8LHistogram* const h, const DominantCostRange* const c) {
+ const int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
+ h->literal_cost_);
+ assert(bin_id < NUM_PARTITIONS);
+ return bin_id;
}
-static void HistogramBuildImage(int xsize, int histo_bits,
- const VP8LBackwardRefs* const backward_refs,
- VP8LHistogramSet* const image) {
- int i;
+static int GetHistoBinIndex(
+ const VP8LHistogram* const h, const DominantCostRange* const c) {
+ const int bin_id =
+ GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_) +
+ NUM_PARTITIONS * GetBinIdForEntropy(c->red_min_, c->red_max_,
+ h->red_cost_) +
+ NUM_PARTITIONS * NUM_PARTITIONS * GetBinIdForEntropy(c->literal_min_,
+ c->literal_max_,
+ h->literal_cost_);
+ assert(bin_id < BIN_SIZE);
+ return bin_id;
+}
+
+// Construct the histograms from backward references.
+static void HistogramBuild(
+ int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
+ VP8LHistogramSet* const image_histo) {
int x = 0, y = 0;
const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
- VP8LHistogram** const histograms = image->histograms;
+ VP8LHistogram** const histograms = image_histo->histograms;
+ VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
assert(histo_bits > 0);
- for (i = 0; i < backward_refs->size; ++i) {
- const PixOrCopy* const v = &backward_refs->refs[i];
+ while (VP8LRefsCursorOk(&c)) {
+ const PixOrCopy* const v = c.cur_pos;
const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
x += PixOrCopyLength(v);
@@ -237,7 +328,134 @@ static void HistogramBuildImage(int xsize, int histo_bits,
x -= xsize;
++y;
}
+ VP8LRefsCursorNext(&c);
+ }
+}
+
+// Copies the histograms and computes its bit_cost.
+static void HistogramCopyAndAnalyze(
+ VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
+ int i;
+ const int histo_size = orig_histo->size;
+ VP8LHistogram** const orig_histograms = orig_histo->histograms;
+ VP8LHistogram** const histograms = image_histo->histograms;
+ for (i = 0; i < histo_size; ++i) {
+ VP8LHistogram* const histo = orig_histograms[i];
+ UpdateHistogramCost(histo);
+ // Copy histograms from orig_histo[] to image_histo[].
+ HistogramCopy(histo, histograms[i]);
+ }
+}
+
+// Partition histograms to different entropy bins for three dominant (literal,
+// red and blue) symbol costs and compute the histogram aggregate bit_cost.
+static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
+ int16_t* const bin_map, int low_effort) {
+ int i;
+ VP8LHistogram** const histograms = image_histo->histograms;
+ const int histo_size = image_histo->size;
+ const int bin_depth = histo_size + 1;
+ DominantCostRange cost_range;
+ DominantCostRangeInit(&cost_range);
+
+ // Analyze the dominant (literal, red and blue) entropy costs.
+ for (i = 0; i < histo_size; ++i) {
+ VP8LHistogram* const histo = histograms[i];
+ UpdateDominantCostRange(histo, &cost_range);
+ }
+
+ // bin-hash histograms on three of the dominant (literal, red and blue)
+ // symbol costs.
+ for (i = 0; i < histo_size; ++i) {
+ int num_histos;
+ VP8LHistogram* const histo = histograms[i];
+ const int16_t bin_id = low_effort ?
+ (int16_t)GetHistoBinIndexLowEffort(histo, &cost_range) :
+ (int16_t)GetHistoBinIndex(histo, &cost_range);
+ const int bin_offset = bin_id * bin_depth;
+ // bin_map[n][0] for every bin 'n' maintains the counter for the number of
+ // histograms in that bin.
+ // Get and increment the num_histos in that bin.
+ num_histos = ++bin_map[bin_offset];
+ assert(bin_offset + num_histos < bin_depth * BIN_SIZE);
+ // Add histogram i'th index at num_histos (last) position in the bin_map.
+ bin_map[bin_offset + num_histos] = i;
+ }
+}
+
+// Compact the histogram set by removing unused entries.
+static void HistogramCompactBins(VP8LHistogramSet* const image_histo) {
+ VP8LHistogram** const histograms = image_histo->histograms;
+ int i, j;
+
+ for (i = 0, j = 0; i < image_histo->size; ++i) {
+ if (histograms[i] != NULL && histograms[i]->bit_cost_ != 0.) {
+ if (j < i) {
+ histograms[j] = histograms[i];
+ histograms[i] = NULL;
+ }
+ ++j;
+ }
}
+ image_histo->size = j;
+}
+
+static VP8LHistogram* HistogramCombineEntropyBin(
+ VP8LHistogramSet* const image_histo,
+ VP8LHistogram* cur_combo,
+ int16_t* const bin_map, int bin_depth, int num_bins,
+ double combine_cost_factor, int low_effort) {
+ int bin_id;
+ VP8LHistogram** const histograms = image_histo->histograms;
+
+ for (bin_id = 0; bin_id < num_bins; ++bin_id) {
+ const int bin_offset = bin_id * bin_depth;
+ const int num_histos = bin_map[bin_offset];
+ const int idx1 = bin_map[bin_offset + 1];
+ int num_combine_failures = 0;
+ int n;
+ for (n = 2; n <= num_histos; ++n) {
+ const int idx2 = bin_map[bin_offset + n];
+ if (low_effort) {
+ // Merge all histograms with the same bin index, irrespective of cost of
+ // the merged histograms.
+ VP8LHistogramAdd(histograms[idx1], histograms[idx2], histograms[idx1]);
+ histograms[idx2]->bit_cost_ = 0.;
+ } else {
+ const double bit_cost_idx2 = histograms[idx2]->bit_cost_;
+ if (bit_cost_idx2 > 0.) {
+ const double bit_cost_thresh = -bit_cost_idx2 * combine_cost_factor;
+ const double curr_cost_diff =
+ HistogramAddEval(histograms[idx1], histograms[idx2],
+ cur_combo, bit_cost_thresh);
+ if (curr_cost_diff < bit_cost_thresh) {
+ // Try to merge two histograms only if the combo is a trivial one or
+ // the two candidate histograms are already non-trivial.
+ // For some images, 'try_combine' turns out to be false for a lot of
+ // histogram pairs. In that case, we fallback to combining
+ // histograms as usual to avoid increasing the header size.
+ const int try_combine =
+ (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
+ ((histograms[idx1]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
+ (histograms[idx2]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
+ const int max_combine_failures = 32;
+ if (try_combine || (num_combine_failures >= max_combine_failures)) {
+ HistogramSwap(&cur_combo, &histograms[idx1]);
+ histograms[idx2]->bit_cost_ = 0.;
+ } else {
+ ++num_combine_failures;
+ }
+ }
+ }
+ }
+ }
+ if (low_effort) {
+ // Update the bit_cost for the merged histograms (per bin index).
+ UpdateHistogramCost(histograms[idx1]);
+ }
+ }
+ HistogramCompactBins(image_histo);
+ return cur_combo;
}
static uint32_t MyRand(uint32_t *seed) {
@@ -248,159 +466,433 @@ static uint32_t MyRand(uint32_t *seed) {
return *seed;
}
-static int HistogramCombine(const VP8LHistogramSet* const in,
- VP8LHistogramSet* const out, int num_pairs) {
+// -----------------------------------------------------------------------------
+// Histogram pairs priority queue
+
+// Pair of histograms. Negative idx1 value means that pair is out-of-date.
+typedef struct {
+ int idx1;
+ int idx2;
+ double cost_diff;
+ double cost_combo;
+} HistogramPair;
+
+typedef struct {
+ HistogramPair* heap;
+ int* positions;
+ int size;
+ int max_index;
+} HistoHeap;
+
+static int HistoHeapInit(HistoHeap* const histo_heap, const int max_index) {
+ histo_heap->size = 0;
+ histo_heap->max_index = max_index;
+ histo_heap->heap = WebPSafeMalloc(max_index * max_index,
+ sizeof(*histo_heap->heap));
+ histo_heap->positions = WebPSafeMalloc(max_index * max_index,
+ sizeof(*histo_heap->positions));
+ return histo_heap->heap != NULL && histo_heap->positions != NULL;
+}
+
+static void HistoHeapClear(HistoHeap* const histo_heap) {
+ assert(histo_heap != NULL);
+ WebPSafeFree(histo_heap->heap);
+ WebPSafeFree(histo_heap->positions);
+}
+
+static void SwapHistogramPairs(HistogramPair *p1,
+ HistogramPair *p2) {
+ const HistogramPair tmp = *p1;
+ *p1 = *p2;
+ *p2 = tmp;
+}
+
+// Given a valid min-heap in range [0, heap_size-1) this function places value
+// heap[heap_size-1] into right location within heap and sets its position in
+// positions array.
+static void HeapPush(HistoHeap* const histo_heap) {
+ HistogramPair* const heap = histo_heap->heap - 1;
+ int* const positions = histo_heap->positions;
+ const int max_index = histo_heap->max_index;
+ int v;
+ ++histo_heap->size;
+ v = histo_heap->size;
+ while (v > 1 && heap[v].cost_diff < heap[v >> 1].cost_diff) {
+ SwapHistogramPairs(&heap[v], &heap[v >> 1]);
+ // Change position of moved pair in heap.
+ if (heap[v].idx1 >= 0) {
+ const int pos = heap[v].idx1 * max_index + heap[v].idx2;
+ assert(pos >= 0 && pos < max_index * max_index);
+ positions[pos] = v;
+ }
+ v >>= 1;
+ }
+ positions[heap[v].idx1 * max_index + heap[v].idx2] = v;
+}
+
+// Given a valid min-heap in range [0, heap_size) this function shortens heap
+// range by one and places element with the lowest value to (heap_size-1).
+static void HeapPop(HistoHeap* const histo_heap) {
+ HistogramPair* const heap = histo_heap->heap - 1;
+ int* const positions = histo_heap->positions;
+ const int heap_size = histo_heap->size;
+ const int max_index = histo_heap->max_index;
+ int v = 1;
+ if (heap[v].idx1 >= 0) {
+ positions[heap[v].idx1 * max_index + heap[v].idx2] = -1;
+ }
+ SwapHistogramPairs(&heap[v], &heap[heap_size]);
+ while ((v << 1) < heap_size) {
+ int son = (heap[v << 1].cost_diff < heap[v].cost_diff) ? (v << 1) : v;
+ if (((v << 1) + 1) < heap_size &&
+ heap[(v << 1) + 1].cost_diff < heap[son].cost_diff) {
+ son = (v << 1) + 1;
+ }
+ if (son == v) break;
+ SwapHistogramPairs(&heap[v], &heap[son]);
+ // Change position of moved pair in heap.
+ if (heap[v].idx1 >= 0) {
+ positions[heap[v].idx1 * max_index + heap[v].idx2] = v;
+ }
+ v = son;
+ }
+ if (heap[v].idx1 >= 0) {
+ positions[heap[v].idx1 * max_index + heap[v].idx2] = v;
+ }
+ --histo_heap->size;
+}
+
+// -----------------------------------------------------------------------------
+
+static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2,
+ HistogramPair* const pair,
+ VP8LHistogram* const histos) {
+ if (idx1 > idx2) {
+ const int tmp = idx2;
+ idx2 = idx1;
+ idx1 = tmp;
+ }
+ pair->idx1 = idx1;
+ pair->idx2 = idx2;
+ pair->cost_diff =
+ HistogramAddEval(histograms[idx1], histograms[idx2], histos, 0);
+ pair->cost_combo = histos->bit_cost_;
+}
+
+#define POSITION_INVALID (-1)
+
+// Invalidates pairs intersecting (idx1, idx2) in heap.
+static void InvalidatePairs(int idx1, int idx2,
+ const HistoHeap* const histo_heap) {
+ HistogramPair* const heap = histo_heap->heap - 1;
+ int* const positions = histo_heap->positions;
+ const int max_index = histo_heap->max_index;
+ int i;
+ for (i = 0; i < idx1; ++i) {
+ const int pos = positions[i * max_index + idx1];
+ if (pos >= 0) {
+ heap[pos].idx1 = POSITION_INVALID;
+ }
+ }
+ for (i = idx1 + 1; i < max_index; ++i) {
+ const int pos = positions[idx1 * max_index + i];
+ if (pos >= 0) {
+ heap[pos].idx1 = POSITION_INVALID;
+ }
+ }
+ for (i = 0; i < idx2; ++i) {
+ const int pos = positions[i * max_index + idx2];
+ if (pos >= 0) {
+ heap[pos].idx1 = POSITION_INVALID;
+ }
+ }
+ for (i = idx2 + 1; i < max_index; ++i) {
+ const int pos = positions[idx2 * max_index + i];
+ if (pos >= 0) {
+ heap[pos].idx1 = POSITION_INVALID;
+ }
+ }
+}
+
+// Combines histograms by continuously choosing the one with the highest cost
+// reduction.
+static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo,
+ VP8LHistogram* const histos) {
int ok = 0;
- int i, iter;
+ int image_histo_size = image_histo->size;
+ int i, j;
+ VP8LHistogram** const histograms = image_histo->histograms;
+ // Indexes of remaining histograms.
+ int* const clusters = WebPSafeMalloc(image_histo_size, sizeof(*clusters));
+ // Heap of histogram pairs.
+ HistoHeap histo_heap;
+
+ if (!HistoHeapInit(&histo_heap, image_histo_size) || clusters == NULL) {
+ goto End;
+ }
+
+ for (i = 0; i < image_histo_size; ++i) {
+ // Initialize clusters indexes.
+ clusters[i] = i;
+ for (j = i + 1; j < image_histo_size; ++j) {
+ // Initialize positions array.
+ histo_heap.positions[i * histo_heap.max_index + j] = POSITION_INVALID;
+ PreparePair(histograms, i, j, &histo_heap.heap[histo_heap.size], histos);
+ if (histo_heap.heap[histo_heap.size].cost_diff < 0) {
+ HeapPush(&histo_heap);
+ }
+ }
+ }
+
+ while (image_histo_size > 1 && histo_heap.size > 0) {
+ const int idx1 = histo_heap.heap[0].idx1;
+ const int idx2 = histo_heap.heap[0].idx2;
+ VP8LHistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
+ histograms[idx1]->bit_cost_ = histo_heap.heap[0].cost_combo;
+ // Remove merged histogram.
+ for (i = 0; i + 1 < image_histo_size; ++i) {
+ if (clusters[i] >= idx2) {
+ clusters[i] = clusters[i + 1];
+ }
+ }
+ --image_histo_size;
+
+ // Invalidate pairs intersecting the just combined best pair.
+ InvalidatePairs(idx1, idx2, &histo_heap);
+
+ // Pop invalid pairs from the top of the heap.
+ while (histo_heap.size > 0 && histo_heap.heap[0].idx1 < 0) {
+ HeapPop(&histo_heap);
+ }
+
+ // Push new pairs formed with combined histogram to the heap.
+ for (i = 0; i < image_histo_size; ++i) {
+ if (clusters[i] != idx1) {
+ PreparePair(histograms, idx1, clusters[i],
+ &histo_heap.heap[histo_heap.size], histos);
+ if (histo_heap.heap[histo_heap.size].cost_diff < 0) {
+ HeapPush(&histo_heap);
+ }
+ }
+ }
+ }
+ // Move remaining histograms to the beginning of the array.
+ for (i = 0; i < image_histo_size; ++i) {
+ if (i != clusters[i]) { // swap the two histograms
+ HistogramSwap(&histograms[i], &histograms[clusters[i]]);
+ }
+ }
+
+ image_histo->size = image_histo_size;
+ ok = 1;
+
+ End:
+ WebPSafeFree(clusters);
+ HistoHeapClear(&histo_heap);
+ return ok;
+}
+
+static VP8LHistogram* HistogramCombineStochastic(
+ VP8LHistogramSet* const image_histo,
+ VP8LHistogram* tmp_histo,
+ VP8LHistogram* best_combo,
+ int quality, int min_cluster_size) {
+ int iter;
uint32_t seed = 0;
int tries_with_no_success = 0;
- const int min_cluster_size = 2;
- int out_size = in->size;
- const int outer_iters = in->size * 3;
- VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
- VP8LHistogram* cur_combo = histos + 0; // trial merged histogram
- VP8LHistogram* best_combo = histos + 1; // best merged histogram so far
- if (histos == NULL) goto End;
-
- // Copy histograms from in[] to out[].
- assert(in->size <= out->size);
- for (i = 0; i < in->size; ++i) {
- in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
- *out->histograms[i] = *in->histograms[i];
- }
-
- // Collapse similar histograms in 'out'.
- for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
- // We pick the best pair to be combined out of 'inner_iters' pairs.
+ int image_histo_size = image_histo->size;
+ const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8;
+ const int outer_iters = image_histo_size * iter_mult;
+ const int num_pairs = image_histo_size / 2;
+ const int num_tries_no_success = outer_iters / 2;
+ VP8LHistogram** const histograms = image_histo->histograms;
+
+ // Collapse similar histograms in 'image_histo'.
+ ++min_cluster_size;
+ for (iter = 0;
+ iter < outer_iters && image_histo_size >= min_cluster_size;
+ ++iter) {
double best_cost_diff = 0.;
- int best_idx1 = 0, best_idx2 = 1;
+ int best_idx1 = -1, best_idx2 = 1;
int j;
+ const int num_tries =
+ (num_pairs < image_histo_size) ? num_pairs : image_histo_size;
seed += iter;
- for (j = 0; j < num_pairs; ++j) {
+ for (j = 0; j < num_tries; ++j) {
double curr_cost_diff;
// Choose two histograms at random and try to combine them.
- const uint32_t idx1 = MyRand(&seed) % out_size;
- const uint32_t tmp = ((j & 7) + 1) % (out_size - 1);
- const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
- const uint32_t idx2 = (idx1 + diff + 1) % out_size;
+ const uint32_t idx1 = MyRand(&seed) % image_histo_size;
+ const uint32_t tmp = (j & 7) + 1;
+ const uint32_t diff =
+ (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
+ const uint32_t idx2 = (idx1 + diff + 1) % image_histo_size;
if (idx1 == idx2) {
continue;
}
- *cur_combo = *out->histograms[idx1];
- VP8LHistogramAdd(cur_combo, out->histograms[idx2]);
- cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo);
+
// Calculate cost reduction on combining.
- curr_cost_diff = cur_combo->bit_cost_
- - out->histograms[idx1]->bit_cost_
- - out->histograms[idx2]->bit_cost_;
- if (best_cost_diff > curr_cost_diff) { // found a better pair?
- { // swap cur/best combo histograms
- VP8LHistogram* const tmp_histo = cur_combo;
- cur_combo = best_combo;
- best_combo = tmp_histo;
- }
+ curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
+ tmp_histo, best_cost_diff);
+ if (curr_cost_diff < best_cost_diff) { // found a better pair?
+ HistogramSwap(&best_combo, &tmp_histo);
best_cost_diff = curr_cost_diff;
best_idx1 = idx1;
best_idx2 = idx2;
}
}
- if (best_cost_diff < 0.0) {
- *out->histograms[best_idx1] = *best_combo;
+ if (best_idx1 >= 0) {
+ HistogramSwap(&best_combo, &histograms[best_idx1]);
// swap best_idx2 slot with last one (which is now unused)
- --out_size;
- if (best_idx2 != out_size) {
- out->histograms[best_idx2] = out->histograms[out_size];
- out->histograms[out_size] = NULL; // just for sanity check.
+ --image_histo_size;
+ if (best_idx2 != image_histo_size) {
+ HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
+ histograms[image_histo_size] = NULL;
}
tries_with_no_success = 0;
}
- if (++tries_with_no_success >= 50) {
+ if (++tries_with_no_success >= num_tries_no_success) {
break;
}
}
- out->size = out_size;
- ok = 1;
-
- End:
- free(histos);
- return ok;
+ image_histo->size = image_histo_size;
+ return best_combo;
}
// -----------------------------------------------------------------------------
// Histogram refinement
-// What is the bit cost of moving square_histogram from
-// cur_symbol to candidate_symbol.
-// TODO(skal): we don't really need to copy the histogram and Add(). Instead
-// we just need VP8LDualHistogramEstimateBits(A, B) estimation function.
-static double HistogramDistance(const VP8LHistogram* const square_histogram,
- const VP8LHistogram* const candidate) {
- const double previous_bit_cost = candidate->bit_cost_;
- double new_bit_cost;
- VP8LHistogram modified_histo;
- modified_histo = *candidate;
- VP8LHistogramAdd(&modified_histo, square_histogram);
- new_bit_cost = VP8LHistogramEstimateBits(&modified_histo);
-
- return new_bit_cost - previous_bit_cost;
-}
-
// Find the best 'out' histogram for each of the 'in' histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
-static void HistogramRemap(const VP8LHistogramSet* const in,
- const VP8LHistogramSet* const out,
+static void HistogramRemap(const VP8LHistogramSet* const orig_histo,
+ const VP8LHistogramSet* const image_histo,
uint16_t* const symbols) {
int i;
- for (i = 0; i < in->size; ++i) {
- int best_out = 0;
- double best_bits = HistogramDistance(in->histograms[i], out->histograms[0]);
- int k;
- for (k = 1; k < out->size; ++k) {
- const double cur_bits =
- HistogramDistance(in->histograms[i], out->histograms[k]);
- if (cur_bits < best_bits) {
- best_bits = cur_bits;
- best_out = k;
+ VP8LHistogram** const orig_histograms = orig_histo->histograms;
+ VP8LHistogram** const histograms = image_histo->histograms;
+ const int orig_histo_size = orig_histo->size;
+ const int image_histo_size = image_histo->size;
+ if (image_histo_size > 1) {
+ for (i = 0; i < orig_histo_size; ++i) {
+ int best_out = 0;
+ double best_bits =
+ HistogramAddThresh(histograms[0], orig_histograms[i], MAX_COST);
+ int k;
+ for (k = 1; k < image_histo_size; ++k) {
+ const double cur_bits =
+ HistogramAddThresh(histograms[k], orig_histograms[i], best_bits);
+ if (cur_bits < best_bits) {
+ best_bits = cur_bits;
+ best_out = k;
+ }
}
+ symbols[i] = best_out;
+ }
+ } else {
+ assert(image_histo_size == 1);
+ for (i = 0; i < orig_histo_size; ++i) {
+ symbols[i] = 0;
}
- symbols[i] = best_out;
}
// Recompute each out based on raw and symbols.
- for (i = 0; i < out->size; ++i) {
- HistogramClear(out->histograms[i]);
+ for (i = 0; i < image_histo_size; ++i) {
+ HistogramClear(histograms[i]);
}
- for (i = 0; i < in->size; ++i) {
- VP8LHistogramAdd(out->histograms[symbols[i]], in->histograms[i]);
+
+ for (i = 0; i < orig_histo_size; ++i) {
+ const int idx = symbols[i];
+ VP8LHistogramAdd(orig_histograms[i], histograms[idx], histograms[idx]);
}
}
+static double GetCombineCostFactor(int histo_size, int quality) {
+ double combine_cost_factor = 0.16;
+ if (quality < 90) {
+ if (histo_size > 256) combine_cost_factor /= 2.;
+ if (histo_size > 512) combine_cost_factor /= 2.;
+ if (histo_size > 1024) combine_cost_factor /= 2.;
+ if (quality <= 50) combine_cost_factor /= 2.;
+ }
+ return combine_cost_factor;
+}
+
int VP8LGetHistoImageSymbols(int xsize, int ysize,
const VP8LBackwardRefs* const refs,
- int quality, int histo_bits, int cache_bits,
- VP8LHistogramSet* const image_in,
+ int quality, int low_effort,
+ int histo_bits, int cache_bits,
+ VP8LHistogramSet* const image_histo,
+ VP8LHistogramSet* const tmp_histos,
uint16_t* const histogram_symbols) {
int ok = 0;
const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
- const int num_histo_pairs = 10 + quality / 2; // For HistogramCombine().
- const int histo_image_raw_size = histo_xsize * histo_ysize;
- VP8LHistogramSet* const image_out =
- VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
- if (image_out == NULL) return 0;
-
- // Build histogram image.
- HistogramBuildImage(xsize, histo_bits, refs, image_out);
- // Collapse similar histograms.
- if (!HistogramCombine(image_out, image_in, num_histo_pairs)) {
- goto Error;
+ const int image_histo_raw_size = histo_xsize * histo_ysize;
+ const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
+
+ // The bin_map for every bin follows following semantics:
+ // bin_map[n][0] = num_histo; // The number of histograms in that bin.
+ // bin_map[n][1] = index of first histogram in that bin;
+ // bin_map[n][num_histo] = index of last histogram in that bin;
+ // bin_map[n][num_histo + 1] ... bin_map[n][bin_depth - 1] = unused indices.
+ const int bin_depth = image_histo_raw_size + 1;
+ int16_t* bin_map = NULL;
+ VP8LHistogramSet* const orig_histo =
+ VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
+ VP8LHistogram* cur_combo;
+ const int entropy_combine =
+ (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
+
+ if (orig_histo == NULL) goto Error;
+
+ // Don't attempt linear bin-partition heuristic for:
+ // histograms of small sizes, as bin_map will be very sparse and;
+ // Maximum quality (q==100), to preserve the compression gains at that level.
+ if (entropy_combine) {
+ const int bin_map_size = bin_depth * entropy_combine_num_bins;
+ bin_map = (int16_t*)WebPSafeCalloc(bin_map_size, sizeof(*bin_map));
+ if (bin_map == NULL) goto Error;
}
+
+ // Construct the histograms from backward references.
+ HistogramBuild(xsize, histo_bits, refs, orig_histo);
+ // Copies the histograms and computes its bit_cost.
+ HistogramCopyAndAnalyze(orig_histo, image_histo);
+
+ cur_combo = tmp_histos->histograms[1]; // pick up working slot
+ if (entropy_combine) {
+ const double combine_cost_factor =
+ GetCombineCostFactor(image_histo_raw_size, quality);
+ HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
+ // Collapse histograms with similar entropy.
+ cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, bin_map,
+ bin_depth, entropy_combine_num_bins,
+ combine_cost_factor, low_effort);
+ }
+
+ // Don't combine the histograms using stochastic and greedy heuristics for
+ // low-effort compression mode.
+ if (!low_effort || !entropy_combine) {
+ const float x = quality / 100.f;
+ // cubic ramp between 1 and MAX_HISTO_GREEDY:
+ const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
+ cur_combo = HistogramCombineStochastic(image_histo,
+ tmp_histos->histograms[0],
+ cur_combo, quality, threshold_size);
+ if ((image_histo->size <= threshold_size) &&
+ !HistogramCombineGreedy(image_histo, cur_combo)) {
+ goto Error;
+ }
+ }
+
+ // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
// Find the optimal map from original histograms to the final ones.
- HistogramRemap(image_out, image_in, histogram_symbols);
+ HistogramRemap(orig_histo, image_histo, histogram_symbols);
+
ok = 1;
-Error:
- free(image_out);
+ Error:
+ WebPSafeFree(bin_map);
+ VP8LFreeHistogramSet(orig_histo);
return ok;
}