summaryrefslogtreecommitdiff
path: root/drivers/webp/dsp/lossless.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/webp/dsp/lossless.c')
-rw-r--r--drivers/webp/dsp/lossless.c1013
1 files changed, 255 insertions, 758 deletions
diff --git a/drivers/webp/dsp/lossless.c b/drivers/webp/dsp/lossless.c
index 62a6b7b15a..5702eb3b17 100644
--- a/drivers/webp/dsp/lossless.c
+++ b/drivers/webp/dsp/lossless.c
@@ -1,8 +1,10 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
-// This code is licensed under the same terms as WebM:
-// Software License Agreement: http://www.webmproject.org/license/software/
-// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Image transforms and color space conversion methods for lossless decoder.
@@ -11,170 +13,16 @@
// Jyrki Alakuijala (jyrki@google.com)
// Urvang Joshi (urvang@google.com)
-#if defined(__cplusplus) || defined(c_plusplus)
-extern "C" {
-#endif
+#include "./dsp.h"
#include <math.h>
#include <stdlib.h>
-#include "./lossless.h"
#include "../dec/vp8li.h"
-#include "../dsp/yuv.h"
-#include "../dsp/dsp.h"
-#include "../enc/histogram.h"
+#include "../utils/endian_inl.h"
+#include "./lossless.h"
#define MAX_DIFF_COST (1e30f)
-// lookup table for small values of log2(int)
-#define APPROX_LOG_MAX 4096
-#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086
-#define LOG_LOOKUP_IDX_MAX 256
-static const float kLog2Table[LOG_LOOKUP_IDX_MAX] = {
- 0.0000000000000000f, 0.0000000000000000f,
- 1.0000000000000000f, 1.5849625007211560f,
- 2.0000000000000000f, 2.3219280948873621f,
- 2.5849625007211560f, 2.8073549220576041f,
- 3.0000000000000000f, 3.1699250014423121f,
- 3.3219280948873621f, 3.4594316186372973f,
- 3.5849625007211560f, 3.7004397181410921f,
- 3.8073549220576041f, 3.9068905956085187f,
- 4.0000000000000000f, 4.0874628412503390f,
- 4.1699250014423121f, 4.2479275134435852f,
- 4.3219280948873626f, 4.3923174227787606f,
- 4.4594316186372973f, 4.5235619560570130f,
- 4.5849625007211560f, 4.6438561897747243f,
- 4.7004397181410917f, 4.7548875021634682f,
- 4.8073549220576037f, 4.8579809951275718f,
- 4.9068905956085187f, 4.9541963103868749f,
- 5.0000000000000000f, 5.0443941193584533f,
- 5.0874628412503390f, 5.1292830169449663f,
- 5.1699250014423121f, 5.2094533656289501f,
- 5.2479275134435852f, 5.2854022188622487f,
- 5.3219280948873626f, 5.3575520046180837f,
- 5.3923174227787606f, 5.4262647547020979f,
- 5.4594316186372973f, 5.4918530963296747f,
- 5.5235619560570130f, 5.5545888516776376f,
- 5.5849625007211560f, 5.6147098441152083f,
- 5.6438561897747243f, 5.6724253419714951f,
- 5.7004397181410917f, 5.7279204545631987f,
- 5.7548875021634682f, 5.7813597135246599f,
- 5.8073549220576037f, 5.8328900141647412f,
- 5.8579809951275718f, 5.8826430493618415f,
- 5.9068905956085187f, 5.9307373375628866f,
- 5.9541963103868749f, 5.9772799234999167f,
- 6.0000000000000000f, 6.0223678130284543f,
- 6.0443941193584533f, 6.0660891904577720f,
- 6.0874628412503390f, 6.1085244567781691f,
- 6.1292830169449663f, 6.1497471195046822f,
- 6.1699250014423121f, 6.1898245588800175f,
- 6.2094533656289501f, 6.2288186904958804f,
- 6.2479275134435852f, 6.2667865406949010f,
- 6.2854022188622487f, 6.3037807481771030f,
- 6.3219280948873626f, 6.3398500028846243f,
- 6.3575520046180837f, 6.3750394313469245f,
- 6.3923174227787606f, 6.4093909361377017f,
- 6.4262647547020979f, 6.4429434958487279f,
- 6.4594316186372973f, 6.4757334309663976f,
- 6.4918530963296747f, 6.5077946401986963f,
- 6.5235619560570130f, 6.5391588111080309f,
- 6.5545888516776376f, 6.5698556083309478f,
- 6.5849625007211560f, 6.5999128421871278f,
- 6.6147098441152083f, 6.6293566200796094f,
- 6.6438561897747243f, 6.6582114827517946f,
- 6.6724253419714951f, 6.6865005271832185f,
- 6.7004397181410917f, 6.7142455176661224f,
- 6.7279204545631987f, 6.7414669864011464f,
- 6.7548875021634682f, 6.7681843247769259f,
- 6.7813597135246599f, 6.7944158663501061f,
- 6.8073549220576037f, 6.8201789624151878f,
- 6.8328900141647412f, 6.8454900509443747f,
- 6.8579809951275718f, 6.8703647195834047f,
- 6.8826430493618415f, 6.8948177633079437f,
- 6.9068905956085187f, 6.9188632372745946f,
- 6.9307373375628866f, 6.9425145053392398f,
- 6.9541963103868749f, 6.9657842846620869f,
- 6.9772799234999167f, 6.9886846867721654f,
- 7.0000000000000000f, 7.0112272554232539f,
- 7.0223678130284543f, 7.0334230015374501f,
- 7.0443941193584533f, 7.0552824355011898f,
- 7.0660891904577720f, 7.0768155970508308f,
- 7.0874628412503390f, 7.0980320829605263f,
- 7.1085244567781691f, 7.1189410727235076f,
- 7.1292830169449663f, 7.1395513523987936f,
- 7.1497471195046822f, 7.1598713367783890f,
- 7.1699250014423121f, 7.1799090900149344f,
- 7.1898245588800175f, 7.1996723448363644f,
- 7.2094533656289501f, 7.2191685204621611f,
- 7.2288186904958804f, 7.2384047393250785f,
- 7.2479275134435852f, 7.2573878426926521f,
- 7.2667865406949010f, 7.2761244052742375f,
- 7.2854022188622487f, 7.2946207488916270f,
- 7.3037807481771030f, 7.3128829552843557f,
- 7.3219280948873626f, 7.3309168781146167f,
- 7.3398500028846243f, 7.3487281542310771f,
- 7.3575520046180837f, 7.3663222142458160f,
- 7.3750394313469245f, 7.3837042924740519f,
- 7.3923174227787606f, 7.4008794362821843f,
- 7.4093909361377017f, 7.4178525148858982f,
- 7.4262647547020979f, 7.4346282276367245f,
- 7.4429434958487279f, 7.4512111118323289f,
- 7.4594316186372973f, 7.4676055500829976f,
- 7.4757334309663976f, 7.4838157772642563f,
- 7.4918530963296747f, 7.4998458870832056f,
- 7.5077946401986963f, 7.5156998382840427f,
- 7.5235619560570130f, 7.5313814605163118f,
- 7.5391588111080309f, 7.5468944598876364f,
- 7.5545888516776376f, 7.5622424242210728f,
- 7.5698556083309478f, 7.5774288280357486f,
- 7.5849625007211560f, 7.5924570372680806f,
- 7.5999128421871278f, 7.6073303137496104f,
- 7.6147098441152083f, 7.6220518194563764f,
- 7.6293566200796094f, 7.6366246205436487f,
- 7.6438561897747243f, 7.6510516911789281f,
- 7.6582114827517946f, 7.6653359171851764f,
- 7.6724253419714951f, 7.6794800995054464f,
- 7.6865005271832185f, 7.6934869574993252f,
- 7.7004397181410917f, 7.7073591320808825f,
- 7.7142455176661224f, 7.7210991887071855f,
- 7.7279204545631987f, 7.7347096202258383f,
- 7.7414669864011464f, 7.7481928495894605f,
- 7.7548875021634682f, 7.7615512324444795f,
- 7.7681843247769259f, 7.7747870596011736f,
- 7.7813597135246599f, 7.7879025593914317f,
- 7.7944158663501061f, 7.8008998999203047f,
- 7.8073549220576037f, 7.8137811912170374f,
- 7.8201789624151878f, 7.8265484872909150f,
- 7.8328900141647412f, 7.8392037880969436f,
- 7.8454900509443747f, 7.8517490414160571f,
- 7.8579809951275718f, 7.8641861446542797f,
- 7.8703647195834047f, 7.8765169465649993f,
- 7.8826430493618415f, 7.8887432488982591f,
- 7.8948177633079437f, 7.9008668079807486f,
- 7.9068905956085187f, 7.9128893362299619f,
- 7.9188632372745946f, 7.9248125036057812f,
- 7.9307373375628866f, 7.9366379390025709f,
- 7.9425145053392398f, 7.9483672315846778f,
- 7.9541963103868749f, 7.9600019320680805f,
- 7.9657842846620869f, 7.9715435539507719f,
- 7.9772799234999167f, 7.9829935746943103f,
- 7.9886846867721654f, 7.9943534368588577f
-};
-
-float VP8LFastLog2(int v) {
- if (v < LOG_LOOKUP_IDX_MAX) {
- return kLog2Table[v];
- } else if (v < APPROX_LOG_MAX) {
- int log_cnt = 0;
- while (v >= LOG_LOOKUP_IDX_MAX) {
- ++log_cnt;
- v = v >> 1;
- }
- return kLog2Table[v] + (float)log_cnt;
- } else {
- return (float)(LOG_2_RECIPROCAL * log((double)v));
- }
-}
-
//------------------------------------------------------------------------------
// Image transforms.
@@ -186,7 +34,7 @@ static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) {
}
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
- return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1);
+ return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
}
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
@@ -221,7 +69,7 @@ static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
(c1 >> 8) & 0xff,
(c2 >> 8) & 0xff);
const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
- return (a << 24) | (r << 16) | (g << 8) | b;
+ return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
}
static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
@@ -235,22 +83,30 @@ static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
- return (a << 24) | (r << 16) | (g << 8) | b;
+ return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
}
-static WEBP_INLINE int Sub3(int a, int b, int c) {
- const int pa = b - c;
- const int pb = a - c;
- return abs(pa) - abs(pb);
+// gcc-4.9 on ARM generates incorrect code in Select() when Sub3() is inlined.
+#if defined(__arm__) && LOCAL_GCC_VERSION == 0x409
+# define LOCAL_INLINE __attribute__ ((noinline))
+#else
+# define LOCAL_INLINE WEBP_INLINE
+#endif
+
+static LOCAL_INLINE int Sub3(int a, int b, int c) {
+ const int pb = b - c;
+ const int pa = a - c;
+ return abs(pb) - abs(pa);
}
+#undef LOCAL_INLINE
+
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
const int pa_minus_pb =
Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
-
return (pa_minus_pb <= 0) ? a : b;
}
@@ -317,208 +173,7 @@ static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
return pred;
}
-typedef uint32_t (*PredictorFunc)(uint32_t left, const uint32_t* const top);
-static const PredictorFunc kPredictors[16] = {
- Predictor0, Predictor1, Predictor2, Predictor3,
- Predictor4, Predictor5, Predictor6, Predictor7,
- Predictor8, Predictor9, Predictor10, Predictor11,
- Predictor12, Predictor13,
- Predictor0, Predictor0 // <- padding security sentinels
-};
-
-// TODO(vikasa): Replace 256 etc with defines.
-static float PredictionCostSpatial(const int* counts,
- int weight_0, double exp_val) {
- const int significant_symbols = 16;
- const double exp_decay_factor = 0.6;
- double bits = weight_0 * counts[0];
- int i;
- for (i = 1; i < significant_symbols; ++i) {
- bits += exp_val * (counts[i] + counts[256 - i]);
- exp_val *= exp_decay_factor;
- }
- return (float)(-0.1 * bits);
-}
-
-// Compute the Shanon's entropy: Sum(p*log2(p))
-static float ShannonEntropy(const int* const array, int n) {
- int i;
- float retval = 0.f;
- int sum = 0;
- for (i = 0; i < n; ++i) {
- if (array[i] != 0) {
- sum += array[i];
- retval -= VP8LFastSLog2(array[i]);
- }
- }
- retval += VP8LFastSLog2(sum);
- return retval;
-}
-
-static float PredictionCostSpatialHistogram(int accumulated[4][256],
- int tile[4][256]) {
- int i;
- int k;
- int combo[256];
- double retval = 0;
- for (i = 0; i < 4; ++i) {
- const double exp_val = 0.94;
- retval += PredictionCostSpatial(&tile[i][0], 1, exp_val);
- retval += ShannonEntropy(&tile[i][0], 256);
- for (k = 0; k < 256; ++k) {
- combo[k] = accumulated[i][k] + tile[i][k];
- }
- retval += ShannonEntropy(&combo[0], 256);
- }
- return (float)retval;
-}
-
-static int GetBestPredictorForTile(int width, int height,
- int tile_x, int tile_y, int bits,
- int accumulated[4][256],
- const uint32_t* const argb_scratch) {
- const int kNumPredModes = 14;
- const int col_start = tile_x << bits;
- const int row_start = tile_y << bits;
- const int tile_size = 1 << bits;
- const int ymax = (tile_size <= height - row_start) ?
- tile_size : height - row_start;
- const int xmax = (tile_size <= width - col_start) ?
- tile_size : width - col_start;
- int histo[4][256];
- float best_diff = MAX_DIFF_COST;
- int best_mode = 0;
-
- int mode;
- for (mode = 0; mode < kNumPredModes; ++mode) {
- const uint32_t* current_row = argb_scratch;
- const PredictorFunc pred_func = kPredictors[mode];
- float cur_diff;
- int y;
- memset(&histo[0][0], 0, sizeof(histo));
- for (y = 0; y < ymax; ++y) {
- int x;
- const int row = row_start + y;
- const uint32_t* const upper_row = current_row;
- current_row = upper_row + width;
- for (x = 0; x < xmax; ++x) {
- const int col = col_start + x;
- uint32_t predict;
- uint32_t predict_diff;
- if (row == 0) {
- predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left.
- } else if (col == 0) {
- predict = upper_row[col]; // Top.
- } else {
- predict = pred_func(current_row[col - 1], upper_row + col);
- }
- predict_diff = VP8LSubPixels(current_row[col], predict);
- ++histo[0][predict_diff >> 24];
- ++histo[1][((predict_diff >> 16) & 0xff)];
- ++histo[2][((predict_diff >> 8) & 0xff)];
- ++histo[3][(predict_diff & 0xff)];
- }
- }
- cur_diff = PredictionCostSpatialHistogram(accumulated, histo);
- if (cur_diff < best_diff) {
- best_diff = cur_diff;
- best_mode = mode;
- }
- }
-
- return best_mode;
-}
-
-static void CopyTileWithPrediction(int width, int height,
- int tile_x, int tile_y, int bits, int mode,
- const uint32_t* const argb_scratch,
- uint32_t* const argb) {
- const int col_start = tile_x << bits;
- const int row_start = tile_y << bits;
- const int tile_size = 1 << bits;
- const int ymax = (tile_size <= height - row_start) ?
- tile_size : height - row_start;
- const int xmax = (tile_size <= width - col_start) ?
- tile_size : width - col_start;
- const PredictorFunc pred_func = kPredictors[mode];
- const uint32_t* current_row = argb_scratch;
-
- int y;
- for (y = 0; y < ymax; ++y) {
- int x;
- const int row = row_start + y;
- const uint32_t* const upper_row = current_row;
- current_row = upper_row + width;
- for (x = 0; x < xmax; ++x) {
- const int col = col_start + x;
- const int pix = row * width + col;
- uint32_t predict;
- if (row == 0) {
- predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left.
- } else if (col == 0) {
- predict = upper_row[col]; // Top.
- } else {
- predict = pred_func(current_row[col - 1], upper_row + col);
- }
- argb[pix] = VP8LSubPixels(current_row[col], predict);
- }
- }
-}
-
-void VP8LResidualImage(int width, int height, int bits,
- uint32_t* const argb, uint32_t* const argb_scratch,
- uint32_t* const image) {
- const int max_tile_size = 1 << bits;
- const int tiles_per_row = VP8LSubSampleSize(width, bits);
- const int tiles_per_col = VP8LSubSampleSize(height, bits);
- uint32_t* const upper_row = argb_scratch;
- uint32_t* const current_tile_rows = argb_scratch + width;
- int tile_y;
- int histo[4][256];
- memset(histo, 0, sizeof(histo));
- for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
- const int tile_y_offset = tile_y * max_tile_size;
- const int this_tile_height =
- (tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset;
- int tile_x;
- if (tile_y > 0) {
- memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width,
- width * sizeof(*upper_row));
- }
- memcpy(current_tile_rows, &argb[tile_y_offset * width],
- this_tile_height * width * sizeof(*current_tile_rows));
- for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
- int pred;
- int y;
- const int tile_x_offset = tile_x * max_tile_size;
- int all_x_max = tile_x_offset + max_tile_size;
- if (all_x_max > width) {
- all_x_max = width;
- }
- pred = GetBestPredictorForTile(width, height, tile_x, tile_y, bits, histo,
- argb_scratch);
- image[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8);
- CopyTileWithPrediction(width, height, tile_x, tile_y, bits, pred,
- argb_scratch, argb);
- for (y = 0; y < max_tile_size; ++y) {
- int ix;
- int all_x;
- int all_y = tile_y_offset + y;
- if (all_y >= height) {
- break;
- }
- ix = all_y * width + tile_x_offset;
- for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
- const uint32_t a = argb[ix];
- ++histo[0][a >> 24];
- ++histo[1][((a >> 16) & 0xff)];
- ++histo[2][((a >> 8) & 0xff)];
- ++histo[3][(a & 0xff)];
- }
- }
- }
- }
-}
+//------------------------------------------------------------------------------
// Inverse prediction.
static void PredictorInverseTransform(const VP8LTransform* const transform,
@@ -538,29 +193,36 @@ static void PredictorInverseTransform(const VP8LTransform* const transform,
{
int y = y_start;
- const int mask = (1 << transform->bits_) - 1;
+ const int tile_width = 1 << transform->bits_;
+ const int mask = tile_width - 1;
+ const int safe_width = width & ~mask;
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
const uint32_t* pred_mode_base =
transform->data_ + (y >> transform->bits_) * tiles_per_row;
while (y < y_end) {
- int x;
const uint32_t pred2 = Predictor2(data[-1], data - width);
const uint32_t* pred_mode_src = pred_mode_base;
- PredictorFunc pred_func;
-
+ VP8LPredictorFunc pred_func;
+ int x = 1;
+ int t = 1;
// First pixel follows the T (mode=2) mode.
AddPixelsEq(data, pred2);
-
// .. the rest:
- pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
- for (x = 1; x < width; ++x) {
- uint32_t pred;
- if ((x & mask) == 0) { // start of tile. Read predictor function.
- pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
+ while (x < safe_width) {
+ pred_func = VP8LPredictors[((*pred_mode_src++) >> 8) & 0xf];
+ for (; t < tile_width; ++t, ++x) {
+ const uint32_t pred = pred_func(data[x - 1], data + x - width);
+ AddPixelsEq(data + x, pred);
+ }
+ t = 0;
+ }
+ if (x < width) {
+ pred_func = VP8LPredictors[((*pred_mode_src++) >> 8) & 0xf];
+ for (; x < width; ++x) {
+ const uint32_t pred = pred_func(data[x - 1], data + x - width);
+ AddPixelsEq(data + x, pred);
}
- pred = pred_func(data[x - 1], data + x - width);
- AddPixelsEq(data + x, pred);
}
data += width;
++y;
@@ -571,326 +233,47 @@ static void PredictorInverseTransform(const VP8LTransform* const transform,
}
}
-void VP8LSubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixs) {
- int i;
- for (i = 0; i < num_pixs; ++i) {
- const uint32_t argb = argb_data[i];
- const uint32_t green = (argb >> 8) & 0xff;
- const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff;
- const uint32_t new_b = ((argb & 0xff) - green) & 0xff;
- argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b;
- }
-}
-
// Add green to blue and red channels (i.e. perform the inverse transform of
// 'subtract green').
-static void AddGreenToBlueAndRed(const VP8LTransform* const transform,
- int y_start, int y_end, uint32_t* data) {
- const int width = transform->xsize_;
- const uint32_t* const data_end = data + (y_end - y_start) * width;
- while (data < data_end) {
- const uint32_t argb = *data;
- // "* 0001001u" is equivalent to "(green << 16) + green)"
+void VP8LAddGreenToBlueAndRed_C(uint32_t* data, int num_pixels) {
+ int i;
+ for (i = 0; i < num_pixels; ++i) {
+ const uint32_t argb = data[i];
const uint32_t green = ((argb >> 8) & 0xff);
uint32_t red_blue = (argb & 0x00ff00ffu);
red_blue += (green << 16) | green;
red_blue &= 0x00ff00ffu;
- *data++ = (argb & 0xff00ff00u) | red_blue;
+ data[i] = (argb & 0xff00ff00u) | red_blue;
}
}
-typedef struct {
- // Note: the members are uint8_t, so that any negative values are
- // automatically converted to "mod 256" values.
- uint8_t green_to_red_;
- uint8_t green_to_blue_;
- uint8_t red_to_blue_;
-} Multipliers;
-
-static WEBP_INLINE void MultipliersClear(Multipliers* m) {
- m->green_to_red_ = 0;
- m->green_to_blue_ = 0;
- m->red_to_blue_ = 0;
-}
-
static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
int8_t color) {
return (uint32_t)((int)(color_pred) * color) >> 5;
}
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
- Multipliers* const m) {
+ VP8LMultipliers* const m) {
m->green_to_red_ = (color_code >> 0) & 0xff;
m->green_to_blue_ = (color_code >> 8) & 0xff;
m->red_to_blue_ = (color_code >> 16) & 0xff;
}
-static WEBP_INLINE uint32_t MultipliersToColorCode(Multipliers* const m) {
- return 0xff000000u |
- ((uint32_t)(m->red_to_blue_) << 16) |
- ((uint32_t)(m->green_to_blue_) << 8) |
- m->green_to_red_;
-}
-
-static WEBP_INLINE uint32_t TransformColor(const Multipliers* const m,
- uint32_t argb, int inverse) {
- const uint32_t green = argb >> 8;
- const uint32_t red = argb >> 16;
- uint32_t new_red = red;
- uint32_t new_blue = argb;
-
- if (inverse) {
+void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, uint32_t* data,
+ int num_pixels) {
+ int i;
+ for (i = 0; i < num_pixels; ++i) {
+ const uint32_t argb = data[i];
+ const uint32_t green = argb >> 8;
+ const uint32_t red = argb >> 16;
+ uint32_t new_red = red;
+ uint32_t new_blue = argb;
new_red += ColorTransformDelta(m->green_to_red_, green);
new_red &= 0xff;
new_blue += ColorTransformDelta(m->green_to_blue_, green);
new_blue += ColorTransformDelta(m->red_to_blue_, new_red);
new_blue &= 0xff;
- } else {
- new_red -= ColorTransformDelta(m->green_to_red_, green);
- new_red &= 0xff;
- new_blue -= ColorTransformDelta(m->green_to_blue_, green);
- new_blue -= ColorTransformDelta(m->red_to_blue_, red);
- new_blue &= 0xff;
- }
- return (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
-}
-
-static WEBP_INLINE int SkipRepeatedPixels(const uint32_t* const argb,
- int ix, int xsize) {
- const uint32_t v = argb[ix];
- if (ix >= xsize + 3) {
- if (v == argb[ix - xsize] &&
- argb[ix - 1] == argb[ix - xsize - 1] &&
- argb[ix - 2] == argb[ix - xsize - 2] &&
- argb[ix - 3] == argb[ix - xsize - 3]) {
- return 1;
- }
- return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1];
- } else if (ix >= 3) {
- return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1];
- }
- return 0;
-}
-
-static float PredictionCostCrossColor(const int accumulated[256],
- const int counts[256]) {
- // Favor low entropy, locally and globally.
- int i;
- int combo[256];
- for (i = 0; i < 256; ++i) {
- combo[i] = accumulated[i] + counts[i];
- }
- return ShannonEntropy(combo, 256) +
- ShannonEntropy(counts, 256) +
- PredictionCostSpatial(counts, 3, 2.4); // Favor small absolute values.
-}
-
-static Multipliers GetBestColorTransformForTile(
- int tile_x, int tile_y, int bits,
- Multipliers prevX,
- Multipliers prevY,
- int step, int xsize, int ysize,
- int* accumulated_red_histo,
- int* accumulated_blue_histo,
- const uint32_t* const argb) {
- float best_diff = MAX_DIFF_COST;
- float cur_diff;
- const int halfstep = step / 2;
- const int max_tile_size = 1 << bits;
- const int tile_y_offset = tile_y * max_tile_size;
- const int tile_x_offset = tile_x * max_tile_size;
- int green_to_red;
- int green_to_blue;
- int red_to_blue;
- int all_x_max = tile_x_offset + max_tile_size;
- int all_y_max = tile_y_offset + max_tile_size;
- Multipliers best_tx;
- MultipliersClear(&best_tx);
- if (all_x_max > xsize) {
- all_x_max = xsize;
- }
- if (all_y_max > ysize) {
- all_y_max = ysize;
- }
- for (green_to_red = -64; green_to_red <= 64; green_to_red += halfstep) {
- int histo[256] = { 0 };
- int all_y;
- Multipliers tx;
- MultipliersClear(&tx);
- tx.green_to_red_ = green_to_red & 0xff;
-
- for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) {
- uint32_t predict;
- int ix = all_y * xsize + tile_x_offset;
- int all_x;
- for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
- if (SkipRepeatedPixels(argb, ix, xsize)) {
- continue;
- }
- predict = TransformColor(&tx, argb[ix], 0);
- ++histo[(predict >> 16) & 0xff]; // red.
- }
- }
- cur_diff = PredictionCostCrossColor(&accumulated_red_histo[0], &histo[0]);
- if (tx.green_to_red_ == prevX.green_to_red_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (tx.green_to_red_ == prevY.green_to_red_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (tx.green_to_red_ == 0) {
- cur_diff -= 3;
- }
- if (cur_diff < best_diff) {
- best_diff = cur_diff;
- best_tx = tx;
- }
- }
- best_diff = MAX_DIFF_COST;
- green_to_red = best_tx.green_to_red_;
- for (green_to_blue = -32; green_to_blue <= 32; green_to_blue += step) {
- for (red_to_blue = -32; red_to_blue <= 32; red_to_blue += step) {
- int all_y;
- int histo[256] = { 0 };
- Multipliers tx;
- tx.green_to_red_ = green_to_red;
- tx.green_to_blue_ = green_to_blue;
- tx.red_to_blue_ = red_to_blue;
- for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) {
- uint32_t predict;
- int all_x;
- int ix = all_y * xsize + tile_x_offset;
- for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
- if (SkipRepeatedPixels(argb, ix, xsize)) {
- continue;
- }
- predict = TransformColor(&tx, argb[ix], 0);
- ++histo[predict & 0xff]; // blue.
- }
- }
- cur_diff =
- PredictionCostCrossColor(&accumulated_blue_histo[0], &histo[0]);
- if (tx.green_to_blue_ == prevX.green_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (tx.green_to_blue_ == prevY.green_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (tx.red_to_blue_ == prevX.red_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (tx.red_to_blue_ == prevY.red_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (tx.green_to_blue_ == 0) {
- cur_diff -= 3;
- }
- if (tx.red_to_blue_ == 0) {
- cur_diff -= 3;
- }
- if (cur_diff < best_diff) {
- best_diff = cur_diff;
- best_tx = tx;
- }
- }
- }
- return best_tx;
-}
-
-static void CopyTileWithColorTransform(int xsize, int ysize,
- int tile_x, int tile_y, int bits,
- Multipliers color_transform,
- uint32_t* const argb) {
- int y;
- int xscan = 1 << bits;
- int yscan = 1 << bits;
- tile_x <<= bits;
- tile_y <<= bits;
- if (xscan > xsize - tile_x) {
- xscan = xsize - tile_x;
- }
- if (yscan > ysize - tile_y) {
- yscan = ysize - tile_y;
- }
- yscan += tile_y;
- for (y = tile_y; y < yscan; ++y) {
- int ix = y * xsize + tile_x;
- const int end_ix = ix + xscan;
- for (; ix < end_ix; ++ix) {
- argb[ix] = TransformColor(&color_transform, argb[ix], 0);
- }
- }
-}
-
-void VP8LColorSpaceTransform(int width, int height, int bits, int step,
- uint32_t* const argb, uint32_t* image) {
- const int max_tile_size = 1 << bits;
- int tile_xsize = VP8LSubSampleSize(width, bits);
- int tile_ysize = VP8LSubSampleSize(height, bits);
- int accumulated_red_histo[256] = { 0 };
- int accumulated_blue_histo[256] = { 0 };
- int tile_y;
- int tile_x;
- Multipliers prevX;
- Multipliers prevY;
- MultipliersClear(&prevY);
- MultipliersClear(&prevX);
- for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
- for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
- Multipliers color_transform;
- int all_x_max;
- int y;
- const int tile_y_offset = tile_y * max_tile_size;
- const int tile_x_offset = tile_x * max_tile_size;
- if (tile_y != 0) {
- ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX);
- ColorCodeToMultipliers(image[(tile_y - 1) * tile_xsize + tile_x],
- &prevY);
- } else if (tile_x != 0) {
- ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX);
- }
- color_transform =
- GetBestColorTransformForTile(tile_x, tile_y, bits,
- prevX, prevY,
- step, width, height,
- &accumulated_red_histo[0],
- &accumulated_blue_histo[0],
- argb);
- image[tile_y * tile_xsize + tile_x] =
- MultipliersToColorCode(&color_transform);
- CopyTileWithColorTransform(width, height, tile_x, tile_y, bits,
- color_transform, argb);
-
- // Gather accumulated histogram data.
- all_x_max = tile_x_offset + max_tile_size;
- if (all_x_max > width) {
- all_x_max = width;
- }
- for (y = 0; y < max_tile_size; ++y) {
- int ix;
- int all_x;
- int all_y = tile_y_offset + y;
- if (all_y >= height) {
- break;
- }
- ix = all_y * width + tile_x_offset;
- for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
- if (ix >= 2 &&
- argb[ix] == argb[ix - 2] &&
- argb[ix] == argb[ix - 1]) {
- continue; // repeated pixels are handled by backward references
- }
- if (ix >= width + 2 &&
- argb[ix - 2] == argb[ix - width - 2] &&
- argb[ix - 1] == argb[ix - width - 1] &&
- argb[ix] == argb[ix - width]) {
- continue; // repeated pixels are handled by backward references
- }
- ++accumulated_red_histo[(argb[ix] >> 16) & 0xff];
- ++accumulated_blue_histo[argb[ix] & 0xff];
- }
- }
- }
+ data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
}
}
@@ -898,7 +281,10 @@ void VP8LColorSpaceTransform(int width, int height, int bits, int step,
static void ColorSpaceInverseTransform(const VP8LTransform* const transform,
int y_start, int y_end, uint32_t* data) {
const int width = transform->xsize_;
- const int mask = (1 << transform->bits_) - 1;
+ const int tile_width = 1 << transform->bits_;
+ const int mask = tile_width - 1;
+ const int safe_width = width & ~mask;
+ const int remaining_width = width - safe_width;
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
int y = y_start;
const uint32_t* pred_row =
@@ -906,68 +292,89 @@ static void ColorSpaceInverseTransform(const VP8LTransform* const transform,
while (y < y_end) {
const uint32_t* pred = pred_row;
- Multipliers m = { 0, 0, 0 };
- int x;
-
- for (x = 0; x < width; ++x) {
- if ((x & mask) == 0) ColorCodeToMultipliers(*pred++, &m);
- data[x] = TransformColor(&m, data[x], 1);
+ VP8LMultipliers m = { 0, 0, 0 };
+ const uint32_t* const data_safe_end = data + safe_width;
+ const uint32_t* const data_end = data + width;
+ while (data < data_safe_end) {
+ ColorCodeToMultipliers(*pred++, &m);
+ VP8LTransformColorInverse(&m, data, tile_width);
+ data += tile_width;
+ }
+ if (data < data_end) { // Left-overs using C-version.
+ ColorCodeToMultipliers(*pred++, &m);
+ VP8LTransformColorInverse(&m, data, remaining_width);
+ data += remaining_width;
}
- data += width;
++y;
- if ((y & mask) == 0) pred_row += tiles_per_row;;
+ if ((y & mask) == 0) pred_row += tiles_per_row;
}
}
// Separate out pixels packed together using pixel-bundling.
-static void ColorIndexInverseTransform(
- const VP8LTransform* const transform,
- int y_start, int y_end, const uint32_t* src, uint32_t* dst) {
- int y;
- const int bits_per_pixel = 8 >> transform->bits_;
- const int width = transform->xsize_;
- const uint32_t* const color_map = transform->data_;
- if (bits_per_pixel < 8) {
- const int pixels_per_byte = 1 << transform->bits_;
- const int count_mask = pixels_per_byte - 1;
- const uint32_t bit_mask = (1 << bits_per_pixel) - 1;
- for (y = y_start; y < y_end; ++y) {
- uint32_t packed_pixels = 0;
- int x;
- for (x = 0; x < width; ++x) {
- // We need to load fresh 'packed_pixels' once every 'pixels_per_byte'
- // increments of x. Fortunately, pixels_per_byte is a power of 2, so
- // can just use a mask for that, instead of decrementing a counter.
- if ((x & count_mask) == 0) packed_pixels = ((*src++) >> 8) & 0xff;
- *dst++ = color_map[packed_pixels & bit_mask];
- packed_pixels >>= bits_per_pixel;
- }
- }
- } else {
- for (y = y_start; y < y_end; ++y) {
- int x;
- for (x = 0; x < width; ++x) {
- *dst++ = color_map[((*src++) >> 8) & 0xff];
- }
- }
- }
-}
+// We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
+#define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \
+ GET_INDEX, GET_VALUE) \
+static void F_NAME(const TYPE* src, const uint32_t* const color_map, \
+ TYPE* dst, int y_start, int y_end, int width) { \
+ int y; \
+ for (y = y_start; y < y_end; ++y) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \
+ } \
+ } \
+} \
+STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \
+ int y_start, int y_end, const TYPE* src, \
+ TYPE* dst) { \
+ int y; \
+ const int bits_per_pixel = 8 >> transform->bits_; \
+ const int width = transform->xsize_; \
+ const uint32_t* const color_map = transform->data_; \
+ if (bits_per_pixel < 8) { \
+ const int pixels_per_byte = 1 << transform->bits_; \
+ const int count_mask = pixels_per_byte - 1; \
+ const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \
+ for (y = y_start; y < y_end; ++y) { \
+ uint32_t packed_pixels = 0; \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ /* We need to load fresh 'packed_pixels' once every */ \
+ /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \
+ /* is a power of 2, so can just use a mask for that, instead of */ \
+ /* decrementing a counter. */ \
+ if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \
+ *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \
+ packed_pixels >>= bits_per_pixel; \
+ } \
+ } \
+ } else { \
+ VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \
+ } \
+}
+
+COLOR_INDEX_INVERSE(ColorIndexInverseTransform, MapARGB, static, uint32_t, 32b,
+ VP8GetARGBIndex, VP8GetARGBValue)
+COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha, , uint8_t,
+ 8b, VP8GetAlphaIndex, VP8GetAlphaValue)
+
+#undef COLOR_INDEX_INVERSE
void VP8LInverseTransform(const VP8LTransform* const transform,
int row_start, int row_end,
const uint32_t* const in, uint32_t* const out) {
+ const int width = transform->xsize_;
assert(row_start < row_end);
assert(row_end <= transform->ysize_);
switch (transform->type_) {
case SUBTRACT_GREEN:
- AddGreenToBlueAndRed(transform, row_start, row_end, out);
+ VP8LAddGreenToBlueAndRed(out, (row_end - row_start) * width);
break;
case PREDICTOR_TRANSFORM:
PredictorInverseTransform(transform, row_start, row_end, out);
if (row_end != transform->ysize_) {
// The last predicted row in this iteration will be the top-pred row
// for the first row in next iteration.
- const int width = transform->xsize_;
memcpy(out - width, out + (row_end - row_start - 1) * width,
width * sizeof(*out));
}
@@ -982,7 +389,7 @@ void VP8LInverseTransform(const VP8LTransform* const transform,
// Also, note that this is the only transform that applies on
// the effective width of VP8LSubSampleSize(xsize_, bits_). All other
// transforms work on effective width of xsize_.
- const int out_stride = (row_end - row_start) * transform->xsize_;
+ const int out_stride = (row_end - row_start) * width;
const int in_stride = (row_end - row_start) *
VP8LSubSampleSize(transform->xsize_, transform->bits_);
uint32_t* const src = out + out_stride - in_stride;
@@ -1006,8 +413,8 @@ static int is_big_endian(void) {
return (tmp.b[0] != 1);
}
-static void ConvertBGRAToRGB(const uint32_t* src,
- int num_pixels, uint8_t* dst) {
+void VP8LConvertBGRAToRGB_C(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
@@ -1017,8 +424,8 @@ static void ConvertBGRAToRGB(const uint32_t* src,
}
}
-static void ConvertBGRAToRGBA(const uint32_t* src,
- int num_pixels, uint8_t* dst) {
+void VP8LConvertBGRAToRGBA_C(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
@@ -1029,28 +436,42 @@ static void ConvertBGRAToRGBA(const uint32_t* src,
}
}
-static void ConvertBGRAToRGBA4444(const uint32_t* src,
- int num_pixels, uint8_t* dst) {
+void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
- *dst++ = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
- *dst++ = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
+ const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
+ const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
+#ifdef WEBP_SWAP_16BIT_CSP
+ *dst++ = ba;
+ *dst++ = rg;
+#else
+ *dst++ = rg;
+ *dst++ = ba;
+#endif
}
}
-static void ConvertBGRAToRGB565(const uint32_t* src,
- int num_pixels, uint8_t* dst) {
+void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
- *dst++ = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
- *dst++ = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
+ const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
+ const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
+#ifdef WEBP_SWAP_16BIT_CSP
+ *dst++ = gb;
+ *dst++ = rg;
+#else
+ *dst++ = rg;
+ *dst++ = gb;
+#endif
}
}
-static void ConvertBGRAToBGR(const uint32_t* src,
- int num_pixels, uint8_t* dst) {
+void VP8LConvertBGRAToBGR_C(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
@@ -1065,21 +486,24 @@ static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
if (is_big_endian() == swap_on_big_endian) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
- uint32_t argb = *src++;
-#if !defined(__BIG_ENDIAN__) && (defined(__i386__) || defined(__x86_64__))
- __asm__ volatile("bswap %0" : "=r"(argb) : "0"(argb));
- *(uint32_t*)dst = argb;
- dst += sizeof(argb);
-#elif !defined(__BIG_ENDIAN__) && defined(_MSC_VER)
- argb = _byteswap_ulong(argb);
- *(uint32_t*)dst = argb;
- dst += sizeof(argb);
-#else
- *dst++ = (argb >> 24) & 0xff;
- *dst++ = (argb >> 16) & 0xff;
- *dst++ = (argb >> 8) & 0xff;
- *dst++ = (argb >> 0) & 0xff;
+ const uint32_t argb = *src++;
+
+#if !defined(WORDS_BIGENDIAN)
+#if !defined(WEBP_REFERENCE_IMPLEMENTATION)
+ *(uint32_t*)dst = BSwap32(argb);
+#else // WEBP_REFERENCE_IMPLEMENTATION
+ dst[0] = (argb >> 24) & 0xff;
+ dst[1] = (argb >> 16) & 0xff;
+ dst[2] = (argb >> 8) & 0xff;
+ dst[3] = (argb >> 0) & 0xff;
#endif
+#else // WORDS_BIGENDIAN
+ dst[0] = (argb >> 0) & 0xff;
+ dst[1] = (argb >> 8) & 0xff;
+ dst[2] = (argb >> 16) & 0xff;
+ dst[3] = (argb >> 24) & 0xff;
+#endif
+ dst += sizeof(argb);
}
} else {
memcpy(dst, src, num_pixels * sizeof(*src));
@@ -1090,17 +514,17 @@ void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
switch (out_colorspace) {
case MODE_RGB:
- ConvertBGRAToRGB(in_data, num_pixels, rgba);
+ VP8LConvertBGRAToRGB(in_data, num_pixels, rgba);
break;
case MODE_RGBA:
- ConvertBGRAToRGBA(in_data, num_pixels, rgba);
+ VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
break;
case MODE_rgbA:
- ConvertBGRAToRGBA(in_data, num_pixels, rgba);
+ VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
break;
case MODE_BGR:
- ConvertBGRAToBGR(in_data, num_pixels, rgba);
+ VP8LConvertBGRAToBGR(in_data, num_pixels, rgba);
break;
case MODE_BGRA:
CopyOrSwap(in_data, num_pixels, rgba, 1);
@@ -1117,14 +541,14 @@ void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
break;
case MODE_RGBA_4444:
- ConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
+ VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
break;
case MODE_rgbA_4444:
- ConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
+ VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
break;
case MODE_RGB_565:
- ConvertBGRAToRGB565(in_data, num_pixels, rgba);
+ VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba);
break;
default:
assert(0); // Code flow should not reach here.
@@ -1133,6 +557,79 @@ void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
//------------------------------------------------------------------------------
-#if defined(__cplusplus) || defined(c_plusplus)
-} // extern "C"
+VP8LProcessBlueAndRedFunc VP8LAddGreenToBlueAndRed;
+VP8LPredictorFunc VP8LPredictors[16];
+
+VP8LTransformColorFunc VP8LTransformColorInverse;
+
+VP8LConvertFunc VP8LConvertBGRAToRGB;
+VP8LConvertFunc VP8LConvertBGRAToRGBA;
+VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
+VP8LConvertFunc VP8LConvertBGRAToRGB565;
+VP8LConvertFunc VP8LConvertBGRAToBGR;
+
+VP8LMapARGBFunc VP8LMapColor32b;
+VP8LMapAlphaFunc VP8LMapColor8b;
+
+extern void VP8LDspInitSSE2(void);
+extern void VP8LDspInitNEON(void);
+extern void VP8LDspInitMIPSdspR2(void);
+
+static volatile VP8CPUInfo lossless_last_cpuinfo_used =
+ (VP8CPUInfo)&lossless_last_cpuinfo_used;
+
+WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) {
+ if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return;
+
+ VP8LPredictors[0] = Predictor0;
+ VP8LPredictors[1] = Predictor1;
+ VP8LPredictors[2] = Predictor2;
+ VP8LPredictors[3] = Predictor3;
+ VP8LPredictors[4] = Predictor4;
+ VP8LPredictors[5] = Predictor5;
+ VP8LPredictors[6] = Predictor6;
+ VP8LPredictors[7] = Predictor7;
+ VP8LPredictors[8] = Predictor8;
+ VP8LPredictors[9] = Predictor9;
+ VP8LPredictors[10] = Predictor10;
+ VP8LPredictors[11] = Predictor11;
+ VP8LPredictors[12] = Predictor12;
+ VP8LPredictors[13] = Predictor13;
+ VP8LPredictors[14] = Predictor0; // <- padding security sentinels
+ VP8LPredictors[15] = Predictor0;
+
+ VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;
+
+ VP8LTransformColorInverse = VP8LTransformColorInverse_C;
+
+ VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C;
+ VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C;
+ VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C;
+ VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C;
+ VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C;
+
+ VP8LMapColor32b = MapARGB;
+ VP8LMapColor8b = MapAlpha;
+
+ // If defined, use CPUInfo() to overwrite some pointers with faster versions.
+ if (VP8GetCPUInfo != NULL) {
+#if defined(WEBP_USE_SSE2)
+ if (VP8GetCPUInfo(kSSE2)) {
+ VP8LDspInitSSE2();
+ }
+#endif
+#if defined(WEBP_USE_NEON)
+ if (VP8GetCPUInfo(kNEON)) {
+ VP8LDspInitNEON();
+ }
+#endif
+#if defined(WEBP_USE_MIPS_DSP_R2)
+ if (VP8GetCPUInfo(kMIPSdspR2)) {
+ VP8LDspInitMIPSdspR2();
+ }
#endif
+ }
+ lossless_last_cpuinfo_used = VP8GetCPUInfo;
+}
+
+//------------------------------------------------------------------------------