diff options
Diffstat (limited to 'drivers/opus/celt/mathops.c')
| -rw-r--r-- | drivers/opus/celt/mathops.c | 205 | 
1 files changed, 0 insertions, 205 deletions
diff --git a/drivers/opus/celt/mathops.c b/drivers/opus/celt/mathops.c deleted file mode 100644 index 3f7c1a8bdd..0000000000 --- a/drivers/opus/celt/mathops.c +++ /dev/null @@ -1,205 +0,0 @@ -/* Copyright (c) 2002-2008 Jean-Marc Valin -   Copyright (c) 2007-2008 CSIRO -   Copyright (c) 2007-2009 Xiph.Org Foundation -   Written by Jean-Marc Valin */ -/** -   @file mathops.h -   @brief Various math functions -*/ -/* -   Redistribution and use in source and binary forms, with or without -   modification, are permitted provided that the following conditions -   are met: - -   - Redistributions of source code must retain the above copyright -   notice, this list of conditions and the following disclaimer. - -   - Redistributions in binary form must reproduce the above copyright -   notice, this list of conditions and the following disclaimer in the -   documentation and/or other materials provided with the distribution. - -   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER -   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ -#include "opus/opus_config.h" - -#include "opus/celt/mathops.h" - -/*Compute floor(sqrt(_val)) with exact arithmetic. -  This has been tested on all possible 32-bit inputs.*/ -unsigned isqrt32(opus_uint32 _val){ -  unsigned b; -  unsigned g; -  int      bshift; -  /*Uses the second method from -     http://www.azillionmonkeys.com/qed/sqroot.html -    The main idea is to search for the largest binary digit b such that -     (g+b)*(g+b) <= _val, and add it to the solution g.*/ -  g=0; -  bshift=(EC_ILOG(_val)-1)>>1; -  b=1U<<bshift; -  do{ -    opus_uint32 t; -    t=(((opus_uint32)g<<1)+b)<<bshift; -    if(t<=_val){ -      g+=b; -      _val-=t; -    } -    b>>=1; -    bshift--; -  } -  while(bshift>=0); -  return g; -} - -#ifdef OPUS_FIXED_POINT - -opus_val32 frac_div32(opus_val32 a, opus_val32 b) -{ -   opus_val16 rcp; -   opus_val32 result, rem; -   int shift = celt_ilog2(b)-29; -   a = VSHR32(a,shift); -   b = VSHR32(b,shift); -   /* 16-bit reciprocal */ -   rcp = ROUND16(celt_rcp(ROUND16(b,16)),3); -   result = MULT16_32_Q15(rcp, a); -   rem = PSHR32(a,2)-MULT32_32_Q31(result, b); -   result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2)); -   if (result >= 536870912)       /*  2^29 */ -      return 2147483647;          /*  2^31 - 1 */ -   else if (result <= -536870912) /* -2^29 */ -      return -2147483647;         /* -2^31 */ -   else -      return SHL32(result, 2); -} - -/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */ -opus_val16 celt_rsqrt_norm(opus_val32 x) -{ -   opus_val16 n; -   opus_val16 r; -   opus_val16 r2; -   opus_val16 y; -   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */ -   n = x-32768; -   /* Get a rough initial guess for the root. -      The optimal minimax quadratic approximation (using relative error) is -       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485). -      Coefficients here, and the final result r, are Q14.*/ -   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713)))); -   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14. -      We can compute the result from n and r using Q15 multiplies with some -       adjustment, carefully done to avoid overflow. -      Range of y is [-1564,1594]. */ -   r2 = MULT16_16_Q15(r, r); -   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1); -   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5). -      This yields the Q14 reciprocal square root of the Q16 x, with a maximum -       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a -       peak absolute error of 2.26591/16384. */ -   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y, -              SUB16(MULT16_16_Q15(y, 12288), 16384)))); -} - -/** Sqrt approximation (QX input, QX/2 output) */ -opus_val32 celt_sqrt(opus_val32 x) -{ -   int k; -   opus_val16 n; -   opus_val32 rt; -   static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664}; -   if (x==0) -      return 0; -   else if (x>=1073741824) -      return 32767; -   k = (celt_ilog2(x)>>1)-7; -   x = VSHR32(x, 2*k); -   n = x-32768; -   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], -              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4]))))))))); -   rt = VSHR32(rt,7-k); -   return rt; -} - -#define L1 32767 -#define L2 -7651 -#define L3 8277 -#define L4 -626 - -static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x) -{ -   opus_val16 x2; - -   x2 = MULT16_16_P15(x,x); -   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2 -                                                                                )))))))); -} - -#undef L1 -#undef L2 -#undef L3 -#undef L4 - -opus_val16 celt_cos_norm(opus_val32 x) -{ -   x = x&0x0001ffff; -   if (x>SHL32(EXTEND32(1), 16)) -      x = SUB32(SHL32(EXTEND32(1), 17),x); -   if (x&0x00007fff) -   { -      if (x<SHL32(EXTEND32(1), 15)) -      { -         return _celt_cos_pi_2(EXTRACT16(x)); -      } else { -         return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x))); -      } -   } else { -      if (x&0x0000ffff) -         return 0; -      else if (x&0x0001ffff) -         return -32767; -      else -         return 32767; -   } -} - -/** Reciprocal approximation (Q15 input, Q16 output) */ -opus_val32 celt_rcp(opus_val32 x) -{ -   int i; -   opus_val16 n; -   opus_val16 r; -   celt_assert2(x>0, "celt_rcp() only defined for positive values"); -   i = celt_ilog2(x); -   /* n is Q15 with range [0,1). */ -   n = VSHR32(x,i-15)-32768; -   /* Start with a linear approximation: -      r = 1.8823529411764706-0.9411764705882353*n. -      The coefficients and the result are Q14 in the range [15420,30840].*/ -   r = ADD16(30840, MULT16_16_Q15(-15420, n)); -   /* Perform two Newton iterations: -      r -= r*((r*n)-1.Q15) -         = r*((r*n)+(r-1.Q15)). */ -   r = SUB16(r, MULT16_16_Q15(r, -             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))); -   /* We subtract an extra 1 in the second iteration to avoid overflow; it also -       neatly compensates for truncation error in the rest of the process. */ -   r = SUB16(r, ADD16(1, MULT16_16_Q15(r, -             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))))); -   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error -       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute -       error of 1.24665/32768. */ -   return VSHR32(EXTEND32(r),i-16); -} - -#endif  |