summaryrefslogtreecommitdiff
path: root/drivers/opus/celt/bands.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/opus/celt/bands.c')
-rw-r--r--drivers/opus/celt/bands.c1526
1 files changed, 0 insertions, 1526 deletions
diff --git a/drivers/opus/celt/bands.c b/drivers/opus/celt/bands.c
deleted file mode 100644
index bdd87dd327..0000000000
--- a/drivers/opus/celt/bands.c
+++ /dev/null
@@ -1,1526 +0,0 @@
-/* Copyright (c) 2007-2008 CSIRO
- Copyright (c) 2007-2009 Xiph.Org Foundation
- Copyright (c) 2008-2009 Gregory Maxwell
- Written by Jean-Marc Valin and Gregory Maxwell */
-/*
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
-
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-#include "opus/opus_config.h"
-
-#include <math.h>
-#include "opus/celt/bands.h"
-#include "opus/celt/modes.h"
-#include "opus/celt/vq.h"
-#include "opus/celt/cwrs.h"
-#include "opus/celt/stack_alloc.h"
-#include "opus/celt/os_support.h"
-#include "opus/celt/mathops.h"
-#include "opus/celt/rate.h"
-#include "opus/celt/quant_bands.h"
-#include "opus/celt/pitch.h"
-
-int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev)
-{
- int i;
- for (i=0;i<N;i++)
- {
- if (val < thresholds[i])
- break;
- }
- if (i>prev && val < thresholds[prev]+hysteresis[prev])
- i=prev;
- if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1])
- i=prev;
- return i;
-}
-
-opus_uint32 celt_lcg_rand(opus_uint32 seed)
-{
- return 1664525 * seed + 1013904223;
-}
-
-/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
- with this approximation is important because it has an impact on the bit allocation */
-static opus_int16 bitexact_cos(opus_int16 x)
-{
- opus_int32 tmp;
- opus_int16 x2;
- tmp = (4096+((opus_int32)(x)*(x)))>>13;
- celt_assert(tmp<=32767);
- x2 = tmp;
- x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
- celt_assert(x2<=32766);
- return 1+x2;
-}
-
-static int bitexact_log2tan(int isin,int icos)
-{
- int lc;
- int ls;
- lc=EC_ILOG(icos);
- ls=EC_ILOG(isin);
- icos<<=15-lc;
- isin<<=15-ls;
- return (ls-lc)*(1<<11)
- +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932)
- -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932);
-}
-
-#ifdef OPUS_FIXED_POINT
-/* Compute the amplitude (sqrt energy) in each of the bands */
-void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM)
-{
- int i, c, N;
- const opus_int16 *eBands = m->eBands;
- N = m->shortMdctSize<<LM;
- c=0; do {
- for (i=0;i<end;i++)
- {
- int j;
- opus_val32 maxval=0;
- opus_val32 sum = 0;
-
- maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM);
- if (maxval > 0)
- {
- int shift = celt_ilog2(maxval) - 14 + (((m->logN[i]>>BITRES)+LM+1)>>1);
- j=eBands[i]<<LM;
- if (shift>0)
- {
- do {
- sum = MAC16_16(sum, EXTRACT16(SHR32(X[j+c*N],shift)),
- EXTRACT16(SHR32(X[j+c*N],shift)));
- } while (++j<eBands[i+1]<<LM);
- } else {
- do {
- sum = MAC16_16(sum, EXTRACT16(SHL32(X[j+c*N],-shift)),
- EXTRACT16(SHL32(X[j+c*N],-shift)));
- } while (++j<eBands[i+1]<<LM);
- }
- /* We're adding one here to ensure the normalized band isn't larger than unity norm */
- bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
- } else {
- bandE[i+c*m->nbEBands] = EPSILON;
- }
- /*printf ("%f ", bandE[i+c*m->nbEBands]);*/
- }
- } while (++c<C);
- /*printf ("\n");*/
-}
-
-/* Normalise each band such that the energy is one. */
-void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
-{
- int i, c, N;
- const opus_int16 *eBands = m->eBands;
- N = M*m->shortMdctSize;
- c=0; do {
- i=0; do {
- opus_val16 g;
- int j,shift;
- opus_val16 E;
- shift = celt_zlog2(bandE[i+c*m->nbEBands])-13;
- E = VSHR32(bandE[i+c*m->nbEBands], shift);
- g = EXTRACT16(celt_rcp(SHL32(E,3)));
- j=M*eBands[i]; do {
- X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g);
- } while (++j<M*eBands[i+1]);
- } while (++i<end);
- } while (++c<C);
-}
-
-#else /* FIXED_POINT */
-/* Compute the amplitude (sqrt energy) in each of the bands */
-void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM)
-{
- int i, c, N;
- const opus_int16 *eBands = m->eBands;
- N = m->shortMdctSize<<LM;
- c=0; do {
- for (i=0;i<end;i++)
- {
- opus_val32 sum;
- sum = 1e-27f + celt_inner_prod_c(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM);
- bandE[i+c*m->nbEBands] = celt_sqrt(sum);
- /*printf ("%f ", bandE[i+c*m->nbEBands]);*/
- }
- } while (++c<C);
- /*printf ("\n");*/
-}
-
-/* Normalise each band such that the energy is one. */
-void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
-{
- int i, c, N;
- const opus_int16 *eBands = m->eBands;
- N = M*m->shortMdctSize;
- c=0; do {
- for (i=0;i<end;i++)
- {
- int j;
- opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]);
- for (j=M*eBands[i];j<M*eBands[i+1];j++)
- X[j+c*N] = freq[j+c*N]*g;
- }
- } while (++c<C);
-}
-
-#endif /* FIXED_POINT */
-
-/* De-normalise the energy to produce the synthesis from the unit-energy bands */
-void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
- celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start,
- int end, int M, int downsample, int silence)
-{
- int i, N;
- int bound;
- celt_sig * OPUS_RESTRICT f;
- const celt_norm * OPUS_RESTRICT x;
- const opus_int16 *eBands = m->eBands;
- N = M*m->shortMdctSize;
- bound = M*eBands[end];
- if (downsample!=1)
- bound = IMIN(bound, N/downsample);
- if (silence)
- {
- bound = 0;
- start = end = 0;
- }
- f = freq;
- x = X+M*eBands[start];
- for (i=0;i<M*eBands[start];i++)
- *f++ = 0;
- for (i=start;i<end;i++)
- {
- int j, band_end;
- opus_val16 g;
- opus_val16 lg;
-#ifdef OPUS_FIXED_POINT
- int shift;
-#endif
- j=M*eBands[i];
- band_end = M*eBands[i+1];
- lg = ADD16(bandLogE[i], SHL16((opus_val16)eMeans[i],6));
-#ifndef OPUS_FIXED_POINT
- g = celt_exp2(lg);
-#else
- /* Handle the integer part of the log energy */
- shift = 16-(lg>>DB_SHIFT);
- if (shift>31)
- {
- shift=0;
- g=0;
- } else {
- /* Handle the fractional part. */
- g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1));
- }
- /* Handle extreme gains with negative shift. */
- if (shift<0)
- {
- /* For shift < -2 we'd be likely to overflow, so we're capping
- the gain here. This shouldn't happen unless the bitstream is
- already corrupted. */
- if (shift < -2)
- {
- g = 32767;
- shift = -2;
- }
- do {
- *f++ = SHL32(MULT16_16(*x++, g), -shift);
- } while (++j<band_end);
- } else
-#endif
- /* Be careful of the fixed-point "else" just above when changing this code */
- do {
- *f++ = SHR32(MULT16_16(*x++, g), shift);
- } while (++j<band_end);
- }
- celt_assert(start <= end);
- OPUS_CLEAR(&freq[bound], N-bound);
-}
-
-/* This prevents energy collapse for transients with multiple short MDCTs */
-void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size,
- int start, int end, const opus_val16 *logE, const opus_val16 *prev1logE,
- const opus_val16 *prev2logE, const int *pulses, opus_uint32 seed, int arch)
-{
- int c, i, j, k;
- for (i=start;i<end;i++)
- {
- int N0;
- opus_val16 thresh, sqrt_1;
- int depth;
-#ifdef OPUS_FIXED_POINT
- int shift;
- opus_val32 thresh32;
-#endif
-
- N0 = m->eBands[i+1]-m->eBands[i];
- /* depth in 1/8 bits */
- celt_assert(pulses[i]>=0);
- depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM;
-
-#ifdef OPUS_FIXED_POINT
- thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1);
- thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32));
- {
- opus_val32 t;
- t = N0<<LM;
- shift = celt_ilog2(t)>>1;
- t = SHL32(t, (7-shift)<<1);
- sqrt_1 = celt_rsqrt_norm(t);
- }
-#else
- thresh = .5f*celt_exp2(-.125f*depth);
- sqrt_1 = celt_rsqrt(N0<<LM);
-#endif
-
- c=0; do
- {
- celt_norm *X;
- opus_val16 prev1;
- opus_val16 prev2;
- opus_val32 Ediff;
- opus_val16 r;
- int renormalize=0;
- prev1 = prev1logE[c*m->nbEBands+i];
- prev2 = prev2logE[c*m->nbEBands+i];
- if (C==1)
- {
- prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]);
- prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]);
- }
- Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2));
- Ediff = MAX32(0, Ediff);
-
-#ifdef OPUS_FIXED_POINT
- if (Ediff < 16384)
- {
- opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1);
- r = 2*MIN16(16383,r32);
- } else {
- r = 0;
- }
- if (LM==3)
- r = MULT16_16_Q14(23170, MIN32(23169, r));
- r = SHR16(MIN16(thresh, r),1);
- r = SHR32(MULT16_16_Q15(sqrt_1, r),shift);
-#else
- /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
- short blocks don't have the same energy as long */
- r = 2.f*celt_exp2(-Ediff);
- if (LM==3)
- r *= 1.41421356f;
- r = MIN16(thresh, r);
- r = r*sqrt_1;
-#endif
- X = X_+c*size+(m->eBands[i]<<LM);
- for (k=0;k<1<<LM;k++)
- {
- /* Detect collapse */
- if (!(collapse_masks[i*C+c]&1<<k))
- {
- /* Fill with noise */
- for (j=0;j<N0;j++)
- {
- seed = celt_lcg_rand(seed);
- X[(j<<LM)+k] = (seed&0x8000 ? r : -r);
- }
- renormalize = 1;
- }
- }
- /* We just added some energy, so we need to renormalise */
- if (renormalize)
- renormalise_vector(X, N0<<LM, Q15ONE, arch);
- } while (++c<C);
- }
-}
-
-static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N)
-{
- int i = bandID;
- int j;
- opus_val16 a1, a2;
- opus_val16 left, right;
- opus_val16 norm;
-#ifdef OPUS_FIXED_POINT
- int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13;
-#endif
- left = VSHR32(bandE[i],shift);
- right = VSHR32(bandE[i+m->nbEBands],shift);
- norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
- a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
- a2 = DIV32_16(SHL32(EXTEND32(right),14),norm);
- for (j=0;j<N;j++)
- {
- celt_norm r, l;
- l = X[j];
- r = Y[j];
- X[j] = EXTRACT16(SHR32(MAC16_16(MULT16_16(a1, l), a2, r), 14));
- /* Side is not encoded, no need to calculate */
- }
-}
-
-static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N)
-{
- int j;
- for (j=0;j<N;j++)
- {
- opus_val32 r, l;
- l = MULT16_16(QCONST16(.70710678f, 15), X[j]);
- r = MULT16_16(QCONST16(.70710678f, 15), Y[j]);
- X[j] = EXTRACT16(SHR32(ADD32(l, r), 15));
- Y[j] = EXTRACT16(SHR32(SUB32(r, l), 15));
- }
-}
-
-static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val16 mid, int N, int arch)
-{
- int j;
- opus_val32 xp=0, side=0;
- opus_val32 El, Er;
- opus_val16 mid2;
-#ifdef OPUS_FIXED_POINT
- int kl, kr;
-#endif
- opus_val32 t, lgain, rgain;
-
- /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
- dual_inner_prod(Y, X, Y, N, &xp, &side, arch);
- /* Compensating for the mid normalization */
- xp = MULT16_32_Q15(mid, xp);
- /* mid and side are in Q15, not Q14 like X and Y */
- mid2 = SHR32(mid, 1);
- El = MULT16_16(mid2, mid2) + side - 2*xp;
- Er = MULT16_16(mid2, mid2) + side + 2*xp;
- if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28))
- {
- OPUS_COPY(Y, X, N);
- return;
- }
-
-#ifdef OPUS_FIXED_POINT
- kl = celt_ilog2(El)>>1;
- kr = celt_ilog2(Er)>>1;
-#endif
- t = VSHR32(El, (kl-7)<<1);
- lgain = celt_rsqrt_norm(t);
- t = VSHR32(Er, (kr-7)<<1);
- rgain = celt_rsqrt_norm(t);
-
-#ifdef OPUS_FIXED_POINT
- if (kl < 7)
- kl = 7;
- if (kr < 7)
- kr = 7;
-#endif
-
- for (j=0;j<N;j++)
- {
- celt_norm r, l;
- /* Apply mid scaling (side is already scaled) */
- l = MULT16_16_P15(mid, X[j]);
- r = Y[j];
- X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1));
- Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1));
- }
-}
-
-/* Decide whether we should spread the pulses in the current frame */
-int spreading_decision(const CELTMode *m, const celt_norm *X, int *average,
- int last_decision, int *hf_average, int *tapset_decision, int update_hf,
- int end, int C, int M)
-{
- int i, c, N0;
- int sum = 0, nbBands=0;
- const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
- int decision;
- int hf_sum=0;
-
- celt_assert(end>0);
-
- N0 = M*m->shortMdctSize;
-
- if (M*(eBands[end]-eBands[end-1]) <= 8)
- return SPREAD_NONE;
- c=0; do {
- for (i=0;i<end;i++)
- {
- int j, N, tmp=0;
- int tcount[3] = {0,0,0};
- const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0;
- N = M*(eBands[i+1]-eBands[i]);
- if (N<=8)
- continue;
- /* Compute rough CDF of |x[j]| */
- for (j=0;j<N;j++)
- {
- opus_val32 x2N; /* Q13 */
-
- x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N);
- if (x2N < QCONST16(0.25f,13))
- tcount[0]++;
- if (x2N < QCONST16(0.0625f,13))
- tcount[1]++;
- if (x2N < QCONST16(0.015625f,13))
- tcount[2]++;
- }
-
- /* Only include four last bands (8 kHz and up) */
- if (i>m->nbEBands-4)
- hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N);
- tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N);
- sum += tmp*256;
- nbBands++;
- }
- } while (++c<C);
-
- if (update_hf)
- {
- if (hf_sum)
- hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end));
- *hf_average = (*hf_average+hf_sum)>>1;
- hf_sum = *hf_average;
- if (*tapset_decision==2)
- hf_sum += 4;
- else if (*tapset_decision==0)
- hf_sum -= 4;
- if (hf_sum > 22)
- *tapset_decision=2;
- else if (hf_sum > 18)
- *tapset_decision=1;
- else
- *tapset_decision=0;
- }
- /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/
- celt_assert(nbBands>0); /* end has to be non-zero */
- celt_assert(sum>=0);
- sum = celt_udiv(sum, nbBands);
- /* Recursive averaging */
- sum = (sum+*average)>>1;
- *average = sum;
- /* Hysteresis */
- sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2;
- if (sum < 80)
- {
- decision = SPREAD_AGGRESSIVE;
- } else if (sum < 256)
- {
- decision = SPREAD_NORMAL;
- } else if (sum < 384)
- {
- decision = SPREAD_LIGHT;
- } else {
- decision = SPREAD_NONE;
- }
-#ifdef FUZZING
- decision = rand()&0x3;
- *tapset_decision=rand()%3;
-#endif
- return decision;
-}
-
-/* Indexing table for converting from natural Hadamard to ordery Hadamard
- This is essentially a bit-reversed Gray, on top of which we've added
- an inversion of the order because we want the DC at the end rather than
- the beginning. The lines are for N=2, 4, 8, 16 */
-static const int ordery_table[] = {
- 1, 0,
- 3, 0, 2, 1,
- 7, 0, 4, 3, 6, 1, 5, 2,
- 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5,
-};
-
-static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
-{
- int i,j;
- VARDECL(celt_norm, tmp);
- int N;
- SAVE_STACK;
- N = N0*stride;
- ALLOC(tmp, N, celt_norm);
- celt_assert(stride>0);
- if (hadamard)
- {
- const int *ordery = ordery_table+stride-2;
- for (i=0;i<stride;i++)
- {
- for (j=0;j<N0;j++)
- tmp[ordery[i]*N0+j] = X[j*stride+i];
- }
- } else {
- for (i=0;i<stride;i++)
- for (j=0;j<N0;j++)
- tmp[i*N0+j] = X[j*stride+i];
- }
- OPUS_COPY(X, tmp, N);
- RESTORE_STACK;
-}
-
-static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
-{
- int i,j;
- VARDECL(celt_norm, tmp);
- int N;
- SAVE_STACK;
- N = N0*stride;
- ALLOC(tmp, N, celt_norm);
- if (hadamard)
- {
- const int *ordery = ordery_table+stride-2;
- for (i=0;i<stride;i++)
- for (j=0;j<N0;j++)
- tmp[j*stride+i] = X[ordery[i]*N0+j];
- } else {
- for (i=0;i<stride;i++)
- for (j=0;j<N0;j++)
- tmp[j*stride+i] = X[i*N0+j];
- }
- OPUS_COPY(X, tmp, N);
- RESTORE_STACK;
-}
-
-void haar1(celt_norm *X, int N0, int stride)
-{
- int i, j;
- N0 >>= 1;
- for (i=0;i<stride;i++)
- for (j=0;j<N0;j++)
- {
- opus_val32 tmp1, tmp2;
- tmp1 = MULT16_16(QCONST16(.70710678f,15), X[stride*2*j+i]);
- tmp2 = MULT16_16(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]);
- X[stride*2*j+i] = EXTRACT16(PSHR32(ADD32(tmp1, tmp2), 15));
- X[stride*(2*j+1)+i] = EXTRACT16(PSHR32(SUB32(tmp1, tmp2), 15));
- }
-}
-
-static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo)
-{
- static const opus_int16 exp2_table8[8] =
- {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048};
- int qn, qb;
- int N2 = 2*N-1;
- if (stereo && N==2)
- N2--;
- /* The upper limit ensures that in a stereo split with itheta==16384, we'll
- always have enough bits left over to code at least one pulse in the
- side; otherwise it would collapse, since it doesn't get folded. */
- qb = celt_sudiv(b+N2*offset, N2);
- qb = IMIN(b-pulse_cap-(4<<BITRES), qb);
-
- qb = IMIN(8<<BITRES, qb);
-
- if (qb<(1<<BITRES>>1)) {
- qn = 1;
- } else {
- qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES));
- qn = (qn+1)>>1<<1;
- }
- celt_assert(qn <= 256);
- return qn;
-}
-
-struct band_ctx {
- int encode;
- const CELTMode *m;
- int i;
- int intensity;
- int spread;
- int tf_change;
- ec_ctx *ec;
- opus_int32 remaining_bits;
- const celt_ener *bandE;
- opus_uint32 seed;
- int arch;
-};
-
-struct split_ctx {
- int inv;
- int imid;
- int iside;
- int delta;
- int itheta;
- int qalloc;
-};
-
-static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
- celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0,
- int LM,
- int stereo, int *fill)
-{
- int qn;
- int itheta=0;
- int delta;
- int imid, iside;
- int qalloc;
- int pulse_cap;
- int offset;
- opus_int32 tell;
- int inv=0;
- int encode;
- const CELTMode *m;
- int i;
- int intensity;
- ec_ctx *ec;
- const celt_ener *bandE;
-
- encode = ctx->encode;
- m = ctx->m;
- i = ctx->i;
- intensity = ctx->intensity;
- ec = ctx->ec;
- bandE = ctx->bandE;
-
- /* Decide on the resolution to give to the split parameter theta */
- pulse_cap = m->logN[i]+LM*(1<<BITRES);
- offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET);
- qn = compute_qn(N, *b, offset, pulse_cap, stereo);
- if (stereo && i>=intensity)
- qn = 1;
- if (encode)
- {
- /* theta is the atan() of the ratio between the (normalized)
- side and mid. With just that parameter, we can re-scale both
- mid and side because we know that 1) they have unit norm and
- 2) they are orthogonal. */
- itheta = stereo_itheta(X, Y, stereo, N, ctx->arch);
- }
- tell = ec_tell_frac(ec);
- if (qn!=1)
- {
- if (encode)
- itheta = (itheta*qn+8192)>>14;
-
- /* Entropy coding of the angle. We use a uniform pdf for the
- time split, a step for stereo, and a triangular one for the rest. */
- if (stereo && N>2)
- {
- int p0 = 3;
- int x = itheta;
- int x0 = qn/2;
- int ft = p0*(x0+1) + x0;
- /* Use a probability of p0 up to itheta=8192 and then use 1 after */
- if (encode)
- {
- ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
- } else {
- int fs;
- fs=ec_decode(ec,ft);
- if (fs<(x0+1)*p0)
- x=fs/p0;
- else
- x=x0+1+(fs-(x0+1)*p0);
- ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
- itheta = x;
- }
- } else if (B0>1 || stereo) {
- /* Uniform pdf */
- if (encode)
- ec_enc_uint(ec, itheta, qn+1);
- else
- itheta = ec_dec_uint(ec, qn+1);
- } else {
- int fs=1, ft;
- ft = ((qn>>1)+1)*((qn>>1)+1);
- if (encode)
- {
- int fl;
-
- fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
- fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
- ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
-
- ec_encode(ec, fl, fl+fs, ft);
- } else {
- /* Triangular pdf */
- int fl=0;
- int fm;
- fm = ec_decode(ec, ft);
-
- if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
- {
- itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1;
- fs = itheta + 1;
- fl = itheta*(itheta + 1)>>1;
- }
- else
- {
- itheta = (2*(qn + 1)
- - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1;
- fs = qn + 1 - itheta;
- fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
- }
-
- ec_dec_update(ec, fl, fl+fs, ft);
- }
- }
- celt_assert(itheta>=0);
- itheta = celt_udiv((opus_int32)itheta*16384, qn);
- if (encode && stereo)
- {
- if (itheta==0)
- intensity_stereo(m, X, Y, bandE, i, N);
- else
- stereo_split(X, Y, N);
- }
- /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
- Let's do that at higher complexity */
- } else if (stereo) {
- if (encode)
- {
- inv = itheta > 8192;
- if (inv)
- {
- int j;
- for (j=0;j<N;j++)
- Y[j] = -Y[j];
- }
- intensity_stereo(m, X, Y, bandE, i, N);
- }
- if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES)
- {
- if (encode)
- ec_enc_bit_logp(ec, inv, 2);
- else
- inv = ec_dec_bit_logp(ec, 2);
- } else
- inv = 0;
- itheta = 0;
- }
- qalloc = ec_tell_frac(ec) - tell;
- *b -= qalloc;
-
- if (itheta == 0)
- {
- imid = 32767;
- iside = 0;
- *fill &= (1<<B)-1;
- delta = -16384;
- } else if (itheta == 16384)
- {
- imid = 0;
- iside = 32767;
- *fill &= ((1<<B)-1)<<B;
- delta = 16384;
- } else {
- imid = bitexact_cos((opus_int16)itheta);
- iside = bitexact_cos((opus_int16)(16384-itheta));
- /* This is the mid vs side allocation that minimizes squared error
- in that band. */
- delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
- }
-
- sctx->inv = inv;
- sctx->imid = imid;
- sctx->iside = iside;
- sctx->delta = delta;
- sctx->itheta = itheta;
- sctx->qalloc = qalloc;
-}
-static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b,
- celt_norm *lowband_out)
-{
-#ifdef RESYNTH
- int resynth = 1;
-#else
- int resynth = !ctx->encode;
-#endif
- int c;
- int stereo;
- celt_norm *x = X;
- int encode;
- ec_ctx *ec;
-
- encode = ctx->encode;
- ec = ctx->ec;
-
- stereo = Y != NULL;
- c=0; do {
- int sign=0;
- if (ctx->remaining_bits>=1<<BITRES)
- {
- if (encode)
- {
- sign = x[0]<0;
- ec_enc_bits(ec, sign, 1);
- } else {
- sign = ec_dec_bits(ec, 1);
- }
- ctx->remaining_bits -= 1<<BITRES;
- b-=1<<BITRES;
- }
- if (resynth)
- x[0] = sign ? -NORM_SCALING : NORM_SCALING;
- x = Y;
- } while (++c<1+stereo);
- if (lowband_out)
- lowband_out[0] = SHR16(X[0],4);
- return 1;
-}
-
-/* This function is responsible for encoding and decoding a mono partition.
- It can split the band in two and transmit the energy difference with
- the two half-bands. It can be called recursively so bands can end up being
- split in 8 parts. */
-static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
- int N, int b, int B, celt_norm *lowband,
- int LM,
- opus_val16 gain, int fill)
-{
- const unsigned char *cache;
- int q;
- int curr_bits;
- int imid=0, iside=0;
- int B0=B;
- opus_val16 mid=0, side=0;
- unsigned cm=0;
-#ifdef RESYNTH
- int resynth = 1;
-#else
- int resynth = !ctx->encode;
-#endif
- celt_norm *Y=NULL;
- int encode;
- const CELTMode *m;
- int i;
- int spread;
- ec_ctx *ec;
-
- encode = ctx->encode;
- m = ctx->m;
- i = ctx->i;
- spread = ctx->spread;
- ec = ctx->ec;
-
- /* If we need 1.5 more bit than we can produce, split the band in two. */
- cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
- if (LM != -1 && b > cache[cache[0]]+12 && N>2)
- {
- int mbits, sbits, delta;
- int itheta;
- int qalloc;
- struct split_ctx sctx;
- celt_norm *next_lowband2=NULL;
- opus_int32 rebalance;
-
- N >>= 1;
- Y = X+N;
- LM -= 1;
- if (B==1)
- fill = (fill&1)|(fill<<1);
- B = (B+1)>>1;
-
- compute_theta(ctx, &sctx, X, Y, N, &b, B, B0,
- LM, 0, &fill);
- imid = sctx.imid;
- iside = sctx.iside;
- delta = sctx.delta;
- itheta = sctx.itheta;
- qalloc = sctx.qalloc;
-#ifdef OPUS_FIXED_POINT
- mid = imid;
- side = iside;
-#else
- mid = (1.f/32768)*imid;
- side = (1.f/32768)*iside;
-#endif
-
- /* Give more bits to low-energy MDCTs than they would otherwise deserve */
- if (B0>1 && (itheta&0x3fff))
- {
- if (itheta > 8192)
- /* Rough approximation for pre-echo masking */
- delta -= delta>>(4-LM);
- else
- /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */
- delta = IMIN(0, delta + (N<<BITRES>>(5-LM)));
- }
- mbits = IMAX(0, IMIN(b, (b-delta)/2));
- sbits = b-mbits;
- ctx->remaining_bits -= qalloc;
-
- if (lowband)
- next_lowband2 = lowband+N; /* >32-bit split case */
-
- rebalance = ctx->remaining_bits;
- if (mbits >= sbits)
- {
- cm = quant_partition(ctx, X, N, mbits, B,
- lowband, LM,
- MULT16_16_P15(gain,mid), fill);
- rebalance = mbits - (rebalance-ctx->remaining_bits);
- if (rebalance > 3<<BITRES && itheta!=0)
- sbits += rebalance - (3<<BITRES);
- cm |= quant_partition(ctx, Y, N, sbits, B,
- next_lowband2, LM,
- MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
- } else {
- cm = quant_partition(ctx, Y, N, sbits, B,
- next_lowband2, LM,
- MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
- rebalance = sbits - (rebalance-ctx->remaining_bits);
- if (rebalance > 3<<BITRES && itheta!=16384)
- mbits += rebalance - (3<<BITRES);
- cm |= quant_partition(ctx, X, N, mbits, B,
- lowband, LM,
- MULT16_16_P15(gain,mid), fill);
- }
- } else {
- /* This is the basic no-split case */
- q = bits2pulses(m, i, LM, b);
- curr_bits = pulses2bits(m, i, LM, q);
- ctx->remaining_bits -= curr_bits;
-
- /* Ensures we can never bust the budget */
- while (ctx->remaining_bits < 0 && q > 0)
- {
- ctx->remaining_bits += curr_bits;
- q--;
- curr_bits = pulses2bits(m, i, LM, q);
- ctx->remaining_bits -= curr_bits;
- }
-
- if (q!=0)
- {
- int K = get_pulses(q);
-
- /* Finally do the actual quantization */
- if (encode)
- {
- cm = alg_quant(X, N, K, spread, B, ec
-#ifdef RESYNTH
- , gain
-#endif
- );
- } else {
- cm = alg_unquant(X, N, K, spread, B, ec, gain);
- }
- } else {
- /* If there's no pulse, fill the band anyway */
- int j;
- if (resynth)
- {
- unsigned cm_mask;
- /* B can be as large as 16, so this shift might overflow an int on a
- 16-bit platform; use a long to get defined behavior.*/
- cm_mask = (unsigned)(1UL<<B)-1;
- fill &= cm_mask;
- if (!fill)
- {
- OPUS_CLEAR(X, N);
- } else {
- if (lowband == NULL)
- {
- /* Noise */
- for (j=0;j<N;j++)
- {
- ctx->seed = celt_lcg_rand(ctx->seed);
- X[j] = (celt_norm)((opus_int32)ctx->seed>>20);
- }
- cm = cm_mask;
- } else {
- /* Folded spectrum */
- for (j=0;j<N;j++)
- {
- opus_val16 tmp;
- ctx->seed = celt_lcg_rand(ctx->seed);
- /* About 48 dB below the "normal" folding level */
- tmp = QCONST16(1.0f/256, 10);
- tmp = (ctx->seed)&0x8000 ? tmp : -tmp;
- X[j] = lowband[j]+tmp;
- }
- cm = fill;
- }
- renormalise_vector(X, N, gain, ctx->arch);
- }
- }
- }
- }
-
- return cm;
-}
-
-
-/* This function is responsible for encoding and decoding a band for the mono case. */
-static unsigned quant_band(struct band_ctx *ctx, celt_norm *X,
- int N, int b, int B, celt_norm *lowband,
- int LM, celt_norm *lowband_out,
- opus_val16 gain, celt_norm *lowband_scratch, int fill)
-{
- int N0=N;
- int N_B=N;
- int N_B0;
- int B0=B;
- int time_divide=0;
- int recombine=0;
- int longBlocks;
- unsigned cm=0;
-#ifdef RESYNTH
- int resynth = 1;
-#else
- int resynth = !ctx->encode;
-#endif
- int k;
- int encode;
- int tf_change;
-
- encode = ctx->encode;
- tf_change = ctx->tf_change;
-
- longBlocks = B0==1;
-
- N_B = celt_udiv(N_B, B);
-
- /* Special case for one sample */
- if (N==1)
- {
- return quant_band_n1(ctx, X, NULL, b, lowband_out);
- }
-
- if (tf_change>0)
- recombine = tf_change;
- /* Band recombining to increase frequency resolution */
-
- if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
- {
- OPUS_COPY(lowband_scratch, lowband, N);
- lowband = lowband_scratch;
- }
-
- for (k=0;k<recombine;k++)
- {
- static const unsigned char bit_interleave_table[16]={
- 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
- };
- if (encode)
- haar1(X, N>>k, 1<<k);
- if (lowband)
- haar1(lowband, N>>k, 1<<k);
- fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
- }
- B>>=recombine;
- N_B<<=recombine;
-
- /* Increasing the time resolution */
- while ((N_B&1) == 0 && tf_change<0)
- {
- if (encode)
- haar1(X, N_B, B);
- if (lowband)
- haar1(lowband, N_B, B);
- fill |= fill<<B;
- B <<= 1;
- N_B >>= 1;
- time_divide++;
- tf_change++;
- }
- B0=B;
- N_B0 = N_B;
-
- /* Reorganize the samples in time order instead of frequency order */
- if (B0>1)
- {
- if (encode)
- deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
- if (lowband)
- deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
- }
-
- cm = quant_partition(ctx, X, N, b, B, lowband,
- LM, gain, fill);
-
- /* This code is used by the decoder and by the resynthesis-enabled encoder */
- if (resynth)
- {
- /* Undo the sample reorganization going from time order to frequency order */
- if (B0>1)
- interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
-
- /* Undo time-freq changes that we did earlier */
- N_B = N_B0;
- B = B0;
- for (k=0;k<time_divide;k++)
- {
- B >>= 1;
- N_B <<= 1;
- cm |= cm>>B;
- haar1(X, N_B, B);
- }
-
- for (k=0;k<recombine;k++)
- {
- static const unsigned char bit_deinterleave_table[16]={
- 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F,
- 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF
- };
- cm = bit_deinterleave_table[cm];
- haar1(X, N0>>k, 1<<k);
- }
- B<<=recombine;
-
- /* Scale output for later folding */
- if (lowband_out)
- {
- int j;
- opus_val16 n;
- n = celt_sqrt(SHL32(EXTEND32(N0),22));
- for (j=0;j<N0;j++)
- lowband_out[j] = MULT16_16_Q15(n,X[j]);
- }
- cm &= (1<<B)-1;
- }
- return cm;
-}
-
-
-/* This function is responsible for encoding and decoding a band for the stereo case. */
-static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y,
- int N, int b, int B, celt_norm *lowband,
- int LM, celt_norm *lowband_out,
- celt_norm *lowband_scratch, int fill)
-{
- int imid=0, iside=0;
- int inv = 0;
- opus_val16 mid=0, side=0;
- unsigned cm=0;
-#ifdef RESYNTH
- int resynth = 1;
-#else
- int resynth = !ctx->encode;
-#endif
- int mbits, sbits, delta;
- int itheta;
- int qalloc;
- struct split_ctx sctx;
- int orig_fill;
- int encode;
- ec_ctx *ec;
-
- encode = ctx->encode;
- ec = ctx->ec;
-
- /* Special case for one sample */
- if (N==1)
- {
- return quant_band_n1(ctx, X, Y, b, lowband_out);
- }
-
- orig_fill = fill;
-
- compute_theta(ctx, &sctx, X, Y, N, &b, B, B,
- LM, 1, &fill);
- inv = sctx.inv;
- imid = sctx.imid;
- iside = sctx.iside;
- delta = sctx.delta;
- itheta = sctx.itheta;
- qalloc = sctx.qalloc;
-#ifdef OPUS_FIXED_POINT
- mid = imid;
- side = iside;
-#else
- mid = (1.f/32768)*imid;
- side = (1.f/32768)*iside;
-#endif
-
- /* This is a special case for N=2 that only works for stereo and takes
- advantage of the fact that mid and side are orthogonal to encode
- the side with just one bit. */
- if (N==2)
- {
- int c;
- int sign=0;
- celt_norm *x2, *y2;
- mbits = b;
- sbits = 0;
- /* Only need one bit for the side. */
- if (itheta != 0 && itheta != 16384)
- sbits = 1<<BITRES;
- mbits -= sbits;
- c = itheta > 8192;
- ctx->remaining_bits -= qalloc+sbits;
-
- x2 = c ? Y : X;
- y2 = c ? X : Y;
- if (sbits)
- {
- if (encode)
- {
- /* Here we only need to encode a sign for the side. */
- sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
- ec_enc_bits(ec, sign, 1);
- } else {
- sign = ec_dec_bits(ec, 1);
- }
- }
- sign = 1-2*sign;
- /* We use orig_fill here because we want to fold the side, but if
- itheta==16384, we'll have cleared the low bits of fill. */
- cm = quant_band(ctx, x2, N, mbits, B, lowband,
- LM, lowband_out, Q15ONE, lowband_scratch, orig_fill);
- /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
- and there's no need to worry about mixing with the other channel. */
- y2[0] = -sign*x2[1];
- y2[1] = sign*x2[0];
- if (resynth)
- {
- celt_norm tmp;
- X[0] = MULT16_16_Q15(mid, X[0]);
- X[1] = MULT16_16_Q15(mid, X[1]);
- Y[0] = MULT16_16_Q15(side, Y[0]);
- Y[1] = MULT16_16_Q15(side, Y[1]);
- tmp = X[0];
- X[0] = SUB16(tmp,Y[0]);
- Y[0] = ADD16(tmp,Y[0]);
- tmp = X[1];
- X[1] = SUB16(tmp,Y[1]);
- Y[1] = ADD16(tmp,Y[1]);
- }
- } else {
- /* "Normal" split code */
- opus_int32 rebalance;
-
- mbits = IMAX(0, IMIN(b, (b-delta)/2));
- sbits = b-mbits;
- ctx->remaining_bits -= qalloc;
-
- rebalance = ctx->remaining_bits;
- if (mbits >= sbits)
- {
- /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
- mid for folding later. */
- cm = quant_band(ctx, X, N, mbits, B,
- lowband, LM, lowband_out,
- Q15ONE, lowband_scratch, fill);
- rebalance = mbits - (rebalance-ctx->remaining_bits);
- if (rebalance > 3<<BITRES && itheta!=0)
- sbits += rebalance - (3<<BITRES);
-
- /* For a stereo split, the high bits of fill are always zero, so no
- folding will be done to the side. */
- cm |= quant_band(ctx, Y, N, sbits, B,
- NULL, LM, NULL,
- side, NULL, fill>>B);
- } else {
- /* For a stereo split, the high bits of fill are always zero, so no
- folding will be done to the side. */
- cm = quant_band(ctx, Y, N, sbits, B,
- NULL, LM, NULL,
- side, NULL, fill>>B);
- rebalance = sbits - (rebalance-ctx->remaining_bits);
- if (rebalance > 3<<BITRES && itheta!=16384)
- mbits += rebalance - (3<<BITRES);
- /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
- mid for folding later. */
- cm |= quant_band(ctx, X, N, mbits, B,
- lowband, LM, lowband_out,
- Q15ONE, lowband_scratch, fill);
- }
- }
-
-
- /* This code is used by the decoder and by the resynthesis-enabled encoder */
- if (resynth)
- {
- if (N!=2)
- stereo_merge(X, Y, mid, N, ctx->arch);
- if (inv)
- {
- int j;
- for (j=0;j<N;j++)
- Y[j] = -Y[j];
- }
- }
- return cm;
-}
-
-
-void quant_all_bands(int encode, const CELTMode *m, int start, int end,
- celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks,
- const celt_ener *bandE, int *pulses, int shortBlocks, int spread,
- int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits,
- opus_int32 balance, ec_ctx *ec, int LM, int codedBands,
- opus_uint32 *seed, int arch)
-{
- int i;
- opus_int32 remaining_bits;
- const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
- celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2;
- VARDECL(celt_norm, _norm);
- celt_norm *lowband_scratch;
- int B;
- int M;
- int lowband_offset;
- int update_lowband = 1;
- int C = Y_ != NULL ? 2 : 1;
- int norm_offset;
-#ifdef RESYNTH
- int resynth = 1;
-#else
- int resynth = !encode;
-#endif
- struct band_ctx ctx;
- SAVE_STACK;
-
- M = 1<<LM;
- B = shortBlocks ? M : 1;
- norm_offset = M*eBands[start];
- /* No need to allocate norm for the last band because we don't need an
- output in that band. */
- ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm);
- norm = _norm;
- norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset;
- /* We can use the last band as scratch space because we don't need that
- scratch space for the last band. */
- lowband_scratch = X_+M*eBands[m->nbEBands-1];
-
- lowband_offset = 0;
- ctx.bandE = bandE;
- ctx.ec = ec;
- ctx.encode = encode;
- ctx.intensity = intensity;
- ctx.m = m;
- ctx.seed = *seed;
- ctx.spread = spread;
- ctx.arch = arch;
- for (i=start;i<end;i++)
- {
- opus_int32 tell;
- int b;
- int N;
- opus_int32 curr_balance;
- int effective_lowband=-1;
- celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y;
- int tf_change=0;
- unsigned x_cm;
- unsigned y_cm;
- int last;
-
- ctx.i = i;
- last = (i==end-1);
-
- X = X_+M*eBands[i];
- if (Y_!=NULL)
- Y = Y_+M*eBands[i];
- else
- Y = NULL;
- N = M*eBands[i+1]-M*eBands[i];
- tell = ec_tell_frac(ec);
-
- /* Compute how many bits we want to allocate to this band */
- if (i != start)
- balance -= tell;
- remaining_bits = total_bits-tell-1;
- ctx.remaining_bits = remaining_bits;
- if (i <= codedBands-1)
- {
- curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i));
- b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance)));
- } else {
- b = 0;
- }
-
- if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0))
- lowband_offset = i;
-
- tf_change = tf_res[i];
- ctx.tf_change = tf_change;
- if (i>=m->effEBands)
- {
- X=norm;
- if (Y_!=NULL)
- Y = norm;
- lowband_scratch = NULL;
- }
- if (i==end-1)
- lowband_scratch = NULL;
-
- /* Get a conservative estimate of the collapse_mask's for the bands we're
- going to be folding from. */
- if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0))
- {
- int fold_start;
- int fold_end;
- int fold_i;
- /* This ensures we never repeat spectral content within one band */
- effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N);
- fold_start = lowband_offset;
- while(M*eBands[--fold_start] > effective_lowband+norm_offset);
- fold_end = lowband_offset-1;
- while(M*eBands[++fold_end] < effective_lowband+norm_offset+N);
- x_cm = y_cm = 0;
- fold_i = fold_start; do {
- x_cm |= collapse_masks[fold_i*C+0];
- y_cm |= collapse_masks[fold_i*C+C-1];
- } while (++fold_i<fold_end);
- }
- /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
- always) be non-zero. */
- else
- x_cm = y_cm = (1<<B)-1;
-
- if (dual_stereo && i==intensity)
- {
- int j;
-
- /* Switch off dual stereo to do intensity. */
- dual_stereo = 0;
- if (resynth)
- for (j=0;j<M*eBands[i]-norm_offset;j++)
- norm[j] = HALF32(norm[j]+norm2[j]);
- }
- if (dual_stereo)
- {
- x_cm = quant_band(&ctx, X, N, b/2, B,
- effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
- last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm);
- y_cm = quant_band(&ctx, Y, N, b/2, B,
- effective_lowband != -1 ? norm2+effective_lowband : NULL, LM,
- last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm);
- } else {
- if (Y!=NULL)
- {
- x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
- effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
- last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm);
- } else {
- x_cm = quant_band(&ctx, X, N, b, B,
- effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
- last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm);
- }
- y_cm = x_cm;
- }
- collapse_masks[i*C+0] = (unsigned char)x_cm;
- collapse_masks[i*C+C-1] = (unsigned char)y_cm;
- balance += pulses[i] + tell;
-
- /* Update the folding position only as long as we have 1 bit/sample depth. */
- update_lowband = b>(N<<BITRES);
- }
- *seed = ctx.seed;
-
- RESTORE_STACK;
-}
-