summaryrefslogtreecommitdiff
path: root/drivers/gles3/shaders
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gles3/shaders')
-rw-r--r--drivers/gles3/shaders/SCsub11
-rw-r--r--drivers/gles3/shaders/canvas.glsl125
-rw-r--r--drivers/gles3/shaders/canvas_uniforms_inc.glsl4
-rw-r--r--drivers/gles3/shaders/copy.glsl181
-rw-r--r--drivers/gles3/shaders/cubemap_filter.glsl218
-rw-r--r--drivers/gles3/shaders/scene.glsl2418
-rw-r--r--drivers/gles3/shaders/sky.glsl103
-rw-r--r--drivers/gles3/shaders/stdlib_inc.glsl10
-rw-r--r--drivers/gles3/shaders/tonemap.glsl12
-rw-r--r--drivers/gles3/shaders/tonemap_inc.glsl127
10 files changed, 1080 insertions, 2129 deletions
diff --git a/drivers/gles3/shaders/SCsub b/drivers/gles3/shaders/SCsub
index 8443b5df85..83ffe8b1e1 100644
--- a/drivers/gles3/shaders/SCsub
+++ b/drivers/gles3/shaders/SCsub
@@ -3,6 +3,17 @@
Import("env")
if "GLES3_GLSL" in env["BUILDERS"]:
+ # find all include files
+ gl_include_files = [str(f) for f in Glob("*_inc.glsl")]
+
+ # find all shader code(all glsl files excluding our include files)
+ glsl_files = [str(f) for f in Glob("*.glsl") if str(f) not in gl_include_files]
+
+ # make sure we recompile shaders if include files change
+ env.Depends([f + ".gen.h" for f in glsl_files], gl_include_files + ["#gles3_builders.py"])
+
env.GLES3_GLSL("canvas.glsl")
env.GLES3_GLSL("copy.glsl")
+ env.GLES3_GLSL("scene.glsl")
env.GLES3_GLSL("sky.glsl")
+ env.GLES3_GLSL("cubemap_filter.glsl")
diff --git a/drivers/gles3/shaders/canvas.glsl b/drivers/gles3/shaders/canvas.glsl
index 41d308b776..4df818cd4c 100644
--- a/drivers/gles3/shaders/canvas.glsl
+++ b/drivers/gles3/shaders/canvas.glsl
@@ -5,6 +5,7 @@ mode_quad =
mode_ninepatch = #define USE_NINEPATCH
mode_primitive = #define USE_PRIMITIVE
mode_attributes = #define USE_ATTRIBUTES
+mode_instanced = #define USE_ATTRIBUTES \n#define USE_INSTANCING
#[specializations]
@@ -20,6 +21,23 @@ layout(location = 4) in vec2 uv_attrib;
layout(location = 10) in uvec4 bone_attrib;
layout(location = 11) in vec4 weight_attrib;
+#ifdef USE_INSTANCING
+
+layout(location = 1) in highp vec4 instance_xform0;
+layout(location = 2) in highp vec4 instance_xform1;
+layout(location = 5) in highp uvec4 instance_color_custom_data; // Color packed into xy, custom_data packed into zw for compatibility with 3D
+
+#endif
+
+#endif
+
+// This needs to be outside clang-format so the ubo comment is in the right place
+#ifdef MATERIAL_UNIFORMS_USED
+layout(std140) uniform MaterialUniforms{ //ubo:4
+
+#MATERIAL_UNIFORMS
+
+};
#endif
/* clang-format on */
#include "canvas_uniforms_inc.glsl"
@@ -38,15 +56,6 @@ out vec2 pixel_size_interp;
#endif
-#ifdef MATERIAL_UNIFORMS_USED
-layout(std140) uniform MaterialUniforms{
-//ubo:4
-
-#MATERIAL_UNIFORMS
-
-};
-#endif
-
#GLOBALS
void main() {
@@ -77,13 +86,22 @@ void main() {
vec4 bone_weights = vec4(0.0);
#elif defined(USE_ATTRIBUTES)
-
+#ifdef USE_INSTANCING
+ draw_data_instance = 0;
+#endif
vec2 vertex = vertex_attrib;
vec4 color = color_attrib * draw_data[draw_data_instance].modulation;
vec2 uv = uv_attrib;
uvec4 bones = bone_attrib;
vec4 bone_weights = weight_attrib;
+
+#ifdef USE_INSTANCING
+ vec4 instance_color = vec4(unpackHalf2x16(instance_color_custom_data.x), unpackHalf2x16(instance_color_custom_data.y));
+ color *= instance_color;
+ instance_custom = vec4(unpackHalf2x16(instance_color_custom_data.z), unpackHalf2x16(instance_color_custom_data.w));
+#endif
+
#else
vec2 vertex_base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0));
@@ -98,81 +116,10 @@ void main() {
mat4 model_matrix = mat4(vec4(draw_data[draw_data_instance].world_x, 0.0, 0.0), vec4(draw_data[draw_data_instance].world_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(draw_data[draw_data_instance].world_ofs, 0.0, 1.0));
- // MultiMeshes don't batch, so always read from draw_data[0]
- uint instancing = draw_data[0].flags & FLAGS_INSTANCING_MASK;
+#ifdef USE_INSTANCING
+ model_matrix = model_matrix * transpose(mat4(instance_xform0, instance_xform1, vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)));
+#endif // USE_INSTANCING
-#ifdef USE_ATTRIBUTES
-/*
- if (instancing > 1) {
- // trails
-
- uint stride = 2 + 1 + 1; //particles always uses this format
-
- uint trail_size = instancing;
-
- uint offset = trail_size * stride * gl_InstanceID;
-
- vec4 pcolor;
- vec2 new_vertex;
- {
- uint boffset = offset + bone_attrib.x * stride;
- new_vertex = (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.x;
- pcolor = transforms.data[boffset + 2] * weight_attrib.x;
- }
- if (weight_attrib.y > 0.001) {
- uint boffset = offset + bone_attrib.y * stride;
- new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.y;
- pcolor += transforms.data[boffset + 2] * weight_attrib.y;
- }
- if (weight_attrib.z > 0.001) {
- uint boffset = offset + bone_attrib.z * stride;
- new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.z;
- pcolor += transforms.data[boffset + 2] * weight_attrib.z;
- }
- if (weight_attrib.w > 0.001) {
- uint boffset = offset + bone_attrib.w * stride;
- new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.w;
- pcolor += transforms.data[boffset + 2] * weight_attrib.w;
- }
-
- instance_custom = transforms.data[offset + 3];
-
- vertex = new_vertex;
- color *= pcolor;
- } else*/
-#endif // USE_ATTRIBUTES
-/*
- {
- if (instancing == 1) {
- uint stride = 2;
- {
- if (bool(draw_data[0].flags & FLAGS_INSTANCING_HAS_COLORS)) {
- stride += 1;
- }
- if (bool(draw_data[0].flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
- stride += 1;
- }
- }
-
- uint offset = stride * gl_InstanceID;
-
- mat4 matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
- offset += 2;
-
- if (bool(draw_data[0].flags & FLAGS_INSTANCING_HAS_COLORS)) {
- color *= transforms.data[offset];
- offset += 1;
- }
-
- if (bool(draw_data[0].flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
- instance_custom = transforms.data[offset];
- }
-
- matrix = transpose(matrix);
- model_matrix = model_matrix * matrix;
- }
- }
-*/
#if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
if (bool(draw_data[draw_data_instance].flags & FLAGS_USING_PARTICLES)) {
//scale by texture size
@@ -518,8 +465,8 @@ void main() {
float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0);
float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5;
- if (outline_thickness > 0) {
- float cr = clamp(outline_thickness, 0.0, px_range / 2) / px_range;
+ if (outline_thickness > 0.0) {
+ float cr = clamp(outline_thickness, 0.0, px_range / 2.0) / px_range;
float a = clamp((d + cr) * px_size, 0.0, 1.0);
color.a = a * color.a;
} else {
@@ -710,8 +657,8 @@ void main() {
vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot?
float tex_ofs;
float distance;
- if (pos_rot.y > 0) {
- if (pos_rot.x > 0) {
+ if (pos_rot.y > 0.0) {
+ if (pos_rot.x > 0.0) {
tex_ofs = pos_box.y * 0.125 + 0.125;
distance = shadow_pos.x;
} else {
@@ -719,7 +666,7 @@ void main() {
distance = shadow_pos.y;
}
} else {
- if (pos_rot.x < 0) {
+ if (pos_rot.x < 0.0) {
tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125);
distance = -shadow_pos.x;
} else {
diff --git a/drivers/gles3/shaders/canvas_uniforms_inc.glsl b/drivers/gles3/shaders/canvas_uniforms_inc.glsl
index e08a15e59d..852dccf415 100644
--- a/drivers/gles3/shaders/canvas_uniforms_inc.glsl
+++ b/drivers/gles3/shaders/canvas_uniforms_inc.glsl
@@ -58,8 +58,8 @@ struct DrawData {
uvec4 lights;
};
-layout(std140) uniform GlobalVariableData { //ubo:1
- vec4 global_variables[MAX_GLOBAL_VARIABLES];
+layout(std140) uniform GlobalShaderUniformData { //ubo:1
+ vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
};
layout(std140) uniform CanvasData { //ubo:0
diff --git a/drivers/gles3/shaders/copy.glsl b/drivers/gles3/shaders/copy.glsl
index 62332a15a7..ca2fc7e36d 100644
--- a/drivers/gles3/shaders/copy.glsl
+++ b/drivers/gles3/shaders/copy.glsl
@@ -1,204 +1,59 @@
/* clang-format off */
#[modes]
-mode_default =
-mode_cubemap = #define USE_CUBEMAP
-mode_panorama = #define USE_PANORAMA
+mode_default = #define MODE_SIMPLE_COPY
mode_copy_section = #define USE_COPY_SECTION
-mode_asym_pano = #define USE_ASYM_PANO
-mode_no_alpha = #define USE_NO_ALPHA
-mode_custom_alpha = #define USE_CUSTOM_ALPHA
-mode_multiplier = #define USE_MULTIPLIER
-mode_sep_cbcr_texture = #define USE_SEP_CBCR_TEXTURE
-mode_ycbcr_to_rgb = #define USE_YCBCR_TO_RGB
+mode_gaussian_blur = #define MODE_GAUSSIAN_BLUR
+mode_mipmap = #define MODE_MIPMAP
+mode_simple_color = #define MODE_SIMPLE_COLOR \n#define USE_COPY_SECTION
#[specializations]
-
#[vertex]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-layout(location = 4) in vec3 cube_in;
-#else
-layout(location = 4) in vec2 uv_in;
-#endif
-
-layout(location = 5) in vec2 uv2_in;
+layout(location = 0) in vec2 vertex_attrib;
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-out vec3 cube_interp;
-#else
out vec2 uv_interp;
-#endif
-out vec2 uv2_interp;
+/* clang-format on */
#ifdef USE_COPY_SECTION
uniform highp vec4 copy_section;
-#elif defined(USE_DISPLAY_TRANSFORM)
-uniform highp mat4 display_transform;
#endif
void main() {
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
- cube_interp = cube_in;
-#elif defined(USE_ASYM_PANO)
- uv_interp = vertex_attrib.xy;
-#else
- uv_interp = uv_in;
-#endif
-
- uv2_interp = uv2_in;
- gl_Position = vertex_attrib;
+ uv_interp = vertex_attrib * 0.5 + 0.5;
+ gl_Position = vec4(vertex_attrib, 1.0, 1.0);
#ifdef USE_COPY_SECTION
+ gl_Position.xy = (copy_section.xy + (uv_interp.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
uv_interp = copy_section.xy + uv_interp * copy_section.zw;
- gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
-#elif defined(USE_DISPLAY_TRANSFORM)
- uv_interp = (display_transform * vec4(uv_in, 1.0, 1.0)).xy;
#endif
}
/* clang-format off */
#[fragment]
-#define M_PI 3.14159265359
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-in vec3 cube_interp;
-#else
in vec2 uv_interp;
-#endif
/* clang-format on */
-
-#ifdef USE_ASYM_PANO
-uniform highp mat4 pano_transform;
-uniform highp vec4 asym_proj;
-#endif
-
-#ifdef USE_CUBEMAP
-uniform samplerCube source_cube; // texunit:0
-#else
-uniform sampler2D source; // texunit:0
-#endif
-
-#ifdef USE_SEP_CBCR_TEXTURE
-uniform sampler2D CbCr; //texunit:1
-#endif
-
-in vec2 uv2_interp;
-
-#ifdef USE_MULTIPLIER
-uniform float multiplier;
+#ifdef MODE_SIMPLE_COLOR
+uniform vec4 color_in;
#endif
-#ifdef USE_CUSTOM_ALPHA
-uniform float custom_alpha;
+#ifdef MODE_GAUSSIAN_BLUR
+uniform highp vec2 pixel_size;
#endif
-#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
-uniform highp mat4 sky_transform;
-
-vec4 texturePanorama(sampler2D pano, vec3 normal) {
- vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y));
-
- if (st.x < 0.0)
- st.x += M_PI * 2.0;
-
- st /= vec2(M_PI * 2.0, M_PI);
-
- return texture(pano, st);
-}
-
-#endif
+uniform sampler2D source; // texunit:0
layout(location = 0) out vec4 frag_color;
void main() {
-#ifdef USE_PANORAMA
-
- vec3 cube_normal = normalize(cube_interp);
- cube_normal.z = -cube_normal.z;
- cube_normal = mat3(sky_transform) * cube_normal;
- cube_normal.z = -cube_normal.z;
-
- vec4 color = texturePanorama(source, cube_normal);
-
-#elif defined(USE_ASYM_PANO)
-
- // When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
- // Asymmetrical projection means the center of projection is no longer in the center of the screen but shifted.
- // The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
-
- vec3 cube_normal;
- cube_normal.z = -1.0;
- cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
- cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
- cube_normal = mat3(sky_transform) * mat3(pano_transform) * cube_normal;
- cube_normal.z = -cube_normal.z;
-
- vec4 color = texturePanorama(source, normalize(cube_normal.xyz));
-
-#elif defined(USE_CUBEMAP)
- vec4 color = texture(source_cube, normalize(cube_interp));
-#elif defined(USE_SEP_CBCR_TEXTURE)
- vec4 color;
- color.r = texture(source, uv_interp).r;
- color.gb = texture(CbCr, uv_interp).rg - vec2(0.5, 0.5);
- color.a = 1.0;
-#else
+#ifdef MODE_SIMPLE_COPY
vec4 color = texture(source, uv_interp);
+ frag_color = color;
#endif
-#ifdef USE_YCBCR_TO_RGB
- // YCbCr -> RGB conversion
-
- // Using BT.601, which is the standard for SDTV is provided as a reference
- color.rgb = mat3(
- vec3(1.00000, 1.00000, 1.00000),
- vec3(0.00000, -0.34413, 1.77200),
- vec3(1.40200, -0.71414, 0.00000)) *
- color.rgb;
-#endif
-
-#ifdef USE_NO_ALPHA
- color.a = 1.0;
-#endif
-
-#ifdef USE_CUSTOM_ALPHA
- color.a = custom_alpha;
-#endif
-
-#ifdef USE_MULTIPLIER
- color.rgb *= multiplier;
+#ifdef MODE_SIMPLE_COLOR
+ frag_color = color_in;
#endif
-
- frag_color = color;
}
diff --git a/drivers/gles3/shaders/cubemap_filter.glsl b/drivers/gles3/shaders/cubemap_filter.glsl
index 2081abfef6..88464876f1 100644
--- a/drivers/gles3/shaders/cubemap_filter.glsl
+++ b/drivers/gles3/shaders/cubemap_filter.glsl
@@ -1,214 +1,122 @@
/* clang-format off */
-[vertex]
+#[modes]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
+mode_default =
+mode_copy = #define MODE_DIRECT_WRITE
+
+#[specializations]
-layout(location = 0) in highp vec2 vertex;
+#[vertex]
+
+layout(location = 0) in highp vec2 vertex_attrib;
/* clang-format on */
-layout(location = 4) in highp vec2 uv;
out highp vec2 uv_interp;
void main() {
- uv_interp = uv;
- gl_Position = vec4(vertex, 0, 1);
+ uv_interp = vertex_attrib;
+ gl_Position = vec4(uv_interp, 0.0, 1.0);
}
/* clang-format off */
-[fragment]
+#[fragment]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
+#define M_PI 3.14159265359
-#ifdef USE_SOURCE_PANORAMA
-uniform sampler2D source_panorama; //texunit:0
-#else
uniform samplerCube source_cube; //texunit:0
-#endif
+
/* clang-format on */
uniform int face_id;
-uniform float roughness;
-in highp vec2 uv_interp;
-
-uniform sampler2D radical_inverse_vdc_cache; // texunit:1
-
-#define M_PI 3.14159265359
-
-#ifdef LOW_QUALITY
-
-#define SAMPLE_COUNT 64
-
-#else
-
-#define SAMPLE_COUNT 512
+#ifndef MODE_DIRECT_WRITE
+uniform int sample_count;
+uniform vec4 sample_directions_mip[MAX_SAMPLE_COUNT];
+uniform float weight;
#endif
-#ifdef USE_SOURCE_PANORAMA
-
-vec4 texturePanorama(sampler2D pano, vec3 normal) {
- vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y));
+in highp vec2 uv_interp;
- if (st.x < 0.0)
- st.x += M_PI * 2.0;
+layout(location = 0) out vec4 frag_color;
- st /= vec2(M_PI * 2.0, M_PI);
+#define M_PI 3.14159265359
- return textureLod(pano, st, 0.0);
+// Don't include tonemap_inc.glsl because all we want is these functions, we don't want the uniforms
+vec3 linear_to_srgb(vec3 color) {
+ return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0));
}
-#endif
+vec3 srgb_to_linear(vec3 color) {
+ return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878);
+}
vec3 texelCoordToVec(vec2 uv, int faceID) {
mat3 faceUvVectors[6];
// -x
- faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
- faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
+ faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
+ faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
// +x
- faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
- faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
+ faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
+ faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
// -y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
- faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
+ faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
+ faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
// +y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
+ faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
+ faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
// -z
- faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
- faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
+ faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
+ faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
// +z
- faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
+ faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
// out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
- vec3 result;
- for (int i = 0; i < 6; i++) {
- if (i == faceID) {
- result = (faceUvVectors[i][0] * uv.x) + (faceUvVectors[i][1] * uv.y) + faceUvVectors[i][2];
- break;
- }
- }
+ vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
return normalize(result);
}
-vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
- float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
-
- // Compute distribution direction
- float Phi = 2.0 * M_PI * Xi.x;
- float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y));
- float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
-
- // Convert to spherical direction
- vec3 H;
- H.x = SinTheta * cos(Phi);
- H.y = SinTheta * sin(Phi);
- H.z = CosTheta;
-
- vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
- vec3 TangentX = normalize(cross(UpVector, N));
- vec3 TangentY = cross(N, TangentX);
-
- // Tangent to world space
- return TangentX * H.x + TangentY * H.y + N * H.z;
-}
-
-float radical_inverse_VdC(int i) {
- return texture(radical_inverse_vdc_cache, vec2(float(i) / 512.0, 0.0)).x;
-}
-
-vec2 Hammersley(int i, int N) {
- return vec2(float(i) / float(N), radical_inverse_VdC(i));
-}
-
-uniform bool z_flip;
-
-layout(location = 0) out vec4 frag_color;
-
void main() {
vec3 color = vec3(0.0);
-
- vec2 uv = (uv_interp * 2.0) - 1.0;
+ vec2 uv = uv_interp;
vec3 N = texelCoordToVec(uv, face_id);
-#ifdef USE_DIRECT_WRITE
-
-#ifdef USE_SOURCE_PANORAMA
-
- frag_color = vec4(texturePanorama(source_panorama, N).rgb, 1.0);
-#else
-
- frag_color = vec4(textureCube(source_cube, N).rgb, 1.0);
-#endif //USE_SOURCE_PANORAMA
-
+#ifdef MODE_DIRECT_WRITE
+ frag_color = vec4(textureLod(source_cube, N, 0.0).rgb, 1.0);
#else
vec4 sum = vec4(0.0);
-
- for (int sample_num = 0; sample_num < SAMPLE_COUNT; sample_num++) {
- vec2 xi = Hammersley(sample_num, SAMPLE_COUNT);
-
- vec3 H = ImportanceSampleGGX(xi, roughness, N);
- vec3 V = N;
- vec3 L = (2.0 * dot(V, H) * H - V);
-
- float NdotL = clamp(dot(N, L), 0.0, 1.0);
-
- if (NdotL > 0.0) {
-
-#ifdef USE_SOURCE_PANORAMA
- vec3 val = texturePanorama(source_panorama, L).rgb;
-#else
- vec3 val = textureCubeLod(source_cube, L, 0.0).rgb;
-#endif
- //mix using Linear, to approximate high end back-end
- val = mix(pow((val + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), val * (1.0 / 12.92), vec3(lessThan(val, vec3(0.04045))));
-
- sum.rgb += val * NdotL;
-
- sum.a += NdotL;
- }
+ vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
+ mat3 T;
+ T[0] = normalize(cross(UpVector, N));
+ T[1] = cross(N, T[0]);
+ T[2] = N;
+
+ for (int sample_num = 0; sample_num < sample_count; sample_num++) {
+ vec4 sample_direction_mip = sample_directions_mip[sample_num];
+ vec3 L = T * sample_direction_mip.xyz;
+ vec3 val = textureLod(source_cube, L, sample_direction_mip.w).rgb;
+ // Mix using linear
+ val = srgb_to_linear(val);
+ sum.rgb += val * sample_direction_mip.z;
}
- sum /= sum.a;
-
- vec3 a = vec3(0.055);
- sum.rgb = mix((vec3(1.0) + a) * pow(sum.rgb, vec3(1.0 / 2.4)) - a, 12.92 * sum.rgb, vec3(lessThan(sum.rgb, vec3(0.0031308))));
+ sum /= weight;
+ sum.rgb = linear_to_srgb(sum.rgb);
frag_color = vec4(sum.rgb, 1.0);
#endif
}
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
index ebb00e81d0..c7fdd6ebd8 100644
--- a/drivers/gles3/shaders/scene.glsl
+++ b/drivers/gles3/shaders/scene.glsl
@@ -1,980 +1,540 @@
/* clang-format off */
-[vertex]
+#[modes]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
+mode_color = #define BASE_PASS
+mode_color_instancing = #define BASE_PASS \n#define USE_INSTANCING
+mode_additive = #define USE_ADDITIVE_LIGHTING
+mode_additive_instancing = #define USE_ADDITIVE_LIGHTING \n#define USE_INSTANCING
+mode_depth = #define MODE_RENDER_DEPTH
+mode_depth_instancing = #define MODE_RENDER_DEPTH \n#define USE_INSTANCING
-#define SHADER_IS_SRGB true //TODO remove
+#[specializations]
-#define M_PI 3.14159265359
+DISABLE_LIGHTMAP = false
+DISABLE_LIGHT_DIRECTIONAL = false
+DISABLE_LIGHT_OMNI = false
+DISABLE_LIGHT_SPOT = false
+DISABLE_FOG = false
+USE_RADIANCE_MAP = true
-//
-// attributes
-//
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 1) in vec3 normal_attrib;
+#[vertex]
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-layout(location = 2) in vec4 tangent_attrib;
-#endif
+#define M_PI 3.14159265359
-#if defined(ENABLE_COLOR_INTERP)
-layout(location = 3) in vec4 color_attrib;
-#endif
+#define SHADER_IS_SRGB true
-#if defined(ENABLE_UV_INTERP)
-layout(location = 4) in vec2 uv_attrib;
-#endif
+#include "stdlib_inc.glsl"
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-layout(location = 5) in vec2 uv2_attrib;
+#if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED)
+#ifndef NORMAL_USED
+#define NORMAL_USED
+#endif
#endif
-#ifdef USE_SKELETON
-
-#ifdef USE_SKELETON_SOFTWARE
-
-layout(location = 13) in highp vec4 bone_transform_row_0;
-layout(location = 14) in highp vec4 bone_transform_row_1;
-layout(location = 15) in highp vec4 bone_transform_row_2;
-
-#else
+/*
+from RenderingServer:
+ARRAY_VERTEX = 0, // RG32F or RGB32F (depending on 2D bit)
+ARRAY_NORMAL = 1, // RG16 octahedral compression
+ARRAY_TANGENT = 2, // RG16 octahedral compression, sign stored in sign of G
+ARRAY_COLOR = 3, // RGBA8
+ARRAY_TEX_UV = 4, // RG32F
+ARRAY_TEX_UV2 = 5, // RG32F
+ARRAY_CUSTOM0 = 6, // Depends on ArrayCustomFormat.
+ARRAY_CUSTOM1 = 7,
+ARRAY_CUSTOM2 = 8,
+ARRAY_CUSTOM3 = 9,
+ARRAY_BONES = 10, // RGBA16UI (x2 if 8 weights)
+ARRAY_WEIGHTS = 11, // RGBA16UNORM (x2 if 8 weights)
+*/
-layout(location = 6) in vec4 bone_ids;
-layout(location = 7) in highp vec4 bone_weights;
+/* INPUT ATTRIBS */
-uniform highp sampler2D bone_transforms; // texunit:-1
-uniform ivec2 skeleton_texture_size;
+layout(location = 0) in highp vec3 vertex_attrib;
+/* clang-format on */
+#ifdef NORMAL_USED
+layout(location = 1) in vec2 normal_attrib;
#endif
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+layout(location = 2) in vec2 tangent_attrib;
#endif
-#ifdef USE_INSTANCING
-
-layout(location = 8) in highp vec4 instance_xform_row_0;
-layout(location = 9) in highp vec4 instance_xform_row_1;
-layout(location = 10) in highp vec4 instance_xform_row_2;
-
-layout(location = 11) in highp vec4 instance_color;
-layout(location = 12) in highp vec4 instance_custom_data;
-
+#if defined(COLOR_USED)
+layout(location = 3) in vec4 color_attrib;
#endif
-//
-// uniforms
-//
-
-uniform highp mat4 inv_view_matrix;
-uniform highp mat4 view_matrix;
-uniform highp mat4 projection_matrix;
-uniform highp mat4 projection_inverse_matrix;
-
-uniform highp mat4 world_transform;
-
-uniform highp float time;
-
-uniform highp vec2 viewport_size;
-
-#ifdef RENDER_DEPTH
-uniform float light_bias;
-uniform float light_normal_bias;
+#ifdef UV_USED
+layout(location = 4) in vec2 uv_attrib;
#endif
-//
-// varyings
-//
-
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
-out highp vec4 position_interp;
+#if defined(UV2_USED) || defined(USE_LIGHTMAP)
+layout(location = 5) in vec2 uv2_attrib;
#endif
-out highp vec3 vertex_interp;
-out vec3 normal_interp;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-out vec3 tangent_interp;
-out vec3 binormal_interp;
+#if defined(CUSTOM0_USED)
+layout(location = 6) in vec4 custom0_attrib;
#endif
-#if defined(ENABLE_COLOR_INTERP)
-out vec4 color_interp;
+#if defined(CUSTOM1_USED)
+layout(location = 7) in vec4 custom1_attrib;
#endif
-#if defined(ENABLE_UV_INTERP)
-out vec2 uv_interp;
+#if defined(CUSTOM2_USED)
+layout(location = 8) in vec4 custom2_attrib;
#endif
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-out vec2 uv2_interp;
+#if defined(CUSTOM3_USED)
+layout(location = 9) in vec4 custom3_attrib;
#endif
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-out highp float dp_clip;
-uniform highp float shadow_dual_paraboloid_render_zfar;
-uniform highp float shadow_dual_paraboloid_render_side;
-
+#if defined(BONES_USED)
+layout(location = 10) in uvec4 bone_attrib;
#endif
-#if defined(USE_SHADOW) && defined(USE_LIGHTING)
-
-uniform highp mat4 light_shadow_matrix;
-out highp vec4 shadow_coord;
-
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
-uniform highp mat4 light_shadow_matrix2;
-out highp vec4 shadow_coord2;
+#if defined(WEIGHTS_USED)
+layout(location = 11) in vec4 weight_attrib;
#endif
-#if defined(LIGHT_USE_PSSM4)
-
-uniform highp mat4 light_shadow_matrix3;
-uniform highp mat4 light_shadow_matrix4;
-out highp vec4 shadow_coord3;
-out highp vec4 shadow_coord4;
+vec3 oct_to_vec3(vec2 e) {
+ vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
+ float t = max(-v.z, 0.0);
+ v.xy += t * -sign(v.xy);
+ return v;
+}
+#ifdef USE_INSTANCING
+layout(location = 12) in highp vec4 instance_xform0;
+layout(location = 13) in highp vec4 instance_xform1;
+layout(location = 14) in highp vec4 instance_xform2;
+layout(location = 15) in highp uvec4 instance_color_custom_data; // Color packed into xy, Custom data into zw.
#endif
-#endif
+layout(std140) uniform GlobalShaderUniformData { //ubo:1
+ vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
+};
-#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
+layout(std140) uniform SceneData { // ubo:2
+ highp mat4 projection_matrix;
+ highp mat4 inv_projection_matrix;
+ highp mat4 inv_view_matrix;
+ highp mat4 view_matrix;
-out highp vec3 diffuse_interp;
-out highp vec3 specular_interp;
+ vec2 viewport_size;
+ vec2 screen_pixel_size;
-// general for all lights
-uniform highp vec4 light_color;
-uniform highp vec4 shadow_color;
-uniform highp float light_specular;
+ mediump vec4 ambient_light_color_energy;
-// directional
-uniform highp vec3 light_direction;
+ mediump float ambient_color_sky_mix;
+ bool material_uv2_mode;
+ float pad2;
+ bool use_ambient_light;
+ bool use_ambient_cubemap;
+ bool use_reflection_cubemap;
-// omni
-uniform highp vec3 light_position;
+ float fog_aerial_perspective;
+ float time;
-uniform highp float light_range;
-uniform highp float light_attenuation;
+ mat3 radiance_inverse_xform;
-// spot
-uniform highp float light_spot_attenuation;
-uniform highp float light_spot_range;
-uniform highp float light_spot_angle;
+ uint directional_light_count;
+ float z_far;
+ float z_near;
+ float pad;
-void light_compute(
- vec3 N,
- vec3 L,
- vec3 V,
- vec3 light_color,
- vec3 attenuation,
- float roughness) {
-//this makes lights behave closer to linear, but then addition of lights looks bad
-//better left disabled
+ bool fog_enabled;
+ float fog_density;
+ float fog_height;
+ float fog_height_density;
-//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
-/*
-#define SRGB_APPROX(m_var) {\
- float S1 = sqrt(m_var);\
- float S2 = sqrt(S1);\
- float S3 = sqrt(S2);\
- m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
- }
-*/
-#define SRGB_APPROX(m_var)
+ vec3 fog_light_color;
+ float fog_sun_scatter;
+}
+scene_data;
- float NdotL = dot(N, L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
+uniform highp mat4 world_transform;
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
+#ifdef USE_LIGHTMAP
+uniform highp vec4 lightmap_uv_rect;
#endif
-#if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
+/* Varyings */
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-#else
- // lambert by default for everything else
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
+out highp vec3 vertex_interp;
+#ifdef NORMAL_USED
+out vec3 normal_interp;
#endif
- SRGB_APPROX(diffuse_brdf_NL)
-
- diffuse_interp += light_color * diffuse_brdf_NL * attenuation;
-
- if (roughness > 0.0) {
- // D
- float specular_brdf_NL = 0.0;
-
-#if !defined(SPECULAR_DISABLED)
- //normalized blinn always unless disabled
- vec3 H = normalize(V + L);
- float cNdotH = max(dot(N, H), 0.0);
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
+#if defined(COLOR_USED)
+out vec4 color_interp;
#endif
- SRGB_APPROX(specular_brdf_NL)
- specular_interp += specular_brdf_NL * light_color * attenuation * (1.0 / M_PI);
- }
-}
-
+#if defined(UV_USED)
+out vec2 uv_interp;
#endif
-#ifdef USE_VERTEX_LIGHTING
-
-#ifdef USE_REFLECTION_PROBE1
-
-uniform highp mat4 refprobe1_local_matrix;
-out mediump vec4 refprobe1_reflection_normal_blend;
-uniform highp vec3 refprobe1_box_extents;
-
-#ifndef USE_LIGHTMAP
-out mediump vec3 refprobe1_ambient_normal;
+#if defined(UV2_USED)
+out vec2 uv2_interp;
+#else
+#ifdef USE_LIGHTMAP
+out vec2 uv2_interp;
+#endif
#endif
-#endif //reflection probe1
-
-#ifdef USE_REFLECTION_PROBE2
-
-uniform highp mat4 refprobe2_local_matrix;
-out mediump vec4 refprobe2_reflection_normal_blend;
-uniform highp vec3 refprobe2_box_extents;
-
-#ifndef USE_LIGHTMAP
-out mediump vec3 refprobe2_ambient_normal;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+out vec3 tangent_interp;
+out vec3 binormal_interp;
#endif
-#endif //reflection probe2
+#if defined(MATERIAL_UNIFORMS_USED)
-#endif //vertex lighting for refprobes
+/* clang-format off */
+layout(std140) uniform MaterialUniforms { // ubo:3
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
+#MATERIAL_UNIFORMS
-out vec4 fog_interp;
+};
+/* clang-format on */
-uniform mediump vec4 fog_color_base;
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform mediump vec4 fog_sun_color_amount;
#endif
-uniform bool fog_transmit_enabled;
-uniform mediump float fog_transmit_curve;
-
-#ifdef FOG_DEPTH_ENABLED
-uniform highp float fog_depth_begin;
-uniform mediump float fog_depth_curve;
-uniform mediump float fog_max_distance;
-#endif
+/* clang-format off */
-#ifdef FOG_HEIGHT_ENABLED
-uniform highp float fog_height_min;
-uniform highp float fog_height_max;
-uniform mediump float fog_height_curve;
-#endif
+#GLOBALS
-#endif //fog
+/* clang-format on */
+invariant gl_Position;
void main() {
- highp vec4 vertex = vertex_attrib;
-
- mat4 model_matrix = world_transform;
+ highp vec3 vertex = vertex_attrib;
+ highp mat4 model_matrix = world_transform;
#ifdef USE_INSTANCING
- {
- highp mat4 m = mat4(
- instance_xform_row_0,
- instance_xform_row_1,
- instance_xform_row_2,
- vec4(0.0, 0.0, 0.0, 1.0));
- model_matrix = model_matrix * transpose(m);
- }
-
+ highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
+ model_matrix = model_matrix * transpose(m);
#endif
- vec3 normal = normal_attrib;
+#ifdef NORMAL_USED
+ vec3 normal = oct_to_vec3(normal_attrib * 2.0 - 1.0);
+#endif
+ highp mat3 model_normal_matrix = mat3(model_matrix);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- vec3 tangent = tangent_attrib.xyz;
- float binormalf = tangent_attrib.a;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+ vec2 signed_tangent_attrib = tangent_attrib * 2.0 - 1.0;
+ vec3 tangent = oct_to_vec3(vec2(signed_tangent_attrib.x, abs(signed_tangent_attrib.y) * 2.0 - 1.0));
+ float binormalf = sign(signed_tangent_attrib.y);
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
-#if defined(ENABLE_COLOR_INTERP)
+#if defined(COLOR_USED)
color_interp = color_attrib;
#ifdef USE_INSTANCING
+ vec4 instance_color = vec4(unpackHalf2x16(instance_color_custom_data.x), unpackHalf2x16(instance_color_custom_data.y));
color_interp *= instance_color;
#endif
#endif
-#if defined(ENABLE_UV_INTERP)
+#if defined(UV_USED)
uv_interp = uv_attrib;
#endif
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
+#ifdef USE_LIGHTMAP
+ uv2_interp = lightmap_uv_rect.zw * uv2_attrib + lightmap_uv_rect.xy;
+#else
+#if defined(UV2_USED)
uv2_interp = uv2_attrib;
#endif
+#endif
#if defined(OVERRIDE_POSITION)
highp vec4 position;
#endif
+ highp mat4 projection_matrix = scene_data.projection_matrix;
+ highp mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = model_matrix * vertex;
- normal = normalize((model_matrix * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-
- tangent = normalize((model_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((model_matrix * vec4(binormal, 0.0)).xyz);
-#endif
+#ifdef USE_INSTANCING
+ vec4 instance_custom = vec4(unpackHalf2x16(instance_color_custom_data.z), unpackHalf2x16(instance_color_custom_data.w));
+#else
+ vec4 instance_custom = vec4(0.0);
#endif
-#ifdef USE_SKELETON
-
- highp mat4 bone_transform = mat4(0.0);
-
-#ifdef USE_SKELETON_SOFTWARE
- // passing the transform as attributes
-
- bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
- bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
- bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
- bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
-
-#else
- // look up transform from the "pose texture"
- {
- for (int i = 0; i < 4; i++) {
- ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
+ // Using world coordinates
+#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- highp mat4 b = mat4(
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
- vec4(0.0, 0.0, 0.0, 1.0));
-
- bone_transform += transpose(b) * bone_weights[i];
- }
- }
+ vertex = (model_matrix * vec4(vertex, 1.0)).xyz;
+#ifdef NORMAL_USED
+ normal = model_normal_matrix * normal;
#endif
- model_matrix = model_matrix * bone_transform;
-
-#endif
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
-#ifdef USE_INSTANCING
- vec4 instance_custom = instance_custom_data;
-#else
- vec4 instance_custom = vec4(0.0);
+ tangent = model_normal_matrix * tangent;
+ binormal = model_normal_matrix * binormal;
#endif
+#endif
- mat4 local_projection_matrix = projection_matrix;
-
- mat4 modelview = view_matrix * model_matrix;
float roughness = 1.0;
-#define projection_matrix local_projection_matrix
-#define world_transform model_matrix
+ highp mat4 modelview = scene_data.view_matrix * model_matrix;
+ highp mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix;
float point_size = 1.0;
{
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
+#CODE : VERTEX
}
gl_PointSize = point_size;
- vec4 outvec = vertex;
- // use local coordinates
+ // Using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
- vertex = modelview * vertex;
- normal = normalize((modelview * vec4(normal, 0.0)).xyz);
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
- binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = view_matrix * vertex;
- normal = normalize((view_matrix * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent = normalize((view_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((view_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
- vertex_interp = vertex.xyz;
- normal_interp = normal;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent_interp = tangent;
- binormal_interp = binormal;
-#endif
-
-#ifdef RENDER_DEPTH
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- vertex_interp.z *= shadow_dual_paraboloid_render_side;
- normal_interp.z *= shadow_dual_paraboloid_render_side;
-
- dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
-
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
-
- highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias;
- highp float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy /= 1.0 - vtx.z;
- vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
- vtx.z = vtx.z * 2.0 - 1.0;
-
- vertex_interp = vtx;
-
-#else
- float z_ofs = light_bias;
- z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
-
- vertex_interp.z -= z_ofs;
-#endif //dual parabolloid
-
-#endif //depth
-
-//vertex lighting
-#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
- //vertex shaded version of lighting (more limited)
- vec3 L;
- vec3 light_att;
-
-#ifdef LIGHT_MODE_OMNI
- vec3 light_vec = light_position - vertex_interp;
- float light_length = length(light_vec);
-
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
-
- vec3 attenuation = vec3(omni_attenuation);
- light_att = vec3(omni_attenuation);
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_vec);
-
-#endif
-
-#ifdef LIGHT_MODE_SPOT
-
- vec3 light_rel_vec = light_position - vertex_interp;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
- vec3 spot_dir = light_direction;
-
- float spot_cutoff = light_spot_angle;
-
- float angle = dot(-normalize(light_rel_vec), spot_dir);
-
- if (angle > spot_cutoff) {
- float scos = max(angle, spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
-
- spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
-
- light_att = vec3(spot_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_rel_vec);
-
-#endif
-#ifdef LIGHT_MODE_DIRECTIONAL
- vec3 light_vec = -light_direction;
- light_att = vec3(1.0); //no base attenuation
- L = normalize(light_vec);
+ vertex = (modelview * vec4(vertex, 1.0)).xyz;
+#ifdef NORMAL_USED
+ normal = modelview_normal * normal;
#endif
- diffuse_interp = vec3(0.0);
- specular_interp = vec3(0.0);
- light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness);
-
#endif
-//shadows (for both vertex and fragment)
-#if defined(USE_SHADOW) && defined(USE_LIGHTING)
-
- vec4 vi4 = vec4(vertex_interp, 1.0);
- shadow_coord = light_shadow_matrix * vi4;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
- shadow_coord2 = light_shadow_matrix2 * vi4;
+ binormal = modelview_normal * binormal;
+ tangent = modelview_normal * tangent;
#endif
-#if defined(LIGHT_USE_PSSM4)
- shadow_coord3 = light_shadow_matrix3 * vi4;
- shadow_coord4 = light_shadow_matrix4 * vi4;
-
-#endif
-
-#endif //use shadow and use lighting
-
-#ifdef USE_VERTEX_LIGHTING
-
-#ifdef USE_REFLECTION_PROBE1
- {
- vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
- vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz;
- vec3 inner_pos = abs(local_pos / refprobe1_box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
-
- {
- vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz;
- refprobe1_reflection_normal_blend.xyz = local_ref_vec;
- refprobe1_reflection_normal_blend.a = blend;
- }
-#ifndef USE_LIGHTMAP
+ // Using world coordinates
+#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz;
+ vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz;
+#ifdef NORMAL_USED
+ normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz;
#endif
- }
-
-#endif //USE_REFLECTION_PROBE1
-#ifdef USE_REFLECTION_PROBE2
- {
- vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
- vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz;
- vec3 inner_pos = abs(local_pos / refprobe2_box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
-
- {
- vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz;
- refprobe2_reflection_normal_blend.xyz = local_ref_vec;
- refprobe2_reflection_normal_blend.a = blend;
- }
-#ifndef USE_LIGHTMAP
-
- refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz;
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+ binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz;
+ tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz;
#endif
- }
-
-#endif //USE_REFLECTION_PROBE2
-
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
- float fog_amount = 0.0;
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-
- vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0));
-#else
- vec3 fog_color = fog_color_base.rgb;
#endif
-#ifdef FOG_DEPTH_ENABLED
-
- {
- float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
-
- fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
- }
+ vertex_interp = vertex;
+#ifdef NORMAL_USED
+ normal_interp = normal;
#endif
-#ifdef FOG_HEIGHT_ENABLED
- {
- float y = (inv_view_matrix * vec4(vertex_interp, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+ tangent_interp = tangent;
+ binormal_interp = binormal;
#endif
- fog_interp = vec4(fog_color, fog_amount);
-
-#endif //fog
-
-#endif //use vertex lighting
#if defined(OVERRIDE_POSITION)
gl_Position = position;
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
-
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
- position_interp = gl_Position;
-#endif
}
/* clang-format off */
-[fragment]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-#define M_PI 3.14159265359
-#define SHADER_IS_SRGB true
+#[fragment]
-//
-// uniforms
-//
-uniform highp mat4 inv_view_matrix;
-/* clang-format on */
-uniform highp mat4 view_matrix;
-uniform highp mat4 projection_matrix;
-uniform highp mat4 projection_inverse_matrix;
-
-uniform highp mat4 world_transform;
-
-uniform highp float time;
-
-uniform highp vec2 viewport_size;
-
-#if defined(SCREEN_UV_USED)
-uniform vec2 screen_pixel_size;
+// Default to SPECULAR_SCHLICK_GGX.
+#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON)
+#define SPECULAR_SCHLICK_GGX
#endif
-#if defined(SCREEN_TEXTURE_USED)
-uniform highp sampler2D screen_texture; //texunit:-4
+#if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED)
+#ifndef NORMAL_USED
+#define NORMAL_USED
#endif
-#if defined(DEPTH_TEXTURE_USED)
-uniform highp sampler2D depth_texture; //texunit:-4
#endif
-#ifdef USE_REFLECTION_PROBE1
+#include "tonemap_inc.glsl"
+#include "stdlib_inc.glsl"
-#ifdef USE_VERTEX_LIGHTING
-
-in mediump vec4 refprobe1_reflection_normal_blend;
-#ifndef USE_LIGHTMAP
-in mediump vec3 refprobe1_ambient_normal;
-#endif
-
-#else
+/* texture unit usage, N is max_texture_unity-N
-uniform bool refprobe1_use_box_project;
-uniform highp vec3 refprobe1_box_extents;
-uniform vec3 refprobe1_box_offset;
-uniform highp mat4 refprobe1_local_matrix;
+1-color correction // In tonemap_inc.glsl
+2-radiance
+3-directional_shadow
+4-positional_shadow
+5-screen
+6-depth
-#endif //use vertex lighting
-
-uniform bool refprobe1_exterior;
-
-uniform highp samplerCube reflection_probe1; //texunit:-5
+*/
-uniform float refprobe1_intensity;
-uniform vec4 refprobe1_ambient;
+#define M_PI 3.14159265359
+/* clang-format on */
-#endif //USE_REFLECTION_PROBE1
+#define SHADER_IS_SRGB true
-#ifdef USE_REFLECTION_PROBE2
+/* Varyings */
-#ifdef USE_VERTEX_LIGHTING
+#if defined(COLOR_USED)
+in vec4 color_interp;
+#endif
-in mediump vec4 refprobe2_reflection_normal_blend;
-#ifndef USE_LIGHTMAP
-in mediump vec3 refprobe2_ambient_normal;
+#if defined(UV_USED)
+in vec2 uv_interp;
#endif
+#if defined(UV2_USED)
+in vec2 uv2_interp;
#else
-
-uniform bool refprobe2_use_box_project;
-uniform highp vec3 refprobe2_box_extents;
-uniform vec3 refprobe2_box_offset;
-uniform highp mat4 refprobe2_local_matrix;
-
-#endif //use vertex lighting
-
-uniform bool refprobe2_exterior;
-
-uniform highp samplerCube reflection_probe2; //texunit:-6
-
-uniform float refprobe2_intensity;
-uniform vec4 refprobe2_ambient;
-
-#endif //USE_REFLECTION_PROBE2
-
-#define RADIANCE_MAX_LOD 6.0
-
-#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
-
-void reflection_process(samplerCube reflection_map,
-#ifdef USE_VERTEX_LIGHTING
- vec3 ref_normal,
-#ifndef USE_LIGHTMAP
- vec3 amb_normal,
+#ifdef USE_LIGHTMAP
+in vec2 uv2_interp;
#endif
- float ref_blend,
-
-#else //no vertex lighting
- vec3 normal, vec3 vertex,
- mat4 local_matrix,
- bool use_box_project, vec3 box_extents, vec3 box_offset,
-#endif //vertex lighting
- bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
- vec4 reflection;
-
-#ifdef USE_VERTEX_LIGHTING
-
- reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
-
- float blend = ref_blend; //crappier blend formula for vertex
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
-#else //fragment lighting
-
- vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz;
-
- if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
- return;
- }
-
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- blend = mix(length(inner_pos), blend, blend);
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
- //reflect and make local
- vec3 ref_normal = normalize(reflect(vertex, normal));
- ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz;
-
- if (use_box_project) { //box project
-
- vec3 nrdir = normalize(ref_normal);
- vec3 rbmax = (box_extents - local_pos) / nrdir;
- vec3 rbmin = (-box_extents - local_pos) / nrdir;
-
- vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0))));
-
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- ref_normal = posonbox - box_offset.xyz;
- }
-
- reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
#endif
- if (exterior) {
- reflection.rgb = mix(skybox, reflection.rgb, blend);
- }
- reflection.rgb *= intensity;
- reflection.a = blend;
- reflection.rgb *= blend;
-
- reflection_accum += reflection;
-
-#ifndef USE_LIGHTMAP
-
- vec4 ambient_out;
-#ifndef USE_VERTEX_LIGHTING
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+in vec3 tangent_interp;
+in vec3 binormal_interp;
+#endif
- vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz;
+#ifdef NORMAL_USED
+in vec3 normal_interp;
#endif
- ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb;
- ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a);
- if (exterior) {
- ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
- }
+in highp vec3 vertex_interp;
- ambient_out.a = blend;
- ambient_out.rgb *= blend;
- ambient_accum += ambient_out;
+#ifdef USE_RADIANCE_MAP
-#endif
-}
+#define RADIANCE_MAX_LOD 5.0
-#endif //use refprobe 1 or 2
+uniform samplerCube radiance_map; // texunit:-2
-#ifdef USE_LIGHTMAP
-uniform mediump sampler2D lightmap; //texunit:-4
-uniform mediump float lightmap_energy;
#endif
-#ifdef USE_LIGHTMAP_CAPTURE
-uniform mediump vec4[12] lightmap_captures;
-uniform bool lightmap_capture_sky;
-
-#endif
+layout(std140) uniform GlobalShaderUniformData { //ubo:1
+ vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
+};
-#ifdef USE_RADIANCE_MAP
+ /* Material Uniforms */
-uniform samplerCube radiance_map; // texunit:-2
+#if defined(MATERIAL_UNIFORMS_USED)
-uniform mat4 radiance_inverse_xform;
+/* clang-format off */
+layout(std140) uniform MaterialUniforms { // ubo:3
-#endif
+#MATERIAL_UNIFORMS
-uniform vec4 bg_color;
-uniform float bg_energy;
+};
+/* clang-format on */
-uniform float ambient_sky_contribution;
-uniform vec4 ambient_color;
-uniform float ambient_energy;
+#endif
-#ifdef USE_LIGHTING
+layout(std140) uniform SceneData { // ubo:2
+ highp mat4 projection_matrix;
+ highp mat4 inv_projection_matrix;
+ highp mat4 inv_view_matrix;
+ highp mat4 view_matrix;
-uniform highp vec4 shadow_color;
+ vec2 viewport_size;
+ vec2 screen_pixel_size;
-#ifdef USE_VERTEX_LIGHTING
+ mediump vec4 ambient_light_color_energy;
-//get from vertex
-in highp vec3 diffuse_interp;
-in highp vec3 specular_interp;
+ mediump float ambient_color_sky_mix;
+ bool material_uv2_mode;
+ float pad2;
+ bool use_ambient_light;
+ bool use_ambient_cubemap;
+ bool use_reflection_cubemap;
-uniform highp vec3 light_direction; //may be used by fog, so leave here
+ float fog_aerial_perspective;
+ float time;
-#else
-//done in fragment
-// general for all lights
-uniform highp vec4 light_color;
+ mat3 radiance_inverse_xform;
-uniform highp float light_specular;
+ uint directional_light_count;
+ float z_far;
+ float z_near;
+ float pad;
-// directional
-uniform highp vec3 light_direction;
-// omni
-uniform highp vec3 light_position;
+ bool fog_enabled;
+ float fog_density;
+ float fog_height;
+ float fog_height_density;
-uniform highp float light_attenuation;
+ vec3 fog_light_color;
+ float fog_sun_scatter;
+}
+scene_data;
-// spot
-uniform highp float light_spot_attenuation;
-uniform highp float light_spot_range;
-uniform highp float light_spot_angle;
-#endif
+/* clang-format off */
-//this is needed outside above if because dual paraboloid wants it
-uniform highp float light_range;
+#GLOBALS
-#ifdef USE_SHADOW
+/* clang-format on */
-uniform highp vec2 shadow_pixel_size;
+//directional light data
-#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT)
-uniform highp sampler2D light_shadow_atlas; //texunit:-3
-#endif
+#ifndef DISABLE_LIGHT_DIRECTIONAL
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform highp sampler2D light_directional_shadow; // texunit:-3
-uniform highp vec4 light_split_offsets;
-#endif
+struct DirectionalLightData {
+ mediump vec3 direction;
+ mediump float energy;
+ mediump vec3 color;
+ mediump float size;
+ mediump vec3 pad;
+ mediump float specular;
+};
-in highp vec4 shadow_coord;
+layout(std140) uniform DirectionalLights { // ubo:7
+ DirectionalLightData directional_lights[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
+};
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
-in highp vec4 shadow_coord2;
#endif
-#if defined(LIGHT_USE_PSSM4)
-
-in highp vec4 shadow_coord3;
-in highp vec4 shadow_coord4;
+// omni and spot
+#if !defined(DISABLE_LIGHT_OMNI) && !defined(DISABLE_LIGHT_SPOT)
+struct LightData { //this structure needs to be as packed as possible
+ highp vec3 position;
+ highp float inv_radius;
-#endif
+ mediump vec3 direction;
+ highp float size;
-uniform vec4 light_clamp;
+ mediump vec3 color;
+ mediump float attenuation;
-#endif // light shadow
-
-// directional shadow
+ mediump float cone_attenuation;
+ mediump float cone_angle;
+ mediump float specular_amount;
+ mediump float shadow_opacity;
+};
+#ifndef DISABLE_LIGHT_OMNI
+layout(std140) uniform OmniLightData { // ubo:5
+ LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
+};
+uniform uint omni_light_indices[MAX_FORWARD_LIGHTS];
+uniform int omni_light_count;
#endif
-//
-// varyings
-//
-
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
-in highp vec4 position_interp;
-#endif
+#ifndef DISABLE_LIGHT_SPOT
-in highp vec3 vertex_interp;
-in vec3 normal_interp;
+layout(std140) uniform SpotLightData { // ubo:6
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-in vec3 tangent_interp;
-in vec3 binormal_interp;
+ LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
+};
+uniform uint spot_light_indices[MAX_FORWARD_LIGHTS];
+uniform int spot_light_count;
#endif
-#if defined(ENABLE_COLOR_INTERP)
-in vec4 color_interp;
+#ifdef USE_ADDITIVE_LIGHTING
+uniform highp samplerCubeShadow positional_shadow; // texunit:-4
#endif
-#if defined(ENABLE_UV_INTERP)
-in vec2 uv_interp;
-#endif
+#endif // !defined(DISABLE_LIGHT_OMNI) && !defined(DISABLE_LIGHT_SPOT)
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-in vec2 uv2_interp;
-#endif
+uniform highp sampler2D screen_texture; // texunit:-5
+uniform highp sampler2D depth_buffer; // texunit:-6
-in vec3 view_interp;
+uniform highp mat4 world_transform;
+uniform mediump float opaque_prepass_threshold;
layout(location = 0) out vec4 frag_color;
@@ -985,95 +545,31 @@ vec3 F0(float metallic, float specular, vec3 albedo) {
return mix(vec3(dielectric), albedo, vec3(metallic));
}
-/* clang-format off */
-
-FRAGMENT_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-in highp float dp_clip;
-
-#endif
-
-#ifdef USE_LIGHTING
-
-// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
-// We're dividing this factor off because the overall term we'll end up looks like
-// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
-//
-// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
-//
-// We're basically regouping this as
-//
-// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
-//
-// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
-//
-// The contents of the D and G (G1) functions (GGX) are taken from
-// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
-// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
-
-/*
-float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5 * alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
-
- // float cos2 = cos_theta_m * cos_theta_m;
- // float sin2 = (1.0 - cos2);
- // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
-}
-*/
-
-// This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha)
-// See Filament docs, Specular G section.
-float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) {
- return 0.5 / mix(2.0 * cos_theta_l * cos_theta_v, cos_theta_l + cos_theta_v, alpha);
-}
-
+#if !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha * alpha;
- float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
- return alpha2 / (M_PI * d * d);
+ float a = cos_theta_m * alpha;
+ float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a);
+ return k * k * (1.0 / M_PI);
}
-/*
-float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
-}
-*/
-
-// This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...)
-// See Filament docs, Anisotropic specular BRDF section.
-float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
- float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
- float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
- return 0.5 / (Lambda_V + Lambda_L);
+// From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX
+float V_GGX(float NdotL, float NdotV, float alpha) {
+ return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha);
}
-float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) {
+float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float alpha2 = alpha_x * alpha_y;
- highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH);
+ highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m);
highp float v2 = dot(v, v);
float w2 = alpha2 / v2;
float D = alpha2 * w2 * w2 * (1.0 / M_PI);
return D;
+}
- /* float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float r_x = cos_phi / alpha_x;
- float r_y = sin_phi / alpha_y;
- float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
- return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */
+float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
+ float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
+ float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
+ return 0.5 / (Lambda_V + Lambda_L);
}
float SchlickFresnel(float u) {
@@ -1082,109 +578,59 @@ float SchlickFresnel(float u) {
return m2 * m2 * m; // pow(m,5)
}
-float GTR1(float NdotH, float a) {
- if (a >= 1.0)
- return 1.0 / M_PI;
- float a2 = a * a;
- float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
- return (a2 - 1.0) / (M_PI * log(a2) * t);
-}
-
-void light_compute(
- vec3 N,
- vec3 L,
- vec3 V,
- vec3 B,
- vec3 T,
- vec3 light_color,
- vec3 attenuation,
- vec3 diffuse_color,
- vec3 transmission,
- float specular_blob_intensity,
- float roughness,
- float metallic,
- float specular,
- float rim,
- float rim_tint,
- float clearcoat,
- float clearcoat_roughness,
- float anisotropy,
- inout vec3 diffuse_light,
- inout vec3 specular_light,
- inout float alpha) {
-//this makes lights behave closer to linear, but then addition of lights looks bad
-//better left disabled
-
-//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
-/*
-#define SRGB_APPROX(m_var) {\
- float S1 = sqrt(m_var);\
- float S2 = sqrt(S1);\
- float S3 = sqrt(S2);\
- m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
- }
-*/
-#define SRGB_APPROX(m_var)
+void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 f0, float roughness, float metallic, float specular_amount, vec3 albedo, inout float alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 B, vec3 T, float anisotropy,
+#endif
+ inout vec3 diffuse_light, inout vec3 specular_light) {
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
- vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
-LIGHT_SHADER_CODE
+
+#CODE : LIGHT
/* clang-format on */
#else
- float NdotL = dot(N, L);
+ float NdotL = min(A + dot(N, L), 1.0);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
- float cNdotV = max(abs(NdotV), 1e-6);
+ float cNdotV = max(NdotV, 1e-4);
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
+#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
vec3 H = normalize(V + L);
#endif
-#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cNdotH = max(dot(N, H), 0.0);
+#if defined(SPECULAR_SCHLICK_GGX)
+ float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cLdotH = max(dot(L, H), 0.0);
+#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
+ float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
#endif
if (metallic < 1.0) {
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
@@ -1196,230 +642,253 @@ LIGHT_SHADER_CODE
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
-
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
- */
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
- SRGB_APPROX(diffuse_brdf_NL)
+ diffuse_light += light_color * diffuse_brdf_NL * attenuation;
- diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
-
-#if defined(TRANSMISSION_USED)
- diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
+#if defined(LIGHT_BACKLIGHT_USED)
+ diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
#endif
-#if defined(LIGHT_USE_RIM)
+#if defined(LIGHT_RIM_USED)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
+ diffuse_light += rim_light * rim * mix(vec3(1.0), albedo, rim_tint) * light_color;
#endif
}
- if (roughness > 0.0) {
-
-#if defined(SPECULAR_SCHLICK_GGX)
- vec3 specular_brdf_NL = vec3(0.0);
-#else
- float specular_brdf_NL = 0.0;
-#endif
-
-#if defined(SPECULAR_BLINN)
+ if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
- //normalized blinn
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
-
-#elif defined(SPECULAR_PHONG)
-
- vec3 R = normalize(-reflect(L, N));
- float cRdotV = max(0.0, dot(R, V));
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float phong = pow(cRdotV, shininess);
- phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
+ // D
-#elif defined(SPECULAR_TOON)
+#if defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
- specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
+ float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
+ diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
// none..
+
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
-
-#if defined(LIGHT_USE_ANISOTROPY)
float alpha_ggx = roughness * roughness;
+#if defined(LIGHT_ANISOTROPY_USED)
+
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH);
- //float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
+ float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
-
-#else
- float alpha_ggx = roughness * roughness;
+#else // LIGHT_ANISOTROPY_USED
float D = D_GGX(cNdotH, alpha_ggx);
- //float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
-#endif
- // F
- vec3 f0 = F0(metallic, specular, diffuse_color);
+#endif // LIGHT_ANISOTROPY_USED
+ // F
float cLdotH5 = SchlickFresnel(cLdotH);
- vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
+ // Calculate Fresnel using cheap approximate specular occlusion term from Filament:
+ // https://google.github.io/filament/Filament.html#lighting/occlusion/specularocclusion
+ float f90 = clamp(50.0 * f0.g, 0.0, 1.0);
+ vec3 F = f0 + (f90 - f0) * cLdotH5;
- specular_brdf_NL = cNdotL * D * F * G;
+ vec3 specular_brdf_NL = cNdotL * D * F * G;
+ specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
#endif
- SRGB_APPROX(specular_brdf_NL)
- specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-
-#if defined(LIGHT_USE_CLEARCOAT)
+#if defined(LIGHT_CLEARCOAT_USED)
+ // Clearcoat ignores normal_map, use vertex normal instead
+ float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0);
+ float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0);
+ float ccNdotV = max(dot(vertex_normal, V), 1e-4);
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_roughness));
+ float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness));
+ float Gr = 0.25 / (cLdotH * cLdotH);
float Fr = mix(.04, 1.0, cLdotH5);
- //float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
- float Gr = V_GGX(cNdotL, cNdotV, 0.25);
+ float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL;
- float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
-
- specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-#endif
+ specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
+ // TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR)
+ // but to do so we need to rearrange this entire function
+#endif // LIGHT_CLEARCOAT_USED
}
#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
+ alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0));
#endif
-#endif //defined(USE_LIGHT_SHADER_CODE)
+#endif //defined(LIGHT_CODE_USED)
}
-#endif
-// shadows
-
-#ifdef USE_SHADOW
-
-#ifdef USE_RGBA_SHADOWS
-
-#define SHADOW_DEPTH(m_val) dot(m_val, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0))
-
-#else
-
-#define SHADOW_DEPTH(m_val) (m_val).r
+float get_omni_attenuation(float distance, float inv_range, float decay) {
+ float nd = distance * inv_range;
+ nd *= nd;
+ nd *= nd; // nd^4
+ nd = max(1.0 - nd, 0.0);
+ nd *= nd; // nd^2
+ return nd * pow(max(distance, 0.0001), -decay);
+}
+void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
#endif
-
-#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, SHADOW_DEPTH(texture(p_shadow, p_pos)))
-#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, SHADOW_DEPTH(textureProj(p_shadow, p_pos)))
-
-float sample_shadow(highp sampler2D shadow, highp vec4 spos) {
-#ifdef SHADOW_MODE_PCF_13
-
- spos.xyz /= spos.w;
- vec2 pos = spos.xy;
- float depth = spos.z;
-
- float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth);
- return avg * (1.0 / 13.0);
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint,
#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 binormal, vec3 tangent, float anisotropy,
+#endif
+ inout vec3 diffuse_light, inout vec3 specular_light) {
+ vec3 light_rel_vec = omni_lights[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+ float omni_attenuation = get_omni_attenuation(light_length, omni_lights[idx].inv_radius, omni_lights[idx].attenuation);
+ vec3 color = omni_lights[idx].color;
+ float size_A = 0.0;
-#ifdef SHADOW_MODE_PCF_5
-
- spos.xyz /= spos.w;
- vec2 pos = spos.xy;
- float depth = spos.z;
+ if (omni_lights[idx].size > 0.0) {
+ float t = omni_lights[idx].size / max(0.001, light_length);
+ size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t));
+ }
- float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
- return avg * (1.0 / 5.0);
+ light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, omni_attenuation, f0, roughness, metallic, omni_lights[idx].specular_amount, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ rim * omni_attenuation, rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal, tangent, anisotropy,
+#endif
+ diffuse_light,
+ specular_light);
+}
+void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint,
#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 binormal, vec3 tangent, float anisotropy,
+#endif
+ inout vec3 diffuse_light,
+ inout vec3 specular_light) {
-#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
+ vec3 light_rel_vec = spot_lights[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+ float spot_attenuation = get_omni_attenuation(light_length, spot_lights[idx].inv_radius, spot_lights[idx].attenuation);
+ vec3 spot_dir = spot_lights[idx].direction;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights[idx].cone_angle);
+ float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights[idx].cone_angle));
+ spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].cone_attenuation);
+ vec3 color = spot_lights[idx].color;
+
+ float size_A = 0.0;
+
+ if (spot_lights[idx].size > 0.0) {
+ float t = spot_lights[idx].size / max(0.001, light_length);
+ size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t));
+ }
- return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos);
+ light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, spot_attenuation, f0, roughness, metallic, spot_lights[idx].specular_amount, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
+#endif
+#ifdef LIGHT_RIM_USED
+ rim * spot_attenuation, rim_tint,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, vertex_normal,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal, tangent, anisotropy,
#endif
+ diffuse_light, specular_light);
}
+#endif // !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) && !defined(DISABLE_LIGHT_SPOT)
-#endif
+#ifndef MODE_RENDER_DEPTH
+vec4 fog_process(vec3 vertex) {
+ vec3 fog_color = scene_data.fog_light_color;
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
+#ifdef USE_RADIANCE_MAP
+/*
+ if (scene_data.fog_aerial_perspective > 0.0) {
+ vec3 sky_fog_color = vec3(0.0);
+ vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
+ // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
+ float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
-#if defined(USE_VERTEX_LIGHTING)
+ sky_fog_color = textureLod(radiance_map, cube_view, mip_level * RADIANCE_MAX_LOD).rgb;
-in vec4 fog_interp;
+ fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
+ }
+ */
+#endif
+
+#ifndef DISABLE_LIGHT_DIRECTIONAL
+ if (scene_data.fog_sun_scatter > 0.001) {
+ vec4 sun_scatter = vec4(0.0);
+ float sun_total = 0.0;
+ vec3 view = normalize(vertex);
+ for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
+ vec3 light_color = directional_lights[i].color * directional_lights[i].energy;
+ float light_amount = pow(max(dot(view, directional_lights[i].direction), 0.0), 8.0);
+ fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
+ }
+ }
+#endif // !DISABLE_LIGHT_DIRECTIONAL
-#else
-uniform mediump vec4 fog_color_base;
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform mediump vec4 fog_sun_color_amount;
-#endif
+ float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density));
-uniform bool fog_transmit_enabled;
-uniform mediump float fog_transmit_curve;
+ if (abs(scene_data.fog_height_density) >= 0.0001) {
+ float y = (scene_data.inv_view_matrix * vec4(vertex, 1.0)).y;
-#ifdef FOG_DEPTH_ENABLED
-uniform highp float fog_depth_begin;
-uniform mediump float fog_depth_curve;
-uniform mediump float fog_max_distance;
-#endif
+ float y_dist = y - scene_data.fog_height;
-#ifdef FOG_HEIGHT_ENABLED
-uniform highp float fog_height_min;
-uniform highp float fog_height_max;
-uniform mediump float fog_height_curve;
-#endif
+ float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density));
-#endif //vertex lit
-#endif //fog
+ fog_amount = max(vfog_amount, fog_amount);
+ }
-void main() {
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
+ return vec4(fog_color, fog_amount);
+}
- if (dp_clip > 0.0)
- discard;
-#endif
- highp vec3 vertex = vertex_interp;
+#endif // !MODE_RENDER_DEPTH
+
+void main() {
+ //lay out everything, whatever is unused is optimized away anyway
+ vec3 vertex = vertex_interp;
vec3 view = -normalize(vertex_interp);
vec3 albedo = vec3(1.0);
- vec3 transmission = vec3(0.0);
+ vec3 backlight = vec3(0.0);
+ vec4 transmittance_color = vec4(0.0, 0.0, 0.0, 1.0);
+ float transmittance_depth = 0.0;
+ float transmittance_boost = 0.0;
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
@@ -1430,617 +899,305 @@ void main() {
float clearcoat_roughness = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
- float sss_strength = 0.0; //unused
- // gl_FragDepth is not available in GLES2, so writing to DEPTH is not converted to gl_FragDepth by Godot compiler resulting in a
- // compile error because DEPTH is not a variable.
- float m_DEPTH = 0.0;
-
- float alpha = 1.0;
- float side = 1.0;
-
- float specular_blob_intensity = 1.0;
-#if defined(SPECULAR_TOON)
- specular_blob_intensity *= specular * 2.0;
+ vec4 fog = vec4(0.0);
+#if defined(CUSTOM_RADIANCE_USED)
+ vec4 custom_radiance = vec4(0.0);
+#endif
+#if defined(CUSTOM_IRRADIANCE_USED)
+ vec4 custom_irradiance = vec4(0.0);
#endif
-#if defined(ENABLE_AO)
float ao = 1.0;
float ao_light_affect = 0.0;
-#endif
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- vec3 binormal = normalize(binormal_interp) * side;
- vec3 tangent = normalize(tangent_interp) * side;
+ float alpha = 1.0;
+
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+ vec3 binormal = normalize(binormal_interp);
+ vec3 tangent = normalize(tangent_interp);
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
- vec3 normal = normalize(normal_interp) * side;
-#if defined(ENABLE_NORMALMAP)
- vec3 normalmap = vec3(0.5);
+#ifdef NORMAL_USED
+ vec3 normal = normalize(normal_interp);
+
+#if defined(DO_SIDE_CHECK)
+ if (!gl_FrontFacing) {
+ normal = -normal;
+ }
#endif
- float normaldepth = 1.0;
-#if defined(ALPHA_SCISSOR_USED)
- float alpha_scissor = 0.5;
+#endif //NORMAL_USED
+
+#ifdef UV_USED
+ vec2 uv = uv_interp;
#endif
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
+#if defined(UV2_USED) || defined(USE_LIGHTMAP)
+ vec2 uv2 = uv2_interp;
#endif
- {
- /* clang-format off */
+#if defined(COLOR_USED)
+ vec4 color = color_interp;
+#endif
-FRAGMENT_SHADER_CODE
+#if defined(NORMAL_MAP_USED)
- /* clang-format on */
- }
+ vec3 normal_map = vec3(0.5);
+#endif
-#if defined(ENABLE_NORMALMAP)
- normalmap.xy = normalmap.xy * 2.0 - 1.0;
- normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
+ float normal_map_depth = 1.0;
- normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
- //normal = normalmap;
-#endif
+ vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size;
- normal = normalize(normal);
+ float sss_strength = 0.0;
- vec3 N = normal;
+#ifdef ALPHA_SCISSOR_USED
+ float alpha_scissor_threshold = 1.0;
+#endif // ALPHA_SCISSOR_USED
- vec3 specular_light = vec3(0.0, 0.0, 0.0);
- vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
- vec3 ambient_light = vec3(0.0, 0.0, 0.0);
+#ifdef ALPHA_HASH_USED
+ float alpha_hash_scale = 1.0;
+#endif // ALPHA_HASH_USED
- vec3 eye_position = view;
+#ifdef ALPHA_ANTIALIASING_EDGE_USED
+ float alpha_antialiasing_edge = 0.0;
+ vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
+#endif // ALPHA_ANTIALIASING_EDGE_USED
+ {
+#CODE : FRAGMENT
+ }
-#if !defined(USE_SHADOW_TO_OPACITY)
+#ifndef USE_SHADOW_TO_OPACITY
#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
+ if (alpha < alpha_scissor_threshold) {
discard;
}
#endif // ALPHA_SCISSOR_USED
-#ifdef USE_DEPTH_PREPASS
- if (alpha < 0.1) {
+#ifdef USE_OPAQUE_PREPASS
+#if !defined(ALPHA_SCISSOR_USED)
+
+ if (alpha < opaque_prepass_threshold) {
discard;
}
-#endif // USE_DEPTH_PREPASS
-#endif // !USE_SHADOW_TO_OPACITY
+#endif // not ALPHA_SCISSOR_USED
+#endif // USE_OPAQUE_PREPASS
-#ifdef BASE_PASS
-
- // IBL precalculations
- float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
- vec3 f0 = F0(metallic, specular, albedo);
- vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
+#endif // !USE_SHADOW_TO_OPACITY
-#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light = vec3(0.0, 0.0, 0.0);
-#else
+#ifdef NORMAL_MAP_USED
-#ifdef USE_RADIANCE_MAP
+ normal_map.xy = normal_map.xy * 2.0 - 1.0;
+ normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
- vec3 ref_vec = reflect(-eye_position, N);
- ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
+ normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
- ref_vec.z *= -1.0;
+#endif
- specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
-#ifndef USE_LIGHTMAP
- {
- vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
- vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, 4.0).xyz * bg_energy;
- env_ambient *= 1.0 - F;
+#ifdef LIGHT_ANISOTROPY_USED
- ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
+ if (anisotropy > 0.01) {
+ //rotation matrix
+ mat3 rot = mat3(tangent, binormal, normal);
+ //make local to space
+ tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
+ binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
}
+
#endif
-#else
+#ifndef MODE_RENDER_DEPTH
- ambient_light = ambient_color.rgb;
- specular_light = bg_color.rgb * bg_energy;
+#ifndef CUSTOM_FOG_USED
+#ifndef DISABLE_FOG
+ // fog must be processed as early as possible and then packed.
+ // to maximize VGPR usage
-#endif
-#endif // AMBIENT_LIGHT_DISABLED
- ambient_light *= ambient_energy;
+ if (scene_data.fog_enabled) {
+ fog = fog_process(vertex);
+ }
+#endif // !DISABLE_FOG
+#endif //!CUSTOM_FOG_USED
-#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
+ uint fog_rg = packHalf2x16(fog.rg);
+ uint fog_ba = packHalf2x16(fog.ba);
- vec4 ambient_accum = vec4(0.0);
- vec4 reflection_accum = vec4(0.0);
+#endif //!MODE_RENDER_DEPTH
-#ifdef USE_REFLECTION_PROBE1
+#ifndef MODE_RENDER_DEPTH
- reflection_process(reflection_probe1,
-#ifdef USE_VERTEX_LIGHTING
- refprobe1_reflection_normal_blend.rgb,
-#ifndef USE_LIGHTMAP
- refprobe1_ambient_normal,
-#endif
- refprobe1_reflection_normal_blend.a,
-#else
- normal_interp, vertex_interp, refprobe1_local_matrix,
- refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
-#endif
- refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
- ambient_light, specular_light, reflection_accum, ambient_accum);
+ // Convert colors to linear
+ albedo = srgb_to_linear(albedo);
+ emission = srgb_to_linear(emission);
+ // TODO Backlight and transmittance when used
+#ifndef MODE_UNSHADED
+ vec3 f0 = F0(metallic, specular, albedo);
+ vec3 specular_light = vec3(0.0, 0.0, 0.0);
+ vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
+ vec3 ambient_light = vec3(0.0, 0.0, 0.0);
-#endif // USE_REFLECTION_PROBE1
+#ifdef BASE_PASS
+ /////////////////////// LIGHTING //////////////////////////////
-#ifdef USE_REFLECTION_PROBE2
+ // IBL precalculations
+ float ndotv = clamp(dot(normal, view), 0.0, 1.0);
+ vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
- reflection_process(reflection_probe2,
-#ifdef USE_VERTEX_LIGHTING
- refprobe2_reflection_normal_blend.rgb,
-#ifndef USE_LIGHTMAP
- refprobe2_ambient_normal,
-#endif
- refprobe2_reflection_normal_blend.a,
+#ifdef USE_RADIANCE_MAP
+ if (scene_data.use_reflection_cubemap) {
+#ifdef LIGHT_ANISOTROPY_USED
+ // https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
+ vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
+ vec3 anisotropic_tangent = cross(anisotropic_direction, view);
+ vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
+ vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
+ vec3 ref_vec = reflect(-view, bent_normal);
#else
- normal_interp, vertex_interp, refprobe2_local_matrix,
- refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
+ vec3 ref_vec = reflect(-view, normal);
+#endif
+ ref_vec = mix(ref_vec, normal, roughness * roughness);
+ float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
+ ref_vec = scene_data.radiance_inverse_xform * ref_vec;
+ specular_light = textureLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).rgb;
+ specular_light = srgb_to_linear(specular_light);
+ specular_light *= horizon * horizon;
+ specular_light *= scene_data.ambient_light_color_energy.a;
+ }
#endif
- refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
- ambient_light, specular_light, reflection_accum, ambient_accum);
-#endif // USE_REFLECTION_PROBE2
+ // Calculate Reflection probes
+ // Calculate Lightmaps
- if (reflection_accum.a > 0.0) {
- specular_light = reflection_accum.rgb / reflection_accum.a;
- }
+#if defined(CUSTOM_RADIANCE_USED)
+ specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
+#endif // CUSTOM_RADIANCE_USED
#ifndef USE_LIGHTMAP
- if (ambient_accum.a > 0.0) {
- ambient_light = ambient_accum.rgb / ambient_accum.a;
- }
+ //lightmap overrides everything
+ if (scene_data.use_ambient_light) {
+ ambient_light = scene_data.ambient_light_color_energy.rgb;
+#ifdef USE_RADIANCE_MAP
+ if (scene_data.use_ambient_cubemap) {
+ vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
+ vec3 cubemap_ambient = textureLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).rgb;
+ cubemap_ambient = srgb_to_linear(cubemap_ambient);
+ ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
+ }
#endif
+ }
+#endif // USE_LIGHTMAP
+
+#if defined(CUSTOM_IRRADIANCE_USED)
+ ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a);
+#endif // CUSTOM_IRRADIANCE_USED
+ ambient_light *= albedo.rgb;
-#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
+ ambient_light *= ao;
+
+ // convert ao to direct light ao
+ ao = mix(1.0, ao, ao_light_affect);
- // environment BRDF approximation
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
- // scales the specular reflections, needs to be computed before lighting happens,
- // but after environment and reflection probes are added
- //TODO: this curve is not really designed for gammaspace, should be adjusted
+ // scales the specular reflections, needs to be be computed before lighting happens,
+ // but after environment, GI, and reflection probes are added
+ // Environment brdf approximation (Lazarov 2013)
+ // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
+ float ndotv = clamp(dot(normal, view), 0.0, 1.0);
+
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
- specular_light *= env.x * F + env.y;
-
-#endif
- }
-
-#ifdef USE_LIGHTMAP
- //ambient light will come entirely from lightmap is lightmap is used
- ambient_light = texture(lightmap, uv2_interp).rgb * lightmap_energy;
+ specular_light *= env.x * f0 + env.y * clamp(50.0 * f0.g, 0.0, 1.0);
#endif
-
-#ifdef USE_LIGHTMAP_CAPTURE
- {
- vec3 cone_dirs[12];
- cone_dirs[0] = vec3(0.0, 0.0, 1.0);
- cone_dirs[1] = vec3(0.866025, 0.0, 0.5);
- cone_dirs[2] = vec3(0.267617, 0.823639, 0.5);
- cone_dirs[3] = vec3(-0.700629, 0.509037, 0.5);
- cone_dirs[4] = vec3(-0.700629, -0.509037, 0.5);
- cone_dirs[5] = vec3(0.267617, -0.823639, 0.5);
- cone_dirs[6] = vec3(0.0, 0.0, -1.0);
- cone_dirs[7] = vec3(0.866025, 0.0, -0.5);
- cone_dirs[8] = vec3(0.267617, 0.823639, -0.5);
- cone_dirs[9] = vec3(-0.700629, 0.509037, -0.5);
- cone_dirs[10] = vec3(-0.700629, -0.509037, -0.5);
- cone_dirs[11] = vec3(0.267617, -0.823639, -0.5);
-
- vec3 local_normal = normalize(inv_view_matrix * vec4(normal, 0.0)).xyz;
- vec4 captured = vec4(0.0);
- float sum = 0.0;
- for (int i = 0; i < 12; i++) {
- float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
- captured += lightmap_captures[i] * amount;
- sum += amount;
- }
-
- captured /= sum;
-
- if (lightmap_capture_sky) {
- ambient_light = mix(ambient_light, captured.rgb, captured.a);
- } else {
- ambient_light = captured.rgb;
- }
}
-#endif
-
-#endif //BASE PASS
-
-//
-// Lighting
-//
-#ifdef USE_LIGHTING
-#ifndef USE_VERTEX_LIGHTING
- vec3 L;
-#endif
- vec3 light_att = vec3(1.0);
-
-#ifdef LIGHT_MODE_OMNI
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 light_vec = light_position - vertex;
- float light_length = length(light_vec);
-
- float normalized_distance = light_length / light_range;
- if (normalized_distance < 1.0) {
- float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
-
- light_att = vec3(omni_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- L = normalize(light_vec);
-
-#endif
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
- {
- highp vec4 splane = shadow_coord;
- float shadow_len = length(splane.xyz);
-
- splane.xyz = normalize(splane.xyz);
-
- vec4 clamp_rect = light_clamp;
-
- if (splane.z >= 0.0) {
- splane.z += 1.0;
-
- clamp_rect.y += clamp_rect.w;
- } else {
- splane.z = 1.0 - splane.z;
- }
-
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len / light_range;
-
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0;
-
- float shadow = sample_shadow(light_shadow_atlas, splane);
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
-#endif
-
-#endif //SHADOWS_DISABLED
-
-#endif //type omni
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 light_vec = -light_direction;
- L = normalize(light_vec);
-#endif
- float depth_z = -vertex.z;
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
-
-#ifdef USE_VERTEX_LIGHTING
- //compute shadows in a mobile friendly way
-
-#ifdef LIGHT_USE_PSSM4
- //take advantage of prefetch
- float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
- float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
- float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3);
- float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4);
-
- if (depth_z < light_split_offsets.w) {
- float pssm_fade = 0.0;
- float shadow_att = 1.0;
-#ifdef LIGHT_USE_PSSM_BLEND
- float shadow_att2 = 1.0;
- float pssm_blend = 0.0;
- bool use_blend = true;
-#endif
- if (depth_z < light_split_offsets.y) {
- if (depth_z < light_split_offsets.x) {
- shadow_att = shadow1;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow2;
-
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
-#endif
- } else {
- shadow_att = shadow2;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow3;
+#endif // BASE_PASS
- pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
+#ifndef DISABLE_LIGHT_DIRECTIONAL
+ //diffuse_light = normal; //
+ for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
+ light_compute(normal, normalize(directional_lights[i].direction), normalize(view), directional_lights[i].size, directional_lights[i].color * directional_lights[i].energy, 1.0, f0, roughness, metallic, 1.0, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
- }
- } else {
- if (depth_z < light_split_offsets.z) {
- shadow_att = shadow3;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- shadow_att2 = shadow4;
- pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
+#ifdef LIGHT_RIM_USED
+ rim, rim_tint,
#endif
-
- } else {
- shadow_att = shadow4;
- pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
- }
- }
-#if defined(LIGHT_USE_PSSM_BLEND)
- if (use_blend) {
- shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
- }
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal,
+ tangent, anisotropy,
#endif
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
+ diffuse_light,
+ specular_light);
}
+#endif //!DISABLE_LIGHT_DIRECTIONAL
-#endif //LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
-
- //take advantage of prefetch
- float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
- float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
-
- if (depth_z < light_split_offsets.y) {
- float shadow_att = 1.0;
- float pssm_fade = 0.0;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- float shadow_att2 = 1.0;
- float pssm_blend = 0.0;
- bool use_blend = true;
-#endif
- if (depth_z < light_split_offsets.x) {
- float pssm_fade = 0.0;
- shadow_att = shadow1;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow2;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
-#endif
- } else {
- shadow_att = shadow2;
- pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#ifdef LIGHT_USE_PSSM_BLEND
- use_blend = false;
-#endif
+#ifndef DISABLE_LIGHT_OMNI
+ for (int i = 0; i < MAX_FORWARD_LIGHTS; i++) {
+ if (i >= omni_light_count) {
+ break;
}
-#ifdef LIGHT_USE_PSSM_BLEND
- if (use_blend) {
- shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
- }
-#endif
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
- }
-
-#endif //LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), sample_shadow(light_directional_shadow, shadow_coord));
-#endif //orthogonal
-
-#else //fragment version of pssm
-
- {
-#ifdef LIGHT_USE_PSSM4
- if (depth_z < light_split_offsets.w) {
-#elif defined(LIGHT_USE_PSSM2)
- if (depth_z < light_split_offsets.y) {
-#else
- if (depth_z < light_split_offsets.x) {
-#endif //pssm2
-
- highp vec4 pssm_coord;
- float pssm_fade = 0.0;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- highp vec4 pssm_coord2;
- bool use_blend = true;
+ light_process_omni(omni_light_indices[i], vertex, view, normal, f0, roughness, metallic, 0.0, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
-
-#ifdef LIGHT_USE_PSSM4
-
- if (depth_z < light_split_offsets.y) {
- if (depth_z < light_split_offsets.x) {
- pssm_coord = shadow_coord;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord2;
-
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#ifdef LIGHT_RIM_USED
+ rim,
+ rim_tint,
#endif
- } else {
- pssm_coord = shadow_coord2;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord3;
-
- pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
- }
- } else {
- if (depth_z < light_split_offsets.z) {
- pssm_coord = shadow_coord3;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- pssm_coord2 = shadow_coord4;
- pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
+#ifdef LIGHT_ANISOTROPY_USED
+ binormal, tangent, anisotropy,
#endif
+ diffuse_light, specular_light);
+ }
+#endif // !DISABLE_LIGHT_OMNI
- } else {
- pssm_coord = shadow_coord4;
- pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-#endif
- }
- }
-
-#endif // LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
- if (depth_z < light_split_offsets.x) {
- pssm_coord = shadow_coord;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord2;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#ifndef DISABLE_LIGHT_SPOT
+ for (int i = 0; i < MAX_FORWARD_LIGHTS; i++) {
+ if (i >= spot_light_count) {
+ break;
+ }
+ light_process_spot(spot_light_indices[i], vertex, view, normal, f0, roughness, metallic, 0.0, albedo, alpha,
+#ifdef LIGHT_BACKLIGHT_USED
+ backlight,
#endif
- } else {
- pssm_coord = shadow_coord2;
- pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#ifdef LIGHT_USE_PSSM_BLEND
- use_blend = false;
+#ifdef LIGHT_RIM_USED
+ rim,
+ rim_tint,
#endif
- }
-
-#endif // LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- {
- pssm_coord = shadow_coord;
- }
+#ifdef LIGHT_CLEARCOAT_USED
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
-
- float shadow = sample_shadow(light_directional_shadow, pssm_coord);
-
-#ifdef LIGHT_USE_PSSM_BLEND
- if (use_blend) {
- shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend);
- }
+#ifdef LIGHT_ANISOTROPY_USED
+ tangent,
+ binormal, anisotropy,
#endif
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
+ diffuse_light, specular_light);
}
-#endif //use vertex lighting
-
-#endif //use shadow
-
-#endif // SHADOWS_DISABLED
-#endif
-
-#ifdef LIGHT_MODE_SPOT
-
- light_att = vec3(1.0);
-
-#ifndef USE_VERTEX_LIGHTING
-
- vec3 light_rel_vec = light_position - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
- vec3 spot_dir = light_direction;
-
- float spot_cutoff = light_spot_angle;
- float angle = dot(-normalize(light_rel_vec), spot_dir);
-
- if (angle > spot_cutoff) {
- float scos = max(angle, spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
- spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
-
- light_att = vec3(spot_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_rel_vec);
-
-#endif
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
- {
- highp vec4 splane = shadow_coord;
-
- float shadow = sample_shadow(light_shadow_atlas, splane);
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
-#endif
-
-#endif // SHADOWS_DISABLED
-
-#endif // LIGHT_MODE_SPOT
-
-#ifdef USE_VERTEX_LIGHTING
- //vertex lighting
-
- specular_light += specular_interp * specular_blob_intensity * light_att;
- diffuse_light += diffuse_interp * albedo * light_att;
-
-#else
- //fragment lighting
- light_compute(
- normal,
- L,
- eye_position,
- binormal,
- tangent,
- light_color.xyz,
- light_att,
- albedo,
- transmission,
- specular_blob_intensity * light_specular,
- roughness,
- metallic,
- specular,
- rim,
- rim_tint,
- clearcoat,
- clearcoat_roughness,
- anisotropy,
- diffuse_light,
- specular_light,
- alpha);
-
-#endif //vertex lighting
-
-#endif //USE_LIGHTING
- //compute and merge
-
-#ifdef USE_SHADOW_TO_OPACITY
+#endif // !DISABLE_LIGHT_SPOT
+#endif // !MODE_UNSHADED
+#endif // !MODE_RENDER_DEPTH
+#if defined(USE_SHADOW_TO_OPACITY)
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
@@ -2049,105 +1206,60 @@ FRAGMENT_SHADER_CODE
}
#endif // ALPHA_SCISSOR_USED
-#ifdef USE_DEPTH_PREPASS
- if (alpha < 0.1) {
+#ifdef USE_OPAQUE_PREPASS
+#if !defined(ALPHA_SCISSOR_USED)
+
+ if (alpha < opaque_prepass_threshold) {
discard;
}
-#endif // USE_DEPTH_PREPASS
-#endif // !USE_SHADOW_TO_OPACITY
+#endif // not ALPHA_SCISSOR_USED
+#endif // USE_OPAQUE_PREPASS
-#ifndef RENDER_DEPTH
+#endif // USE_SHADOW_TO_OPACITY
-#ifdef SHADELESS
+#ifdef MODE_RENDER_DEPTH
+//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
+#else // !MODE_RENDER_DEPTH
+#ifdef MODE_UNSHADED
frag_color = vec4(albedo, alpha);
#else
- ambient_light *= albedo;
-
-#if defined(ENABLE_AO)
- ambient_light *= ao;
- ao_light_affect = mix(1.0, ao, ao_light_affect);
- specular_light *= ao_light_affect;
- diffuse_light *= ao_light_affect;
-#endif
+ diffuse_light *= albedo;
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
- frag_color = vec4(ambient_light + diffuse_light + specular_light, alpha);
-
- //add emission if in base pass
+ frag_color = vec4(diffuse_light + specular_light, alpha);
#ifdef BASE_PASS
- frag_color.rgb += emission;
+ frag_color.rgb += emission + ambient_light;
#endif
- // frag_color = vec4(normal, 1.0);
-
-//apply fog
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#if defined(USE_VERTEX_LIGHTING)
+#endif //MODE_UNSHADED
+ fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
-#if defined(BASE_PASS)
- frag_color.rgb = mix(frag_color.rgb, fog_interp.rgb, fog_interp.a);
+#ifndef DISABLE_FOG
+ if (scene_data.fog_enabled) {
+#ifdef BASE_PASS
+ frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
#else
- frag_color.rgb *= (1.0 - fog_interp.a);
+ frag_color.rgb *= (1.0 - fog.a);
#endif // BASE_PASS
-
-#else //pixel based fog
- float fog_amount = 0.0;
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-
- vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0));
-#else
- vec3 fog_color = fog_color_base.rgb;
+ }
#endif
-#ifdef FOG_DEPTH_ENABLED
-
- {
- float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
+ // Tonemap before writing as we are writing to an sRGB framebuffer
+ frag_color.rgb *= exposure;
+ frag_color.rgb = apply_tonemapping(frag_color.rgb, white);
+ frag_color.rgb = linear_to_srgb(frag_color.rgb);
- fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
-
- if (fog_transmit_enabled) {
- vec3 total_light = frag_color.rgb;
- float transmit = pow(fog_z, fog_transmit_curve);
- fog_color = mix(max(total_light, fog_color), fog_color, transmit);
- }
- }
+#ifdef USE_BCS
+ frag_color.rgb = apply_bcs(frag_color.rgb, bcs);
#endif
-#ifdef FOG_HEIGHT_ENABLED
- {
- float y = (inv_view_matrix * vec4(vertex, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
+#ifdef USE_COLOR_CORRECTION
+ frag_color.rgb = apply_color_correction(frag_color.rgb, color_correction);
#endif
-#if defined(BASE_PASS)
- frag_color.rgb = mix(frag_color.rgb, fog_color, fog_amount);
-#else
- frag_color.rgb *= (1.0 - fog_amount);
-#endif // BASE_PASS
-
-#endif //use vertex lit
-
-#endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#endif //unshaded
-
-#else // not RENDER_DEPTH
-//depth render
-#ifdef USE_RGBA_SHADOWS
-
- highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
- highp vec4 comp = fract(depth * vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0));
- comp -= comp.xxyz * vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0);
- frag_color = comp;
-
-#endif
-#endif
+#endif //!MODE_RENDER_DEPTH
}
diff --git a/drivers/gles3/shaders/sky.glsl b/drivers/gles3/shaders/sky.glsl
index 0faa3eb70c..eb1befe38e 100644
--- a/drivers/gles3/shaders/sky.glsl
+++ b/drivers/gles3/shaders/sky.glsl
@@ -12,22 +12,13 @@ mode_cubemap_quarter_res = #define USE_CUBEMAP_PASS \n#define USE_QUARTER_RES_PA
#[vertex]
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
+layout(location = 0) in vec2 vertex_attrib;
out vec2 uv_interp;
/* clang-format on */
void main() {
- // One big triangle to cover the whole screen
- vec2 base_arr[3] = vec2[](vec2(-1.0, -2.0), vec2(-1.0, 2.0), vec2(2.0, 2.0));
- uv_interp = base_arr[gl_VertexID];
+ uv_interp = vertex_attrib;
gl_Position = vec4(uv_interp, 1.0, 1.0);
}
@@ -36,19 +27,7 @@ void main() {
#define M_PI 3.14159265359
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
+#include "tonemap_inc.glsl"
in vec2 uv_interp;
@@ -63,18 +42,8 @@ uniform sampler2D half_res; //texunit:-2
uniform sampler2D quarter_res; //texunit:-3
#endif
-layout(std140) uniform CanvasData { //ubo:0
- mat3 orientation;
- vec4 projection;
- vec4 position_multiplier;
- float time;
- float luminance_multiplier;
- float pad1;
- float pad2;
-};
-
-layout(std140) uniform GlobalVariableData { //ubo:1
- vec4 global_variables[MAX_GLOBAL_VARIABLES];
+layout(std140) uniform GlobalShaderUniformData { //ubo:1
+ vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
};
struct DirectionalLightData {
@@ -83,20 +52,21 @@ struct DirectionalLightData {
bool enabled;
};
-layout(std140) uniform DirectionalLights { //ubo:2
+layout(std140) uniform DirectionalLights { //ubo:4
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;
+/* clang-format off */
+
#ifdef MATERIAL_UNIFORMS_USED
-layout(std140) uniform MaterialUniforms{
-//ubo:3
+layout(std140) uniform MaterialUniforms{ //ubo:3
#MATERIAL_UNIFORMS
-} material;
+};
#endif
-
+/* clang-format on */
#GLOBALS
#ifdef USE_CUBEMAP_PASS
@@ -117,6 +87,20 @@ layout(std140) uniform MaterialUniforms{
#define AT_QUARTER_RES_PASS false
#endif
+// mat4 is a waste of space, but we don't have an easy way to set a mat3 uniform for now
+uniform mat4 orientation;
+uniform vec4 projection;
+uniform vec3 position;
+uniform float time;
+
+uniform float fog_aerial_perspective;
+uniform vec3 fog_light_color;
+uniform float fog_sun_scatter;
+uniform bool fog_enabled;
+uniform float fog_density;
+uniform float z_far;
+uniform uint directional_light_count;
+
layout(location = 0) out vec4 frag_color;
void main() {
@@ -125,12 +109,11 @@ void main() {
cube_normal.x = (uv_interp.x + projection.x) / projection.y;
cube_normal.y = (-uv_interp.y - projection.z) / projection.w;
cube_normal = mat3(orientation) * cube_normal;
- cube_normal.z = -cube_normal.z;
cube_normal = normalize(cube_normal);
- vec2 uv = uv_interp * 0.5 + 0.5;
+ vec2 uv = gl_FragCoord.xy; // uv_interp * 0.5 + 0.5;
- vec2 panorama_coords = vec2(atan(cube_normal.x, cube_normal.z), acos(cube_normal.y));
+ vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y));
if (panorama_coords.x < 0.0) {
panorama_coords.x += M_PI * 2.0;
@@ -145,20 +128,18 @@ void main() {
vec4 custom_fog = vec4(0.0);
#ifdef USE_CUBEMAP_PASS
- vec3 inverted_cube_normal = cube_normal;
- inverted_cube_normal.z *= -1.0;
#ifdef USES_HALF_RES_COLOR
- half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal) * luminance_multiplier;
+ half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal);
#endif
#ifdef USES_QUARTER_RES_COLOR
- quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal) * luminance_multiplier;
+ quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal);
#endif
#else
#ifdef USES_HALF_RES_COLOR
- half_res_color = textureLod(sampler2D(half_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0) * luminance_multiplier;
+ half_res_color = textureLod(sampler2D(half_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0);
#endif
#ifdef USES_QUARTER_RES_COLOR
- quarter_res_color = textureLod(sampler2D(quarter_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0) * luminance_multiplier;
+ quarter_res_color = textureLod(sampler2D(quarter_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0);
#endif
#endif
@@ -168,12 +149,20 @@ void main() {
}
- frag_color.rgb = color * position_multiplier.w / luminance_multiplier;
- frag_color.a = alpha;
+ // Convert to Linear for tonemapping so color matches scene shader better
+ color = srgb_to_linear(color);
+ color *= exposure;
+ color = apply_tonemapping(color, white);
+ color = linear_to_srgb(color);
- // Blending is disabled for Sky, so alpha doesn't blend
- // alpha is used for subsurface scattering so make sure it doesn't get applied to Sky
- if (!AT_CUBEMAP_PASS && !AT_HALF_RES_PASS && !AT_QUARTER_RES_PASS) {
- frag_color.a = 0.0;
- }
+#ifdef USE_BCS
+ color = apply_bcs(color, bcs);
+#endif
+
+#ifdef USE_COLOR_CORRECTION
+ color = apply_color_correction(color, color_correction);
+#endif
+
+ frag_color.rgb = color;
+ frag_color.a = alpha;
}
diff --git a/drivers/gles3/shaders/stdlib_inc.glsl b/drivers/gles3/shaders/stdlib_inc.glsl
index 2eddf9d479..d5051760d7 100644
--- a/drivers/gles3/shaders/stdlib_inc.glsl
+++ b/drivers/gles3/shaders/stdlib_inc.glsl
@@ -1,5 +1,6 @@
-//TODO: only needed by GLES_OVER_GL
+#ifdef USE_GLES_OVER_GL
+// Floating point pack/unpack functions are part of the GLSL ES 300 specification used by web and mobile.
uint float2half(uint f) {
return ((f >> uint(16)) & uint(0x8000)) |
((((f & uint(0x7f800000)) - uint(0x38000000)) >> uint(13)) & uint(0x7c00)) |
@@ -37,14 +38,15 @@ vec2 unpackSnorm2x16(uint p) {
vec2 v = vec2(float(p & uint(0xffff)), float(p >> uint(16)));
return clamp((v - 32767.0) * vec2(0.00003051851), vec2(-1.0), vec2(1.0));
}
+#endif
uint packUnorm4x8(vec4 v) {
uvec4 uv = uvec4(round(clamp(v, vec4(0.0), vec4(1.0)) * 255.0));
- return uv.x | uv.y << uint(8) | uv.z << uint(16) | uv.w << uint(24);
+ return uv.x | (uv.y << uint(8)) | (uv.z << uint(16)) | (uv.w << uint(24));
}
vec4 unpackUnorm4x8(uint p) {
- return vec4(float(p & uint(0xffff)), float((p >> uint(8)) & uint(0xffff)), float((p >> uint(16)) & uint(0xffff)), float(p >> uint(24))) * 0.00392156862; // 1.0 / 255.0
+ return vec4(float(p & uint(0xff)), float((p >> uint(8)) & uint(0xff)), float((p >> uint(16)) & uint(0xff)), float(p >> uint(24))) * 0.00392156862; // 1.0 / 255.0
}
uint packSnorm4x8(vec4 v) {
@@ -53,6 +55,6 @@ uint packSnorm4x8(vec4 v) {
}
vec4 unpackSnorm4x8(uint p) {
- vec4 v = vec4(float(p & uint(0xffff)), float((p >> uint(8)) & uint(0xffff)), float((p >> uint(16)) & uint(0xffff)), float(p >> uint(24)));
+ vec4 v = vec4(float(p & uint(0xff)), float((p >> uint(8)) & uint(0xff)), float((p >> uint(16)) & uint(0xff)), float(p >> uint(24)));
return clamp((v - vec4(127.0)) * vec4(0.00787401574), vec4(-1.0), vec4(1.0));
}
diff --git a/drivers/gles3/shaders/tonemap.glsl b/drivers/gles3/shaders/tonemap.glsl
index 4f962626a3..a478cf9170 100644
--- a/drivers/gles3/shaders/tonemap.glsl
+++ b/drivers/gles3/shaders/tonemap.glsl
@@ -231,10 +231,10 @@ vec3 apply_fxaa(vec3 color, vec2 uv_interp, vec2 pixel_size) {
}
void main() {
- vec3 color = textureLod(source, uv_interp, 0.0).rgb;
+ vec4 color = textureLod(source, uv_interp, 0.0);
#ifdef USE_FXAA
- color = apply_fxaa(color, uv_interp, pixel_size);
+ color.rgb = apply_fxaa(color.rgb, uv_interp, pixel_size);
#endif
// Glow
@@ -296,18 +296,18 @@ void main() {
#endif //USE_MULTI_TEXTURE_GLOW
glow *= glow_intensity;
- color = apply_glow(color, glow);
+ color.rgb = apply_glow(color.rgb, glow);
#endif
// Additional effects
#ifdef USE_BCS
- color = apply_bcs(color, bcs);
+ color.rgb = apply_bcs(color.rgb, bcs);
#endif
#ifdef USE_COLOR_CORRECTION
- color = apply_color_correction(color, color_correction);
+ color.rgb = apply_color_correction(color.rgb, color_correction);
#endif
- frag_color = vec4(color, 1.0);
+ frag_color = color;
}
diff --git a/drivers/gles3/shaders/tonemap_inc.glsl b/drivers/gles3/shaders/tonemap_inc.glsl
new file mode 100644
index 0000000000..f8f12760ec
--- /dev/null
+++ b/drivers/gles3/shaders/tonemap_inc.glsl
@@ -0,0 +1,127 @@
+#ifdef USE_BCS
+uniform vec3 bcs;
+#endif
+
+#ifdef USE_COLOR_CORRECTION
+#ifdef USE_1D_LUT
+uniform sampler2D source_color_correction; //texunit:-1
+#else
+uniform sampler3D source_color_correction; //texunit:-1
+#endif
+#endif
+
+layout(std140) uniform TonemapData { //ubo:0
+ float exposure;
+ float white;
+ int tonemapper;
+ int pad;
+};
+
+vec3 apply_bcs(vec3 color, vec3 bcs) {
+ color = mix(vec3(0.0), color, bcs.x);
+ color = mix(vec3(0.5), color, bcs.y);
+ color = mix(vec3(dot(vec3(1.0), color) * 0.33333), color, bcs.z);
+
+ return color;
+}
+#ifdef USE_COLOR_CORRECTION
+#ifdef USE_1D_LUT
+vec3 apply_color_correction(vec3 color) {
+ color.r = texture(source_color_correction, vec2(color.r, 0.0f)).r;
+ color.g = texture(source_color_correction, vec2(color.g, 0.0f)).g;
+ color.b = texture(source_color_correction, vec2(color.b, 0.0f)).b;
+ return color;
+}
+#else
+vec3 apply_color_correction(vec3 color) {
+ return textureLod(source_color_correction, color, 0.0).rgb;
+}
+#endif
+#endif
+
+vec3 tonemap_filmic(vec3 color, float p_white) {
+ // exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
+ // also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
+ // has no effect on the curve's general shape or visual properties
+ const float exposure_bias = 2.0f;
+ const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
+ const float B = 0.30f * exposure_bias;
+ const float C = 0.10f;
+ const float D = 0.20f;
+ const float E = 0.01f;
+ const float F = 0.30f;
+
+ vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
+ float p_white_tonemapped = ((p_white * (A * p_white + C * B) + D * E) / (p_white * (A * p_white + B) + D * F)) - E / F;
+
+ return color_tonemapped / p_white_tonemapped;
+}
+
+// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
+// (MIT License).
+vec3 tonemap_aces(vec3 color, float p_white) {
+ const float exposure_bias = 1.8f;
+ const float A = 0.0245786f;
+ const float B = 0.000090537f;
+ const float C = 0.983729f;
+ const float D = 0.432951f;
+ const float E = 0.238081f;
+
+ // Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias`
+ const mat3 rgb_to_rrt = mat3(
+ vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias),
+ vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias),
+ vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias));
+
+ const mat3 odt_to_rgb = mat3(
+ vec3(1.60475f, -0.53108f, -0.07367f),
+ vec3(-0.10208f, 1.10813f, -0.00605f),
+ vec3(-0.00327f, -0.07276f, 1.07602f));
+
+ color *= rgb_to_rrt;
+ vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
+ color_tonemapped *= odt_to_rgb;
+
+ p_white *= exposure_bias;
+ float p_white_tonemapped = (p_white * (p_white + A) - B) / (p_white * (C * p_white + D) + E);
+
+ return color_tonemapped / p_white_tonemapped;
+}
+
+vec3 tonemap_reinhard(vec3 color, float p_white) {
+ return (p_white * color + color) / (color * p_white + p_white);
+}
+
+// This expects 0-1 range input.
+vec3 linear_to_srgb(vec3 color) {
+ //color = clamp(color, vec3(0.0), vec3(1.0));
+ //const vec3 a = vec3(0.055f);
+ //return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
+ // Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
+ return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0));
+}
+
+// This expects 0-1 range input, outside that range it behaves poorly.
+vec3 srgb_to_linear(vec3 color) {
+ // Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
+ return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878);
+}
+
+#define TONEMAPPER_LINEAR 0
+#define TONEMAPPER_REINHARD 1
+#define TONEMAPPER_FILMIC 2
+#define TONEMAPPER_ACES 3
+
+vec3 apply_tonemapping(vec3 color, float p_white) { // inputs are LINEAR, always outputs clamped [0;1] color
+ // Ensure color values passed to tonemappers are positive.
+ // They can be negative in the case of negative lights, which leads to undesired behavior.
+ if (tonemapper == TONEMAPPER_LINEAR) {
+ return color;
+ } else if (tonemapper == TONEMAPPER_REINHARD) {
+ return tonemap_reinhard(max(vec3(0.0f), color), p_white);
+ } else if (tonemapper == TONEMAPPER_FILMIC) {
+ return tonemap_filmic(max(vec3(0.0f), color), p_white);
+ } else { // TONEMAPPER_ACES
+ return tonemap_aces(max(vec3(0.0f), color), p_white);
+ }
+}