summaryrefslogtreecommitdiff
path: root/drivers/mpc/minimax.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mpc/minimax.h')
-rw-r--r--drivers/mpc/minimax.h57
1 files changed, 57 insertions, 0 deletions
diff --git a/drivers/mpc/minimax.h b/drivers/mpc/minimax.h
new file mode 100644
index 0000000000..1192626567
--- /dev/null
+++ b/drivers/mpc/minimax.h
@@ -0,0 +1,57 @@
+/*
+ * Musepack audio compression
+ * Copyright (C) 1999-2004 Buschmann/Klemm/Piecha/Wolf
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#pragma once
+
+# define clip(x,min,max) ( (x) < (min) ? (min) : (x) > (max) ? (max) : (x) )
+
+#ifdef __cplusplus
+
+# define maxi(A,B) ( (A) >? (B) )
+# define mini(A,B) ( (A) <? (B) )
+# define maxd(A,B) ( (A) >? (B) )
+# define mind(A,B) ( (A) <? (B) )
+# define maxf(A,B) ( (A) >? (B) )
+# define minf(A,B) ( (A) <? (B) )
+
+#else
+
+# define maxi(A,B) ( (A) > (B) ? (A) : (B) )
+# define mini(A,B) ( (A) < (B) ? (A) : (B) )
+# define maxd(A,B) ( (A) > (B) ? (A) : (B) )
+# define mind(A,B) ( (A) < (B) ? (A) : (B) )
+# define maxf(A,B) ( (A) > (B) ? (A) : (B) )
+# define minf(A,B) ( (A) < (B) ? (A) : (B) )
+
+#endif
+
+#ifdef __GNUC__
+
+# define absi(A) abs (A)
+# define absf(A) fabsf (A)
+# define absd(A) fabs (A)
+
+#else
+
+# define absi(A) ( (A) >= 0 ? (A) : -(A) )
+# define absf(A) ( (A) >= 0.f ? (A) : -(A) )
+# define absd(A) ( (A) >= 0. ? (A) : -(A) )
+
+#endif
+