diff options
Diffstat (limited to 'drivers/squish/clusterfit.cpp')
| -rw-r--r-- | drivers/squish/clusterfit.cpp | 393 | 
1 files changed, 0 insertions, 393 deletions
diff --git a/drivers/squish/clusterfit.cpp b/drivers/squish/clusterfit.cpp deleted file mode 100644 index afea84880c..0000000000 --- a/drivers/squish/clusterfit.cpp +++ /dev/null @@ -1,393 +0,0 @@ -/* ----------------------------------------------------------------------------- - -	Copyright (c) 2006 Simon Brown                          si@sjbrown.co.uk -	Copyright (c) 2007 Ignacio Castano                   icastano@nvidia.com - -	Permission is hereby granted, free of charge, to any person obtaining -	a copy of this software and associated documentation files (the  -	"Software"), to	deal in the Software without restriction, including -	without limitation the rights to use, copy, modify, merge, publish, -	distribute, sublicense, and/or sell copies of the Software, and to  -	permit persons to whom the Software is furnished to do so, subject to  -	the following conditions: - -	The above copyright notice and this permission notice shall be included -	in all copies or substantial portions of the Software. - -	THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS -	OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  -	MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -	IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  -	CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  -	TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE  -	SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -	 -   -------------------------------------------------------------------------- */ -    -#include "clusterfit.h" -#include "colourset.h" -#include "colourblock.h" -#include <cfloat> - -namespace squish { - -ClusterFit::ClusterFit( ColourSet const* colours, int flags )  -  : ColourFit( colours, flags ) -{ -	// set the iteration count -	m_iterationCount = ( m_flags & kColourIterativeClusterFit ) ? kMaxIterations : 1; - -	// initialise the best error -	m_besterror = VEC4_CONST( FLT_MAX ); - -	// initialise the metric -	bool perceptual = ( ( m_flags & kColourMetricPerceptual ) != 0 ); -	if( perceptual ) -		m_metric = Vec4( 0.2126f, 0.7152f, 0.0722f, 0.0f ); -	else -		m_metric = VEC4_CONST( 1.0f );	 - -	// cache some values -	int const count = m_colours->GetCount(); -	Vec3 const* values = m_colours->GetPoints(); - -	// get the covariance matrix -	Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights() ); -	 -	// compute the principle component -	m_principle = ComputePrincipleComponent( covariance ); -} - -bool ClusterFit::ConstructOrdering( Vec3 const& axis, int iteration ) -{ -	// cache some values -	int const count = m_colours->GetCount(); -	Vec3 const* values = m_colours->GetPoints(); - -	// build the list of dot products -	float dps[16]; -	u8* order = ( u8* )m_order + 16*iteration; -	for( int i = 0; i < count; ++i ) -	{ -		dps[i] = Dot( values[i], axis ); -		order[i] = ( u8 )i; -	} -		 -	// stable sort using them -	for( int i = 0; i < count; ++i ) -	{ -		for( int j = i; j > 0 && dps[j] < dps[j - 1]; --j ) -		{ -			std::swap( dps[j], dps[j - 1] ); -			std::swap( order[j], order[j - 1] ); -		} -	} -	 -	// check this ordering is unique -	for( int it = 0; it < iteration; ++it ) -	{ -		u8 const* prev = ( u8* )m_order + 16*it; -		bool same = true; -		for( int i = 0; i < count; ++i ) -		{ -			if( order[i] != prev[i] ) -			{ -				same = false; -				break; -			} -		} -		if( same ) -			return false; -	} -	 -	// copy the ordering and weight all the points -	Vec3 const* unweighted = m_colours->GetPoints(); -	float const* weights = m_colours->GetWeights(); -	m_xsum_wsum = VEC4_CONST( 0.0f ); -	for( int i = 0; i < count; ++i ) -	{ -		int j = order[i]; -		Vec4 p( unweighted[j].X(), unweighted[j].Y(), unweighted[j].Z(), 1.0f ); -		Vec4 w( weights[j] ); -		Vec4 x = p*w; -		m_points_weights[i] = x; -		m_xsum_wsum += x; -	} -	return true; -} - -void ClusterFit::Compress3( void* block ) -{ -	// declare variables -	int const count = m_colours->GetCount(); -	Vec4 const two = VEC4_CONST( 2.0 ); -	Vec4 const one = VEC4_CONST( 1.0f ); -	Vec4 const half_half2( 0.5f, 0.5f, 0.5f, 0.25f ); -	Vec4 const zero = VEC4_CONST( 0.0f ); -	Vec4 const half = VEC4_CONST( 0.5f ); -	Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); -	Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); - -	// prepare an ordering using the principle axis -	ConstructOrdering( m_principle, 0 ); -	 -	// check all possible clusters and iterate on the total order -	Vec4 beststart = VEC4_CONST( 0.0f ); -	Vec4 bestend = VEC4_CONST( 0.0f ); -	Vec4 besterror = m_besterror; -	u8 bestindices[16]; -	int bestiteration = 0; -	int besti = 0, bestj = 0; -	 -	// loop over iterations (we avoid the case that all points in first or last cluster) -	for( int iterationIndex = 0;; ) -	{ -		// first cluster [0,i) is at the start -		Vec4 part0 = VEC4_CONST( 0.0f ); -		for( int i = 0; i < count; ++i ) -		{ -			// second cluster [i,j) is half along -			Vec4 part1 = ( i == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); -			int jmin = ( i == 0 ) ? 1 : i; -			for( int j = jmin;; ) -			{ -				// last cluster [j,count) is at the end -				Vec4 part2 = m_xsum_wsum - part1 - part0; -				 -				// compute least squares terms directly -				Vec4 alphax_sum = MultiplyAdd( part1, half_half2, part0 ); -				Vec4 alpha2_sum = alphax_sum.SplatW(); - -				Vec4 betax_sum = MultiplyAdd( part1, half_half2, part2 ); -				Vec4 beta2_sum = betax_sum.SplatW(); - -				Vec4 alphabeta_sum = ( part1*half_half2 ).SplatW(); - -				// compute the least-squares optimal points -				Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); -				Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; -				Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; - -				// clamp to the grid -				a = Min( one, Max( zero, a ) ); -				b = Min( one, Max( zero, b ) ); -				a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; -				b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; -				 -				// compute the error (we skip the constant xxsum) -				Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); -				Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); -				Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); -				Vec4 e4 = MultiplyAdd( two, e3, e1 ); - -				// apply the metric to the error term -				Vec4 e5 = e4*m_metric; -				Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); -				 -				// keep the solution if it wins -				if( CompareAnyLessThan( error, besterror ) ) -				{ -					beststart = a; -					bestend = b; -					besti = i; -					bestj = j; -					besterror = error; -					bestiteration = iterationIndex; -				} - -				// advance -				if( j == count ) -					break; -				part1 += m_points_weights[j]; -				++j; -			} - -			// advance -			part0 += m_points_weights[i]; -		} -		 -		// stop if we didn't improve in this iteration -		if( bestiteration != iterationIndex ) -			break; -			 -		// advance if possible -		++iterationIndex; -		if( iterationIndex == m_iterationCount ) -			break; -			 -		// stop if a new iteration is an ordering that has already been tried -		Vec3 axis = ( bestend - beststart ).GetVec3(); -		if( !ConstructOrdering( axis, iterationIndex ) ) -			break; -	} -		 -	// save the block if necessary -	if( CompareAnyLessThan( besterror, m_besterror ) ) -	{ -		// remap the indices -		u8 const* order = ( u8* )m_order + 16*bestiteration; - -		u8 unordered[16]; -		for( int m = 0; m < besti; ++m ) -			unordered[order[m]] = 0; -		for( int m = besti; m < bestj; ++m ) -			unordered[order[m]] = 2; -		for( int m = bestj; m < count; ++m ) -			unordered[order[m]] = 1; - -		m_colours->RemapIndices( unordered, bestindices ); -		 -		// save the block -		WriteColourBlock3( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); - -		// save the error -		m_besterror = besterror; -	} -} - -void ClusterFit::Compress4( void* block ) -{ -	// declare variables -	int const count = m_colours->GetCount(); -	Vec4 const two = VEC4_CONST( 2.0f ); -	Vec4 const one = VEC4_CONST( 1.0f ); -	Vec4 const onethird_onethird2( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f ); -	Vec4 const twothirds_twothirds2( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f ); -	Vec4 const twonineths = VEC4_CONST( 2.0f/9.0f ); -	Vec4 const zero = VEC4_CONST( 0.0f ); -	Vec4 const half = VEC4_CONST( 0.5f ); -	Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); -	Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); - -	// prepare an ordering using the principle axis -	ConstructOrdering( m_principle, 0 ); -	 -	// check all possible clusters and iterate on the total order -	Vec4 beststart = VEC4_CONST( 0.0f ); -	Vec4 bestend = VEC4_CONST( 0.0f ); -	Vec4 besterror = m_besterror; -	u8 bestindices[16]; -	int bestiteration = 0; -	int besti = 0, bestj = 0, bestk = 0; -	 -	// loop over iterations (we avoid the case that all points in first or last cluster) -	for( int iterationIndex = 0;; ) -	{ -		// first cluster [0,i) is at the start -		Vec4 part0 = VEC4_CONST( 0.0f ); -		for( int i = 0; i < count; ++i ) -		{ -			// second cluster [i,j) is one third along -			Vec4 part1 = VEC4_CONST( 0.0f ); -			for( int j = i;; ) -			{ -				// third cluster [j,k) is two thirds along -				Vec4 part2 = ( j == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); -				int kmin = ( j == 0 ) ? 1 : j; -				for( int k = kmin;; ) -				{ -					// last cluster [k,count) is at the end -					Vec4 part3 = m_xsum_wsum - part2 - part1 - part0; - -					// compute least squares terms directly -					Vec4 const alphax_sum = MultiplyAdd( part2, onethird_onethird2, MultiplyAdd( part1, twothirds_twothirds2, part0 ) ); -					Vec4 const alpha2_sum = alphax_sum.SplatW(); -					 -					Vec4 const betax_sum = MultiplyAdd( part1, onethird_onethird2, MultiplyAdd( part2, twothirds_twothirds2, part3 ) ); -					Vec4 const beta2_sum = betax_sum.SplatW(); -					 -					Vec4 const alphabeta_sum = twonineths*( part1 + part2 ).SplatW(); - -					// compute the least-squares optimal points -					Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); -					Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; -					Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; - -					// clamp to the grid -					a = Min( one, Max( zero, a ) ); -					b = Min( one, Max( zero, b ) ); -					a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; -					b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; -					 -					// compute the error (we skip the constant xxsum) -					Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); -					Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); -					Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); -					Vec4 e4 = MultiplyAdd( two, e3, e1 ); - -					// apply the metric to the error term -					Vec4 e5 = e4*m_metric; -					Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); - -					// keep the solution if it wins -					if( CompareAnyLessThan( error, besterror ) ) -					{ -						beststart = a; -						bestend = b; -						besterror = error; -						besti = i; -						bestj = j; -						bestk = k; -						bestiteration = iterationIndex; -					} - -					// advance -					if( k == count ) -						break; -					part2 += m_points_weights[k]; -					++k; -				} - -				// advance -				if( j == count ) -					break; -				part1 += m_points_weights[j]; -				++j; -			} - -			// advance -			part0 += m_points_weights[i]; -		} -		 -		// stop if we didn't improve in this iteration -		if( bestiteration != iterationIndex ) -			break; -			 -		// advance if possible -		++iterationIndex; -		if( iterationIndex == m_iterationCount ) -			break; -			 -		// stop if a new iteration is an ordering that has already been tried -		Vec3 axis = ( bestend - beststart ).GetVec3(); -		if( !ConstructOrdering( axis, iterationIndex ) ) -			break; -	} - -	// save the block if necessary -	if( CompareAnyLessThan( besterror, m_besterror ) ) -	{ -		// remap the indices -		u8 const* order = ( u8* )m_order + 16*bestiteration; - -		u8 unordered[16]; -		for( int m = 0; m < besti; ++m ) -			unordered[order[m]] = 0; -		for( int m = besti; m < bestj; ++m ) -			unordered[order[m]] = 2; -		for( int m = bestj; m < bestk; ++m ) -			unordered[order[m]] = 3; -		for( int m = bestk; m < count; ++m ) -			unordered[order[m]] = 1; - -		m_colours->RemapIndices( unordered, bestindices ); -		 -		// save the block -		WriteColourBlock4( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); - -		// save the error -		m_besterror = besterror; -	} -} - -} // namespace squish  |