diff options
Diffstat (limited to 'drivers/opus/celt/mathops.h')
-rw-r--r-- | drivers/opus/celt/mathops.h | 258 |
1 files changed, 0 insertions, 258 deletions
diff --git a/drivers/opus/celt/mathops.h b/drivers/opus/celt/mathops.h deleted file mode 100644 index a008d71e18..0000000000 --- a/drivers/opus/celt/mathops.h +++ /dev/null @@ -1,258 +0,0 @@ -/* Copyright (c) 2002-2008 Jean-Marc Valin - Copyright (c) 2007-2008 CSIRO - Copyright (c) 2007-2009 Xiph.Org Foundation - Written by Jean-Marc Valin */ -/** - @file mathops.h - @brief Various math functions -*/ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifndef MATHOPS_H -#define MATHOPS_H - -#include "opus/celt/arch.h" -#include "opus/celt/entcode.h" -#include "opus/celt/os_support.h" - -/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ -#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) - -unsigned isqrt32(opus_uint32 _val); - -#ifndef OVERRIDE_CELT_MAXABS16 -static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) -{ - int i; - opus_val16 maxval = 0; - opus_val16 minval = 0; - for (i=0;i<len;i++) - { - maxval = MAX16(maxval, x[i]); - minval = MIN16(minval, x[i]); - } - return MAX32(EXTEND32(maxval),-EXTEND32(minval)); -} -#endif - -#ifndef OVERRIDE_CELT_MAXABS32 -#ifdef OPUS_FIXED_POINT -static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) -{ - int i; - opus_val32 maxval = 0; - opus_val32 minval = 0; - for (i=0;i<len;i++) - { - maxval = MAX32(maxval, x[i]); - minval = MIN32(minval, x[i]); - } - return MAX32(maxval, -minval); -} -#else -#define celt_maxabs32(x,len) celt_maxabs16(x,len) -#endif -#endif - - -#ifndef OPUS_FIXED_POINT - -#define PI 3.141592653f -#define celt_sqrt(x) ((float)sqrt(x)) -#define celt_rsqrt(x) (1.f/celt_sqrt(x)) -#define celt_rsqrt_norm(x) (celt_rsqrt(x)) -#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x))) -#define celt_rcp(x) (1.f/(x)) -#define celt_div(a,b) ((a)/(b)) -#define frac_div32(a,b) ((float)(a)/(b)) - -#ifdef FLOAT_APPROX - -/* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127 - denorm, +/- inf and NaN are *not* handled */ - -/** Base-2 log approximation (log2(x)). */ -static OPUS_INLINE float celt_log2(float x) -{ - int integer; - float frac; - union { - float f; - opus_uint32 i; - } in; - in.f = x; - integer = (in.i>>23)-127; - in.i -= integer<<23; - frac = in.f - 1.5f; - frac = -0.41445418f + frac*(0.95909232f - + frac*(-0.33951290f + frac*0.16541097f)); - return 1+integer+frac; -} - -/** Base-2 exponential approximation (2^x). */ -static OPUS_INLINE float celt_exp2(float x) -{ - int integer; - float frac; - union { - float f; - opus_uint32 i; - } res; - integer = floor(x); - if (integer < -50) - return 0; - frac = x-integer; - /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ - res.f = 0.99992522f + frac * (0.69583354f - + frac * (0.22606716f + 0.078024523f*frac)); - res.i = (res.i + (integer<<23)) & 0x7fffffff; - return res.f; -} - -#else -#define celt_log2(x) ((float)(1.442695040888963387*log(x))) -#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) -#endif - -#endif - -#ifdef OPUS_FIXED_POINT - -#include "opus/celt/os_support.h" - -#ifndef OVERRIDE_CELT_ILOG2 -/** Integer log in base2. Undefined for zero and negative numbers */ -static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) -{ - celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); - return EC_ILOG(x)-1; -} -#endif - - -/** Integer log in base2. Defined for zero, but not for negative numbers */ -static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) -{ - return x <= 0 ? 0 : celt_ilog2(x); -} - -opus_val16 celt_rsqrt_norm(opus_val32 x); - -opus_val32 celt_sqrt(opus_val32 x); - -opus_val16 celt_cos_norm(opus_val32 x); - -/** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ -static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) -{ - int i; - opus_val16 n, frac; - /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, - 0.15530808010959576, -0.08556153059057618 */ - static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; - if (x==0) - return -32767; - i = celt_ilog2(x); - n = VSHR32(x,i-15)-32768-16384; - frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); - return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); -} - -/* - K0 = 1 - K1 = log(2) - K2 = 3-4*log(2) - K3 = 3*log(2) - 2 -*/ -#define D0 16383 -#define D1 22804 -#define D2 14819 -#define D3 10204 - -static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) -{ - opus_val16 frac; - frac = SHL16(x, 4); - return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); -} -/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ -static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) -{ - int integer; - opus_val16 frac; - integer = SHR16(x,10); - if (integer>14) - return 0x7f000000; - else if (integer < -15) - return 0; - frac = celt_exp2_frac(x-SHL16(integer,10)); - return VSHR32(EXTEND32(frac), -integer-2); -} - -opus_val32 celt_rcp(opus_val32 x); - -#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) - -opus_val32 frac_div32(opus_val32 a, opus_val32 b); - -#define M1 32767 -#define M2 -21 -#define M3 -11943 -#define M4 4936 - -/* Atan approximation using a 4th order polynomial. Input is in Q15 format - and normalized by pi/4. Output is in Q15 format */ -static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) -{ - return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); -} - -#undef M1 -#undef M2 -#undef M3 -#undef M4 - -/* atan2() approximation valid for positive input values */ -static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) -{ - if (y < x) - { - opus_val32 arg; - arg = celt_div(SHL32(EXTEND32(y),15),x); - if (arg >= 32767) - arg = 32767; - return SHR16(celt_atan01(EXTRACT16(arg)),1); - } else { - opus_val32 arg; - arg = celt_div(SHL32(EXTEND32(x),15),y); - if (arg >= 32767) - arg = 32767; - return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); - } -} - -#endif /* FIXED_POINT */ -#endif /* MATHOPS_H */ |