summaryrefslogtreecommitdiff
path: root/drivers/gles3/shaders
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gles3/shaders')
-rw-r--r--drivers/gles3/shaders/SCsub23
-rw-r--r--drivers/gles3/shaders/blend_shape.glsl194
-rw-r--r--drivers/gles3/shaders/canvas.glsl726
-rw-r--r--drivers/gles3/shaders/canvas_shadow.glsl45
-rw-r--r--drivers/gles3/shaders/copy.glsl270
-rw-r--r--drivers/gles3/shaders/cube_to_dp.glsl79
-rw-r--r--drivers/gles3/shaders/cubemap_filter.glsl370
-rw-r--r--drivers/gles3/shaders/effect_blur.glsl293
-rw-r--r--drivers/gles3/shaders/exposure.glsl88
-rw-r--r--drivers/gles3/shaders/lens_distorted.glsl64
-rw-r--r--drivers/gles3/shaders/particles.glsl267
-rw-r--r--drivers/gles3/shaders/resolve.glsl44
-rw-r--r--drivers/gles3/shaders/scene.glsl2187
-rw-r--r--drivers/gles3/shaders/screen_space_reflection.glsl286
-rw-r--r--drivers/gles3/shaders/ssao.glsl277
-rw-r--r--drivers/gles3/shaders/ssao_blur.glsl119
-rw-r--r--drivers/gles3/shaders/ssao_minify.glsl56
-rw-r--r--drivers/gles3/shaders/subsurf_scattering.glsl174
-rw-r--r--drivers/gles3/shaders/tonemap.glsl309
19 files changed, 0 insertions, 5871 deletions
diff --git a/drivers/gles3/shaders/SCsub b/drivers/gles3/shaders/SCsub
deleted file mode 100644
index 27fd1514e7..0000000000
--- a/drivers/gles3/shaders/SCsub
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-
-Import('env')
-
-if 'GLES3_GLSL' in env['BUILDERS']:
- env.GLES3_GLSL('copy.glsl');
- env.GLES3_GLSL('resolve.glsl');
- env.GLES3_GLSL('canvas.glsl');
- env.GLES3_GLSL('canvas_shadow.glsl');
- env.GLES3_GLSL('scene.glsl');
- env.GLES3_GLSL('cubemap_filter.glsl');
- env.GLES3_GLSL('cube_to_dp.glsl');
- env.GLES3_GLSL('blend_shape.glsl');
- env.GLES3_GLSL('screen_space_reflection.glsl');
- env.GLES3_GLSL('effect_blur.glsl');
- env.GLES3_GLSL('subsurf_scattering.glsl');
- env.GLES3_GLSL('ssao.glsl');
- env.GLES3_GLSL('ssao_minify.glsl');
- env.GLES3_GLSL('ssao_blur.glsl');
- env.GLES3_GLSL('exposure.glsl');
- env.GLES3_GLSL('tonemap.glsl');
- env.GLES3_GLSL('particles.glsl');
- env.GLES3_GLSL('lens_distorted.glsl');
diff --git a/drivers/gles3/shaders/blend_shape.glsl b/drivers/gles3/shaders/blend_shape.glsl
deleted file mode 100644
index a1e954e33d..0000000000
--- a/drivers/gles3/shaders/blend_shape.glsl
+++ /dev/null
@@ -1,194 +0,0 @@
-/* clang-format off */
-[vertex]
-
-/*
-from VisualServer:
-
-ARRAY_VERTEX=0,
-ARRAY_NORMAL=1,
-ARRAY_TANGENT=2,
-ARRAY_COLOR=3,
-ARRAY_TEX_UV=4,
-ARRAY_TEX_UV2=5,
-ARRAY_BONES=6,
-ARRAY_WEIGHTS=7,
-ARRAY_INDEX=8,
-*/
-
-#ifdef USE_2D_VERTEX
-#define VFORMAT vec2
-#else
-#define VFORMAT vec3
-#endif
-
-/* INPUT ATTRIBS */
-
-layout(location = 0) in highp VFORMAT vertex_attrib;
-/* clang-format on */
-layout(location = 1) in vec3 normal_attrib;
-
-#ifdef ENABLE_TANGENT
-layout(location = 2) in vec4 tangent_attrib;
-#endif
-
-#ifdef ENABLE_COLOR
-layout(location = 3) in vec4 color_attrib;
-#endif
-
-#ifdef ENABLE_UV
-layout(location = 4) in vec2 uv_attrib;
-#endif
-
-#ifdef ENABLE_UV2
-layout(location = 5) in vec2 uv2_attrib;
-#endif
-
-#ifdef ENABLE_SKELETON
-layout(location = 6) in ivec4 bone_attrib;
-layout(location = 7) in vec4 weight_attrib;
-#endif
-
-/* BLEND ATTRIBS */
-
-#ifdef ENABLE_BLEND
-
-layout(location = 8) in highp VFORMAT vertex_attrib_blend;
-layout(location = 9) in vec3 normal_attrib_blend;
-
-#ifdef ENABLE_TANGENT
-layout(location = 10) in vec4 tangent_attrib_blend;
-#endif
-
-#ifdef ENABLE_COLOR
-layout(location = 11) in vec4 color_attrib_blend;
-#endif
-
-#ifdef ENABLE_UV
-layout(location = 12) in vec2 uv_attrib_blend;
-#endif
-
-#ifdef ENABLE_UV2
-layout(location = 13) in vec2 uv2_attrib_blend;
-#endif
-
-#ifdef ENABLE_SKELETON
-layout(location = 14) in ivec4 bone_attrib_blend;
-layout(location = 15) in vec4 weight_attrib_blend;
-#endif
-
-#endif
-
-/* OUTPUTS */
-
-out VFORMAT vertex_out; //tfb:
-
-#ifdef ENABLE_NORMAL
-out vec3 normal_out; //tfb:ENABLE_NORMAL
-#endif
-
-#ifdef ENABLE_TANGENT
-out vec4 tangent_out; //tfb:ENABLE_TANGENT
-#endif
-
-#ifdef ENABLE_COLOR
-out vec4 color_out; //tfb:ENABLE_COLOR
-#endif
-
-#ifdef ENABLE_UV
-out vec2 uv_out; //tfb:ENABLE_UV
-#endif
-
-#ifdef ENABLE_UV2
-out vec2 uv2_out; //tfb:ENABLE_UV2
-#endif
-
-#ifdef ENABLE_SKELETON
-out ivec4 bone_out; //tfb:ENABLE_SKELETON
-out vec4 weight_out; //tfb:ENABLE_SKELETON
-#endif
-
-uniform float blend_amount;
-
-void main() {
-
-#ifdef ENABLE_BLEND
-
- vertex_out = vertex_attrib_blend + vertex_attrib * blend_amount;
-
-#ifdef ENABLE_NORMAL
- normal_out = normal_attrib_blend + normal_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_TANGENT
-
- tangent_out.xyz = tangent_attrib_blend.xyz + tangent_attrib.xyz * blend_amount;
- tangent_out.w = tangent_attrib_blend.w; //just copy, no point in blending his
-#endif
-
-#ifdef ENABLE_COLOR
-
- color_out = color_attrib_blend + color_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV
-
- uv_out = uv_attrib_blend + uv_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV2
-
- uv2_out = uv2_attrib_blend + uv2_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_SKELETON
-
- bone_out = bone_attrib_blend;
- weight_out = weight_attrib_blend + weight_attrib * blend_amount;
-#endif
-
-#else //ENABLE_BLEND
-
- vertex_out = vertex_attrib * blend_amount;
-
-#ifdef ENABLE_NORMAL
- normal_out = normal_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_TANGENT
-
- tangent_out.xyz = tangent_attrib.xyz * blend_amount;
- tangent_out.w = tangent_attrib.w; //just copy, no point in blending his
-#endif
-
-#ifdef ENABLE_COLOR
-
- color_out = color_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV
-
- uv_out = uv_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV2
-
- uv2_out = uv2_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_SKELETON
-
- bone_out = bone_attrib;
- weight_out = weight_attrib * blend_amount;
-#endif
-
-#endif
- gl_Position = vec4(0.0);
-}
-
-/* clang-format off */
-[fragment]
-
-void main() {
-
-}
-/* clang-format on */
diff --git a/drivers/gles3/shaders/canvas.glsl b/drivers/gles3/shaders/canvas.glsl
deleted file mode 100644
index 07ee9cd010..0000000000
--- a/drivers/gles3/shaders/canvas.glsl
+++ /dev/null
@@ -1,726 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec2 vertex;
-/* clang-format on */
-layout(location = 3) in vec4 color_attrib;
-
-#ifdef USE_SKELETON
-layout(location = 6) in uvec4 bone_indices; // attrib:6
-layout(location = 7) in vec4 bone_weights; // attrib:7
-#endif
-
-#ifdef USE_TEXTURE_RECT
-
-uniform vec4 dst_rect;
-uniform vec4 src_rect;
-
-#else
-
-#ifdef USE_INSTANCING
-
-layout(location = 8) in highp vec4 instance_xform0;
-layout(location = 9) in highp vec4 instance_xform1;
-layout(location = 10) in highp vec4 instance_xform2;
-layout(location = 11) in lowp vec4 instance_color;
-
-#ifdef USE_INSTANCE_CUSTOM
-layout(location = 12) in highp vec4 instance_custom_data;
-#endif
-
-#endif
-
-layout(location = 4) in highp vec2 uv_attrib;
-
-// skeleton
-#endif
-
-uniform highp vec2 color_texpixel_size;
-
-layout(std140) uniform CanvasItemData { //ubo:0
-
- highp mat4 projection_matrix;
- highp float time;
-};
-
-uniform highp mat4 modelview_matrix;
-uniform highp mat4 extra_matrix;
-
-out highp vec2 uv_interp;
-out mediump vec4 color_interp;
-
-#ifdef USE_NINEPATCH
-
-out highp vec2 pixel_size_interp;
-#endif
-
-#ifdef USE_SKELETON
-uniform mediump sampler2D skeleton_texture; // texunit:-4
-uniform highp mat4 skeleton_transform;
-uniform highp mat4 skeleton_transform_inverse;
-#endif
-
-#ifdef USE_LIGHTING
-
-layout(std140) uniform LightData { //ubo:1
-
- // light matrices
- highp mat4 light_matrix;
- highp mat4 light_local_matrix;
- highp mat4 shadow_matrix;
- highp vec4 light_color;
- highp vec4 light_shadow_color;
- highp vec2 light_pos;
- highp float shadowpixel_size;
- highp float shadow_gradient;
- highp float light_height;
- highp float light_outside_alpha;
- highp float shadow_distance_mult;
-};
-
-out vec4 light_uv_interp;
-out vec2 transformed_light_uv;
-
-out vec4 local_rot;
-
-#ifdef USE_SHADOWS
-out highp vec2 pos;
-#endif
-
-const bool at_light_pass = true;
-#else
-const bool at_light_pass = false;
-#endif
-
-#if defined(USE_MATERIAL)
-
-/* clang-format off */
-layout(std140) uniform UniformData { //ubo:2
-
-MATERIAL_UNIFORMS
-
-};
-/* clang-format on */
-
-#endif
-
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-void main() {
-
- vec4 color = color_attrib;
-
-#ifdef USE_INSTANCING
- mat4 extra_matrix_instance = extra_matrix * transpose(mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0)));
- color *= instance_color;
-
-#ifdef USE_INSTANCE_CUSTOM
- vec4 instance_custom = instance_custom_data;
-#else
- vec4 instance_custom = vec4(0.0);
-#endif
-
-#else
- mat4 extra_matrix_instance = extra_matrix;
- vec4 instance_custom = vec4(0.0);
-#endif
-
-#ifdef USE_TEXTURE_RECT
-
- if (dst_rect.z < 0.0) { // Transpose is encoded as negative dst_rect.z
- uv_interp = src_rect.xy + abs(src_rect.zw) * vertex.yx;
- } else {
- uv_interp = src_rect.xy + abs(src_rect.zw) * vertex;
- }
- highp vec4 outvec = vec4(dst_rect.xy + abs(dst_rect.zw) * mix(vertex, vec2(1.0, 1.0) - vertex, lessThan(src_rect.zw, vec2(0.0, 0.0))), 0.0, 1.0);
-
-#else
- uv_interp = uv_attrib;
- highp vec4 outvec = vec4(vertex, 0.0, 1.0);
-#endif
-
-#ifdef USE_PARTICLES
- //scale by texture size
- outvec.xy /= color_texpixel_size;
-#endif
-
-#define extra_matrix extra_matrix_instance
-
- float point_size = 1.0;
- //for compatibility with the fragment shader we need to use uv here
- vec2 uv = uv_interp;
- {
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
- }
-
- gl_PointSize = point_size;
- uv_interp = uv;
-
-#ifdef USE_NINEPATCH
-
- pixel_size_interp = abs(dst_rect.zw) * vertex;
-#endif
-
-#if !defined(SKIP_TRANSFORM_USED)
- outvec = extra_matrix * outvec;
- outvec = modelview_matrix * outvec;
-#endif
-
-#undef extra_matrix
-
- color_interp = color;
-
-#ifdef USE_PIXEL_SNAP
- outvec.xy = floor(outvec + 0.5).xy;
- // precision issue on some hardware creates artifacts within texture
- // offset uv by a small amount to avoid
- uv_interp += 1e-5;
-#endif
-
-#ifdef USE_SKELETON
-
- if (bone_weights != vec4(0.0)) { //must be a valid bone
- //skeleton transform
-
- ivec4 bone_indicesi = ivec4(bone_indices);
-
- ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 2);
-
- highp mat2x4 m;
- m = mat2x4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0)) *
- bone_weights.x;
-
- tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 2);
-
- m += mat2x4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0)) *
- bone_weights.y;
-
- tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 2);
-
- m += mat2x4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0)) *
- bone_weights.z;
-
- tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 2);
-
- m += mat2x4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0)) *
- bone_weights.w;
-
- mat4 bone_matrix = skeleton_transform * transpose(mat4(m[0], m[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))) * skeleton_transform_inverse;
-
- outvec = bone_matrix * outvec;
- }
-
-#endif
-
- gl_Position = projection_matrix * outvec;
-
-#ifdef USE_LIGHTING
-
- light_uv_interp.xy = (light_matrix * outvec).xy;
- light_uv_interp.zw = (light_local_matrix * outvec).xy;
-
- mat3 inverse_light_matrix = mat3(inverse(light_matrix));
- inverse_light_matrix[0] = normalize(inverse_light_matrix[0]);
- inverse_light_matrix[1] = normalize(inverse_light_matrix[1]);
- inverse_light_matrix[2] = normalize(inverse_light_matrix[2]);
- transformed_light_uv = (inverse_light_matrix * vec3(light_uv_interp.zw, 0.0)).xy; //for normal mapping
-
-#ifdef USE_SHADOWS
- pos = outvec.xy;
-#endif
-
- local_rot.xy = normalize((modelview_matrix * (extra_matrix_instance * vec4(1.0, 0.0, 0.0, 0.0))).xy);
- local_rot.zw = normalize((modelview_matrix * (extra_matrix_instance * vec4(0.0, 1.0, 0.0, 0.0))).xy);
-#ifdef USE_TEXTURE_RECT
- local_rot.xy *= sign(src_rect.z);
- local_rot.zw *= sign(src_rect.w);
-#endif
-
-#endif
-}
-
-/* clang-format off */
-[fragment]
-
-uniform mediump sampler2D color_texture; // texunit:0
-/* clang-format on */
-uniform highp vec2 color_texpixel_size;
-uniform mediump sampler2D normal_texture; // texunit:1
-
-in highp vec2 uv_interp;
-in mediump vec4 color_interp;
-
-#if defined(SCREEN_TEXTURE_USED)
-
-uniform sampler2D screen_texture; // texunit:-3
-
-#endif
-
-#if defined(SCREEN_UV_USED)
-
-uniform vec2 screen_pixel_size;
-#endif
-
-layout(std140) uniform CanvasItemData {
-
- highp mat4 projection_matrix;
- highp float time;
-};
-
-#ifdef USE_LIGHTING
-
-layout(std140) uniform LightData {
-
- highp mat4 light_matrix;
- highp mat4 light_local_matrix;
- highp mat4 shadow_matrix;
- highp vec4 light_color;
- highp vec4 light_shadow_color;
- highp vec2 light_pos;
- highp float shadowpixel_size;
- highp float shadow_gradient;
- highp float light_height;
- highp float light_outside_alpha;
- highp float shadow_distance_mult;
-};
-
-uniform lowp sampler2D light_texture; // texunit:-1
-in vec4 light_uv_interp;
-in vec2 transformed_light_uv;
-
-in vec4 local_rot;
-
-#ifdef USE_SHADOWS
-
-uniform highp sampler2D shadow_texture; // texunit:-2
-in highp vec2 pos;
-
-#endif
-
-const bool at_light_pass = true;
-#else
-const bool at_light_pass = false;
-#endif
-
-uniform mediump vec4 final_modulate;
-
-layout(location = 0) out mediump vec4 frag_color;
-
-#if defined(USE_MATERIAL)
-
-/* clang-format off */
-layout(std140) uniform UniformData {
-
-MATERIAL_UNIFORMS
-
-};
-/* clang-format on */
-
-#endif
-
-/* clang-format off */
-
-FRAGMENT_SHADER_GLOBALS
-
-/* clang-format on */
-
-void light_compute(
- inout vec4 light,
- inout vec2 light_vec,
- inout float light_height,
- inout vec4 light_color,
- vec2 light_uv,
- inout vec4 shadow_color,
- inout vec2 shadow_vec,
- vec3 normal,
- vec2 uv,
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv,
-#endif
- vec4 color) {
-
-#if defined(USE_LIGHT_SHADER_CODE)
-
- /* clang-format off */
-
-LIGHT_SHADER_CODE
-
- /* clang-format on */
-
-#endif
-}
-
-#ifdef USE_TEXTURE_RECT
-
-uniform vec4 dst_rect;
-uniform vec4 src_rect;
-uniform bool clip_rect_uv;
-
-#ifdef USE_NINEPATCH
-
-in highp vec2 pixel_size_interp;
-
-uniform int np_repeat_v;
-uniform int np_repeat_h;
-uniform bool np_draw_center;
-// left top right bottom in pixel coordinates
-uniform vec4 np_margins;
-
-float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, float s_ratio, int np_repeat, inout int draw_center) {
-
- float tex_size = 1.0 / tex_pixel_size;
-
- float screen_margin_begin = margin_begin / s_ratio;
- float screen_margin_end = margin_end / s_ratio;
- if (pixel < screen_margin_begin) {
- return pixel * s_ratio * tex_pixel_size;
- } else if (pixel >= draw_size - screen_margin_end) {
- return (tex_size - (draw_size - pixel) * s_ratio) * tex_pixel_size;
- } else {
- if (!np_draw_center) {
- draw_center--;
- }
-
- // np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum.
- if (np_repeat == 0) { // Stretch.
- // Convert to ratio.
- float ratio = (pixel - screen_margin_begin) / (draw_size - screen_margin_begin - screen_margin_end);
- // Scale to source texture.
- return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size;
- } else if (np_repeat == 1) { // Tile.
- // Convert to offset.
- float ofs = mod((pixel - screen_margin_begin), tex_size - margin_begin - margin_end);
- // Scale to source texture.
- return (margin_begin + ofs) * tex_pixel_size;
- } else if (np_repeat == 2) { // Tile Fit.
- // Calculate scale.
- float src_area = draw_size - screen_margin_begin - screen_margin_end;
- float dst_area = tex_size - margin_begin - margin_end;
- float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5));
- // Convert to ratio.
- float ratio = (pixel - screen_margin_begin) / src_area;
- ratio = mod(ratio * scale, 1.0);
- // Scale to source texture.
- return (margin_begin + ratio * dst_area) * tex_pixel_size;
- } else { // Shouldn't happen, but silences compiler warning.
- return 0.0;
- }
- }
-}
-
-#endif
-#endif
-
-uniform bool use_default_normal;
-
-void main() {
-
- vec4 color = color_interp;
- vec2 uv = uv_interp;
-
-#ifdef USE_TEXTURE_RECT
-
-#ifdef USE_NINEPATCH
-
- int draw_center = 2;
- float s_ratio = max((1.0 / color_texpixel_size.x) / abs(dst_rect.z), (1.0 / color_texpixel_size.y) / abs(dst_rect.w));
- s_ratio = max(1.0, s_ratio);
- uv = vec2(
- map_ninepatch_axis(pixel_size_interp.x, abs(dst_rect.z), color_texpixel_size.x, np_margins.x, np_margins.z, s_ratio, np_repeat_h, draw_center),
- map_ninepatch_axis(pixel_size_interp.y, abs(dst_rect.w), color_texpixel_size.y, np_margins.y, np_margins.w, s_ratio, np_repeat_v, draw_center));
-
- if (draw_center == 0) {
- color.a = 0.0;
- }
-
- uv = uv * src_rect.zw + src_rect.xy; //apply region if needed
-#endif
-
- if (clip_rect_uv) {
-
- uv = clamp(uv, src_rect.xy, src_rect.xy + abs(src_rect.zw));
- }
-
-#endif
-
-#if !defined(COLOR_USED)
- //default behavior, texture by color
-
-#ifdef USE_DISTANCE_FIELD
- const float smoothing = 1.0 / 32.0;
- float distance = textureLod(color_texture, uv, 0.0).a;
- color.a = smoothstep(0.5 - smoothing, 0.5 + smoothing, distance) * color.a;
-#else
- color *= texture(color_texture, uv);
-
-#endif
-
-#endif
-
- vec3 normal;
-
-#if defined(NORMAL_USED)
-
- bool normal_used = true;
-#else
- bool normal_used = false;
-#endif
-
- if (use_default_normal) {
- normal.xy = textureLod(normal_texture, uv, 0.0).xy * 2.0 - 1.0;
- normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
- normal_used = true;
- } else {
- normal = vec3(0.0, 0.0, 1.0);
- }
-
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
-#endif
-
- {
- float normal_depth = 1.0;
-
-#if defined(NORMALMAP_USED)
- vec3 normal_map = vec3(0.0, 0.0, 1.0);
- normal_used = true;
-#endif
-
- /* clang-format off */
-
-FRAGMENT_SHADER_CODE
-
- /* clang-format on */
-
-#if defined(NORMALMAP_USED)
- normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_depth);
-#endif
- }
-#ifdef DEBUG_ENCODED_32
- highp float enc32 = dot(color, highp vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1.0));
- color = vec4(vec3(enc32), 1.0);
-#endif
-
- color *= final_modulate;
-
-#ifdef USE_LIGHTING
-
- vec2 light_vec = transformed_light_uv;
- vec2 shadow_vec = transformed_light_uv;
-
- if (normal_used) {
- normal.xy = mat2(local_rot.xy, local_rot.zw) * normal.xy;
- }
-
- float att = 1.0;
-
- vec2 light_uv = light_uv_interp.xy;
- vec4 light = texture(light_texture, light_uv);
-
- if (any(lessThan(light_uv_interp.xy, vec2(0.0, 0.0))) || any(greaterThanEqual(light_uv_interp.xy, vec2(1.0, 1.0)))) {
- color.a *= light_outside_alpha; //invisible
-
- } else {
- float real_light_height = light_height;
- vec4 real_light_color = light_color;
- vec4 real_light_shadow_color = light_shadow_color;
-
-#if defined(USE_LIGHT_SHADER_CODE)
- //light is written by the light shader
- light_compute(
- light,
- light_vec,
- real_light_height,
- real_light_color,
- light_uv,
- real_light_shadow_color,
- shadow_vec,
- normal,
- uv,
-#if defined(SCREEN_UV_USED)
- screen_uv,
-#endif
- color);
-#endif
-
- light *= real_light_color;
-
- if (normal_used) {
- vec3 light_normal = normalize(vec3(light_vec, -real_light_height));
- light *= max(dot(-light_normal, normal), 0.0);
- }
-
- color *= light;
-
-#ifdef USE_SHADOWS
-#ifdef SHADOW_VEC_USED
- mat3 inverse_light_matrix = mat3(light_matrix);
- inverse_light_matrix[0] = normalize(inverse_light_matrix[0]);
- inverse_light_matrix[1] = normalize(inverse_light_matrix[1]);
- inverse_light_matrix[2] = normalize(inverse_light_matrix[2]);
- shadow_vec = (mat3(inverse_light_matrix) * vec3(shadow_vec, 0.0)).xy;
-#else
- shadow_vec = light_uv_interp.zw;
-#endif
- float angle_to_light = -atan(shadow_vec.x, shadow_vec.y);
- float PI = 3.14159265358979323846264;
- /*int i = int(mod(floor((angle_to_light+7.0*PI/6.0)/(4.0*PI/6.0))+1.0, 3.0)); // +1 pq os indices estao em ordem 2,0,1 nos arrays
- float ang*/
-
- float su, sz;
-
- float abs_angle = abs(angle_to_light);
- vec2 point;
- float sh;
- if (abs_angle < 45.0 * PI / 180.0) {
- point = shadow_vec;
- sh = 0.0 + (1.0 / 8.0);
- } else if (abs_angle > 135.0 * PI / 180.0) {
- point = -shadow_vec;
- sh = 0.5 + (1.0 / 8.0);
- } else if (angle_to_light > 0.0) {
-
- point = vec2(shadow_vec.y, -shadow_vec.x);
- sh = 0.25 + (1.0 / 8.0);
- } else {
-
- point = vec2(-shadow_vec.y, shadow_vec.x);
- sh = 0.75 + (1.0 / 8.0);
- }
-
- highp vec4 s = shadow_matrix * vec4(point, 0.0, 1.0);
- s.xyz /= s.w;
- su = s.x * 0.5 + 0.5;
- sz = s.z * 0.5 + 0.5;
- //sz=lightlength(light_vec);
-
- highp float shadow_attenuation = 0.0;
-
-#ifdef USE_RGBA_SHADOWS
-
-#define SHADOW_DEPTH(m_tex, m_uv) dot(texture((m_tex), (m_uv)), vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0))
-
-#else
-
-#define SHADOW_DEPTH(m_tex, m_uv) (texture((m_tex), (m_uv)).r)
-
-#endif
-
-#ifdef SHADOW_USE_GRADIENT
-
-#define SHADOW_TEST(m_ofs) \
- { \
- highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); \
- shadow_attenuation += 1.0 - smoothstep(sd, sd + shadow_gradient, sz); \
- }
-
-#else
-
-#define SHADOW_TEST(m_ofs) \
- { \
- highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); \
- shadow_attenuation += step(sz, sd); \
- }
-
-#endif
-
-#ifdef SHADOW_FILTER_NEAREST
-
- SHADOW_TEST(su);
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF3
-
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- shadow_attenuation /= 3.0;
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF5
-
- SHADOW_TEST(su + shadowpixel_size * 2.0);
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- SHADOW_TEST(su - shadowpixel_size * 2.0);
- shadow_attenuation /= 5.0;
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF7
-
- SHADOW_TEST(su + shadowpixel_size * 3.0);
- SHADOW_TEST(su + shadowpixel_size * 2.0);
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- SHADOW_TEST(su - shadowpixel_size * 2.0);
- SHADOW_TEST(su - shadowpixel_size * 3.0);
- shadow_attenuation /= 7.0;
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF9
-
- SHADOW_TEST(su + shadowpixel_size * 4.0);
- SHADOW_TEST(su + shadowpixel_size * 3.0);
- SHADOW_TEST(su + shadowpixel_size * 2.0);
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- SHADOW_TEST(su - shadowpixel_size * 2.0);
- SHADOW_TEST(su - shadowpixel_size * 3.0);
- SHADOW_TEST(su - shadowpixel_size * 4.0);
- shadow_attenuation /= 9.0;
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF13
-
- SHADOW_TEST(su + shadowpixel_size * 6.0);
- SHADOW_TEST(su + shadowpixel_size * 5.0);
- SHADOW_TEST(su + shadowpixel_size * 4.0);
- SHADOW_TEST(su + shadowpixel_size * 3.0);
- SHADOW_TEST(su + shadowpixel_size * 2.0);
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- SHADOW_TEST(su - shadowpixel_size * 2.0);
- SHADOW_TEST(su - shadowpixel_size * 3.0);
- SHADOW_TEST(su - shadowpixel_size * 4.0);
- SHADOW_TEST(su - shadowpixel_size * 5.0);
- SHADOW_TEST(su - shadowpixel_size * 6.0);
- shadow_attenuation /= 13.0;
-
-#endif
-
- //color *= shadow_attenuation;
- color = mix(real_light_shadow_color, color, shadow_attenuation);
-//use shadows
-#endif
- }
-
-//use lighting
-#endif
- //color.rgb *= color.a;
- frag_color = color;
-}
diff --git a/drivers/gles3/shaders/canvas_shadow.glsl b/drivers/gles3/shaders/canvas_shadow.glsl
deleted file mode 100644
index 4f706c5505..0000000000
--- a/drivers/gles3/shaders/canvas_shadow.glsl
+++ /dev/null
@@ -1,45 +0,0 @@
-/* clang-format off */
-[vertex]
-
-uniform highp mat4 projection_matrix;
-/* clang-format on */
-uniform highp mat4 light_matrix;
-uniform highp mat4 world_matrix;
-uniform highp float distance_norm;
-
-layout(location = 0) in highp vec3 vertex;
-
-out highp vec4 position_interp;
-
-void main() {
-
- gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex, 1.0)));
- position_interp = gl_Position;
-}
-
-/* clang-format off */
-[fragment]
-
-in highp vec4 position_interp;
-/* clang-format on */
-
-#ifdef USE_RGBA_SHADOWS
-layout(location = 0) out lowp vec4 distance_buf;
-#else
-layout(location = 0) out highp float distance_buf;
-#endif
-
-void main() {
-
- highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
-
-#ifdef USE_RGBA_SHADOWS
-
- highp vec4 comp = fract(depth * vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0));
- comp -= comp.xxyz * vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0);
- distance_buf = comp;
-#else
-
- distance_buf = depth;
-#endif
-}
diff --git a/drivers/gles3/shaders/copy.glsl b/drivers/gles3/shaders/copy.glsl
deleted file mode 100644
index a3cdb3a543..0000000000
--- a/drivers/gles3/shaders/copy.glsl
+++ /dev/null
@@ -1,270 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-layout(location = 4) in vec3 cube_in;
-#else
-layout(location = 4) in vec2 uv_in;
-#endif
-layout(location = 5) in vec2 uv2_in;
-
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-out vec3 cube_interp;
-#else
-out vec2 uv_interp;
-#endif
-
-out vec2 uv2_interp;
-
-// These definitions are here because the shader-wrapper builder does
-// not understand `#elif defined()`
-#ifdef USE_DISPLAY_TRANSFORM
-#endif
-
-#ifdef USE_COPY_SECTION
-
-uniform vec4 copy_section;
-
-#elif defined(USE_DISPLAY_TRANSFORM)
-
-uniform highp mat4 display_transform;
-
-#endif
-
-void main() {
-
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
- cube_interp = cube_in;
-#elif defined(USE_ASYM_PANO)
- uv_interp = vertex_attrib.xy;
-#else
- uv_interp = uv_in;
-#ifdef V_FLIP
- uv_interp.y = 1.0 - uv_interp.y;
-#endif
-
-#endif
- uv2_interp = uv2_in;
- gl_Position = vertex_attrib;
-
-#ifdef USE_COPY_SECTION
-
- uv_interp = copy_section.xy + uv_interp * copy_section.zw;
- gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
-#elif defined(USE_DISPLAY_TRANSFORM)
-
- uv_interp = (display_transform * vec4(uv_in, 1.0, 1.0)).xy;
-#endif
-}
-
-/* clang-format off */
-[fragment]
-
-#define M_PI 3.14159265359
-
-#if !defined(USE_GLES_OVER_GL)
-precision mediump float;
-#endif
-
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-in vec3 cube_interp;
-#else
-in vec2 uv_interp;
-#endif
-
-#ifdef USE_ASYM_PANO
-uniform highp mat4 pano_transform;
-uniform highp vec4 asym_proj;
-#endif
-
-// These definitions are here because the shader-wrapper builder does
-// not understand `#elif defined()`
-#ifdef USE_TEXTURE3D
-#endif
-#ifdef USE_TEXTURE2DARRAY
-#endif
-#ifdef YCBCR_TO_SRGB
-#endif
-
-#ifdef USE_CUBEMAP
-uniform samplerCube source_cube; //texunit:0
-#elif defined(USE_TEXTURE3D)
-uniform sampler3D source_3d; //texunit:0
-#elif defined(USE_TEXTURE2DARRAY)
-uniform sampler2DArray source_2d_array; //texunit:0
-#else
-uniform sampler2D source; //texunit:0
-#endif
-
-#ifdef SEP_CBCR_TEXTURE
-uniform sampler2D CbCr; //texunit:1
-#endif
-
-/* clang-format on */
-
-#ifdef USE_LOD
-uniform float mip_level;
-#endif
-
-#if defined(USE_TEXTURE3D) || defined(USE_TEXTURE2DARRAY)
-uniform float layer;
-#endif
-
-#ifdef USE_MULTIPLIER
-uniform float multiplier;
-#endif
-
-#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
-uniform highp mat4 sky_transform;
-
-vec4 texturePanorama(vec3 normal, sampler2D pano) {
-
- vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y));
-
- if (st.x < 0.0)
- st.x += M_PI * 2.0;
-
- st /= vec2(M_PI * 2.0, M_PI);
-
- return textureLod(pano, st, 0.0);
-}
-
-#endif
-
-uniform vec2 pixel_size;
-
-in vec2 uv2_interp;
-
-#ifdef USE_BCS
-
-uniform vec3 bcs;
-
-#endif
-
-#ifdef USE_COLOR_CORRECTION
-
-uniform sampler2D color_correction; //texunit:1
-
-#endif
-
-layout(location = 0) out vec4 frag_color;
-
-void main() {
-
- //vec4 color = color_interp;
-
-#ifdef USE_PANORAMA
-
- vec3 cube_normal = normalize(cube_interp);
- cube_normal.z = -cube_normal.z;
- cube_normal = mat3(sky_transform) * cube_normal;
- cube_normal.z = -cube_normal.z;
-
- vec4 color = texturePanorama(cube_normal, source);
-
-#elif defined(USE_ASYM_PANO)
-
- // When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
- // Asymmetrical projection means the center of projection is no longer in the center of the screen but shifted.
- // The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
-
- vec3 cube_normal;
- cube_normal.z = -1.0;
- cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
- cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
- cube_normal = mat3(sky_transform) * mat3(pano_transform) * cube_normal;
- cube_normal.z = -cube_normal.z;
-
- vec4 color = texturePanorama(normalize(cube_normal.xyz), source);
-
-#elif defined(USE_CUBEMAP)
- vec4 color = texture(source_cube, normalize(cube_interp));
-
-#elif defined(USE_TEXTURE3D)
- vec4 color = textureLod(source_3d, vec3(uv_interp, layer), 0.0);
-#elif defined(USE_TEXTURE2DARRAY)
- vec4 color = textureLod(source_2d_array, vec3(uv_interp, layer), 0.0);
-#elif defined(SEP_CBCR_TEXTURE)
- vec4 color;
- color.r = textureLod(source, uv_interp, 0.0).r;
- color.gb = textureLod(CbCr, uv_interp, 0.0).rg - vec2(0.5, 0.5);
- color.a = 1.0;
-#else
-#ifdef USE_LOD
- vec4 color = textureLod(source, uv_interp, mip_level);
-#else
- vec4 color = textureLod(source, uv_interp, 0.0);
-#endif
-#endif
-
-#ifdef LINEAR_TO_SRGB
- // regular Linear -> SRGB conversion
- vec3 a = vec3(0.055);
- color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308)));
-
-#elif defined(YCBCR_TO_SRGB)
-
- // YCbCr -> SRGB conversion
- // Using BT.709 which is the standard for HDTV
- color.rgb = mat3(
- vec3(1.00000, 1.00000, 1.00000),
- vec3(0.00000, -0.18732, 1.85560),
- vec3(1.57481, -0.46813, 0.00000)) *
- color.rgb;
-
-#endif
-
-#ifdef SRGB_TO_LINEAR
-
- color.rgb = mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), color.rgb * (1.0 / 12.92), lessThan(color.rgb, vec3(0.04045)));
-#endif
-
-#ifdef DEBUG_GRADIENT
- color.rg = uv_interp;
- color.b = 0.0;
-#endif
-
-#ifdef DISABLE_ALPHA
- color.a = 1.0;
-#endif
-
-#ifdef GAUSSIAN_HORIZONTAL
- color *= 0.38774;
- color += texture(source, uv_interp + vec2(1.0, 0.0) * pixel_size) * 0.24477;
- color += texture(source, uv_interp + vec2(2.0, 0.0) * pixel_size) * 0.06136;
- color += texture(source, uv_interp + vec2(-1.0, 0.0) * pixel_size) * 0.24477;
- color += texture(source, uv_interp + vec2(-2.0, 0.0) * pixel_size) * 0.06136;
-#endif
-
-#ifdef GAUSSIAN_VERTICAL
- color *= 0.38774;
- color += texture(source, uv_interp + vec2(0.0, 1.0) * pixel_size) * 0.24477;
- color += texture(source, uv_interp + vec2(0.0, 2.0) * pixel_size) * 0.06136;
- color += texture(source, uv_interp + vec2(0.0, -1.0) * pixel_size) * 0.24477;
- color += texture(source, uv_interp + vec2(0.0, -2.0) * pixel_size) * 0.06136;
-#endif
-
-#ifdef USE_BCS
-
- color.rgb = mix(vec3(0.0), color.rgb, bcs.x);
- color.rgb = mix(vec3(0.5), color.rgb, bcs.y);
- color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * 0.33333), color.rgb, bcs.z);
-
-#endif
-
-#ifdef USE_COLOR_CORRECTION
-
- color.r = texture(color_correction, vec2(color.r, 0.0)).r;
- color.g = texture(color_correction, vec2(color.g, 0.0)).g;
- color.b = texture(color_correction, vec2(color.b, 0.0)).b;
-#endif
-
-#ifdef USE_MULTIPLIER
- color.rgb *= multiplier;
-#endif
- frag_color = color;
-}
diff --git a/drivers/gles3/shaders/cube_to_dp.glsl b/drivers/gles3/shaders/cube_to_dp.glsl
deleted file mode 100644
index 2b74f054f9..0000000000
--- a/drivers/gles3/shaders/cube_to_dp.glsl
+++ /dev/null
@@ -1,79 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-
-void main() {
-
- uv_interp = uv_in;
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-uniform highp samplerCube source_cube; //texunit:0
-/* clang-format on */
-in vec2 uv_interp;
-
-uniform bool z_flip;
-uniform highp float z_far;
-uniform highp float z_near;
-uniform highp float bias;
-
-void main() {
-
- highp vec3 normal = vec3(uv_interp * 2.0 - 1.0, 0.0);
- /*
- if (z_flip) {
- normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
- } else {
- normal.z = -0.5 + 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
- }
- */
-
- //normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
- //normal.xy *= 1.0 + normal.z;
-
- normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
- normal = normalize(normal);
- /*
- normal.z = 0.5;
- normal = normalize(normal);
- */
-
- if (!z_flip) {
- normal.z = -normal.z;
- }
-
- //normal = normalize(vec3(uv_interp * 2.0 - 1.0, 1.0));
- float depth = texture(source_cube, normal).r;
-
- // absolute values for direction cosines, bigger value equals closer to basis axis
- vec3 unorm = abs(normal);
-
- if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
- // x code
- unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
- } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
- // y code
- unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
- } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
- // z code
- unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
- } else {
- // oh-no we messed up code
- // has to be
- unorm = vec3(1.0, 0.0, 0.0);
- }
-
- float depth_fix = 1.0 / dot(normal, unorm);
-
- depth = 2.0 * depth - 1.0;
- float linear_depth = 2.0 * z_near * z_far / (z_far + z_near - depth * (z_far - z_near));
- gl_FragDepth = (linear_depth * depth_fix + bias) / z_far;
-}
diff --git a/drivers/gles3/shaders/cubemap_filter.glsl b/drivers/gles3/shaders/cubemap_filter.glsl
deleted file mode 100644
index e1872eb433..0000000000
--- a/drivers/gles3/shaders/cubemap_filter.glsl
+++ /dev/null
@@ -1,370 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec2 vertex;
-/* clang-format on */
-
-layout(location = 4) in highp vec2 uv;
-
-out highp vec2 uv_interp;
-
-void main() {
-
- uv_interp = uv;
- gl_Position = vec4(vertex, 0, 1);
-}
-
-/* clang-format off */
-[fragment]
-
-precision highp float;
-/* clang-format on */
-precision highp int;
-
-#ifdef USE_SOURCE_PANORAMA
-uniform sampler2D source_panorama; //texunit:0
-uniform float source_resolution;
-#endif
-
-#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
-uniform sampler2DArray source_dual_paraboloid_array; //texunit:0
-uniform int source_array_index;
-#endif
-
-#ifdef USE_SOURCE_DUAL_PARABOLOID
-uniform sampler2D source_dual_paraboloid; //texunit:0
-#endif
-
-#if defined(USE_SOURCE_DUAL_PARABOLOID) || defined(COMPUTE_IRRADIANCE)
-uniform float source_mip_level;
-#endif
-
-#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA) && !defined(USE_SOURCE_DUAL_PARABOLOID)
-uniform samplerCube source_cube; //texunit:0
-#endif
-
-uniform int face_id;
-uniform float roughness;
-
-in highp vec2 uv_interp;
-
-layout(location = 0) out vec4 frag_color;
-
-#define M_PI 3.14159265359
-
-vec3 texelCoordToVec(vec2 uv, int faceID) {
- mat3 faceUvVectors[6];
- /*
- // -x
- faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
- faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
-
- // +x
- faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
- faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
-
- // -y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
- faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
-
- // +y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
-
- // -z
- faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
- faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
-
- // +z
- faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
- */
-
- // -x
- faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
- faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
-
- // +x
- faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
- faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
-
- // -y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
- faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
-
- // +y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
-
- // -z
- faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
- faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
-
- // +z
- faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
-
- // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
- vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
- return normalize(result);
-}
-
-vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
- float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
-
- // Compute distribution direction
- float Phi = 2.0 * M_PI * Xi.x;
- float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y));
- float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
-
- // Convert to spherical direction
- vec3 H;
- H.x = SinTheta * cos(Phi);
- H.y = SinTheta * sin(Phi);
- H.z = CosTheta;
-
- vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
- vec3 TangentX = normalize(cross(UpVector, N));
- vec3 TangentY = cross(N, TangentX);
-
- // Tangent to world space
- return TangentX * H.x + TangentY * H.y + N * H.z;
-}
-
-float DistributionGGX(vec3 N, vec3 H, float roughness) {
- float a = roughness * roughness;
- float a2 = a * a;
- float NdotH = max(dot(N, H), 0.0);
- float NdotH2 = NdotH * NdotH;
-
- float nom = a2;
- float denom = (NdotH2 * (a2 - 1.0) + 1.0);
- denom = M_PI * denom * denom;
-
- return nom / denom;
-}
-
-// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
-float GGX(float NdotV, float a) {
- float k = a / 2.0;
- return NdotV / (NdotV * (1.0 - k) + k);
-}
-
-// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
-float G_Smith(float a, float nDotV, float nDotL) {
- return GGX(nDotL, a * a) * GGX(nDotV, a * a);
-}
-
-float radicalInverse_VdC(uint bits) {
- bits = (bits << 16u) | (bits >> 16u);
- bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
- bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
- bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
- bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
- return float(bits) * 2.3283064365386963e-10; // / 0x100000000
-}
-
-vec2 Hammersley(uint i, uint N) {
- return vec2(float(i) / float(N), radicalInverse_VdC(i));
-}
-
-#ifdef LOW_QUALITY
-
-#define SAMPLE_COUNT 64u
-#define SAMPLE_DELTA 0.1
-
-#else
-
-#define SAMPLE_COUNT 512u
-#define SAMPLE_DELTA 0.03
-
-#endif
-
-uniform bool z_flip;
-
-#ifdef USE_SOURCE_PANORAMA
-
-vec4 texturePanorama(vec3 normal, sampler2D pano, float mipLevel) {
-
- vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y));
-
- if (st.x < 0.0)
- st.x += M_PI * 2.0;
-
- st /= vec2(M_PI * 2.0, M_PI);
-
- return textureLod(pano, st, mipLevel);
-}
-
-#endif
-
-#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
-
-vec4 textureDualParaboloidArray(vec3 normal) {
-
- vec3 norm = normalize(normal);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
- if (norm.z < 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
- return textureLod(source_dual_paraboloid_array, vec3(norm.xy, float(source_array_index)), 0.0);
-}
-
-#endif
-
-#ifdef USE_SOURCE_DUAL_PARABOLOID
-vec4 textureDualParaboloid(vec3 normal) {
-
- vec3 norm = normalize(normal);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
- if (norm.z < 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
- return textureLod(source_dual_paraboloid, norm.xy, source_mip_level);
-}
-
-#endif
-
-void main() {
-
-#ifdef USE_DUAL_PARABOLOID
-
- vec3 N = vec3(uv_interp * 2.0 - 1.0, 0.0);
- N.z = 0.5 - 0.5 * ((N.x * N.x) + (N.y * N.y));
- N = normalize(N);
-
- if (z_flip) {
- N.y = -N.y; //y is flipped to improve blending between both sides
- N.z = -N.z;
- }
-
-#else
- vec2 uv = (uv_interp * 2.0) - 1.0;
- vec3 N = texelCoordToVec(uv, face_id);
-#endif
- //vec4 color = color_interp;
-
-#ifdef USE_DIRECT_WRITE
-
-#ifdef USE_SOURCE_PANORAMA
-
- frag_color = vec4(texturePanorama(N, source_panorama, 0.0).rgb, 1.0);
-#endif
-
-#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
-
- frag_color = vec4(textureDualParaboloidArray(N).rgb, 1.0);
-#endif
-
-#ifdef USE_SOURCE_DUAL_PARABOLOID
-
- frag_color = vec4(textureDualParaboloid(N).rgb, 1.0);
-#endif
-
-#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA) && !defined(USE_SOURCE_DUAL_PARABOLOID)
-
- N.y = -N.y;
- frag_color = vec4(texture(N, source_cube).rgb, 1.0);
-#endif
-
-#else // USE_DIRECT_WRITE
-
-#ifdef COMPUTE_IRRADIANCE
-
- vec3 irradiance = vec3(0.0);
-
- // tangent space calculation from origin point
- vec3 UpVector = vec3(0.0, 1.0, 0.0);
- vec3 TangentX = cross(UpVector, N);
- vec3 TangentY = cross(N, TangentX);
-
- float num_samples = 0.0f;
-
- for (float phi = 0.0; phi < 2.0 * M_PI; phi += SAMPLE_DELTA) {
- for (float theta = 0.0; theta < 0.5 * M_PI; theta += SAMPLE_DELTA) {
- // Calculate sample positions
- vec3 tangentSample = vec3(sin(theta) * cos(phi), sin(theta) * sin(phi), cos(theta));
- // Find world vector of sample position
- vec3 H = tangentSample.x * TangentX + tangentSample.y * TangentY + tangentSample.z * N;
-
- vec2 st = vec2(atan(H.x, H.z), acos(H.y));
- if (st.x < 0.0) {
- st.x += M_PI * 2.0;
- }
- st /= vec2(M_PI * 2.0, M_PI);
-
- irradiance += textureLod(source_panorama, st, source_mip_level).rgb * cos(theta) * sin(theta);
- num_samples++;
- }
- }
- irradiance = M_PI * irradiance * (1.0 / float(num_samples));
-
- frag_color = vec4(irradiance, 1.0);
-
-#else
-
- vec4 sum = vec4(0.0, 0.0, 0.0, 0.0);
-
- for (uint sampleNum = 0u; sampleNum < SAMPLE_COUNT; sampleNum++) {
- vec2 xi = Hammersley(sampleNum, SAMPLE_COUNT);
-
- vec3 H = normalize(ImportanceSampleGGX(xi, roughness, N));
- vec3 V = N;
- vec3 L = normalize(2.0 * dot(V, H) * H - V);
-
- float ndotl = max(dot(N, L), 0.0);
-
- if (ndotl > 0.0) {
-
-#ifdef USE_SOURCE_PANORAMA
- float D = DistributionGGX(N, H, roughness);
- float ndoth = max(dot(N, H), 0.0);
- float hdotv = max(dot(H, V), 0.0);
- float pdf = D * ndoth / (4.0 * hdotv) + 0.0001;
-
- float saTexel = 4.0 * M_PI / (6.0 * source_resolution * source_resolution);
- float saSample = 1.0 / (float(SAMPLE_COUNT) * pdf + 0.0001);
-
- float mipLevel = roughness == 0.0 ? 0.0 : 0.5 * log2(saSample / saTexel);
-
- sum.rgb += texturePanorama(L, source_panorama, mipLevel).rgb * ndotl;
-#endif
-
-#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
- sum.rgb += textureDualParaboloidArray(L).rgb * ndotl;
-#endif
-
-#ifdef USE_SOURCE_DUAL_PARABOLOID
- sum.rgb += textureDualParaboloid(L).rgb * ndotl;
-#endif
-
-#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA) && !defined(USE_SOURCE_DUAL_PARABOLOID)
- L.y = -L.y;
- sum.rgb += textureLod(source_cube, L, 0.0).rgb * ndotl;
-#endif
- sum.a += ndotl;
- }
- }
- sum /= sum.a;
-
- frag_color = vec4(sum.rgb, 1.0);
-
-#endif // COMPUTE_IRRADIANCE
-#endif // USE_DIRECT_WRITE
-}
diff --git a/drivers/gles3/shaders/effect_blur.glsl b/drivers/gles3/shaders/effect_blur.glsl
deleted file mode 100644
index ff5a9f326f..0000000000
--- a/drivers/gles3/shaders/effect_blur.glsl
+++ /dev/null
@@ -1,293 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-
-#ifdef USE_BLUR_SECTION
-
-uniform vec4 blur_section;
-
-#endif
-
-void main() {
-
- uv_interp = uv_in;
- gl_Position = vertex_attrib;
-#ifdef USE_BLUR_SECTION
-
- uv_interp = blur_section.xy + uv_interp * blur_section.zw;
- gl_Position.xy = (blur_section.xy + (gl_Position.xy * 0.5 + 0.5) * blur_section.zw) * 2.0 - 1.0;
-#endif
-}
-
-/* clang-format off */
-[fragment]
-
-#if !defined(GLES_OVER_GL)
-precision mediump float;
-#endif
-/* clang-format on */
-
-in vec2 uv_interp;
-uniform sampler2D source_color; //texunit:0
-
-#ifdef SSAO_MERGE
-uniform sampler2D source_ssao; //texunit:1
-#endif
-
-uniform float lod;
-uniform vec2 pixel_size;
-
-layout(location = 0) out vec4 frag_color;
-
-#ifdef SSAO_MERGE
-
-uniform vec4 ssao_color;
-
-#endif
-
-#if defined(GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
-
-uniform float glow_strength;
-
-#endif
-
-#if defined(DOF_FAR_BLUR) || defined(DOF_NEAR_BLUR)
-
-#ifdef DOF_QUALITY_LOW
-const int dof_kernel_size = 5;
-const int dof_kernel_from = 2;
-const float dof_kernel[5] = float[](0.153388, 0.221461, 0.250301, 0.221461, 0.153388);
-#endif
-
-#ifdef DOF_QUALITY_MEDIUM
-const int dof_kernel_size = 11;
-const int dof_kernel_from = 5;
-const float dof_kernel[11] = float[](0.055037, 0.072806, 0.090506, 0.105726, 0.116061, 0.119726, 0.116061, 0.105726, 0.090506, 0.072806, 0.055037);
-
-#endif
-
-#ifdef DOF_QUALITY_HIGH
-const int dof_kernel_size = 21;
-const int dof_kernel_from = 10;
-const float dof_kernel[21] = float[](0.028174, 0.032676, 0.037311, 0.041944, 0.046421, 0.050582, 0.054261, 0.057307, 0.059587, 0.060998, 0.061476, 0.060998, 0.059587, 0.057307, 0.054261, 0.050582, 0.046421, 0.041944, 0.037311, 0.032676, 0.028174);
-#endif
-
-uniform sampler2D dof_source_depth; //texunit:1
-uniform float dof_begin;
-uniform float dof_end;
-uniform vec2 dof_dir;
-uniform float dof_radius;
-
-#ifdef DOF_NEAR_BLUR_MERGE
-
-uniform sampler2D source_dof_original; //texunit:2
-#endif
-
-#endif
-
-#ifdef GLOW_FIRST_PASS
-
-uniform float exposure;
-uniform float white;
-uniform highp float luminance_cap;
-
-#ifdef GLOW_USE_AUTO_EXPOSURE
-
-uniform highp sampler2D source_auto_exposure; //texunit:1
-uniform highp float auto_exposure_grey;
-
-#endif
-
-uniform float glow_bloom;
-uniform float glow_hdr_threshold;
-uniform float glow_hdr_scale;
-
-#endif
-
-uniform float camera_z_far;
-uniform float camera_z_near;
-
-void main() {
-
-#ifdef GAUSSIAN_HORIZONTAL
- vec2 pix_size = pixel_size;
- pix_size *= 0.5; //reading from larger buffer, so use more samples
- // sigma 2
- vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.214607;
- color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.189879;
- color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.131514;
- color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.071303;
- color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.189879;
- color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.131514;
- color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.071303;
- frag_color = color;
-#endif
-
-#ifdef GAUSSIAN_VERTICAL
- vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.38774;
- color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.24477;
- color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.06136;
- color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.24477;
- color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.06136;
- frag_color = color;
-#endif
-
- //glow uses larger sigma for a more rounded blur effect
-
-#ifdef GLOW_GAUSSIAN_HORIZONTAL
- vec2 pix_size = pixel_size;
- pix_size *= 0.5; //reading from larger buffer, so use more samples
- vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.174938;
- color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.165569;
- color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.140367;
- color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.106595;
- color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.165569;
- color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.140367;
- color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.106595;
- color *= glow_strength;
- frag_color = color;
-#endif
-
-#ifdef GLOW_GAUSSIAN_VERTICAL
- vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.288713;
- color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.233062;
- color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.122581;
- color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.233062;
- color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.122581;
- color *= glow_strength;
- frag_color = color;
-#endif
-
-#ifdef DOF_FAR_BLUR
-
- vec4 color_accum = vec4(0.0);
-
- float depth = textureLod(dof_source_depth, uv_interp, 0.0).r;
- depth = depth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
-#endif
-
- float amount = smoothstep(dof_begin, dof_end, depth);
- float k_accum = 0.0;
-
- for (int i = 0; i < dof_kernel_size; i++) {
-
- int int_ofs = i - dof_kernel_from;
- vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * amount * dof_radius;
-
- float tap_k = dof_kernel[i];
-
- float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
- tap_depth = tap_depth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
-#endif
- float tap_amount = mix(smoothstep(dof_begin, dof_end, tap_depth), 1.0, int_ofs == 0);
- tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
-
- vec4 tap_color = textureLod(source_color, tap_uv, 0.0) * tap_k;
-
- k_accum += tap_k * tap_amount;
- color_accum += tap_color * tap_amount;
- }
-
- if (k_accum > 0.0) {
- color_accum /= k_accum;
- }
-
- frag_color = color_accum; ///k_accum;
-
-#endif
-
-#ifdef DOF_NEAR_BLUR
-
- vec4 color_accum = vec4(0.0);
-
- float max_accum = 0.0;
-
- for (int i = 0; i < dof_kernel_size; i++) {
-
- int int_ofs = i - dof_kernel_from;
- vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * dof_radius;
- float ofs_influence = max(0.0, 1.0 - float(abs(int_ofs)) / float(dof_kernel_from));
-
- float tap_k = dof_kernel[i];
-
- vec4 tap_color = textureLod(source_color, tap_uv, 0.0);
-
- float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
- tap_depth = tap_depth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
-#endif
- float tap_amount = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
- tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
-
-#ifdef DOF_NEAR_FIRST_TAP
-
- tap_color.a = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
-
-#endif
-
- max_accum = max(max_accum, tap_amount * ofs_influence);
-
- color_accum += tap_color * tap_k;
- }
-
- color_accum.a = max(color_accum.a, sqrt(max_accum));
-
-#ifdef DOF_NEAR_BLUR_MERGE
-
- vec4 original = textureLod(source_dof_original, uv_interp, 0.0);
- color_accum = mix(original, color_accum, color_accum.a);
-
-#endif
-
-#ifndef DOF_NEAR_FIRST_TAP
- //color_accum=vec4(vec3(color_accum.a),1.0);
-#endif
- frag_color = color_accum;
-
-#endif
-
-#ifdef GLOW_FIRST_PASS
-
-#ifdef GLOW_USE_AUTO_EXPOSURE
-
- frag_color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
-#endif
- frag_color *= exposure;
-
- float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
- float feedback = max(smoothstep(glow_hdr_threshold, glow_hdr_threshold + glow_hdr_scale, luminance), glow_bloom);
-
- frag_color = min(frag_color * feedback, vec4(luminance_cap));
-
-#endif
-
-#ifdef SIMPLE_COPY
- vec4 color = textureLod(source_color, uv_interp, 0.0);
- frag_color = color;
-#endif
-
-#ifdef SSAO_MERGE
-
- vec4 color = textureLod(source_color, uv_interp, 0.0);
- float ssao = textureLod(source_ssao, uv_interp, 0.0).r;
-
- frag_color = vec4(mix(color.rgb, color.rgb * mix(ssao_color.rgb, vec3(1.0), ssao), color.a), 1.0);
-
-#endif
-}
diff --git a/drivers/gles3/shaders/exposure.glsl b/drivers/gles3/shaders/exposure.glsl
deleted file mode 100644
index 759adcda06..0000000000
--- a/drivers/gles3/shaders/exposure.glsl
+++ /dev/null
@@ -1,88 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
-
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-uniform highp sampler2D source_exposure; //texunit:0
-/* clang-format on */
-
-#ifdef EXPOSURE_BEGIN
-
-uniform highp ivec2 source_render_size;
-uniform highp ivec2 target_size;
-
-#endif
-
-#ifdef EXPOSURE_END
-
-uniform highp sampler2D prev_exposure; //texunit:1
-uniform highp float exposure_adjust;
-uniform highp float min_luminance;
-uniform highp float max_luminance;
-
-#endif
-
-layout(location = 0) out highp float exposure;
-
-void main() {
-
-#ifdef EXPOSURE_BEGIN
-
- ivec2 src_pos = ivec2(gl_FragCoord.xy) * source_render_size / target_size;
-
-#if 1
- //more precise and expensive, but less jittery
- ivec2 next_pos = ivec2(gl_FragCoord.xy + ivec2(1)) * source_render_size / target_size;
- next_pos = max(next_pos, src_pos + ivec2(1)); //so it at least reads one pixel
- highp vec3 source_color = vec3(0.0);
- for (int i = src_pos.x; i < next_pos.x; i++) {
- for (int j = src_pos.y; j < next_pos.y; j++) {
- source_color += texelFetch(source_exposure, ivec2(i, j), 0).rgb;
- }
- }
-
- source_color /= float((next_pos.x - src_pos.x) * (next_pos.y - src_pos.y));
-#else
- highp vec3 source_color = texelFetch(source_exposure, src_pos, 0).rgb;
-
-#endif
-
- exposure = max(source_color.r, max(source_color.g, source_color.b));
-
-#else
-
- ivec2 coord = ivec2(gl_FragCoord.xy);
- exposure = texelFetch(source_exposure, coord * 3 + ivec2(0, 0), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 0), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 0), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 1), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 1), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 1), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 2), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 2), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 2), 0).r;
- exposure *= (1.0 / 9.0);
-
-#ifdef EXPOSURE_END
-
-#ifdef EXPOSURE_FORCE_SET
- //will stay as is
-#else
- highp float prev_lum = texelFetch(prev_exposure, ivec2(0, 0), 0).r; //1 pixel previous exposure
- exposure = clamp(prev_lum + (exposure - prev_lum) * exposure_adjust, min_luminance, max_luminance);
-
-#endif //EXPOSURE_FORCE_SET
-
-#endif //EXPOSURE_END
-
-#endif //EXPOSURE_BEGIN
-}
diff --git a/drivers/gles3/shaders/lens_distorted.glsl b/drivers/gles3/shaders/lens_distorted.glsl
deleted file mode 100644
index 7b9d0b347f..0000000000
--- a/drivers/gles3/shaders/lens_distorted.glsl
+++ /dev/null
@@ -1,64 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-uniform vec2 offset;
-uniform vec2 scale;
-
-out vec2 uv_interp;
-
-void main() {
-
- uv_interp = vertex_attrib.xy * 2.0 - 1.0;
-
- vec2 v = vertex_attrib.xy * scale + offset;
- gl_Position = vec4(v, 0.0, 1.0);
-}
-
-/* clang-format off */
-[fragment]
-
-uniform sampler2D source; //texunit:0
-/* clang-format on */
-
-uniform vec2 eye_center;
-uniform float k1;
-uniform float k2;
-uniform float upscale;
-uniform float aspect_ratio;
-
-in vec2 uv_interp;
-
-layout(location = 0) out vec4 frag_color;
-
-void main() {
- vec2 coords = uv_interp;
- vec2 offset = coords - eye_center;
-
- // take aspect ratio into account
- offset.y /= aspect_ratio;
-
- // distort
- vec2 offset_sq = offset * offset;
- float radius_sq = offset_sq.x + offset_sq.y;
- float radius_s4 = radius_sq * radius_sq;
- float distortion_scale = 1.0 + (k1 * radius_sq) + (k2 * radius_s4);
- offset *= distortion_scale;
-
- // reapply aspect ratio
- offset.y *= aspect_ratio;
-
- // add our eye center back in
- coords = offset + eye_center;
- coords /= upscale;
-
- // and check our color
- if (coords.x < -1.0 || coords.y < -1.0 || coords.x > 1.0 || coords.y > 1.0) {
- frag_color = vec4(0.0, 0.0, 0.0, 1.0);
- } else {
- coords = (coords + vec2(1.0)) / vec2(2.0);
- frag_color = textureLod(source, coords, 0.0);
- }
-}
diff --git a/drivers/gles3/shaders/particles.glsl b/drivers/gles3/shaders/particles.glsl
deleted file mode 100644
index 8523c08597..0000000000
--- a/drivers/gles3/shaders/particles.glsl
+++ /dev/null
@@ -1,267 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 color;
-/* clang-format on */
-layout(location = 1) in highp vec4 velocity_active;
-layout(location = 2) in highp vec4 custom;
-layout(location = 3) in highp vec4 xform_1;
-layout(location = 4) in highp vec4 xform_2;
-layout(location = 5) in highp vec4 xform_3;
-
-struct Attractor {
-
- vec3 pos;
- vec3 dir;
- float radius;
- float eat_radius;
- float strength;
- float attenuation;
-};
-
-#define MAX_ATTRACTORS 64
-
-uniform bool emitting;
-uniform float system_phase;
-uniform float prev_system_phase;
-uniform int total_particles;
-uniform float explosiveness;
-uniform float randomness;
-uniform float time;
-uniform float delta;
-
-uniform int attractor_count;
-uniform Attractor attractors[MAX_ATTRACTORS];
-uniform bool clear;
-uniform uint cycle;
-uniform float lifetime;
-uniform mat4 emission_transform;
-uniform uint random_seed;
-
-out highp vec4 out_color; //tfb:
-out highp vec4 out_velocity_active; //tfb:
-out highp vec4 out_custom; //tfb:
-out highp vec4 out_xform_1; //tfb:
-out highp vec4 out_xform_2; //tfb:
-out highp vec4 out_xform_3; //tfb:
-
-#if defined(USE_MATERIAL)
-
-/* clang-format off */
-layout(std140) uniform UniformData { //ubo:0
-
-MATERIAL_UNIFORMS
-
-};
-/* clang-format on */
-
-#endif
-
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-uint hash(uint x) {
-
- x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
- x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
- x = (x >> uint(16)) ^ x;
- return x;
-}
-
-void main() {
-
-#ifdef PARTICLES_COPY
-
- out_color = color;
- out_velocity_active = velocity_active;
- out_custom = custom;
- out_xform_1 = xform_1;
- out_xform_2 = xform_2;
- out_xform_3 = xform_3;
-
-#else
-
- bool apply_forces = true;
- bool apply_velocity = true;
- float local_delta = delta;
-
- float mass = 1.0;
-
- float restart_phase = float(gl_VertexID) / float(total_particles);
-
- if (randomness > 0.0) {
- uint seed = cycle;
- if (restart_phase >= system_phase) {
- seed -= uint(1);
- }
- seed *= uint(total_particles);
- seed += uint(gl_VertexID);
- float random = float(hash(seed) % uint(65536)) / 65536.0;
- restart_phase += randomness * random * 1.0 / float(total_particles);
- }
-
- restart_phase *= (1.0 - explosiveness);
- bool restart = false;
- bool shader_active = velocity_active.a > 0.5;
-
- if (system_phase > prev_system_phase) {
- // restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
-
- if (restart_phase >= prev_system_phase && restart_phase < system_phase) {
- restart = true;
-#ifdef USE_FRACTIONAL_DELTA
- local_delta = (system_phase - restart_phase) * lifetime;
-#endif
- }
-
- } else if (delta > 0.0) {
- if (restart_phase >= prev_system_phase) {
- restart = true;
-#ifdef USE_FRACTIONAL_DELTA
- local_delta = (1.0 - restart_phase + system_phase) * lifetime;
-#endif
- } else if (restart_phase < system_phase) {
- restart = true;
-#ifdef USE_FRACTIONAL_DELTA
- local_delta = (system_phase - restart_phase) * lifetime;
-#endif
- }
- }
-
- uint current_cycle = cycle;
-
- if (system_phase < restart_phase) {
- current_cycle -= uint(1);
- }
-
- uint particle_number = current_cycle * uint(total_particles) + uint(gl_VertexID);
- int index = int(gl_VertexID);
-
- if (restart) {
- shader_active = emitting;
- }
-
- mat4 xform;
-
-#if defined(ENABLE_KEEP_DATA)
- if (clear) {
-#else
- if (clear || restart) {
-#endif
- out_color = vec4(1.0);
- out_velocity_active = vec4(0.0);
- out_custom = vec4(0.0);
- if (!restart)
- shader_active = false;
-
- xform = mat4(
- vec4(1.0, 0.0, 0.0, 0.0),
- vec4(0.0, 1.0, 0.0, 0.0),
- vec4(0.0, 0.0, 1.0, 0.0),
- vec4(0.0, 0.0, 0.0, 1.0));
- } else {
- out_color = color;
- out_velocity_active = velocity_active;
- out_custom = custom;
- xform = transpose(mat4(xform_1, xform_2, xform_3, vec4(vec3(0.0), 1.0)));
- }
-
- if (shader_active) {
- //execute shader
-
- {
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
- }
-
-#if !defined(DISABLE_FORCE)
-
- if (false) {
-
- vec3 force = vec3(0.0);
- for (int i = 0; i < attractor_count; i++) {
-
- vec3 rel_vec = xform[3].xyz - attractors[i].pos;
- float dist = length(rel_vec);
- if (attractors[i].radius < dist)
- continue;
- if (attractors[i].eat_radius > 0.0 && attractors[i].eat_radius > dist) {
- out_velocity_active.a = 0.0;
- }
-
- rel_vec = normalize(rel_vec);
-
- float attenuation = pow(dist / attractors[i].radius, attractors[i].attenuation);
-
- if (attractors[i].dir == vec3(0.0)) {
- //towards center
- force += attractors[i].strength * rel_vec * attenuation * mass;
- } else {
- force += attractors[i].strength * attractors[i].dir * attenuation * mass;
- }
- }
-
- out_velocity_active.xyz += force * local_delta;
- }
-#endif
-
-#if !defined(DISABLE_VELOCITY)
-
- if (true) {
-
- xform[3].xyz += out_velocity_active.xyz * local_delta;
- }
-#endif
- } else {
- xform = mat4(0.0);
- }
-
- xform = transpose(xform);
-
- out_velocity_active.a = mix(0.0, 1.0, shader_active);
-
- out_xform_1 = xform[0];
- out_xform_2 = xform[1];
- out_xform_3 = xform[2];
-
-#endif //PARTICLES_COPY
-}
-
-/* clang-format off */
-[fragment]
-
-// any code here is never executed, stuff is filled just so it works
-
-#if defined(USE_MATERIAL)
-
-layout(std140) uniform UniformData {
-
-MATERIAL_UNIFORMS
-
-};
-
-#endif
-
-FRAGMENT_SHADER_GLOBALS
-
-void main() {
-
- {
-
-LIGHT_SHADER_CODE
-
- }
-
- {
-
-FRAGMENT_SHADER_CODE
-
- }
-}
-/* clang-format on */
diff --git a/drivers/gles3/shaders/resolve.glsl b/drivers/gles3/shaders/resolve.glsl
deleted file mode 100644
index d64d8308c1..0000000000
--- a/drivers/gles3/shaders/resolve.glsl
+++ /dev/null
@@ -1,44 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-
-void main() {
-
- uv_interp = uv_in;
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-#if !defined(GLES_OVER_GL)
-precision mediump float;
-#endif
-/* clang-format on */
-
-in vec2 uv_interp;
-uniform sampler2D source_specular; // texunit:0
-uniform sampler2D source_ssr; // texunit:1
-
-uniform vec2 pixel_size;
-
-in vec2 uv2_interp;
-
-layout(location = 0) out vec4 frag_color;
-
-void main() {
-
- vec4 specular = texture(source_specular, uv_interp);
-
-#ifdef USE_SSR
- vec4 ssr = textureLod(source_ssr, uv_interp, 0.0);
- specular.rgb = mix(specular.rgb, ssr.rgb * specular.a, ssr.a);
-#endif
-
- frag_color = vec4(specular.rgb, 1.0);
-}
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
deleted file mode 100644
index a45ac2eb8a..0000000000
--- a/drivers/gles3/shaders/scene.glsl
+++ /dev/null
@@ -1,2187 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#define M_PI 3.14159265359
-
-#define SHADER_IS_SRGB false
-
-/*
-from VisualServer:
-
-ARRAY_VERTEX=0,
-ARRAY_NORMAL=1,
-ARRAY_TANGENT=2,
-ARRAY_COLOR=3,
-ARRAY_TEX_UV=4,
-ARRAY_TEX_UV2=5,
-ARRAY_BONES=6,
-ARRAY_WEIGHTS=7,
-ARRAY_INDEX=8,
-*/
-
-// hack to use uv if no uv present so it works with lightmap
-
-/* INPUT ATTRIBS */
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 1) in vec3 normal_attrib;
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-layout(location = 2) in vec4 tangent_attrib;
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
-layout(location = 3) in vec4 color_attrib;
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-layout(location = 4) in vec2 uv_attrib;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-layout(location = 5) in vec2 uv2_attrib;
-#endif
-
-#ifdef USE_SKELETON
-layout(location = 6) in uvec4 bone_indices; // attrib:6
-layout(location = 7) in highp vec4 bone_weights; // attrib:7
-#endif
-
-#ifdef USE_INSTANCING
-
-layout(location = 8) in highp vec4 instance_xform0;
-layout(location = 9) in highp vec4 instance_xform1;
-layout(location = 10) in highp vec4 instance_xform2;
-layout(location = 11) in lowp vec4 instance_color;
-
-#if defined(ENABLE_INSTANCE_CUSTOM)
-layout(location = 12) in highp vec4 instance_custom_data;
-#endif
-
-#endif
-
-layout(std140) uniform SceneData { // ubo:0
-
- highp mat4 projection_matrix;
- highp mat4 inv_projection_matrix;
- highp mat4 camera_inverse_matrix;
- highp mat4 camera_matrix;
-
- mediump vec4 ambient_light_color;
- mediump vec4 bg_color;
-
- mediump vec4 fog_color_enabled;
- mediump vec4 fog_sun_color_amount;
-
- mediump float ambient_energy;
- mediump float bg_energy;
-
- mediump float z_offset;
- mediump float z_slope_scale;
- highp float shadow_dual_paraboloid_render_zfar;
- highp float shadow_dual_paraboloid_render_side;
-
- highp vec2 viewport_size;
- highp vec2 screen_pixel_size;
- highp vec2 shadow_atlas_pixel_size;
- highp vec2 directional_shadow_pixel_size;
-
- highp float time;
- highp float z_far;
- mediump float reflection_multiplier;
- mediump float subsurface_scatter_width;
- mediump float ambient_occlusion_affect_light;
- mediump float ambient_occlusion_affect_ao_channel;
- mediump float opaque_prepass_threshold;
-
- bool fog_depth_enabled;
- highp float fog_depth_begin;
- highp float fog_depth_end;
- mediump float fog_density;
- highp float fog_depth_curve;
- bool fog_transmit_enabled;
- highp float fog_transmit_curve;
- bool fog_height_enabled;
- highp float fog_height_min;
- highp float fog_height_max;
- highp float fog_height_curve;
-};
-
-uniform highp mat4 world_transform;
-
-#ifdef USE_LIGHT_DIRECTIONAL
-
-layout(std140) uniform DirectionalLightData { //ubo:3
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix1;
- highp mat4 shadow_matrix2;
- highp mat4 shadow_matrix3;
- highp mat4 shadow_matrix4;
- mediump vec4 shadow_split_offsets;
-};
-
-#endif
-
-#ifdef USE_VERTEX_LIGHTING
-//omni and spot
-
-struct LightData {
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix;
-};
-
-layout(std140) uniform OmniLightData { //ubo:4
-
- LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-layout(std140) uniform SpotLightData { //ubo:5
-
- LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-#ifdef USE_FORWARD_LIGHTING
-
-uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
-uniform int omni_light_count;
-
-uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
-uniform int spot_light_count;
-
-#endif
-
-out vec4 diffuse_light_interp;
-out vec4 specular_light_interp;
-
-void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) {
-
- float NdotL = dot(N, L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
-
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
-
-#if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-#else
- // lambert by default for everything else
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
-#endif
-
- diffuse += light_color * diffuse_brdf_NL;
-
- if (roughness > 0.0) {
-
- // D
- float specular_brdf_NL = 0.0;
-
-#if !defined(SPECULAR_DISABLED)
- //normalized blinn always unless disabled
- vec3 H = normalize(V + L);
- float cNdotH = max(dot(N, H), 0.0);
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
-#endif
-
- specular += specular_brdf_NL * light_color * (1.0 / M_PI);
- }
-}
-
-void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
-
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w));
-
- light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
-}
-
-void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
-
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w));
- vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff = spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
- float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
- light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x);
-
- light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
-}
-
-#endif
-
-/* Varyings */
-
-out highp vec3 vertex_interp;
-out vec3 normal_interp;
-
-#if defined(ENABLE_COLOR_INTERP)
-out vec4 color_interp;
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-out vec2 uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-out vec2 uv2_interp;
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-out vec3 tangent_interp;
-out vec3 binormal_interp;
-#endif
-
-#if defined(USE_MATERIAL)
-
-/* clang-format off */
-layout(std140) uniform UniformData { // ubo:1
-
-MATERIAL_UNIFORMS
-
-};
-/* clang-format on */
-
-#endif
-
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-out highp float dp_clip;
-
-#endif
-
-#define SKELETON_TEXTURE_WIDTH 256
-
-#ifdef USE_SKELETON
-uniform highp sampler2D skeleton_texture; // texunit:-1
-#endif
-
-out highp vec4 position_interp;
-
-// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now.
-// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316
-//invariant gl_Position;
-
-void main() {
-
- highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
-
- highp mat4 world_matrix = world_transform;
-
-#ifdef USE_INSTANCING
-
- {
- highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
- world_matrix = world_matrix * transpose(m);
- }
-#endif
-
- vec3 normal = normal_attrib;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 tangent = tangent_attrib.xyz;
- float binormalf = tangent_attrib.a;
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
- color_interp = color_attrib;
-#if defined(USE_INSTANCING)
- color_interp *= instance_color;
-#endif
-
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- vec3 binormal = normalize(cross(normal, tangent) * binormalf);
-#endif
-
-#if defined(ENABLE_UV_INTERP)
- uv_interp = uv_attrib;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
- uv2_interp = uv2_attrib;
-#endif
-
-#ifdef OVERRIDE_POSITION
- highp vec4 position;
-#endif
-
-#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM)
- vec4 instance_custom = instance_custom_data;
-#else
- vec4 instance_custom = vec4(0.0);
-#endif
-
- highp mat4 local_projection = projection_matrix;
-
-//using world coordinates
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
-
- vertex = world_matrix * vertex;
-
-#if defined(ENSURE_CORRECT_NORMALS)
- mat3 normal_matrix = mat3(transpose(inverse(world_matrix)));
- normal = normal_matrix * normal;
-#else
- normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
- float roughness = 1.0;
-
-//defines that make writing custom shaders easier
-#define projection_matrix local_projection
-#define world_transform world_matrix
-
-#ifdef USE_SKELETON
- {
- //skeleton transform
- ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int
-
- ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3);
- highp mat4 m;
- m = mat4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
- vec4(0.0, 0.0, 0.0, 1.0)) *
- bone_weights.x;
-
- tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3);
-
- m += mat4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
- vec4(0.0, 0.0, 0.0, 1.0)) *
- bone_weights.y;
-
- tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3);
-
- m += mat4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
- vec4(0.0, 0.0, 0.0, 1.0)) *
- bone_weights.z;
-
- tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3);
-
- m += mat4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
- vec4(0.0, 0.0, 0.0, 1.0)) *
- bone_weights.w;
-
- world_matrix = world_matrix * transpose(m);
- }
-#endif
-
- float point_size = 1.0;
-
- highp mat4 modelview = camera_inverse_matrix * world_matrix;
- {
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
- }
-
- gl_PointSize = point_size;
-
-// using local coordinates (default)
-#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
-
- vertex = modelview * vertex;
-
-#if defined(ENSURE_CORRECT_NORMALS)
- mat3 normal_matrix = mat3(transpose(inverse(modelview)));
- normal = normal_matrix * normal;
-#else
- normal = normalize((modelview * vec4(normal, 0.0)).xyz);
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
- binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
-//using world coordinates
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
-
- vertex = camera_inverse_matrix * vertex;
- normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
- vertex_interp = vertex.xyz;
- normal_interp = normal;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent_interp = tangent;
- binormal_interp = binormal;
-#endif
-
-#ifdef RENDER_DEPTH
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- vertex_interp.z *= shadow_dual_paraboloid_render_side;
- normal_interp.z *= shadow_dual_paraboloid_render_side;
-
- dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
-
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
-
- highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset;
- highp float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy /= 1.0 - vtx.z;
- vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
- vtx.z = vtx.z * 2.0 - 1.0;
-
- vertex_interp = vtx;
-
-#else
-
- float z_ofs = z_offset;
- z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale;
- vertex_interp.z -= z_ofs;
-
-#endif //RENDER_DEPTH_DUAL_PARABOLOID
-
-#endif //RENDER_DEPTH
-
-#ifdef OVERRIDE_POSITION
- gl_Position = position;
-#else
- gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
-#endif
-
- position_interp = gl_Position;
-
-#ifdef USE_VERTEX_LIGHTING
-
- diffuse_light_interp = vec4(0.0);
- specular_light_interp = vec4(0.0);
-
-#ifdef USE_FORWARD_LIGHTING
-
- for (int i = 0; i < omni_light_count; i++) {
- light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
- }
-
- for (int i = 0; i < spot_light_count; i++) {
- light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
- }
-#endif
-
-#ifdef USE_LIGHT_DIRECTIONAL
-
- vec3 directional_diffuse = vec3(0.0);
- vec3 directional_specular = vec3(0.0);
- light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular);
-
- float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333));
- float diff_dir_avg = dot(directional_diffuse, vec3(0.33333));
- if (diff_avg > 0.0) {
- diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg);
- } else {
- diffuse_light_interp.a = 1.0;
- }
-
- diffuse_light_interp.rgb += directional_diffuse;
-
- float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333));
- float spec_dir_avg = dot(directional_specular, vec3(0.33333));
- if (spec_avg > 0.0) {
- specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg);
- } else {
- specular_light_interp.a = 1.0;
- }
-
- specular_light_interp.rgb += directional_specular;
-
-#endif //USE_LIGHT_DIRECTIONAL
-
-#endif // USE_VERTEX_LIGHTING
-}
-
-/* clang-format off */
-[fragment]
-
-
-/* texture unit usage, N is max_texture_unity-N
-
-1-skeleton
-2-radiance
-3-reflection_atlas
-4-directional_shadow
-5-shadow_atlas
-6-decal_atlas
-7-screen
-8-depth
-9-probe1
-10-probe2
-
-*/
-
-uniform highp mat4 world_transform;
-/* clang-format on */
-
-#define M_PI 3.14159265359
-#define SHADER_IS_SRGB false
-
-/* Varyings */
-
-#if defined(ENABLE_COLOR_INTERP)
-in vec4 color_interp;
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-in vec2 uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-in vec2 uv2_interp;
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-in vec3 tangent_interp;
-in vec3 binormal_interp;
-#endif
-
-in highp vec3 vertex_interp;
-in vec3 normal_interp;
-
-/* PBR CHANNELS */
-
-#ifdef USE_RADIANCE_MAP
-
-layout(std140) uniform Radiance { // ubo:2
-
- mat4 radiance_inverse_xform;
- float radiance_ambient_contribution;
-};
-
-#define RADIANCE_MAX_LOD 5.0
-
-uniform sampler2D irradiance_map; // texunit:-6
-
-#ifdef USE_RADIANCE_MAP_ARRAY
-
-uniform sampler2DArray radiance_map; // texunit:-2
-
-vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) {
-
- vec3 norm = normalize(p_vec);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
-
- // we need to lie the derivatives (normg) and assume that DP side is always the same
- // to get proper texture filtering
- vec2 normg = norm.xy;
- if (norm.z > 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
-
- // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
- // it's easy to have precision errors using fract() to interpolate layers
- // as such, using fixed point to ensure it works.
-
- float index = p_roughness * RADIANCE_MAX_LOD;
- int indexi = int(index * 256.0);
- vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz;
- vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz;
- return mix(base, next, float(indexi % 256) / 256.0);
-}
-
-#else
-
-uniform sampler2D radiance_map; // texunit:-2
-
-vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) {
-
- vec3 norm = normalize(p_vec);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
- if (norm.z > 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
- return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
-}
-
-#endif
-
-#endif
-
-/* Material Uniforms */
-
-#if defined(USE_MATERIAL)
-
-/* clang-format off */
-layout(std140) uniform UniformData {
-
-MATERIAL_UNIFORMS
-
-};
-/* clang-format on */
-
-#endif
-
-/* clang-format off */
-
-FRAGMENT_SHADER_GLOBALS
-
-/* clang-format on */
-
-layout(std140) uniform SceneData {
-
- highp mat4 projection_matrix;
- highp mat4 inv_projection_matrix;
- highp mat4 camera_inverse_matrix;
- highp mat4 camera_matrix;
-
- mediump vec4 ambient_light_color;
- mediump vec4 bg_color;
-
- mediump vec4 fog_color_enabled;
- mediump vec4 fog_sun_color_amount;
-
- mediump float ambient_energy;
- mediump float bg_energy;
-
- mediump float z_offset;
- mediump float z_slope_scale;
- highp float shadow_dual_paraboloid_render_zfar;
- highp float shadow_dual_paraboloid_render_side;
-
- highp vec2 viewport_size;
- highp vec2 screen_pixel_size;
- highp vec2 shadow_atlas_pixel_size;
- highp vec2 directional_shadow_pixel_size;
-
- highp float time;
- highp float z_far;
- mediump float reflection_multiplier;
- mediump float subsurface_scatter_width;
- mediump float ambient_occlusion_affect_light;
- mediump float ambient_occlusion_affect_ao_channel;
- mediump float opaque_prepass_threshold;
-
- bool fog_depth_enabled;
- highp float fog_depth_begin;
- highp float fog_depth_end;
- mediump float fog_density;
- highp float fog_depth_curve;
- bool fog_transmit_enabled;
- highp float fog_transmit_curve;
- bool fog_height_enabled;
- highp float fog_height_min;
- highp float fog_height_max;
- highp float fog_height_curve;
-};
-
- //directional light data
-
-#ifdef USE_LIGHT_DIRECTIONAL
-
-layout(std140) uniform DirectionalLightData {
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix1;
- highp mat4 shadow_matrix2;
- highp mat4 shadow_matrix3;
- highp mat4 shadow_matrix4;
- mediump vec4 shadow_split_offsets;
-};
-
-uniform highp sampler2DShadow directional_shadow; // texunit:-4
-
-#endif
-
-#ifdef USE_VERTEX_LIGHTING
-in vec4 diffuse_light_interp;
-in vec4 specular_light_interp;
-#endif
-// omni and spot
-
-struct LightData {
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix;
-};
-
-layout(std140) uniform OmniLightData { // ubo:4
-
- LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-layout(std140) uniform SpotLightData { // ubo:5
-
- LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-uniform highp sampler2DShadow shadow_atlas; // texunit:-5
-
-struct ReflectionData {
-
- mediump vec4 box_extents;
- mediump vec4 box_offset;
- mediump vec4 params; // intensity, 0, interior , boxproject
- mediump vec4 ambient; // ambient color, energy
- mediump vec4 atlas_clamp;
- highp mat4 local_matrix; // up to here for spot and omni, rest is for directional
- // notes: for ambientblend, use distance to edge to blend between already existing global environment
-};
-
-layout(std140) uniform ReflectionProbeData { //ubo:6
-
- ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
-};
-uniform mediump sampler2D reflection_atlas; // texunit:-3
-
-#ifdef USE_FORWARD_LIGHTING
-
-uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
-uniform int omni_light_count;
-
-uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
-uniform int spot_light_count;
-
-uniform int reflection_indices[MAX_FORWARD_LIGHTS];
-uniform int reflection_count;
-
-#endif
-
-#if defined(SCREEN_TEXTURE_USED)
-
-uniform highp sampler2D screen_texture; // texunit:-7
-
-#endif
-
-#ifdef USE_MULTIPLE_RENDER_TARGETS
-
-layout(location = 0) out vec4 diffuse_buffer;
-layout(location = 1) out vec4 specular_buffer;
-layout(location = 2) out vec4 normal_mr_buffer;
-#if defined(ENABLE_SSS)
-layout(location = 3) out float sss_buffer;
-#endif
-
-#else
-
-layout(location = 0) out vec4 frag_color;
-
-#endif
-
-in highp vec4 position_interp;
-uniform highp sampler2D depth_buffer; // texunit:-8
-
-#ifdef USE_CONTACT_SHADOWS
-
-float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
-
- if (abs(dir.z) > 0.99)
- return 1.0;
-
- vec3 endpoint = pos + dir * max_distance;
- vec4 source = position_interp;
- vec4 dest = projection_matrix * vec4(endpoint, 1.0);
-
- vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5;
- vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5;
-
- vec2 screen_rel = to_screen - from_screen;
-
- if (length(screen_rel) < 0.00001)
- return 1.0; // too small, don't do anything
-
- /*
- float pixel_size; // approximate pixel size
-
- if (screen_rel.x > screen_rel.y) {
-
- pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x));
- } else {
- pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y));
- }
- */
- vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0);
-
- vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size;
-
- float steps = length(screen_rel) / length(pixel_incr);
- steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation
- //steps = 10.0;
-
- vec4 incr = (dest - source) / steps;
- float ratio = 0.0;
- float ratio_incr = 1.0 / steps;
-
- while (steps > 0.0) {
- source += incr * 2.0;
- bias += incr * 2.0;
-
- vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
- if (uv_depth.x > 0.0 && uv_depth.x < 1.0 && uv_depth.y > 0.0 && uv_depth.y < 1.0) {
- float depth = texture(depth_buffer, uv_depth.xy).r;
-
- if (depth < uv_depth.z) {
- if (depth > (bias.z / bias.w) * 0.5 + 0.5) {
- return min(pow(ratio, 4.0), 1.0);
- } else {
- return 1.0;
- }
- }
-
- ratio += ratio_incr;
- steps -= 1.0;
- } else {
- return 1.0;
- }
- }
-
- return 1.0;
-}
-
-#endif
-
-// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
-// We're dividing this factor off because the overall term we'll end up looks like
-// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
-//
-// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
-//
-// We're basically regouping this as
-//
-// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
-//
-// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
-//
-// The contents of the D and G (G1) functions (GGX) are taken from
-// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
-// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
-
-float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5 * alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
-
- // float cos2 = cos_theta_m * cos_theta_m;
- // float sin2 = (1.0 - cos2);
- // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
-}
-
-float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha * alpha;
- float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
- return alpha2 / (M_PI * d * d);
-}
-
-float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
-}
-
-float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float r_x = cos_phi / alpha_x;
- float r_y = sin_phi / alpha_y;
- float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
- return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
-}
-
-float SchlickFresnel(float u) {
- float m = 1.0 - u;
- float m2 = m * m;
- return m2 * m2 * m; // pow(m,5)
-}
-
-float GTR1(float NdotH, float a) {
- if (a >= 1.0) return 1.0 / M_PI;
- float a2 = a * a;
- float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
- return (a2 - 1.0) / (M_PI * log(a2) * t);
-}
-
-vec3 F0(float metallic, float specular, vec3 albedo) {
- float dielectric = 0.16 * specular * specular;
- // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
- // see https://google.github.io/filament/Filament.md.html
- return mix(vec3(dielectric), albedo, vec3(metallic));
-}
-
-void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) {
-
-#if defined(USE_LIGHT_SHADER_CODE)
- // light is written by the light shader
-
- vec3 normal = N;
- vec3 albedo = diffuse_color;
- vec3 light = L;
- vec3 view = V;
-
- /* clang-format off */
-
-LIGHT_SHADER_CODE
-
- /* clang-format on */
-
-#else
- float NdotL = dot(N, L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
-
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- vec3 H = normalize(V + L);
-#endif
-
-#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cNdotH = max(dot(N, H), 0.0);
-#endif
-
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cLdotH = max(dot(L, H), 0.0);
-#endif
-
- if (metallic < 1.0) {
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
-
-#if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-
-#elif defined(DIFFUSE_TOON)
-
- diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
-
-#elif defined(DIFFUSE_BURLEY)
-
- {
- float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
- float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
- float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
- diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
-
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
- */
- }
-#else
- // lambert
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
-#endif
-
- diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
-
-#if defined(TRANSMISSION_USED)
- diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
-#endif
-
-#if defined(LIGHT_USE_RIM)
- float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
-#endif
- }
-
- if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
-
- // D
-
-#if defined(SPECULAR_BLINN)
-
- //normalized blinn
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- float intensity = blinn;
-
- specular_light += light_color * intensity * specular_blob_intensity * attenuation;
-
-#elif defined(SPECULAR_PHONG)
-
- vec3 R = normalize(-reflect(L, N));
- float cRdotV = max(0.0, dot(R, V));
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float phong = pow(cRdotV, shininess);
- phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
-
- specular_light += light_color * intensity * specular_blob_intensity * attenuation;
-
-#elif defined(SPECULAR_TOON)
-
- vec3 R = normalize(-reflect(L, N));
- float RdotV = dot(R, V);
- float mid = 1.0 - roughness;
- mid *= mid;
- float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
- diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
-
-#elif defined(SPECULAR_DISABLED)
- // none..
-
-#elif defined(SPECULAR_SCHLICK_GGX)
- // shlick+ggx as default
-
-#if defined(LIGHT_USE_ANISOTROPY)
-
- float alpha_ggx = roughness * roughness;
- float aspect = sqrt(1.0 - anisotropy * 0.9);
- float ax = alpha_ggx / aspect;
- float ay = alpha_ggx * aspect;
- float XdotH = dot(T, H);
- float YdotH = dot(B, H);
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
- float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
-
-#else
- float alpha_ggx = roughness * roughness;
- float D = D_GGX(cNdotH, alpha_ggx);
- float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
-#endif
- // F
- vec3 f0 = F0(metallic, specular, diffuse_color);
- float cLdotH5 = SchlickFresnel(cLdotH);
- vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
-
- vec3 specular_brdf_NL = cNdotL * D * F * G;
-
- specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-#endif
-
-#if defined(LIGHT_USE_CLEARCOAT)
-
-#if !defined(SPECULAR_SCHLICK_GGX)
- float cLdotH5 = SchlickFresnel(cLdotH);
-#endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
- float Fr = mix(.04, 1.0, cLdotH5);
- float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
-
- float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
-
- specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-#endif
- }
-
-#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
-#endif
-
-#endif //defined(USE_LIGHT_SHADER_CODE)
-}
-
-float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {
-
-#ifdef SHADOW_MODE_PCF_13
-
- float avg = textureProj(shadow, vec4(pos, depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0));
- return avg * (1.0 / 13.0);
-#endif
-
-#ifdef SHADOW_MODE_PCF_5
-
- float avg = textureProj(shadow, vec4(pos, depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
- return avg * (1.0 / 5.0);
-
-#endif
-
-#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
-
- return textureProj(shadow, vec4(pos, depth, 1.0));
-
-#endif
-}
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-in highp float dp_clip;
-
-#endif
-
-void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) {
-
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
- float omni_attenuation;
- if (normalized_distance < 1.0) {
- omni_attenuation = pow(1.0 - normalized_distance, omni_lights[idx].light_direction_attenuation.w);
- } else {
- omni_attenuation = 0.0;
- }
- vec3 light_attenuation = vec3(omni_attenuation);
-
-#if !defined(SHADOWS_DISABLED)
-#ifdef USE_SHADOW
- if (omni_lights[idx].light_params.w > 0.5) {
- // there is a shadowmap
-
- highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
- float shadow_len = length(splane);
- splane = normalize(splane);
- vec4 clamp_rect = omni_lights[idx].light_clamp;
-
- if (splane.z >= 0.0) {
-
- splane.z += 1.0;
-
- clamp_rect.y += clamp_rect.w;
-
- } else {
-
- splane.z = 1.0 - splane.z;
-
- /*
- if (clamp_rect.z < clamp_rect.w) {
- clamp_rect.x += clamp_rect.z;
- } else {
- clamp_rect.y += clamp_rect.w;
- }
- */
- }
-
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
-
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect);
-
-#ifdef USE_CONTACT_SHADOWS
-
- if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a));
- shadow = min(shadow, contact_shadow);
- }
-#endif
- light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
- }
-#endif //USE_SHADOW
-#endif //SHADOWS_DISABLED
- light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha);
-}
-
-void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) {
-
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
- float spot_attenuation;
- if (normalized_distance < 1.0) {
- spot_attenuation = pow(1.0 - normalized_distance, spot_lights[idx].light_direction_attenuation.w);
- } else {
- spot_attenuation = 0.0;
- }
- vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff = spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
- spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x);
- vec3 light_attenuation = vec3(spot_attenuation);
-
-#if !defined(SHADOWS_DISABLED)
-#ifdef USE_SHADOW
- if (spot_lights[idx].light_params.w > 0.5) {
- //there is a shadowmap
- highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0));
- splane.xyz /= splane.w;
-
- float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp);
-
-#ifdef USE_CONTACT_SHADOWS
- if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a));
- shadow = min(shadow, contact_shadow);
- }
-#endif
- light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
- }
-#endif //USE_SHADOW
-#endif //SHADOWS_DISABLED
-
- light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha);
-}
-
-void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
-
- vec3 ref_vec = normalize(reflect(vertex, normal));
- vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz;
- vec3 box_extents = reflections[idx].box_extents.xyz;
-
- if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
- return;
- }
-
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- //make blend more rounded
- blend = mix(length(inner_pos), blend, blend);
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
- if (reflections[idx].params.x > 0.0) { // compute reflection
-
- vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz;
-
- if (reflections[idx].params.w > 0.5) { //box project
-
- vec3 nrdir = normalize(local_ref_vec);
- vec3 rbmax = (box_extents - local_pos) / nrdir;
- vec3 rbmin = (-box_extents - local_pos) / nrdir;
-
- vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
-
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
- }
-
- vec4 clamp_rect = reflections[idx].atlas_clamp;
- vec3 norm = normalize(local_ref_vec);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
- if (norm.z > 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
-
- vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
- atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
-
- highp vec4 reflection;
- reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb;
-
- if (reflections[idx].params.z < 0.5) {
- reflection.rgb = mix(skybox, reflection.rgb, blend);
- }
- reflection.rgb *= reflections[idx].params.x;
- reflection.a = blend;
- reflection.rgb *= reflection.a;
-
- reflection_accum += reflection;
- }
-#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
- if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox
-
- vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz;
-
- vec3 splane = normalize(local_amb_vec);
- vec4 clamp_rect = reflections[idx].atlas_clamp;
-
- splane.z *= -1.0;
- if (splane.z >= 0.0) {
- splane.z += 1.0;
- clamp_rect.y += clamp_rect.w;
- } else {
- splane.z = 1.0 - splane.z;
- splane.y = -splane.y;
- }
-
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
-
- splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
- splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
-
- highp vec4 ambient_out;
- ambient_out.a = blend;
- ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb;
- ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a);
- if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
- }
-
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- } else {
-
- highp vec4 ambient_out;
- ambient_out.a = blend;
- ambient_out.rgb = reflections[idx].ambient.rgb;
- if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- }
-#endif
-}
-
-#ifdef USE_LIGHTMAP
-uniform mediump sampler2D lightmap; //texunit:-9
-uniform mediump float lightmap_energy;
-#endif
-
-#ifdef USE_LIGHTMAP_CAPTURE
-uniform mediump vec4[12] lightmap_captures;
-uniform bool lightmap_capture_sky;
-
-#endif
-
-#ifdef USE_GI_PROBES
-
-uniform mediump sampler3D gi_probe1; //texunit:-9
-uniform highp mat4 gi_probe_xform1;
-uniform highp vec3 gi_probe_bounds1;
-uniform highp vec3 gi_probe_cell_size1;
-uniform highp float gi_probe_multiplier1;
-uniform highp float gi_probe_bias1;
-uniform highp float gi_probe_normal_bias1;
-uniform bool gi_probe_blend_ambient1;
-
-uniform mediump sampler3D gi_probe2; //texunit:-10
-uniform highp mat4 gi_probe_xform2;
-uniform highp vec3 gi_probe_bounds2;
-uniform highp vec3 gi_probe_cell_size2;
-uniform highp float gi_probe_multiplier2;
-uniform highp float gi_probe_bias2;
-uniform highp float gi_probe_normal_bias2;
-uniform bool gi_probe2_enabled;
-uniform bool gi_probe_blend_ambient2;
-
-vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
-
- float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
- float alpha = 0.0;
- vec3 color = vec3(0.0);
-
- while (dist < max_distance && alpha < 0.95) {
- float diameter = max(1.0, 2.0 * tan_half_angle * dist);
- vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter));
- float a = (1.0 - alpha);
- color += scolor.rgb * a;
- alpha += a * scolor.a;
- dist += diameter * 0.5;
- }
-
- if (blend_ambient) {
- color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95));
- }
-
- return color;
-}
-
-void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {
-
- vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz;
- vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz;
- ref_vec = normalize(ref_pos - probe_pos);
-
- probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias;
-
- /* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
- out_diff.a = 1.0;
- return;*/
- //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
- //return;
-
- //this causes corrupted pixels, i have no idea why..
- if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) {
- return;
- }
-
- vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0);
- float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
- //float blend=1.0;
-
- float max_distance = length(bounds);
-
- //radiance
-#ifdef VCT_QUALITY_HIGH
-
-#define MAX_CONE_DIRS 6
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
- vec3(0.0, 0.0, 1.0),
- vec3(0.866025, 0.0, 0.5),
- vec3(0.267617, 0.823639, 0.5),
- vec3(-0.700629, 0.509037, 0.5),
- vec3(-0.700629, -0.509037, 0.5),
- vec3(0.267617, -0.823639, 0.5));
-
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
- float cone_angle_tan = 0.577;
- float min_ref_tan = 0.0;
-#else
-
-#define MAX_CONE_DIRS 4
-
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
- vec3(0.707107, 0.0, 0.707107),
- vec3(0.0, 0.707107, 0.707107),
- vec3(-0.707107, 0.0, 0.707107),
- vec3(0.0, -0.707107, 0.707107));
-
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
- float cone_angle_tan = 0.98269;
- max_distance *= 0.5;
- float min_ref_tan = 0.2;
-
-#endif
- vec3 light = vec3(0.0);
- for (int i = 0; i < MAX_CONE_DIRS; i++) {
-
- vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos);
- light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias);
- }
-
- light *= multiplier;
-
- out_diff += vec4(light * blend, blend);
-
- //irradiance
-
- vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI * 0.99)), max_distance, p_bias);
-
- irr_light *= multiplier;
- //irr_light=vec3(0.0);
-
- out_spec += vec4(irr_light * blend, blend);
-}
-
-void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) {
-
- roughness = roughness * roughness;
-
- vec3 ref_vec = normalize(reflect(normalize(pos), normal));
-
- //find arbitrary tangent and bitangent, then build a matrix
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- mat3 normal_mat = mat3(tangent, bitangent, normal);
-
- vec4 diff_accum = vec4(0.0);
- vec4 spec_accum = vec4(0.0);
-
- vec3 ambient = out_ambient;
- out_ambient = vec3(0.0);
-
- vec3 environment = out_specular;
-
- out_specular = vec3(0.0);
-
- gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum);
-
- if (gi_probe2_enabled) {
-
- gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum);
- }
-
- if (diff_accum.a > 0.0) {
- diff_accum.rgb /= diff_accum.a;
- }
-
- if (spec_accum.a > 0.0) {
- spec_accum.rgb /= spec_accum.a;
- }
-
- out_specular += spec_accum.rgb;
- out_ambient += diff_accum.rgb;
-}
-
-#endif
-
-void main() {
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- if (dp_clip > 0.0)
- discard;
-#endif
-
- //lay out everything, whathever is unused is optimized away anyway
- highp vec3 vertex = vertex_interp;
- vec3 view = -normalize(vertex_interp);
- vec3 albedo = vec3(1.0);
- vec3 transmission = vec3(0.0);
- float metallic = 0.0;
- float specular = 0.5;
- vec3 emission = vec3(0.0);
- float roughness = 1.0;
- float rim = 0.0;
- float rim_tint = 0.0;
- float clearcoat = 0.0;
- float clearcoat_gloss = 0.0;
- float anisotropy = 0.0;
- vec2 anisotropy_flow = vec2(1.0, 0.0);
-
-#if defined(ENABLE_AO)
- float ao = 1.0;
- float ao_light_affect = 0.0;
-#endif
-
- float alpha = 1.0;
-
-#if defined(ALPHA_SCISSOR_USED)
- float alpha_scissor = 0.5;
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 binormal = normalize(binormal_interp);
- vec3 tangent = normalize(tangent_interp);
-#else
- vec3 binormal = vec3(0.0);
- vec3 tangent = vec3(0.0);
-#endif
- vec3 normal = normalize(normal_interp);
-
-#if defined(DO_SIDE_CHECK)
- if (!gl_FrontFacing) {
- normal = -normal;
- }
-#endif
-
-#if defined(ENABLE_UV_INTERP)
- vec2 uv = uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
- vec2 uv2 = uv2_interp;
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
- vec4 color = color_interp;
-#endif
-
-#if defined(ENABLE_NORMALMAP)
-
- vec3 normalmap = vec3(0.5);
-#endif
-
- float normaldepth = 1.0;
-
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
-#endif
-
-#if defined(ENABLE_SSS)
- float sss_strength = 0.0;
-#endif
-
- {
- /* clang-format off */
-
-FRAGMENT_SHADER_CODE
-
- /* clang-format on */
- }
-
-#if !defined(USE_SHADOW_TO_OPACITY)
-
-#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
- discard;
- }
-#endif // ALPHA_SCISSOR_USED
-
-#ifdef USE_OPAQUE_PREPASS
-
- if (alpha < opaque_prepass_threshold) {
- discard;
- }
-
-#endif // USE_OPAQUE_PREPASS
-
-#endif // !USE_SHADOW_TO_OPACITY
-
-#if defined(ENABLE_NORMALMAP)
-
- normalmap.xy = normalmap.xy * 2.0 - 1.0;
- normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
-
- normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth));
-
-#endif
-
-#if defined(LIGHT_USE_ANISOTROPY)
-
- if (anisotropy > 0.01) {
- //rotation matrix
- mat3 rot = mat3(tangent, binormal, normal);
- //make local to space
- tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
- binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
- }
-
-#endif
-
-#ifdef ENABLE_CLIP_ALPHA
- if (albedo.a < 0.99) {
- //used for doublepass and shadowmapping
- discard;
- }
-#endif
-
- /////////////////////// LIGHTING //////////////////////////////
-
- //apply energy conservation
-
-#ifdef USE_VERTEX_LIGHTING
-
- vec3 specular_light = specular_light_interp.rgb;
- vec3 diffuse_light = diffuse_light_interp.rgb;
-#else
-
- vec3 specular_light = vec3(0.0, 0.0, 0.0);
- vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
-
-#endif
-
- vec3 ambient_light;
- vec3 env_reflection_light = vec3(0.0, 0.0, 0.0);
-
- vec3 eye_vec = view;
-
- // IBL precalculations
- float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0);
- vec3 f0 = F0(metallic, specular, albedo);
- vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
-
-#ifdef USE_RADIANCE_MAP
-
-#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light = vec3(0.0, 0.0, 0.0);
-#else
- {
-
- { //read radiance from dual paraboloid
-
- vec3 ref_vec = reflect(-eye_vec, normal);
- ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
- vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy;
- env_reflection_light = radiance;
- }
- }
-#ifndef USE_LIGHTMAP
- {
-
- vec3 norm = normal;
- norm = normalize((radiance_inverse_xform * vec4(norm, 0.0)).xyz);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
- if (norm.z > 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
-
- vec3 env_ambient = texture(irradiance_map, norm.xy).rgb * bg_energy;
- env_ambient *= 1.0 - F;
-
- ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution);
- }
-#endif
-#endif //AMBIENT_LIGHT_DISABLED
-
-#else
-
-#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light = vec3(0.0, 0.0, 0.0);
-#else
- ambient_light = ambient_light_color.rgb;
- env_reflection_light = bg_color.rgb * bg_energy;
-#endif //AMBIENT_LIGHT_DISABLED
-
-#endif
-
- ambient_light *= ambient_energy;
-
- float specular_blob_intensity = 1.0;
-
-#if defined(SPECULAR_TOON)
- specular_blob_intensity *= specular * 2.0;
-#endif
-
-#ifdef USE_GI_PROBES
- gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light);
-
-#endif
-
-#ifdef USE_LIGHTMAP
- ambient_light = texture(lightmap, uv2).rgb * lightmap_energy;
-#endif
-
-#ifdef USE_LIGHTMAP_CAPTURE
- {
- vec3 cone_dirs[12] = vec3[](
- vec3(0.0, 0.0, 1.0),
- vec3(0.866025, 0.0, 0.5),
- vec3(0.267617, 0.823639, 0.5),
- vec3(-0.700629, 0.509037, 0.5),
- vec3(-0.700629, -0.509037, 0.5),
- vec3(0.267617, -0.823639, 0.5),
- vec3(0.0, 0.0, -1.0),
- vec3(0.866025, 0.0, -0.5),
- vec3(0.267617, 0.823639, -0.5),
- vec3(-0.700629, 0.509037, -0.5),
- vec3(-0.700629, -0.509037, -0.5),
- vec3(0.267617, -0.823639, -0.5));
-
- vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
- vec4 captured = vec4(0.0);
- float sum = 0.0;
- for (int i = 0; i < 12; i++) {
- float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
- captured += lightmap_captures[i] * amount;
- sum += amount;
- }
-
- captured /= sum;
-
- if (lightmap_capture_sky) {
- ambient_light = mix(ambient_light, captured.rgb, captured.a);
- } else {
- ambient_light = captured.rgb;
- }
- }
-#endif
-
-#ifdef USE_FORWARD_LIGHTING
-
- highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
- highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
- for (int i = 0; i < reflection_count; i++) {
- reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum);
- }
-
- if (reflection_accum.a > 0.0) {
- specular_light += reflection_accum.rgb / reflection_accum.a;
- } else {
- specular_light += env_reflection_light;
- }
-#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
- if (ambient_accum.a > 0.0) {
- ambient_light = ambient_accum.rgb / ambient_accum.a;
- }
-#endif
-#endif
-
- {
-
-#if defined(DIFFUSE_TOON)
- //simplify for toon, as
- specular_light *= specular * metallic * albedo * 2.0;
-#else
-
- // scales the specular reflections, needs to be be computed before lighting happens,
- // but after environment, GI, and reflection probes are added
- // Environment brdf approximation (Lazarov 2013)
- // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
- const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
- const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
- vec4 r = roughness * c0 + c1;
- float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
- vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
- specular_light *= env.x * F + env.y;
-#endif
- }
-
-#if defined(USE_LIGHT_DIRECTIONAL)
-
- vec3 light_attenuation = vec3(1.0);
-
- float depth_z = -vertex.z;
-#ifdef LIGHT_DIRECTIONAL_SHADOW
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef LIGHT_USE_PSSM4
- if (depth_z < shadow_split_offsets.w) {
-#elif defined(LIGHT_USE_PSSM2)
- if (depth_z < shadow_split_offsets.y) {
-#else
- if (depth_z < shadow_split_offsets.x) {
-#endif //LIGHT_USE_PSSM4
-
- vec3 pssm_coord;
- float pssm_fade = 0.0;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- vec3 pssm_coord2;
- bool use_blend = true;
-#endif
-
-#ifdef LIGHT_USE_PSSM4
-
- if (depth_z < shadow_split_offsets.y) {
-
- if (depth_z < shadow_split_offsets.x) {
-
- highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
-
- splane = (shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
-#endif
-
- } else {
-
- highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- splane = (shadow_matrix3 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
-#endif
- }
- } else {
-
- if (depth_z < shadow_split_offsets.z) {
-
- highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- splane = (shadow_matrix4 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z);
-#endif
-
- } else {
-
- highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-
-#endif
- }
- }
-
-#endif //LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
-
- if (depth_z < shadow_split_offsets.x) {
-
- highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
-
- splane = (shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
-#endif
-
- } else {
- highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-
-#endif
- }
-
-#endif //LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- { //regular orthogonal
- highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
- }
-#endif
-
- //one one sample
-
- float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
-
- if (use_blend) {
- shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
- }
-#endif
-
-#ifdef USE_CONTACT_SHADOWS
- if (shadow > 0.01 && shadow_color_contact.a > 0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a);
- shadow = min(shadow, contact_shadow);
- }
-#endif
- light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade);
- }
-
-#endif // !defined(SHADOWS_DISABLED)
-#endif //LIGHT_DIRECTIONAL_SHADOW
-
-#ifdef USE_VERTEX_LIGHTING
- diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a);
- specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a);
-
-#else
- light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha);
-#endif
-
-#endif //#USE_LIGHT_DIRECTIONAL
-
-#ifdef USE_FORWARD_LIGHTING
-
-#ifdef USE_VERTEX_LIGHTING
-
- diffuse_light *= albedo;
-#else
-
- for (int i = 0; i < omni_light_count; i++) {
- light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha);
- }
-
- for (int i = 0; i < spot_light_count; i++) {
- light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha);
- }
-
-#endif //USE_VERTEX_LIGHTING
-
-#endif
-
-#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
-
-#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
- discard;
- }
-#endif // ALPHA_SCISSOR_USED
-
-#ifdef USE_OPAQUE_PREPASS
-
- if (alpha < opaque_prepass_threshold) {
- discard;
- }
-
-#endif // USE_OPAQUE_PREPASS
-
-#endif // USE_SHADOW_TO_OPACITY
-
-#ifdef RENDER_DEPTH
-//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
-#else
-
- specular_light *= reflection_multiplier;
- ambient_light *= albedo; //ambient must be multiplied by albedo at the end
-
-#if defined(ENABLE_AO)
- ambient_light *= ao;
- ao_light_affect = mix(1.0, ao, ao_light_affect);
- specular_light *= ao_light_affect;
- diffuse_light *= ao_light_affect;
-#endif
-
- // base color remapping
- diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
- ambient_light *= 1.0 - metallic;
-
- if (fog_color_enabled.a > 0.5) {
-
- float fog_amount = 0.0;
-
-#ifdef USE_LIGHT_DIRECTIONAL
-
- vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0));
-#else
-
- vec3 fog_color = fog_color_enabled.rgb;
-#endif
-
- //apply fog
-
- if (fog_depth_enabled) {
- float fog_far = fog_depth_end > 0.0 ? fog_depth_end : z_far;
-
- float fog_z = smoothstep(fog_depth_begin, fog_far, length(vertex));
-
- fog_amount = pow(fog_z, fog_depth_curve) * fog_density;
- if (fog_transmit_enabled) {
- vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
- float transmit = pow(fog_z, fog_transmit_curve);
- fog_color = mix(max(total_light, fog_color), fog_color, transmit);
- }
- }
-
- if (fog_height_enabled) {
- float y = (camera_matrix * vec4(vertex, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
-
- float rev_amount = 1.0 - fog_amount;
-
- emission = emission * rev_amount + fog_color * fog_amount;
- ambient_light *= rev_amount;
- specular_light *= rev_amount;
- diffuse_light *= rev_amount;
- }
-
-#ifdef USE_MULTIPLE_RENDER_TARGETS
-
-#ifdef SHADELESS
- diffuse_buffer = vec4(albedo.rgb, 0.0);
- specular_buffer = vec4(0.0);
-
-#else
-
- //approximate ambient scale for SSAO, since we will lack full ambient
- float max_emission = max(emission.r, max(emission.g, emission.b));
- float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b));
- float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b));
- float total_ambient = max_ambient + max_diffuse + max_emission;
- float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0;
-
-#if defined(ENABLE_AO)
- ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel);
-#endif
- diffuse_buffer = vec4(emission + diffuse_light + ambient_light, ambient_scale);
- specular_buffer = vec4(specular_light, metallic);
-
-#endif //SHADELESS
-
- normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness);
-
-#if defined(ENABLE_SSS)
- sss_buffer = sss_strength;
-#endif
-
-#else //USE_MULTIPLE_RENDER_TARGETS
-
-#ifdef SHADELESS
- frag_color = vec4(albedo, alpha);
-#else
- frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
-#endif //SHADELESS
-
-#endif //USE_MULTIPLE_RENDER_TARGETS
-
-#endif //RENDER_DEPTH
-}
diff --git a/drivers/gles3/shaders/screen_space_reflection.glsl b/drivers/gles3/shaders/screen_space_reflection.glsl
deleted file mode 100644
index 39f1ea6155..0000000000
--- a/drivers/gles3/shaders/screen_space_reflection.glsl
+++ /dev/null
@@ -1,286 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-out vec2 pos_interp;
-
-void main() {
-
- uv_interp = uv_in;
- gl_Position = vertex_attrib;
- pos_interp.xy = gl_Position.xy;
-}
-
-/* clang-format off */
-[fragment]
-
-in vec2 uv_interp;
-/* clang-format on */
-in vec2 pos_interp;
-
-uniform sampler2D source_diffuse; //texunit:0
-uniform sampler2D source_normal_roughness; //texunit:1
-uniform sampler2D source_depth; //texunit:2
-
-uniform float camera_z_near;
-uniform float camera_z_far;
-
-uniform vec2 viewport_size;
-uniform vec2 pixel_size;
-
-uniform float filter_mipmap_levels;
-
-uniform mat4 inverse_projection;
-uniform mat4 projection;
-
-uniform int num_steps;
-uniform float depth_tolerance;
-uniform float distance_fade;
-uniform float curve_fade_in;
-
-layout(location = 0) out vec4 frag_color;
-
-vec2 view_to_screen(vec3 view_pos, out float w) {
- vec4 projected = projection * vec4(view_pos, 1.0);
- projected.xyz /= projected.w;
- projected.xy = projected.xy * 0.5 + 0.5;
- w = projected.w;
- return projected.xy;
-}
-
-#define M_PI 3.14159265359
-
-void main() {
-
- vec4 diffuse = texture(source_diffuse, uv_interp);
- vec4 normal_roughness = texture(source_normal_roughness, uv_interp);
-
- vec3 normal;
- normal = normal_roughness.xyz * 2.0 - 1.0;
-
- float roughness = normal_roughness.w;
-
- float depth_tex = texture(source_depth, uv_interp).r;
-
- vec4 world_pos = inverse_projection * vec4(uv_interp * 2.0 - 1.0, depth_tex * 2.0 - 1.0, 1.0);
- vec3 vertex = world_pos.xyz / world_pos.w;
-
- vec3 view_dir = normalize(vertex);
- vec3 ray_dir = normalize(reflect(view_dir, normal));
-
- if (dot(ray_dir, normal) < 0.001) {
- frag_color = vec4(0.0);
- return;
- }
- //ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
- //ray_dir = normalize(vec3(1.0, 1.0, -1.0));
-
- ////////////////
-
- // make ray length and clip it against the near plane (don't want to trace beyond visible)
- float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far;
- vec3 ray_end = vertex + ray_dir * ray_len;
-
- float w_begin;
- vec2 vp_line_begin = view_to_screen(vertex, w_begin);
- float w_end;
- vec2 vp_line_end = view_to_screen(ray_end, w_end);
- vec2 vp_line_dir = vp_line_end - vp_line_begin;
-
- // we need to interpolate w along the ray, to generate perspective correct reflections
- w_begin = 1.0 / w_begin;
- w_end = 1.0 / w_end;
-
- float z_begin = vertex.z * w_begin;
- float z_end = ray_end.z * w_end;
-
- vec2 line_begin = vp_line_begin / pixel_size;
- vec2 line_dir = vp_line_dir / pixel_size;
- float z_dir = z_end - z_begin;
- float w_dir = w_end - w_begin;
-
- // clip the line to the viewport edges
-
- float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
- float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y));
- float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x));
- float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y));
- float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
- line_dir *= line_clip;
- z_dir *= line_clip;
- w_dir *= line_clip;
-
- // clip z and w advance to line advance
- vec2 line_advance = normalize(line_dir); // down to pixel
- float step_size = length(line_advance) / length(line_dir);
- float z_advance = z_dir * step_size; // adapt z advance to line advance
- float w_advance = w_dir * step_size; // adapt w advance to line advance
-
- // make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
- float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
- line_advance *= advance_angle_adj; // adapt z advance to line advance
- z_advance *= advance_angle_adj;
- w_advance *= advance_angle_adj;
-
- vec2 pos = line_begin;
- float z = z_begin;
- float w = w_begin;
- float z_from = z / w;
- float z_to = z_from;
- float depth;
- vec2 prev_pos = pos;
-
- bool found = false;
-
- float steps_taken = 0.0;
-
- for (int i = 0; i < num_steps; i++) {
-
- pos += line_advance;
- z += z_advance;
- w += w_advance;
-
- // convert to linear depth
-
- depth = texture(source_depth, pos * pixel_size).r * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
-#endif
- depth = -depth;
-
- z_from = z_to;
- z_to = z / w;
-
- if (depth > z_to) {
- // if depth was surpassed
- if (depth <= max(z_to, z_from) + depth_tolerance) {
- // check the depth tolerance
- found = true;
- }
- break;
- }
-
- steps_taken += 1.0;
- prev_pos = pos;
- }
-
- if (found) {
-
- float margin_blend = 1.0;
-
- vec2 margin = vec2((viewport_size.x + viewport_size.y) * 0.5 * 0.05); // make a uniform margin
- if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, viewport_size + margin)))) {
- // clip outside screen + margin
- frag_color = vec4(0.0);
- return;
- }
-
- {
- //blend fading out towards external margin
- vec2 margin_grad = mix(pos - viewport_size, -pos, lessThan(pos, vec2(0.0)));
- margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y));
- //margin_blend = 1.0;
- }
-
- vec2 final_pos;
- float grad;
- grad = steps_taken / float(num_steps);
- float initial_fade = curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), curve_fade_in);
- float fade = pow(clamp(1.0 - grad, 0.0, 1.0), distance_fade) * initial_fade;
- final_pos = pos;
-
-#ifdef REFLECT_ROUGHNESS
-
- vec4 final_color;
- // if roughness is enabled, do screen space cone tracing
- if (roughness > 0.001) {
- ///////////////////////////////////////////////////////////////////////////////////////
- // use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
-
- float gloss = 1.0 - roughness;
- float cone_angle = roughness * M_PI * 0.5;
- vec2 cone_dir = final_pos - line_begin;
- float cone_len = length(cone_dir);
- cone_dir = normalize(cone_dir); // will be used normalized from now on
- float max_mipmap = filter_mipmap_levels - 1.0;
- float gloss_mult = gloss;
-
- float rem_alpha = 1.0;
- final_color = vec4(0.0);
-
- for (int i = 0; i < 7; i++) {
-
- float op_len = 2.0 * tan(cone_angle) * cone_len; // opposite side of iso triangle
- float radius;
- {
- // fit to sphere inside cone (sphere ends at end of cone), something like this:
- // ___
- // \O/
- // V
- //
- // as it avoids bleeding from beyond the reflection as much as possible. As a plus
- // it also makes the rough reflection more elongated.
- float a = op_len;
- float h = cone_len;
- float a2 = a * a;
- float fh2 = 4.0f * h * h;
- radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
- }
-
- // find the place where screen must be sampled
- vec2 sample_pos = (line_begin + cone_dir * (cone_len - radius)) * pixel_size;
- // radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
- float mipmap = clamp(log2(radius), 0.0, max_mipmap);
- //mipmap = max(mipmap - 1.0, 0.0);
-
- // do sampling
-
- vec4 sample_color;
- {
- sample_color = textureLod(source_diffuse, sample_pos, mipmap);
- }
-
- // multiply by gloss
- sample_color.rgb *= gloss_mult;
- sample_color.a = gloss_mult;
-
- rem_alpha -= sample_color.a;
- if (rem_alpha < 0.0) {
- sample_color.rgb *= (1.0 - abs(rem_alpha));
- }
-
- final_color += sample_color;
-
- if (final_color.a >= 0.95) {
- // This code of accumulating gloss and aborting on near one
- // makes sense when you think of cone tracing.
- // Think of it as if roughness was 0, then we could abort on the first
- // iteration. For lesser roughness values, we need more iterations, but
- // each needs to have less influence given the sphere is smaller
- break;
- }
-
- cone_len -= radius * 2.0; // go to next (smaller) circle.
-
- gloss_mult *= gloss;
- }
- } else {
- final_color = textureLod(source_diffuse, final_pos * pixel_size, 0.0);
- }
-
- frag_color = vec4(final_color.rgb, fade * margin_blend);
-
-#else
- frag_color = vec4(textureLod(source_diffuse, final_pos * pixel_size, 0.0).rgb, fade * margin_blend);
-#endif
-
- } else {
- frag_color = vec4(0.0, 0.0, 0.0, 0.0);
- }
-}
diff --git a/drivers/gles3/shaders/ssao.glsl b/drivers/gles3/shaders/ssao.glsl
deleted file mode 100644
index d9cdc3fc1f..0000000000
--- a/drivers/gles3/shaders/ssao.glsl
+++ /dev/null
@@ -1,277 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
-
- gl_Position = vertex_attrib;
- gl_Position.z = 1.0;
-}
-
-/* clang-format off */
-[fragment]
-
-#define TWO_PI 6.283185307179586476925286766559
-
-#ifdef SSAO_QUALITY_HIGH
-#define NUM_SAMPLES (16)
-#endif
-
-#ifdef SSAO_QUALITY_LOW
-#define NUM_SAMPLES (8)
-#endif
-
-#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH)
-#define NUM_SAMPLES (12)
-#endif
-
-// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower
-// miplevel to maintain reasonable spatial locality in the cache
-// If this number is too small (< 3), too many taps will land in the same pixel, and we'll get bad variance that manifests as flashing.
-// If it is too high (> 5), we'll get bad performance because we're not using the MIP levels effectively
-#define LOG_MAX_OFFSET (3)
-
-// This must be less than or equal to the MAX_MIP_LEVEL defined in SSAO.cpp
-#define MAX_MIP_LEVEL (4)
-
-// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent
-// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9
-
-const int ROTATIONS[] = int[](
- 1, 1, 2, 3, 2, 5, 2, 3, 2,
- 3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
- 9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
- 11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
- 11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
- 19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
- 13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
- 29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
- 31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
- 19, 27, 21, 25, 39, 29, 17, 21, 27);
-/* clang-format on */
-
-//#define NUM_SPIRAL_TURNS (7)
-const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1];
-
-uniform sampler2D source_depth; //texunit:0
-uniform highp usampler2D source_depth_mipmaps; //texunit:1
-uniform sampler2D source_normal; //texunit:2
-
-uniform ivec2 screen_size;
-uniform float camera_z_far;
-uniform float camera_z_near;
-
-uniform float intensity_div_r6;
-uniform float radius;
-
-#ifdef ENABLE_RADIUS2
-uniform float intensity_div_r62;
-uniform float radius2;
-#endif
-
-uniform float bias;
-uniform float proj_scale;
-
-layout(location = 0) out float visibility;
-
-uniform vec4 proj_info;
-
-vec3 reconstructCSPosition(vec2 S, float z) {
-#ifdef USE_ORTHOGONAL_PROJECTION
- return vec3((S.xy * proj_info.xy + proj_info.zw), z);
-#else
- return vec3((S.xy * proj_info.xy + proj_info.zw) * z, z);
-
-#endif
-}
-
-vec3 getPosition(ivec2 ssP) {
- vec3 P;
- P.z = texelFetch(source_depth, ssP, 0).r;
-
- P.z = P.z * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
-#endif
- P.z = -P.z;
-
- // Offset to pixel center
- P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
- return P;
-}
-
-/** Reconstructs screen-space unit normal from screen-space position */
-vec3 reconstructCSFaceNormal(vec3 C) {
- return normalize(cross(dFdy(C), dFdx(C)));
-}
-
-/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
-vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) {
- // Radius relative to ssR
- float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
- float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
-
- ssR = alpha;
- return vec2(cos(angle), sin(angle));
-}
-
-/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */
-vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
- // Derivation:
- // mipLevel = floor(log(ssR / MAX_OFFSET));
- int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);
-
- ivec2 ssP = ivec2(ssR * unitOffset) + ssC;
-
- vec3 P;
-
- // We need to divide by 2^mipLevel to read the appropriately scaled coordinate from a MIP-map.
- // Manually clamp to the texture size because texelFetch bypasses the texture unit
- ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));
-
- if (mipLevel < 1) {
- //read from depth buffer
- P.z = texelFetch(source_depth, mipP, 0).r;
- P.z = P.z * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
-#endif
- P.z = -P.z;
-
- } else {
- //read from mipmaps
- uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r;
- P.z = -(float(d) / 65535.0) * camera_z_far;
- }
-
- // Offset to pixel center
- P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
-
- return P;
-}
-
-/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
- to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
-
- Note that units of H() in the HPG12 paper are meters, not
- unitless. The whole falloff/sampling function is therefore
- unitless. In this implementation, we factor out (9 / radius).
-
- Four versions of the falloff function are implemented below
-*/
-float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
- // Offset on the unit disk, spun for this pixel
- float ssR;
- vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
- ssR *= ssDiskRadius;
-
- // The occluding point in camera space
- vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
-
- vec3 v = Q - C;
-
- float vv = dot(v, v);
- float vn = dot(v, n_C);
-
- const float epsilon = 0.01;
- float radius2 = p_radius * p_radius;
-
- // A: From the HPG12 paper
- // Note large epsilon to avoid overdarkening within cracks
- //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
-
- // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
- float f = max(radius2 - vv, 0.0);
- return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
-
- // C: Medium contrast (which looks better at high radii), no division. Note that the
- // contribution still falls off with radius^2, but we've adjusted the rate in a way that is
- // more computationally efficient and happens to be aesthetically pleasing.
- // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
-
- // D: Low contrast, no division operation
- // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
-}
-
-void main() {
- // Pixel being shaded
- ivec2 ssC = ivec2(gl_FragCoord.xy);
-
- // World space point being shaded
- vec3 C = getPosition(ssC);
-
- /*
- if (C.z <= -camera_z_far * 0.999) {
- // We're on the skybox
- visibility=1.0;
- return;
- }
- */
-
- //visibility = -C.z / camera_z_far;
- //return;
-#if 0
- vec3 n_C = texelFetch(source_normal, ssC, 0).rgb * 2.0 - 1.0;
-#else
- vec3 n_C = reconstructCSFaceNormal(C);
- n_C = -n_C;
-#endif
-
- // Hash function used in the HPG12 AlchemyAO paper
- float randomPatternRotationAngle = mod(float((3 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 10), TWO_PI);
-
- // Reconstruct normals from positions. These will lead to 1-pixel black lines
- // at depth discontinuities, however the blur will wipe those out so they are not visible
- // in the final image.
-
- // Choose the screen-space sample radius
- // proportional to the projected area of the sphere
-#ifdef USE_ORTHOGONAL_PROJECTION
- float ssDiskRadius = -proj_scale * radius;
-#else
- float ssDiskRadius = -proj_scale * radius / C.z;
-#endif
- float sum = 0.0;
- for (int i = 0; i < NUM_SAMPLES; ++i) {
- sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle);
- }
-
- float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));
-
-#ifdef ENABLE_RADIUS2
-
- //go again for radius2
- randomPatternRotationAngle = mod(float((5 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 11), TWO_PI);
-
- // Reconstruct normals from positions. These will lead to 1-pixel black lines
- // at depth discontinuities, however the blur will wipe those out so they are not visible
- // in the final image.
-
- // Choose the screen-space sample radius
- // proportional to the projected area of the sphere
- ssDiskRadius = -proj_scale * radius2 / C.z;
-
- sum = 0.0;
- for (int i = 0; i < NUM_SAMPLES; ++i) {
- sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle);
- }
-
- A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
-#endif
- // Bilateral box-filter over a quad for free, respecting depth edges
- // (the difference that this makes is subtle)
- if (abs(dFdx(C.z)) < 0.02) {
- A -= dFdx(A) * (float(ssC.x & 1) - 0.5);
- }
- if (abs(dFdy(C.z)) < 0.02) {
- A -= dFdy(A) * (float(ssC.y & 1) - 0.5);
- }
-
- visibility = A;
-}
diff --git a/drivers/gles3/shaders/ssao_blur.glsl b/drivers/gles3/shaders/ssao_blur.glsl
deleted file mode 100644
index c49ea1e957..0000000000
--- a/drivers/gles3/shaders/ssao_blur.glsl
+++ /dev/null
@@ -1,119 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
-
- gl_Position = vertex_attrib;
- gl_Position.z = 1.0;
-}
-
-/* clang-format off */
-[fragment]
-
-uniform sampler2D source_ssao; //texunit:0
-/* clang-format on */
-uniform sampler2D source_depth; //texunit:1
-uniform sampler2D source_normal; //texunit:3
-
-layout(location = 0) out float visibility;
-
-//////////////////////////////////////////////////////////////////////////////////////////////
-// Tunable Parameters:
-
-/** Increase to make depth edges crisper. Decrease to reduce flicker. */
-uniform float edge_sharpness;
-
-/** Step in 2-pixel intervals since we already blurred against neighbors in the
- first AO pass. This constant can be increased while R decreases to improve
- performance at the expense of some dithering artifacts.
-
- Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
- unobjectionable after shading was applied but eliminated most temporal incoherence
- from using small numbers of sample taps.
- */
-
-uniform int filter_scale;
-
-/** Filter radius in pixels. This will be multiplied by SCALE. */
-#define R (4)
-
-//////////////////////////////////////////////////////////////////////////////////////////////
-
-// Gaussian coefficients
-const float gaussian[R + 1] =
- //float[](0.356642, 0.239400, 0.072410, 0.009869);
- //float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
- float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
-//float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
-
-/** (1, 0) or (0, 1) */
-uniform ivec2 axis;
-
-uniform float camera_z_far;
-uniform float camera_z_near;
-
-uniform ivec2 screen_size;
-
-void main() {
-
- ivec2 ssC = ivec2(gl_FragCoord.xy);
-
- float depth = texelFetch(source_depth, ssC, 0).r;
- //vec3 normal = texelFetch(source_normal, ssC, 0).rgb * 2.0 - 1.0;
-
- depth = depth * 2.0 - 1.0;
- depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
-
- float depth_divide = 1.0 / camera_z_far;
-
- //depth *= depth_divide;
-
- /*
- if (depth > camera_z_far * 0.999) {
- discard; //skybox
- }
- */
-
- float sum = texelFetch(source_ssao, ssC, 0).r;
-
- // Base weight for depth falloff. Increase this for more blurriness,
- // decrease it for better edge discrimination
- float BASE = gaussian[0];
- float totalWeight = BASE;
- sum *= totalWeight;
-
- ivec2 clamp_limit = screen_size - ivec2(1);
-
- for (int r = -R; r <= R; ++r) {
- // We already handled the zero case above. This loop should be unrolled and the static branch optimized out,
- // so the IF statement has no runtime cost
- if (r != 0) {
-
- ivec2 ppos = ssC + axis * (r * filter_scale);
- float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r;
- ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit);
- float temp_depth = texelFetch(source_depth, rpos, 0).r;
- //vec3 temp_normal = texelFetch(source_normal, rpos, 0).rgb * 2.0 - 1.0;
-
- temp_depth = temp_depth * 2.0 - 1.0;
- temp_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - temp_depth * (camera_z_far - camera_z_near));
- //temp_depth *= depth_divide;
-
- // spatial domain: offset gaussian tap
- float weight = 0.3 + gaussian[abs(r)];
- //weight *= max(0.0, dot(temp_normal, normal));
-
- // range domain (the "bilateral" weight). As depth difference increases, decrease weight.
- weight *= max(0.0, 1.0 - edge_sharpness * abs(temp_depth - depth));
-
- sum += value * weight;
- totalWeight += weight;
- }
- }
-
- const float epsilon = 0.0001;
- visibility = sum / (totalWeight + epsilon);
-}
diff --git a/drivers/gles3/shaders/ssao_minify.glsl b/drivers/gles3/shaders/ssao_minify.glsl
deleted file mode 100644
index 1696648dae..0000000000
--- a/drivers/gles3/shaders/ssao_minify.glsl
+++ /dev/null
@@ -1,56 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
-
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-#ifdef MINIFY_START
-
-#define SDEPTH_TYPE highp sampler2D
-uniform float camera_z_far;
-/* clang-format on */
-uniform float camera_z_near;
-
-#else
-
-#define SDEPTH_TYPE mediump usampler2D
-
-#endif
-
-uniform SDEPTH_TYPE source_depth; //texunit:0
-
-uniform ivec2 from_size;
-uniform int source_mipmap;
-
-layout(location = 0) out mediump uint depth;
-
-void main() {
-
- ivec2 ssP = ivec2(gl_FragCoord.xy);
-
- // Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
- // On DX9, the bit-and can be implemented with floating-point modulo
-
-#ifdef MINIFY_START
- float fdepth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
- fdepth = fdepth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- fdepth = ((fdepth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- fdepth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - fdepth * (camera_z_far - camera_z_near));
-#endif
- fdepth /= camera_z_far;
- depth = uint(clamp(fdepth * 65535.0, 0.0, 65535.0));
-
-#else
- depth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
-#endif
-}
diff --git a/drivers/gles3/shaders/subsurf_scattering.glsl b/drivers/gles3/shaders/subsurf_scattering.glsl
deleted file mode 100644
index f40fb3a244..0000000000
--- a/drivers/gles3/shaders/subsurf_scattering.glsl
+++ /dev/null
@@ -1,174 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-
-void main() {
-
- uv_interp = uv_in;
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-//#define QUALIFIER uniform // some guy on the interweb says it may be faster with this
-#define QUALIFIER const
-
-#ifdef USE_25_SAMPLES
-const int kernel_size = 25;
-/* clang-format on */
-QUALIFIER vec2 kernel[25] = vec2[](
- vec2(0.530605, 0.0),
- vec2(0.000973794, -3.0),
- vec2(0.00333804, -2.52083),
- vec2(0.00500364, -2.08333),
- vec2(0.00700976, -1.6875),
- vec2(0.0094389, -1.33333),
- vec2(0.0128496, -1.02083),
- vec2(0.017924, -0.75),
- vec2(0.0263642, -0.520833),
- vec2(0.0410172, -0.333333),
- vec2(0.0493588, -0.1875),
- vec2(0.0402784, -0.0833333),
- vec2(0.0211412, -0.0208333),
- vec2(0.0211412, 0.0208333),
- vec2(0.0402784, 0.0833333),
- vec2(0.0493588, 0.1875),
- vec2(0.0410172, 0.333333),
- vec2(0.0263642, 0.520833),
- vec2(0.017924, 0.75),
- vec2(0.0128496, 1.02083),
- vec2(0.0094389, 1.33333),
- vec2(0.00700976, 1.6875),
- vec2(0.00500364, 2.08333),
- vec2(0.00333804, 2.52083),
- vec2(0.000973794, 3.0));
-#endif //USE_25_SAMPLES
-
-#ifdef USE_17_SAMPLES
-const int kernel_size = 17;
-QUALIFIER vec2 kernel[17] = vec2[](
- vec2(0.536343, 0.0),
- vec2(0.00317394, -2.0),
- vec2(0.0100386, -1.53125),
- vec2(0.0144609, -1.125),
- vec2(0.0216301, -0.78125),
- vec2(0.0347317, -0.5),
- vec2(0.0571056, -0.28125),
- vec2(0.0582416, -0.125),
- vec2(0.0324462, -0.03125),
- vec2(0.0324462, 0.03125),
- vec2(0.0582416, 0.125),
- vec2(0.0571056, 0.28125),
- vec2(0.0347317, 0.5),
- vec2(0.0216301, 0.78125),
- vec2(0.0144609, 1.125),
- vec2(0.0100386, 1.53125),
- vec2(0.00317394, 2.0));
-#endif //USE_17_SAMPLES
-
-#ifdef USE_11_SAMPLES
-const int kernel_size = 11;
-QUALIFIER vec2 kernel[11] = vec2[](
- vec2(0.560479, 0.0),
- vec2(0.00471691, -2.0),
- vec2(0.0192831, -1.28),
- vec2(0.03639, -0.72),
- vec2(0.0821904, -0.32),
- vec2(0.0771802, -0.08),
- vec2(0.0771802, 0.08),
- vec2(0.0821904, 0.32),
- vec2(0.03639, 0.72),
- vec2(0.0192831, 1.28),
- vec2(0.00471691, 2.0));
-#endif //USE_11_SAMPLES
-
-uniform float max_radius;
-uniform float camera_z_far;
-uniform float camera_z_near;
-uniform float unit_size;
-uniform vec2 dir;
-in vec2 uv_interp;
-
-uniform sampler2D source_diffuse; //texunit:0
-uniform sampler2D source_sss; //texunit:1
-uniform sampler2D source_depth; //texunit:2
-
-layout(location = 0) out vec4 frag_color;
-
-void main() {
-
- float strength = texture(source_sss, uv_interp).r;
- strength *= strength; //stored as sqrt
-
- // Fetch color of current pixel:
- vec4 base_color = texture(source_diffuse, uv_interp);
-
- if (strength > 0.0) {
-
- // Fetch linear depth of current pixel:
- float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
- float scale = unit_size; //remember depth is negative by default in OpenGL
-#else
- depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
- float scale = unit_size / depth; //remember depth is negative by default in OpenGL
-#endif
-
- // Calculate the final step to fetch the surrounding pixels:
- vec2 step = max_radius * scale * dir;
- step *= strength; // Modulate it using the alpha channel.
- step *= 1.0 / 3.0; // Divide by 3 as the kernels range from -3 to 3.
-
- // Accumulate the center sample:
- vec3 color_accum = base_color.rgb;
- color_accum *= kernel[0].x;
-#ifdef ENABLE_STRENGTH_WEIGHTING
- float color_weight = kernel[0].x;
-#endif
-
- // Accumulate the other samples:
- for (int i = 1; i < kernel_size; i++) {
- // Fetch color and depth for current sample:
- vec2 offset = uv_interp + kernel[i].y * step;
- vec3 color = texture(source_diffuse, offset).rgb;
-
-#ifdef ENABLE_FOLLOW_SURFACE
- // If the difference in depth is huge, we lerp color back to "colorM":
- float depth_cmp = texture(source_depth, offset).r * 2.0 - 1.0;
-
-#ifdef USE_ORTHOGONAL_PROJECTION
- depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near));
-#endif
-
- float s = clamp(300.0f * scale * max_radius * abs(depth - depth_cmp), 0.0, 1.0);
- color = mix(color, base_color.rgb, s);
-#endif
-
- // Accumulate:
- color *= kernel[i].x;
-
-#ifdef ENABLE_STRENGTH_WEIGHTING
- float color_s = texture(source_sss, offset).r;
- color_weight += color_s * kernel[i].x;
- color *= color_s;
-#endif
- color_accum += color;
- }
-
-#ifdef ENABLE_STRENGTH_WEIGHTING
- color_accum /= color_weight;
-#endif
- frag_color = vec4(color_accum, base_color.a); //keep alpha (used for SSAO)
- } else {
- frag_color = base_color;
- }
-}
diff --git a/drivers/gles3/shaders/tonemap.glsl b/drivers/gles3/shaders/tonemap.glsl
deleted file mode 100644
index f1fe1742eb..0000000000
--- a/drivers/gles3/shaders/tonemap.glsl
+++ /dev/null
@@ -1,309 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-
-void main() {
- gl_Position = vertex_attrib;
-
- uv_interp = uv_in;
-
-#ifdef V_FLIP
- uv_interp.y = 1.0f - uv_interp.y;
-#endif
-}
-
-/* clang-format off */
-[fragment]
-
-#if !defined(GLES_OVER_GL)
-precision mediump float;
-#endif
-/* clang-format on */
-
-in vec2 uv_interp;
-
-uniform highp sampler2D source; //texunit:0
-
-uniform float exposure;
-uniform float white;
-
-#ifdef USE_AUTO_EXPOSURE
-uniform highp sampler2D source_auto_exposure; //texunit:1
-uniform highp float auto_exposure_grey;
-#endif
-
-#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
-#define USING_GLOW // only use glow when at least one glow level is selected
-
-uniform highp sampler2D source_glow; //texunit:2
-uniform highp float glow_intensity;
-#endif
-
-#ifdef USE_BCS
-uniform vec3 bcs;
-#endif
-
-#ifdef USE_COLOR_CORRECTION
-uniform sampler2D color_correction; //texunit:3
-#endif
-
-layout(location = 0) out vec4 frag_color;
-
-#ifdef USE_GLOW_FILTER_BICUBIC
-// w0, w1, w2, and w3 are the four cubic B-spline basis functions
-float w0(float a) {
- return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
-}
-
-float w1(float a) {
- return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
-}
-
-float w2(float a) {
- return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
-}
-
-float w3(float a) {
- return (1.0f / 6.0f) * (a * a * a);
-}
-
-// g0 and g1 are the two amplitude functions
-float g0(float a) {
- return w0(a) + w1(a);
-}
-
-float g1(float a) {
- return w2(a) + w3(a);
-}
-
-// h0 and h1 are the two offset functions
-float h0(float a) {
- return -1.0f + w1(a) / (w0(a) + w1(a));
-}
-
-float h1(float a) {
- return 1.0f + w3(a) / (w2(a) + w3(a));
-}
-
-uniform ivec2 glow_texture_size;
-
-vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
- float lod = float(p_lod);
- vec2 tex_size = vec2(glow_texture_size >> p_lod);
- vec2 pixel_size = vec2(1.0f) / tex_size;
-
- uv = uv * tex_size + vec2(0.5f);
-
- vec2 iuv = floor(uv);
- vec2 fuv = fract(uv);
-
- float g0x = g0(fuv.x);
- float g1x = g1(fuv.x);
- float h0x = h0(fuv.x);
- float h1x = h1(fuv.x);
- float h0y = h0(fuv.y);
- float h1y = h1(fuv.y);
-
- vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
- vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
- vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
- vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
-
- return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
- (g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
-}
-
-#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
-#else
-#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
-#endif
-
-vec3 tonemap_filmic(vec3 color, float white) {
- // exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
- // also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
- // has no effect on the curve's general shape or visual properties
- const float exposure_bias = 2.0f;
- const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
- const float B = 0.30f * exposure_bias;
- const float C = 0.10f;
- const float D = 0.20f;
- const float E = 0.01f;
- const float F = 0.30f;
-
- vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
- float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
-
- return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
-}
-
-vec3 tonemap_aces(vec3 color, float white) {
- const float exposure_bias = 0.85f;
- const float A = 2.51f * exposure_bias * exposure_bias;
- const float B = 0.03f * exposure_bias;
- const float C = 2.43f * exposure_bias * exposure_bias;
- const float D = 0.59f * exposure_bias;
- const float E = 0.14f;
-
- vec3 color_tonemapped = (color * (A * color + B)) / (color * (C * color + D) + E);
- float white_tonemapped = (white * (A * white + B)) / (white * (C * white + D) + E);
-
- return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
-}
-
-vec3 tonemap_reinhard(vec3 color, float white) {
- return clamp((white * color + color) / (color * white + white), vec3(0.0f), vec3(1.0f));
-}
-
-vec3 linear_to_srgb(vec3 color) { // convert linear rgb to srgb, assumes clamped input in range [0;1]
- const vec3 a = vec3(0.055f);
- return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
-}
-
-// inputs are LINEAR, If Linear tonemapping is selected no transform is performed else outputs are clamped [0, 1] color
-vec3 apply_tonemapping(vec3 color, float white) {
-#ifdef USE_REINHARD_TONEMAPPER
- return tonemap_reinhard(color, white);
-#endif
-
-#ifdef USE_FILMIC_TONEMAPPER
- return tonemap_filmic(color, white);
-#endif
-
-#ifdef USE_ACES_TONEMAPPER
- return tonemap_aces(color, white);
-#endif
-
- return color; // no other selected -> linear: no color transform applied
-}
-
-vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels
- vec3 glow = vec3(0.0f);
-
-#ifdef USE_GLOW_LEVEL1
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL2
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL3
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL4
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL5
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL6
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL7
- glow += GLOW_TEXTURE_SAMPLE(tex, uv, 7).rgb;
-#endif
-
- return glow;
-}
-
-vec3 apply_glow(vec3 color, vec3 glow) { // apply glow using the selected blending mode
-#ifdef USE_GLOW_REPLACE
- color = glow;
-#endif
-
-#ifdef USE_GLOW_SCREEN
- //need color clamping
- color = clamp(color, vec3(0.0f), vec3(1.0f));
- color = max((color + glow) - (color * glow), vec3(0.0));
-#endif
-
-#ifdef USE_GLOW_SOFTLIGHT
- //need color clamping
- color = clamp(color, vec3(0.0f), vec3(1.0));
- glow = glow * vec3(0.5f) + vec3(0.5f);
-
- color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r)));
- color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g)));
- color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b)));
-#endif
-
-#if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive
- color += glow;
-#endif
-
- return color;
-}
-
-vec3 apply_bcs(vec3 color, vec3 bcs) {
- color = mix(vec3(0.0f), color, bcs.x);
- color = mix(vec3(0.5f), color, bcs.y);
- color = mix(vec3(dot(vec3(1.0f), color) * 0.33333f), color, bcs.z);
-
- return color;
-}
-
-vec3 apply_color_correction(vec3 color, sampler2D correction_tex) {
- color.r = texture(correction_tex, vec2(color.r, 0.0f)).r;
- color.g = texture(correction_tex, vec2(color.g, 0.0f)).g;
- color.b = texture(correction_tex, vec2(color.b, 0.0f)).b;
-
- return color;
-}
-
-void main() {
- vec3 color = textureLod(source, uv_interp, 0.0f).rgb;
-
- // Exposure
-
-#ifdef USE_AUTO_EXPOSURE
- color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
-#endif
-
- color *= exposure;
-
- // Early Tonemap & SRGB Conversion; note that Linear tonemapping does not clamp to [0, 1]; some operations below expect a [0, 1] range and will clamp
-
- color = apply_tonemapping(color, white);
-
-#ifdef KEEP_3D_LINEAR
- // leave color as is (-> don't convert to SRGB)
-#else
- //need color clamping
- color = clamp(color, vec3(0.0f), vec3(1.0f));
- color = linear_to_srgb(color); // regular linear -> SRGB conversion (needs clamped values)
-#endif
-
- // Glow
-
-#ifdef USING_GLOW
- vec3 glow = gather_glow(source_glow, uv_interp) * glow_intensity;
-
- // high dynamic range -> SRGB
- glow = apply_tonemapping(glow, white);
- glow = clamp(glow, vec3(0.0f), vec3(1.0f));
- glow = linear_to_srgb(glow);
-
- color = apply_glow(color, glow);
-#endif
-
- // Additional effects
-
-#ifdef USE_BCS
- color = apply_bcs(color, bcs);
-#endif
-
-#ifdef USE_COLOR_CORRECTION
- color = apply_color_correction(color, color_correction);
-#endif
-
- frag_color = vec4(color, 1.0f);
-}