diff options
Diffstat (limited to 'drivers/opus/celt/cwrs.c')
| -rw-r--r-- | drivers/opus/celt/cwrs.c | 712 | 
1 files changed, 0 insertions, 712 deletions
diff --git a/drivers/opus/celt/cwrs.c b/drivers/opus/celt/cwrs.c deleted file mode 100644 index 983d4580a9..0000000000 --- a/drivers/opus/celt/cwrs.c +++ /dev/null @@ -1,712 +0,0 @@ -/* Copyright (c) 2007-2008 CSIRO -   Copyright (c) 2007-2009 Xiph.Org Foundation -   Copyright (c) 2007-2009 Timothy B. Terriberry -   Written by Timothy B. Terriberry and Jean-Marc Valin */ -/* -   Redistribution and use in source and binary forms, with or without -   modification, are permitted provided that the following conditions -   are met: - -   - Redistributions of source code must retain the above copyright -   notice, this list of conditions and the following disclaimer. - -   - Redistributions in binary form must reproduce the above copyright -   notice, this list of conditions and the following disclaimer in the -   documentation and/or other materials provided with the distribution. - -   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER -   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ -#include "opus/opus_config.h" - -#include "opus/celt/os_support.h" -#include "opus/celt/cwrs.h" -#include "opus/celt/mathops.h" -#include "opus/celt/arch.h" - -#ifdef CUSTOM_MODES - -/*Guaranteed to return a conservatively large estimate of the binary logarithm -   with frac bits of fractional precision. -  Tested for all possible 32-bit inputs with frac=4, where the maximum -   overestimation is 0.06254243 bits.*/ -int log2_frac(opus_uint32 val, int frac) -{ -  int l; -  l=EC_ILOG(val); -  if(val&(val-1)){ -    /*This is (val>>l-16), but guaranteed to round up, even if adding a bias -       before the shift would cause overflow (e.g., for 0xFFFFxxxx). -       Doesn't work for val=0, but that case fails the test above.*/ -    if(l>16)val=((val-1)>>(l-16))+1; -    else val<<=16-l; -    l=(l-1)<<frac; -    /*Note that we always need one iteration, since the rounding up above means -       that we might need to adjust the integer part of the logarithm.*/ -    do{ -      int b; -      b=(int)(val>>16); -      l+=b<<frac; -      val=(val+b)>>b; -      val=(val*val+0x7FFF)>>15; -    } -    while(frac-->0); -    /*If val is not exactly 0x8000, then we have to round up the remainder.*/ -    return l+(val>0x8000); -  } -  /*Exact powers of two require no rounding.*/ -  else return (l-1)<<frac; -} -#endif - -/*Although derived separately, the pulse vector coding scheme is equivalent to -   a Pyramid Vector Quantizer \cite{Fis86}. -  Some additional notes about an early version appear at -   http://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering -   and the definitions of some terms have evolved since that was written. - -  The conversion from a pulse vector to an integer index (encoding) and back -   (decoding) is governed by two related functions, V(N,K) and U(N,K). - -  V(N,K) = the number of combinations, with replacement, of N items, taken K -   at a time, when a sign bit is added to each item taken at least once (i.e., -   the number of N-dimensional unit pulse vectors with K pulses). -  One way to compute this is via -    V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1, -   where choose() is the binomial function. -  A table of values for N<10 and K<10 looks like: -  V[10][10] = { -    {1,  0,   0,    0,    0,     0,     0,      0,      0,       0}, -    {1,  2,   2,    2,    2,     2,     2,      2,      2,       2}, -    {1,  4,   8,   12,   16,    20,    24,     28,     32,      36}, -    {1,  6,  18,   38,   66,   102,   146,    198,    258,     326}, -    {1,  8,  32,   88,  192,   360,   608,    952,   1408,    1992}, -    {1, 10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290}, -    {1, 12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436}, -    {1, 14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598}, -    {1, 16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688}, -    {1, 18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146} -  }; - -  U(N,K) = the number of such combinations wherein N-1 objects are taken at -   most K-1 at a time. -  This is given by -    U(N,K) = sum(k=0...K-1,V(N-1,k)) -           = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0. -  The latter expression also makes clear that U(N,K) is half the number of such -   combinations wherein the first object is taken at least once. -  Although it may not be clear from either of these definitions, U(N,K) is the -   natural function to work with when enumerating the pulse vector codebooks, -   not V(N,K). -  U(N,K) is not well-defined for N=0, but with the extension -    U(0,K) = K>0 ? 0 : 1, -   the function becomes symmetric: U(N,K) = U(K,N), with a similar table: -  U[10][10] = { -    {1, 0,  0,   0,    0,    0,     0,     0,      0,      0}, -    {0, 1,  1,   1,    1,    1,     1,     1,      1,      1}, -    {0, 1,  3,   5,    7,    9,    11,    13,     15,     17}, -    {0, 1,  5,  13,   25,   41,    61,    85,    113,    145}, -    {0, 1,  7,  25,   63,  129,   231,   377,    575,    833}, -    {0, 1,  9,  41,  129,  321,   681,  1289,   2241,   3649}, -    {0, 1, 11,  61,  231,  681,  1683,  3653,   7183,  13073}, -    {0, 1, 13,  85,  377, 1289,  3653,  8989,  19825,  40081}, -    {0, 1, 15, 113,  575, 2241,  7183, 19825,  48639, 108545}, -    {0, 1, 17, 145,  833, 3649, 13073, 40081, 108545, 265729} -  }; - -  With this extension, V(N,K) may be written in terms of U(N,K): -    V(N,K) = U(N,K) + U(N,K+1) -   for all N>=0, K>=0. -  Thus U(N,K+1) represents the number of combinations where the first element -   is positive or zero, and U(N,K) represents the number of combinations where -   it is negative. -  With a large enough table of U(N,K) values, we could write O(N) encoding -   and O(min(N*log(K),N+K)) decoding routines, but such a table would be -   prohibitively large for small embedded devices (K may be as large as 32767 -   for small N, and N may be as large as 200). - -  Both functions obey the same recurrence relation: -    V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), -    U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1), -   for all N>0, K>0, with different initial conditions at N=0 or K=0. -  This allows us to construct a row of one of the tables above given the -   previous row or the next row. -  Thus we can derive O(NK) encoding and decoding routines with O(K) memory -   using only addition and subtraction. - -  When encoding, we build up from the U(2,K) row and work our way forwards. -  When decoding, we need to start at the U(N,K) row and work our way backwards, -   which requires a means of computing U(N,K). -  U(N,K) may be computed from two previous values with the same N: -    U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2) -   for all N>1, and since U(N,K) is symmetric, a similar relation holds for two -   previous values with the same K: -    U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K) -   for all K>1. -  This allows us to construct an arbitrary row of the U(N,K) table by starting -   with the first two values, which are constants. -  This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K) -   multiplications. -  Similar relations can be derived for V(N,K), but are not used here. - -  For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree -   polynomial for fixed N. -  The first few are -    U(1,K) = 1, -    U(2,K) = 2*K-1, -    U(3,K) = (2*K-2)*K+1, -    U(4,K) = (((4*K-6)*K+8)*K-3)/3, -    U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3, -   and -    V(1,K) = 2, -    V(2,K) = 4*K, -    V(3,K) = 4*K*K+2, -    V(4,K) = 8*(K*K+2)*K/3, -    V(5,K) = ((4*K*K+20)*K*K+6)/3, -   for all K>0. -  This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for -   small N (and indeed decoding is also O(N) for N<3). - -  @ARTICLE{Fis86, -    author="Thomas R. Fischer", -    title="A Pyramid Vector Quantizer", -    journal="IEEE Transactions on Information Theory", -    volume="IT-32", -    number=4, -    pages="568--583", -    month=Jul, -    year=1986 -  }*/ - -#if !defined(SMALL_FOOTPRINT) - -/*U(N,K) = U(K,N) := N>0?K>0?U(N-1,K)+U(N,K-1)+U(N-1,K-1):0:K>0?1:0*/ -# define CELT_PVQ_U(_n,_k) (CELT_PVQ_U_ROW[IMIN(_n,_k)][IMAX(_n,_k)]) -/*V(N,K) := U(N,K)+U(N,K+1) = the number of PVQ codewords for a band of size N -   with K pulses allocated to it.*/ -# define CELT_PVQ_V(_n,_k) (CELT_PVQ_U(_n,_k)+CELT_PVQ_U(_n,(_k)+1)) - -/*For each V(N,K) supported, we will access element U(min(N,K+1),max(N,K+1)). -  Thus, the number of entries in row I is the larger of the maximum number of -   pulses we will ever allocate for a given N=I (K=128, or however many fit in -   32 bits, whichever is smaller), plus one, and the maximum N for which -   K=I-1 pulses fit in 32 bits. -  The largest band size in an Opus Custom mode is 208. -  Otherwise, we can limit things to the set of N which can be achieved by -   splitting a band from a standard Opus mode: 176, 144, 96, 88, 72, 64, 48, -   44, 36, 32, 24, 22, 18, 16, 8, 4, 2).*/ -#if defined(CUSTOM_MODES) -static const opus_uint32 CELT_PVQ_U_DATA[1488]={ -#else -static const opus_uint32 CELT_PVQ_U_DATA[1272]={ -#endif -  /*N=0, K=0...176:*/ -  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -#if defined(CUSTOM_MODES) -  /*...208:*/ -  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -  0, 0, 0, 0, 0, 0, -#endif -  /*N=1, K=1...176:*/ -  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -#if defined(CUSTOM_MODES) -  /*...208:*/ -  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -  1, 1, 1, 1, 1, 1, -#endif -  /*N=2, K=2...176:*/ -  3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, -  43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, -  81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, -  115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, -  145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, -  175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, -  205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, -  235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, -  265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, -  295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, -  325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, -#if defined(CUSTOM_MODES) -  /*...208:*/ -  353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381, -  383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, -  413, 415, -#endif -  /*N=3, K=3...176:*/ -  13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, -  685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, -  1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, -  3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385, -  6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661, -  9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961, -  13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745, -  17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013, -  21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765, -  26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001, -  31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721, -  37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925, -  43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613, -  50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785, -  57461, 58141, 58825, 59513, 60205, 60901, 61601, -#if defined(CUSTOM_MODES) -  /*...208:*/ -  62305, 63013, 63725, 64441, 65161, 65885, 66613, 67345, 68081, 68821, 69565, -  70313, 71065, 71821, 72581, 73345, 74113, 74885, 75661, 76441, 77225, 78013, -  78805, 79601, 80401, 81205, 82013, 82825, 83641, 84461, 85285, 86113, -#endif -  /*N=4, K=4...176:*/ -  63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, -  7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, -  30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, -  82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193, -  161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575, -  267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217, -  410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951, -  597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609, -  833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023, -  1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407, -  1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759, -  1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175, -  2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751, -  2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583, -  3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767, -  3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399, -  4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575, -  5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391, -  6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943, -  7085049, 7207551, -#if defined(CUSTOM_MODES) -  /*...208:*/ -  7331457, 7456775, 7583513, 7711679, 7841281, 7972327, 8104825, 8238783, -  8374209, 8511111, 8649497, 8789375, 8930753, 9073639, 9218041, 9363967, -  9511425, 9660423, 9810969, 9963071, 10116737, 10271975, 10428793, 10587199, -  10747201, 10908807, 11072025, 11236863, 11403329, 11571431, 11741177, -  11912575, -#endif -  /*N=5, K=5...176:*/ -  321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041, -  50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401, -  330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241, -  1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241, -  2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801, -  4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849, -  8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849, -  13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809, -  20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881, -  29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641, -  40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081, -  55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609, -  73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049, -  95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641, -  122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041, -  155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321, -  193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969, -  238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889, -  290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401, -  351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241, -  420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561, -  500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929, -  590359041, 604167209, 618216201, 632508801, -#if defined(CUSTOM_MODES) -  /*...208:*/ -  647047809, 661836041, 676876329, 692171521, 707724481, 723538089, 739615241, -  755958849, 772571841, 789457161, 806617769, 824056641, 841776769, 859781161, -  878072841, 896654849, 915530241, 934702089, 954173481, 973947521, 994027329, -  1014416041, 1035116809, 1056132801, 1077467201, 1099123209, 1121104041, -  1143412929, 1166053121, 1189027881, 1212340489, 1235994241, -#endif -  /*N=6, K=6...96:*/ -  1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047, -  335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409, -  2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793, -  11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455, -  29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189, -  64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651, -  128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185, -  235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647, -  402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229, -  655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283, -  1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135, -  1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187, -  2011371957, 2120032959, -#if defined(CUSTOM_MODES) -  /*...109:*/ -  2233340609U, 2351442379U, 2474488829U, 2602633639U, 2736033641U, 2874848851U, -  3019242501U, 3169381071U, 3325434321U, 3487575323U, 3655980493U, 3830829623U, -  4012305913U, -#endif -  /*N=7, K=7...54*/ -  8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777, -  1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233, -  19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013, -  88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805, -  292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433, -  793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821, -  1667010073, 1870535785, 2094367717, -#if defined(CUSTOM_MODES) -  /*...60:*/ -  2340095869U, 2609401873U, 2904062449U, 3225952925U, 3577050821U, 3959439497U, -#endif -  /*N=8, K=8...37*/ -  48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767, -  9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017, -  104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351, -  638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615, -  2229491905U, -#if defined(CUSTOM_MODES) -  /*...40:*/ -  2691463695U, 3233240945U, 3866006015U, -#endif -  /*N=9, K=9...28:*/ -  265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777, -  39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145, -  628496897, 872893441, 1196924561, 1621925137, 2173806145U, -#if defined(CUSTOM_MODES) -  /*...29:*/ -  2883810113U, -#endif -  /*N=10, K=10...24:*/ -  1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073, -  254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629U, -  3375210671U, -  /*N=11, K=11...19:*/ -  8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585, -  948062325, 1616336765, -#if defined(CUSTOM_MODES) -  /*...20:*/ -  2684641785U, -#endif -  /*N=12, K=12...18:*/ -  45046719, 103274625, 224298231, 464387817, 921406335, 1759885185, -  3248227095U, -  /*N=13, K=13...16:*/ -  251595969, 579168825, 1267854873, 2653649025U, -  /*N=14, K=14:*/ -  1409933619 -}; - -#if defined(CUSTOM_MODES) -static const opus_uint32 *const CELT_PVQ_U_ROW[15]={ -  CELT_PVQ_U_DATA+   0,CELT_PVQ_U_DATA+ 208,CELT_PVQ_U_DATA+ 415, -  CELT_PVQ_U_DATA+ 621,CELT_PVQ_U_DATA+ 826,CELT_PVQ_U_DATA+1030, -  CELT_PVQ_U_DATA+1233,CELT_PVQ_U_DATA+1336,CELT_PVQ_U_DATA+1389, -  CELT_PVQ_U_DATA+1421,CELT_PVQ_U_DATA+1441,CELT_PVQ_U_DATA+1455, -  CELT_PVQ_U_DATA+1464,CELT_PVQ_U_DATA+1470,CELT_PVQ_U_DATA+1473 -}; -#else -static const opus_uint32 *const CELT_PVQ_U_ROW[15]={ -  CELT_PVQ_U_DATA+   0,CELT_PVQ_U_DATA+ 176,CELT_PVQ_U_DATA+ 351, -  CELT_PVQ_U_DATA+ 525,CELT_PVQ_U_DATA+ 698,CELT_PVQ_U_DATA+ 870, -  CELT_PVQ_U_DATA+1041,CELT_PVQ_U_DATA+1131,CELT_PVQ_U_DATA+1178, -  CELT_PVQ_U_DATA+1207,CELT_PVQ_U_DATA+1226,CELT_PVQ_U_DATA+1240, -  CELT_PVQ_U_DATA+1248,CELT_PVQ_U_DATA+1254,CELT_PVQ_U_DATA+1257 -}; -#endif - -#if defined(CUSTOM_MODES) -void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){ -  int k; -  /*_maxk==0 => there's nothing to do.*/ -  celt_assert(_maxk>0); -  _bits[0]=0; -  for(k=1;k<=_maxk;k++)_bits[k]=log2_frac(CELT_PVQ_V(_n,k),_frac); -} -#endif - -static opus_uint32 icwrs(int _n,const int *_y){ -  opus_uint32 i; -  int         j; -  int         k; -  celt_assert(_n>=2); -  j=_n-1; -  i=_y[j]<0; -  k=abs(_y[j]); -  do{ -    j--; -    i+=CELT_PVQ_U(_n-j,k); -    k+=abs(_y[j]); -    if(_y[j]<0)i+=CELT_PVQ_U(_n-j,k+1); -  } -  while(j>0); -  return i; -} - -void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ -  celt_assert(_k>0); -  ec_enc_uint(_enc,icwrs(_n,_y),CELT_PVQ_V(_n,_k)); -} - -static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){ -  opus_uint32 p; -  int         s; -  int         k0; -  opus_int16  val; -  opus_val32  yy=0; -  celt_assert(_k>0); -  celt_assert(_n>1); -  while(_n>2){ -    opus_uint32 q; -    /*Lots of pulses case:*/ -    if(_k>=_n){ -      const opus_uint32 *row; -      row=CELT_PVQ_U_ROW[_n]; -      /*Are the pulses in this dimension negative?*/ -      p=row[_k+1]; -      s=-(_i>=p); -      _i-=p&s; -      /*Count how many pulses were placed in this dimension.*/ -      k0=_k; -      q=row[_n]; -      if(q>_i){ -        celt_assert(p>q); -        _k=_n; -        do p=CELT_PVQ_U_ROW[--_k][_n]; -        while(p>_i); -      } -      else for(p=row[_k];p>_i;p=row[_k])_k--; -      _i-=p; -      val=(k0-_k+s)^s; -      *_y++=val; -      yy=MAC16_16(yy,val,val); -    } -    /*Lots of dimensions case:*/ -    else{ -      /*Are there any pulses in this dimension at all?*/ -      p=CELT_PVQ_U_ROW[_k][_n]; -      q=CELT_PVQ_U_ROW[_k+1][_n]; -      if(p<=_i&&_i<q){ -        _i-=p; -        *_y++=0; -      } -      else{ -        /*Are the pulses in this dimension negative?*/ -        s=-(_i>=q); -        _i-=q&s; -        /*Count how many pulses were placed in this dimension.*/ -        k0=_k; -        do p=CELT_PVQ_U_ROW[--_k][_n]; -        while(p>_i); -        _i-=p; -        val=(k0-_k+s)^s; -        *_y++=val; -        yy=MAC16_16(yy,val,val); -      } -    } -    _n--; -  } -  /*_n==2*/ -  p=2*_k+1; -  s=-(_i>=p); -  _i-=p&s; -  k0=_k; -  _k=(_i+1)>>1; -  if(_k)_i-=2*_k-1; -  val=(k0-_k+s)^s; -  *_y++=val; -  yy=MAC16_16(yy,val,val); -  /*_n==1*/ -  s=-(int)_i; -  val=(_k+s)^s; -  *_y=val; -  yy=MAC16_16(yy,val,val); -  return yy; -} - -opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){ -  return cwrsi(_n,_k,ec_dec_uint(_dec,CELT_PVQ_V(_n,_k)),_y); -} - -#else /* SMALL_FOOTPRINT */ - -/*Computes the next row/column of any recurrence that obeys the relation -   u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1]. -  _ui0 is the base case for the new row/column.*/ -static OPUS_INLINE void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){ -  opus_uint32 ui1; -  unsigned      j; -  /*This do-while will overrun the array if we don't have storage for at least -     2 values.*/ -  j=1; do { -    ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0); -    _ui[j-1]=_ui0; -    _ui0=ui1; -  } while (++j<_len); -  _ui[j-1]=_ui0; -} - -/*Computes the previous row/column of any recurrence that obeys the relation -   u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1]. -  _ui0 is the base case for the new row/column.*/ -static OPUS_INLINE void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){ -  opus_uint32 ui1; -  unsigned      j; -  /*This do-while will overrun the array if we don't have storage for at least -     2 values.*/ -  j=1; do { -    ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0); -    _ui[j-1]=_ui0; -    _ui0=ui1; -  } while (++j<_n); -  _ui[j-1]=_ui0; -} - -/*Compute V(_n,_k), as well as U(_n,0..._k+1). -  _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/ -static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){ -  opus_uint32 um2; -  unsigned      len; -  unsigned      k; -  len=_k+2; -  /*We require storage at least 3 values (e.g., _k>0).*/ -  celt_assert(len>=3); -  _u[0]=0; -  _u[1]=um2=1; -  /*If _n==0, _u[0] should be 1 and the rest should be 0.*/ -  /*If _n==1, _u[i] should be 1 for i>1.*/ -  celt_assert(_n>=2); -  /*If _k==0, the following do-while loop will overflow the buffer.*/ -  celt_assert(_k>0); -  k=2; -  do _u[k]=(k<<1)-1; -  while(++k<len); -  for(k=2;k<_n;k++)unext(_u+1,_k+1,1); -  return _u[_k]+_u[_k+1]; -} - -/*Returns the _i'th combination of _k elements chosen from a set of size _n -   with associated sign bits. -  _y: Returns the vector of pulses. -  _u: Must contain entries [0..._k+1] of row _n of U() on input. -      Its contents will be destructively modified.*/ -static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){ -  int j; -  opus_int16 val; -  opus_val32 yy=0; -  celt_assert(_n>0); -  j=0; -  do{ -    opus_uint32 p; -    int           s; -    int           yj; -    p=_u[_k+1]; -    s=-(_i>=p); -    _i-=p&s; -    yj=_k; -    p=_u[_k]; -    while(p>_i)p=_u[--_k]; -    _i-=p; -    yj-=_k; -    val=(yj+s)^s; -    _y[j]=val; -    yy=MAC16_16(yy,val,val); -    uprev(_u,_k+2,0); -  } -  while(++j<_n); -  return yy; -} - -/*Returns the index of the given combination of K elements chosen from a set -   of size 1 with associated sign bits. -  _y: The vector of pulses, whose sum of absolute values is K. -  _k: Returns K.*/ -static OPUS_INLINE opus_uint32 icwrs1(const int *_y,int *_k){ -  *_k=abs(_y[0]); -  return _y[0]<0; -} - -/*Returns the index of the given combination of K elements chosen from a set -   of size _n with associated sign bits. -  _y:  The vector of pulses, whose sum of absolute values must be _k. -  _nc: Returns V(_n,_k).*/ -static OPUS_INLINE opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y, - opus_uint32 *_u){ -  opus_uint32 i; -  int         j; -  int         k; -  /*We can't unroll the first two iterations of the loop unless _n>=2.*/ -  celt_assert(_n>=2); -  _u[0]=0; -  for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1; -  i=icwrs1(_y+_n-1,&k); -  j=_n-2; -  i+=_u[k]; -  k+=abs(_y[j]); -  if(_y[j]<0)i+=_u[k+1]; -  while(j-->0){ -    unext(_u,_k+2,0); -    i+=_u[k]; -    k+=abs(_y[j]); -    if(_y[j]<0)i+=_u[k+1]; -  } -  *_nc=_u[k]+_u[k+1]; -  return i; -} - -#ifdef CUSTOM_MODES -void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){ -  int k; -  /*_maxk==0 => there's nothing to do.*/ -  celt_assert(_maxk>0); -  _bits[0]=0; -  if (_n==1) -  { -    for (k=1;k<=_maxk;k++) -      _bits[k] = 1<<_frac; -  } -  else { -    VARDECL(opus_uint32,u); -    SAVE_STACK; -    ALLOC(u,_maxk+2U,opus_uint32); -    ncwrs_urow(_n,_maxk,u); -    for(k=1;k<=_maxk;k++) -      _bits[k]=log2_frac(u[k]+u[k+1],_frac); -    RESTORE_STACK; -  } -} -#endif /* CUSTOM_MODES */ - -void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ -  opus_uint32 i; -  VARDECL(opus_uint32,u); -  opus_uint32 nc; -  SAVE_STACK; -  celt_assert(_k>0); -  ALLOC(u,_k+2U,opus_uint32); -  i=icwrs(_n,_k,&nc,_y,u); -  ec_enc_uint(_enc,i,nc); -  RESTORE_STACK; -} - -opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){ -  VARDECL(opus_uint32,u); -  int ret; -  SAVE_STACK; -  celt_assert(_k>0); -  ALLOC(u,_k+2U,opus_uint32); -  ret = cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u); -  RESTORE_STACK; -  return ret; -} - -#endif /* SMALL_FOOTPRINT */  |