diff options
Diffstat (limited to 'drivers/vorbis/lsp.c')
-rw-r--r-- | drivers/vorbis/lsp.c | 454 |
1 files changed, 0 insertions, 454 deletions
diff --git a/drivers/vorbis/lsp.c b/drivers/vorbis/lsp.c deleted file mode 100644 index 6a619f7b0c..0000000000 --- a/drivers/vorbis/lsp.c +++ /dev/null @@ -1,454 +0,0 @@ -/******************************************************************** - * * - * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * - * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * - * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * - * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * - * * - * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * - * by the Xiph.Org Foundation http://www.xiph.org/ * - * * - ******************************************************************** - - function: LSP (also called LSF) conversion routines - last mod: $Id: lsp.c 19453 2015-03-02 22:35:34Z xiphmont $ - - The LSP generation code is taken (with minimal modification and a - few bugfixes) from "On the Computation of the LSP Frequencies" by - Joseph Rothweiler (see http://www.rothweiler.us for contact info). - The paper is available at: - - http://www.myown1.com/joe/lsf - - ********************************************************************/ - -/* Note that the lpc-lsp conversion finds the roots of polynomial with - an iterative root polisher (CACM algorithm 283). It *is* possible - to confuse this algorithm into not converging; that should only - happen with absurdly closely spaced roots (very sharp peaks in the - LPC f response) which in turn should be impossible in our use of - the code. If this *does* happen anyway, it's a bug in the floor - finder; find the cause of the confusion (probably a single bin - spike or accidental near-float-limit resolution problems) and - correct it. */ - -#include <math.h> -#include <string.h> -#include <stdlib.h> -#include "lsp.h" -#include "os.h" -#include "misc.h" -#include "lookup.h" -#include "scales.h" - -/* three possible LSP to f curve functions; the exact computation - (float), a lookup based float implementation, and an integer - implementation. The float lookup is likely the optimal choice on - any machine with an FPU. The integer implementation is *not* fixed - point (due to the need for a large dynamic range and thus a - separately tracked exponent) and thus much more complex than the - relatively simple float implementations. It's mostly for future - work on a fully fixed point implementation for processors like the - ARM family. */ - -/* define either of these (preferably FLOAT_LOOKUP) to have faster - but less precise implementation. */ -#undef FLOAT_LOOKUP -#undef INT_LOOKUP - -#ifdef FLOAT_LOOKUP -#include "lookup.c" /* catch this in the build system; we #include for - compilers (like gcc) that can't inline across - modules */ - -/* side effect: changes *lsp to cosines of lsp */ -void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, - float amp,float ampoffset){ - int i; - float wdel=M_PI/ln; - vorbis_fpu_control fpu; - - vorbis_fpu_setround(&fpu); - for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]); - - i=0; - while(i<n){ - int k=map[i]; - int qexp; - float p=.7071067812f; - float q=.7071067812f; - float w=vorbis_coslook(wdel*k); - float *ftmp=lsp; - int c=m>>1; - - while(c--){ - q*=ftmp[0]-w; - p*=ftmp[1]-w; - ftmp+=2; - } - - if(m&1){ - /* odd order filter; slightly assymetric */ - /* the last coefficient */ - q*=ftmp[0]-w; - q*=q; - p*=p*(1.f-w*w); - }else{ - /* even order filter; still symmetric */ - q*=q*(1.f+w); - p*=p*(1.f-w); - } - - q=frexp(p+q,&qexp); - q=vorbis_fromdBlook(amp* - vorbis_invsqlook(q)* - vorbis_invsq2explook(qexp+m)- - ampoffset); - - do{ - curve[i++]*=q; - }while(map[i]==k); - } - vorbis_fpu_restore(fpu); -} - -#else - -#ifdef INT_LOOKUP -#include "lookup.c" /* catch this in the build system; we #include for - compilers (like gcc) that can't inline across - modules */ - -static const int MLOOP_1[64]={ - 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13, - 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14, - 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, - 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, -}; - -static const int MLOOP_2[64]={ - 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7, - 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8, - 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, - 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, -}; - -static const int MLOOP_3[8]={0,1,2,2,3,3,3,3}; - - -/* side effect: changes *lsp to cosines of lsp */ -void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, - float amp,float ampoffset){ - - /* 0 <= m < 256 */ - - /* set up for using all int later */ - int i; - int ampoffseti=rint(ampoffset*4096.f); - int ampi=rint(amp*16.f); - long *ilsp=alloca(m*sizeof(*ilsp)); - for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f); - - i=0; - while(i<n){ - int j,k=map[i]; - unsigned long pi=46341; /* 2**-.5 in 0.16 */ - unsigned long qi=46341; - int qexp=0,shift; - long wi=vorbis_coslook_i(k*65536/ln); - - qi*=labs(ilsp[0]-wi); - pi*=labs(ilsp[1]-wi); - - for(j=3;j<m;j+=2){ - if(!(shift=MLOOP_1[(pi|qi)>>25])) - if(!(shift=MLOOP_2[(pi|qi)>>19])) - shift=MLOOP_3[(pi|qi)>>16]; - qi=(qi>>shift)*labs(ilsp[j-1]-wi); - pi=(pi>>shift)*labs(ilsp[j]-wi); - qexp+=shift; - } - if(!(shift=MLOOP_1[(pi|qi)>>25])) - if(!(shift=MLOOP_2[(pi|qi)>>19])) - shift=MLOOP_3[(pi|qi)>>16]; - - /* pi,qi normalized collectively, both tracked using qexp */ - - if(m&1){ - /* odd order filter; slightly assymetric */ - /* the last coefficient */ - qi=(qi>>shift)*labs(ilsp[j-1]-wi); - pi=(pi>>shift)<<14; - qexp+=shift; - - if(!(shift=MLOOP_1[(pi|qi)>>25])) - if(!(shift=MLOOP_2[(pi|qi)>>19])) - shift=MLOOP_3[(pi|qi)>>16]; - - pi>>=shift; - qi>>=shift; - qexp+=shift-14*((m+1)>>1); - - pi=((pi*pi)>>16); - qi=((qi*qi)>>16); - qexp=qexp*2+m; - - pi*=(1<<14)-((wi*wi)>>14); - qi+=pi>>14; - - }else{ - /* even order filter; still symmetric */ - - /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't - worth tracking step by step */ - - pi>>=shift; - qi>>=shift; - qexp+=shift-7*m; - - pi=((pi*pi)>>16); - qi=((qi*qi)>>16); - qexp=qexp*2+m; - - pi*=(1<<14)-wi; - qi*=(1<<14)+wi; - qi=(qi+pi)>>14; - - } - - - /* we've let the normalization drift because it wasn't important; - however, for the lookup, things must be normalized again. We - need at most one right shift or a number of left shifts */ - - if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ - qi>>=1; qexp++; - }else - while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ - qi<<=1; qexp--; - } - - amp=vorbis_fromdBlook_i(ampi* /* n.4 */ - vorbis_invsqlook_i(qi,qexp)- - /* m.8, m+n<=8 */ - ampoffseti); /* 8.12[0] */ - - curve[i]*=amp; - while(map[++i]==k)curve[i]*=amp; - } -} - -#else - -/* old, nonoptimized but simple version for any poor sap who needs to - figure out what the hell this code does, or wants the other - fraction of a dB precision */ - -/* side effect: changes *lsp to cosines of lsp */ -void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, - float amp,float ampoffset){ - int i; - float wdel=M_PI/ln; - for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]); - - i=0; - while(i<n){ - int j,k=map[i]; - float p=.5f; - float q=.5f; - float w=2.f*cos(wdel*k); - for(j=1;j<m;j+=2){ - q *= w-lsp[j-1]; - p *= w-lsp[j]; - } - if(j==m){ - /* odd order filter; slightly assymetric */ - /* the last coefficient */ - q*=w-lsp[j-1]; - p*=p*(4.f-w*w); - q*=q; - }else{ - /* even order filter; still symmetric */ - p*=p*(2.f-w); - q*=q*(2.f+w); - } - - q=fromdB(amp/sqrt(p+q)-ampoffset); - - curve[i]*=q; - while(map[++i]==k)curve[i]*=q; - } -} - -#endif -#endif - -static void cheby(float *g, int ord) { - int i, j; - - g[0] *= .5f; - for(i=2; i<= ord; i++) { - for(j=ord; j >= i; j--) { - g[j-2] -= g[j]; - g[j] += g[j]; - } - } -} - -static int comp(const void *a,const void *b){ - return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); -} - -/* Newton-Raphson-Maehly actually functioned as a decent root finder, - but there are root sets for which it gets into limit cycles - (exacerbated by zero suppression) and fails. We can't afford to - fail, even if the failure is 1 in 100,000,000, so we now use - Laguerre and later polish with Newton-Raphson (which can then - afford to fail) */ - -#define EPSILON 10e-7 -static int Laguerre_With_Deflation(float *a,int ord,float *r){ - int i,m; - double *defl=alloca(sizeof(*defl)*(ord+1)); - for(i=0;i<=ord;i++)defl[i]=a[i]; - - for(m=ord;m>0;m--){ - double new=0.f,delta; - - /* iterate a root */ - while(1){ - double p=defl[m],pp=0.f,ppp=0.f,denom; - - /* eval the polynomial and its first two derivatives */ - for(i=m;i>0;i--){ - ppp = new*ppp + pp; - pp = new*pp + p; - p = new*p + defl[i-1]; - } - - /* Laguerre's method */ - denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); - if(denom<0) - return(-1); /* complex root! The LPC generator handed us a bad filter */ - - if(pp>0){ - denom = pp + sqrt(denom); - if(denom<EPSILON)denom=EPSILON; - }else{ - denom = pp - sqrt(denom); - if(denom>-(EPSILON))denom=-(EPSILON); - } - - delta = m*p/denom; - new -= delta; - - if(delta<0.f)delta*=-1; - - if(fabs(delta/new)<10e-12)break; - } - - r[m-1]=new; - - /* forward deflation */ - - for(i=m;i>0;i--) - defl[i-1]+=new*defl[i]; - defl++; - - } - return(0); -} - - -/* for spit-and-polish only */ -static int Newton_Raphson(float *a,int ord,float *r){ - int i, k, count=0; - double error=1.f; - double *root=alloca(ord*sizeof(*root)); - - for(i=0; i<ord;i++) root[i] = r[i]; - - while(error>1e-20){ - error=0; - - for(i=0; i<ord; i++) { /* Update each point. */ - double pp=0.,delta; - double rooti=root[i]; - double p=a[ord]; - for(k=ord-1; k>= 0; k--) { - - pp= pp* rooti + p; - p = p * rooti + a[k]; - } - - delta = p/pp; - root[i] -= delta; - error+= delta*delta; - } - - if(count>40)return(-1); - - count++; - } - - /* Replaced the original bubble sort with a real sort. With your - help, we can eliminate the bubble sort in our lifetime. --Monty */ - - for(i=0; i<ord;i++) r[i] = root[i]; - return(0); -} - - -/* Convert lpc coefficients to lsp coefficients */ -int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){ - int order2=(m+1)>>1; - int g1_order,g2_order; - float *g1=alloca(sizeof(*g1)*(order2+1)); - float *g2=alloca(sizeof(*g2)*(order2+1)); - float *g1r=alloca(sizeof(*g1r)*(order2+1)); - float *g2r=alloca(sizeof(*g2r)*(order2+1)); - int i; - - /* even and odd are slightly different base cases */ - g1_order=(m+1)>>1; - g2_order=(m) >>1; - - /* Compute the lengths of the x polynomials. */ - /* Compute the first half of K & R F1 & F2 polynomials. */ - /* Compute half of the symmetric and antisymmetric polynomials. */ - /* Remove the roots at +1 and -1. */ - - g1[g1_order] = 1.f; - for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i]; - g2[g2_order] = 1.f; - for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i]; - - if(g1_order>g2_order){ - for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; - }else{ - for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; - for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; - } - - /* Convert into polynomials in cos(alpha) */ - cheby(g1,g1_order); - cheby(g2,g2_order); - - /* Find the roots of the 2 even polynomials.*/ - if(Laguerre_With_Deflation(g1,g1_order,g1r) || - Laguerre_With_Deflation(g2,g2_order,g2r)) - return(-1); - - Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */ - Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */ - - qsort(g1r,g1_order,sizeof(*g1r),comp); - qsort(g2r,g2_order,sizeof(*g2r),comp); - - for(i=0;i<g1_order;i++) - lsp[i*2] = acos(g1r[i]); - - for(i=0;i<g2_order;i++) - lsp[i*2+1] = acos(g2r[i]); - return(0); -} |