summaryrefslogtreecommitdiff
path: root/drivers/gles3/shaders/scene.glsl
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gles3/shaders/scene.glsl')
-rw-r--r--drivers/gles3/shaders/scene.glsl2187
1 files changed, 0 insertions, 2187 deletions
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
deleted file mode 100644
index a45ac2eb8a..0000000000
--- a/drivers/gles3/shaders/scene.glsl
+++ /dev/null
@@ -1,2187 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#define M_PI 3.14159265359
-
-#define SHADER_IS_SRGB false
-
-/*
-from VisualServer:
-
-ARRAY_VERTEX=0,
-ARRAY_NORMAL=1,
-ARRAY_TANGENT=2,
-ARRAY_COLOR=3,
-ARRAY_TEX_UV=4,
-ARRAY_TEX_UV2=5,
-ARRAY_BONES=6,
-ARRAY_WEIGHTS=7,
-ARRAY_INDEX=8,
-*/
-
-// hack to use uv if no uv present so it works with lightmap
-
-/* INPUT ATTRIBS */
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 1) in vec3 normal_attrib;
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-layout(location = 2) in vec4 tangent_attrib;
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
-layout(location = 3) in vec4 color_attrib;
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-layout(location = 4) in vec2 uv_attrib;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-layout(location = 5) in vec2 uv2_attrib;
-#endif
-
-#ifdef USE_SKELETON
-layout(location = 6) in uvec4 bone_indices; // attrib:6
-layout(location = 7) in highp vec4 bone_weights; // attrib:7
-#endif
-
-#ifdef USE_INSTANCING
-
-layout(location = 8) in highp vec4 instance_xform0;
-layout(location = 9) in highp vec4 instance_xform1;
-layout(location = 10) in highp vec4 instance_xform2;
-layout(location = 11) in lowp vec4 instance_color;
-
-#if defined(ENABLE_INSTANCE_CUSTOM)
-layout(location = 12) in highp vec4 instance_custom_data;
-#endif
-
-#endif
-
-layout(std140) uniform SceneData { // ubo:0
-
- highp mat4 projection_matrix;
- highp mat4 inv_projection_matrix;
- highp mat4 camera_inverse_matrix;
- highp mat4 camera_matrix;
-
- mediump vec4 ambient_light_color;
- mediump vec4 bg_color;
-
- mediump vec4 fog_color_enabled;
- mediump vec4 fog_sun_color_amount;
-
- mediump float ambient_energy;
- mediump float bg_energy;
-
- mediump float z_offset;
- mediump float z_slope_scale;
- highp float shadow_dual_paraboloid_render_zfar;
- highp float shadow_dual_paraboloid_render_side;
-
- highp vec2 viewport_size;
- highp vec2 screen_pixel_size;
- highp vec2 shadow_atlas_pixel_size;
- highp vec2 directional_shadow_pixel_size;
-
- highp float time;
- highp float z_far;
- mediump float reflection_multiplier;
- mediump float subsurface_scatter_width;
- mediump float ambient_occlusion_affect_light;
- mediump float ambient_occlusion_affect_ao_channel;
- mediump float opaque_prepass_threshold;
-
- bool fog_depth_enabled;
- highp float fog_depth_begin;
- highp float fog_depth_end;
- mediump float fog_density;
- highp float fog_depth_curve;
- bool fog_transmit_enabled;
- highp float fog_transmit_curve;
- bool fog_height_enabled;
- highp float fog_height_min;
- highp float fog_height_max;
- highp float fog_height_curve;
-};
-
-uniform highp mat4 world_transform;
-
-#ifdef USE_LIGHT_DIRECTIONAL
-
-layout(std140) uniform DirectionalLightData { //ubo:3
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix1;
- highp mat4 shadow_matrix2;
- highp mat4 shadow_matrix3;
- highp mat4 shadow_matrix4;
- mediump vec4 shadow_split_offsets;
-};
-
-#endif
-
-#ifdef USE_VERTEX_LIGHTING
-//omni and spot
-
-struct LightData {
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix;
-};
-
-layout(std140) uniform OmniLightData { //ubo:4
-
- LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-layout(std140) uniform SpotLightData { //ubo:5
-
- LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-#ifdef USE_FORWARD_LIGHTING
-
-uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
-uniform int omni_light_count;
-
-uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
-uniform int spot_light_count;
-
-#endif
-
-out vec4 diffuse_light_interp;
-out vec4 specular_light_interp;
-
-void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) {
-
- float NdotL = dot(N, L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
-
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
-
-#if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-#else
- // lambert by default for everything else
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
-#endif
-
- diffuse += light_color * diffuse_brdf_NL;
-
- if (roughness > 0.0) {
-
- // D
- float specular_brdf_NL = 0.0;
-
-#if !defined(SPECULAR_DISABLED)
- //normalized blinn always unless disabled
- vec3 H = normalize(V + L);
- float cNdotH = max(dot(N, H), 0.0);
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
-#endif
-
- specular += specular_brdf_NL * light_color * (1.0 / M_PI);
- }
-}
-
-void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
-
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w));
-
- light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
-}
-
-void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
-
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w));
- vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff = spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
- float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
- light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x);
-
- light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
-}
-
-#endif
-
-/* Varyings */
-
-out highp vec3 vertex_interp;
-out vec3 normal_interp;
-
-#if defined(ENABLE_COLOR_INTERP)
-out vec4 color_interp;
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-out vec2 uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-out vec2 uv2_interp;
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-out vec3 tangent_interp;
-out vec3 binormal_interp;
-#endif
-
-#if defined(USE_MATERIAL)
-
-/* clang-format off */
-layout(std140) uniform UniformData { // ubo:1
-
-MATERIAL_UNIFORMS
-
-};
-/* clang-format on */
-
-#endif
-
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-out highp float dp_clip;
-
-#endif
-
-#define SKELETON_TEXTURE_WIDTH 256
-
-#ifdef USE_SKELETON
-uniform highp sampler2D skeleton_texture; // texunit:-1
-#endif
-
-out highp vec4 position_interp;
-
-// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now.
-// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316
-//invariant gl_Position;
-
-void main() {
-
- highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
-
- highp mat4 world_matrix = world_transform;
-
-#ifdef USE_INSTANCING
-
- {
- highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
- world_matrix = world_matrix * transpose(m);
- }
-#endif
-
- vec3 normal = normal_attrib;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 tangent = tangent_attrib.xyz;
- float binormalf = tangent_attrib.a;
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
- color_interp = color_attrib;
-#if defined(USE_INSTANCING)
- color_interp *= instance_color;
-#endif
-
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- vec3 binormal = normalize(cross(normal, tangent) * binormalf);
-#endif
-
-#if defined(ENABLE_UV_INTERP)
- uv_interp = uv_attrib;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
- uv2_interp = uv2_attrib;
-#endif
-
-#ifdef OVERRIDE_POSITION
- highp vec4 position;
-#endif
-
-#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM)
- vec4 instance_custom = instance_custom_data;
-#else
- vec4 instance_custom = vec4(0.0);
-#endif
-
- highp mat4 local_projection = projection_matrix;
-
-//using world coordinates
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
-
- vertex = world_matrix * vertex;
-
-#if defined(ENSURE_CORRECT_NORMALS)
- mat3 normal_matrix = mat3(transpose(inverse(world_matrix)));
- normal = normal_matrix * normal;
-#else
- normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
- float roughness = 1.0;
-
-//defines that make writing custom shaders easier
-#define projection_matrix local_projection
-#define world_transform world_matrix
-
-#ifdef USE_SKELETON
- {
- //skeleton transform
- ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int
-
- ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3);
- highp mat4 m;
- m = mat4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
- vec4(0.0, 0.0, 0.0, 1.0)) *
- bone_weights.x;
-
- tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3);
-
- m += mat4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
- vec4(0.0, 0.0, 0.0, 1.0)) *
- bone_weights.y;
-
- tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3);
-
- m += mat4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
- vec4(0.0, 0.0, 0.0, 1.0)) *
- bone_weights.z;
-
- tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3);
-
- m += mat4(
- texelFetch(skeleton_texture, tex_ofs, 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
- texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0),
- vec4(0.0, 0.0, 0.0, 1.0)) *
- bone_weights.w;
-
- world_matrix = world_matrix * transpose(m);
- }
-#endif
-
- float point_size = 1.0;
-
- highp mat4 modelview = camera_inverse_matrix * world_matrix;
- {
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
- }
-
- gl_PointSize = point_size;
-
-// using local coordinates (default)
-#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
-
- vertex = modelview * vertex;
-
-#if defined(ENSURE_CORRECT_NORMALS)
- mat3 normal_matrix = mat3(transpose(inverse(modelview)));
- normal = normal_matrix * normal;
-#else
- normal = normalize((modelview * vec4(normal, 0.0)).xyz);
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
- binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
-//using world coordinates
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
-
- vertex = camera_inverse_matrix * vertex;
- normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
- vertex_interp = vertex.xyz;
- normal_interp = normal;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent_interp = tangent;
- binormal_interp = binormal;
-#endif
-
-#ifdef RENDER_DEPTH
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- vertex_interp.z *= shadow_dual_paraboloid_render_side;
- normal_interp.z *= shadow_dual_paraboloid_render_side;
-
- dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
-
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
-
- highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset;
- highp float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy /= 1.0 - vtx.z;
- vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
- vtx.z = vtx.z * 2.0 - 1.0;
-
- vertex_interp = vtx;
-
-#else
-
- float z_ofs = z_offset;
- z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale;
- vertex_interp.z -= z_ofs;
-
-#endif //RENDER_DEPTH_DUAL_PARABOLOID
-
-#endif //RENDER_DEPTH
-
-#ifdef OVERRIDE_POSITION
- gl_Position = position;
-#else
- gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
-#endif
-
- position_interp = gl_Position;
-
-#ifdef USE_VERTEX_LIGHTING
-
- diffuse_light_interp = vec4(0.0);
- specular_light_interp = vec4(0.0);
-
-#ifdef USE_FORWARD_LIGHTING
-
- for (int i = 0; i < omni_light_count; i++) {
- light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
- }
-
- for (int i = 0; i < spot_light_count; i++) {
- light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
- }
-#endif
-
-#ifdef USE_LIGHT_DIRECTIONAL
-
- vec3 directional_diffuse = vec3(0.0);
- vec3 directional_specular = vec3(0.0);
- light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular);
-
- float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333));
- float diff_dir_avg = dot(directional_diffuse, vec3(0.33333));
- if (diff_avg > 0.0) {
- diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg);
- } else {
- diffuse_light_interp.a = 1.0;
- }
-
- diffuse_light_interp.rgb += directional_diffuse;
-
- float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333));
- float spec_dir_avg = dot(directional_specular, vec3(0.33333));
- if (spec_avg > 0.0) {
- specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg);
- } else {
- specular_light_interp.a = 1.0;
- }
-
- specular_light_interp.rgb += directional_specular;
-
-#endif //USE_LIGHT_DIRECTIONAL
-
-#endif // USE_VERTEX_LIGHTING
-}
-
-/* clang-format off */
-[fragment]
-
-
-/* texture unit usage, N is max_texture_unity-N
-
-1-skeleton
-2-radiance
-3-reflection_atlas
-4-directional_shadow
-5-shadow_atlas
-6-decal_atlas
-7-screen
-8-depth
-9-probe1
-10-probe2
-
-*/
-
-uniform highp mat4 world_transform;
-/* clang-format on */
-
-#define M_PI 3.14159265359
-#define SHADER_IS_SRGB false
-
-/* Varyings */
-
-#if defined(ENABLE_COLOR_INTERP)
-in vec4 color_interp;
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-in vec2 uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-in vec2 uv2_interp;
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-in vec3 tangent_interp;
-in vec3 binormal_interp;
-#endif
-
-in highp vec3 vertex_interp;
-in vec3 normal_interp;
-
-/* PBR CHANNELS */
-
-#ifdef USE_RADIANCE_MAP
-
-layout(std140) uniform Radiance { // ubo:2
-
- mat4 radiance_inverse_xform;
- float radiance_ambient_contribution;
-};
-
-#define RADIANCE_MAX_LOD 5.0
-
-uniform sampler2D irradiance_map; // texunit:-6
-
-#ifdef USE_RADIANCE_MAP_ARRAY
-
-uniform sampler2DArray radiance_map; // texunit:-2
-
-vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) {
-
- vec3 norm = normalize(p_vec);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
-
- // we need to lie the derivatives (normg) and assume that DP side is always the same
- // to get proper texture filtering
- vec2 normg = norm.xy;
- if (norm.z > 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
-
- // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
- // it's easy to have precision errors using fract() to interpolate layers
- // as such, using fixed point to ensure it works.
-
- float index = p_roughness * RADIANCE_MAX_LOD;
- int indexi = int(index * 256.0);
- vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz;
- vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz;
- return mix(base, next, float(indexi % 256) / 256.0);
-}
-
-#else
-
-uniform sampler2D radiance_map; // texunit:-2
-
-vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) {
-
- vec3 norm = normalize(p_vec);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
- if (norm.z > 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
- return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
-}
-
-#endif
-
-#endif
-
-/* Material Uniforms */
-
-#if defined(USE_MATERIAL)
-
-/* clang-format off */
-layout(std140) uniform UniformData {
-
-MATERIAL_UNIFORMS
-
-};
-/* clang-format on */
-
-#endif
-
-/* clang-format off */
-
-FRAGMENT_SHADER_GLOBALS
-
-/* clang-format on */
-
-layout(std140) uniform SceneData {
-
- highp mat4 projection_matrix;
- highp mat4 inv_projection_matrix;
- highp mat4 camera_inverse_matrix;
- highp mat4 camera_matrix;
-
- mediump vec4 ambient_light_color;
- mediump vec4 bg_color;
-
- mediump vec4 fog_color_enabled;
- mediump vec4 fog_sun_color_amount;
-
- mediump float ambient_energy;
- mediump float bg_energy;
-
- mediump float z_offset;
- mediump float z_slope_scale;
- highp float shadow_dual_paraboloid_render_zfar;
- highp float shadow_dual_paraboloid_render_side;
-
- highp vec2 viewport_size;
- highp vec2 screen_pixel_size;
- highp vec2 shadow_atlas_pixel_size;
- highp vec2 directional_shadow_pixel_size;
-
- highp float time;
- highp float z_far;
- mediump float reflection_multiplier;
- mediump float subsurface_scatter_width;
- mediump float ambient_occlusion_affect_light;
- mediump float ambient_occlusion_affect_ao_channel;
- mediump float opaque_prepass_threshold;
-
- bool fog_depth_enabled;
- highp float fog_depth_begin;
- highp float fog_depth_end;
- mediump float fog_density;
- highp float fog_depth_curve;
- bool fog_transmit_enabled;
- highp float fog_transmit_curve;
- bool fog_height_enabled;
- highp float fog_height_min;
- highp float fog_height_max;
- highp float fog_height_curve;
-};
-
- //directional light data
-
-#ifdef USE_LIGHT_DIRECTIONAL
-
-layout(std140) uniform DirectionalLightData {
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix1;
- highp mat4 shadow_matrix2;
- highp mat4 shadow_matrix3;
- highp mat4 shadow_matrix4;
- mediump vec4 shadow_split_offsets;
-};
-
-uniform highp sampler2DShadow directional_shadow; // texunit:-4
-
-#endif
-
-#ifdef USE_VERTEX_LIGHTING
-in vec4 diffuse_light_interp;
-in vec4 specular_light_interp;
-#endif
-// omni and spot
-
-struct LightData {
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix;
-};
-
-layout(std140) uniform OmniLightData { // ubo:4
-
- LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-layout(std140) uniform SpotLightData { // ubo:5
-
- LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-uniform highp sampler2DShadow shadow_atlas; // texunit:-5
-
-struct ReflectionData {
-
- mediump vec4 box_extents;
- mediump vec4 box_offset;
- mediump vec4 params; // intensity, 0, interior , boxproject
- mediump vec4 ambient; // ambient color, energy
- mediump vec4 atlas_clamp;
- highp mat4 local_matrix; // up to here for spot and omni, rest is for directional
- // notes: for ambientblend, use distance to edge to blend between already existing global environment
-};
-
-layout(std140) uniform ReflectionProbeData { //ubo:6
-
- ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
-};
-uniform mediump sampler2D reflection_atlas; // texunit:-3
-
-#ifdef USE_FORWARD_LIGHTING
-
-uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
-uniform int omni_light_count;
-
-uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
-uniform int spot_light_count;
-
-uniform int reflection_indices[MAX_FORWARD_LIGHTS];
-uniform int reflection_count;
-
-#endif
-
-#if defined(SCREEN_TEXTURE_USED)
-
-uniform highp sampler2D screen_texture; // texunit:-7
-
-#endif
-
-#ifdef USE_MULTIPLE_RENDER_TARGETS
-
-layout(location = 0) out vec4 diffuse_buffer;
-layout(location = 1) out vec4 specular_buffer;
-layout(location = 2) out vec4 normal_mr_buffer;
-#if defined(ENABLE_SSS)
-layout(location = 3) out float sss_buffer;
-#endif
-
-#else
-
-layout(location = 0) out vec4 frag_color;
-
-#endif
-
-in highp vec4 position_interp;
-uniform highp sampler2D depth_buffer; // texunit:-8
-
-#ifdef USE_CONTACT_SHADOWS
-
-float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
-
- if (abs(dir.z) > 0.99)
- return 1.0;
-
- vec3 endpoint = pos + dir * max_distance;
- vec4 source = position_interp;
- vec4 dest = projection_matrix * vec4(endpoint, 1.0);
-
- vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5;
- vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5;
-
- vec2 screen_rel = to_screen - from_screen;
-
- if (length(screen_rel) < 0.00001)
- return 1.0; // too small, don't do anything
-
- /*
- float pixel_size; // approximate pixel size
-
- if (screen_rel.x > screen_rel.y) {
-
- pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x));
- } else {
- pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y));
- }
- */
- vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0);
-
- vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size;
-
- float steps = length(screen_rel) / length(pixel_incr);
- steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation
- //steps = 10.0;
-
- vec4 incr = (dest - source) / steps;
- float ratio = 0.0;
- float ratio_incr = 1.0 / steps;
-
- while (steps > 0.0) {
- source += incr * 2.0;
- bias += incr * 2.0;
-
- vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
- if (uv_depth.x > 0.0 && uv_depth.x < 1.0 && uv_depth.y > 0.0 && uv_depth.y < 1.0) {
- float depth = texture(depth_buffer, uv_depth.xy).r;
-
- if (depth < uv_depth.z) {
- if (depth > (bias.z / bias.w) * 0.5 + 0.5) {
- return min(pow(ratio, 4.0), 1.0);
- } else {
- return 1.0;
- }
- }
-
- ratio += ratio_incr;
- steps -= 1.0;
- } else {
- return 1.0;
- }
- }
-
- return 1.0;
-}
-
-#endif
-
-// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
-// We're dividing this factor off because the overall term we'll end up looks like
-// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
-//
-// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
-//
-// We're basically regouping this as
-//
-// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
-//
-// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
-//
-// The contents of the D and G (G1) functions (GGX) are taken from
-// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
-// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
-
-float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5 * alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
-
- // float cos2 = cos_theta_m * cos_theta_m;
- // float sin2 = (1.0 - cos2);
- // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
-}
-
-float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha * alpha;
- float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
- return alpha2 / (M_PI * d * d);
-}
-
-float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
-}
-
-float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float r_x = cos_phi / alpha_x;
- float r_y = sin_phi / alpha_y;
- float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
- return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
-}
-
-float SchlickFresnel(float u) {
- float m = 1.0 - u;
- float m2 = m * m;
- return m2 * m2 * m; // pow(m,5)
-}
-
-float GTR1(float NdotH, float a) {
- if (a >= 1.0) return 1.0 / M_PI;
- float a2 = a * a;
- float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
- return (a2 - 1.0) / (M_PI * log(a2) * t);
-}
-
-vec3 F0(float metallic, float specular, vec3 albedo) {
- float dielectric = 0.16 * specular * specular;
- // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
- // see https://google.github.io/filament/Filament.md.html
- return mix(vec3(dielectric), albedo, vec3(metallic));
-}
-
-void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) {
-
-#if defined(USE_LIGHT_SHADER_CODE)
- // light is written by the light shader
-
- vec3 normal = N;
- vec3 albedo = diffuse_color;
- vec3 light = L;
- vec3 view = V;
-
- /* clang-format off */
-
-LIGHT_SHADER_CODE
-
- /* clang-format on */
-
-#else
- float NdotL = dot(N, L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
-
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- vec3 H = normalize(V + L);
-#endif
-
-#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cNdotH = max(dot(N, H), 0.0);
-#endif
-
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cLdotH = max(dot(L, H), 0.0);
-#endif
-
- if (metallic < 1.0) {
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
-
-#if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-
-#elif defined(DIFFUSE_TOON)
-
- diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
-
-#elif defined(DIFFUSE_BURLEY)
-
- {
- float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
- float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
- float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
- diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
-
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
- */
- }
-#else
- // lambert
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
-#endif
-
- diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
-
-#if defined(TRANSMISSION_USED)
- diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
-#endif
-
-#if defined(LIGHT_USE_RIM)
- float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
-#endif
- }
-
- if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
-
- // D
-
-#if defined(SPECULAR_BLINN)
-
- //normalized blinn
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- float intensity = blinn;
-
- specular_light += light_color * intensity * specular_blob_intensity * attenuation;
-
-#elif defined(SPECULAR_PHONG)
-
- vec3 R = normalize(-reflect(L, N));
- float cRdotV = max(0.0, dot(R, V));
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float phong = pow(cRdotV, shininess);
- phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
-
- specular_light += light_color * intensity * specular_blob_intensity * attenuation;
-
-#elif defined(SPECULAR_TOON)
-
- vec3 R = normalize(-reflect(L, N));
- float RdotV = dot(R, V);
- float mid = 1.0 - roughness;
- mid *= mid;
- float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
- diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
-
-#elif defined(SPECULAR_DISABLED)
- // none..
-
-#elif defined(SPECULAR_SCHLICK_GGX)
- // shlick+ggx as default
-
-#if defined(LIGHT_USE_ANISOTROPY)
-
- float alpha_ggx = roughness * roughness;
- float aspect = sqrt(1.0 - anisotropy * 0.9);
- float ax = alpha_ggx / aspect;
- float ay = alpha_ggx * aspect;
- float XdotH = dot(T, H);
- float YdotH = dot(B, H);
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
- float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
-
-#else
- float alpha_ggx = roughness * roughness;
- float D = D_GGX(cNdotH, alpha_ggx);
- float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
-#endif
- // F
- vec3 f0 = F0(metallic, specular, diffuse_color);
- float cLdotH5 = SchlickFresnel(cLdotH);
- vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
-
- vec3 specular_brdf_NL = cNdotL * D * F * G;
-
- specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-#endif
-
-#if defined(LIGHT_USE_CLEARCOAT)
-
-#if !defined(SPECULAR_SCHLICK_GGX)
- float cLdotH5 = SchlickFresnel(cLdotH);
-#endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
- float Fr = mix(.04, 1.0, cLdotH5);
- float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
-
- float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
-
- specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-#endif
- }
-
-#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
-#endif
-
-#endif //defined(USE_LIGHT_SHADER_CODE)
-}
-
-float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {
-
-#ifdef SHADOW_MODE_PCF_13
-
- float avg = textureProj(shadow, vec4(pos, depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0));
- return avg * (1.0 / 13.0);
-#endif
-
-#ifdef SHADOW_MODE_PCF_5
-
- float avg = textureProj(shadow, vec4(pos, depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
- avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
- return avg * (1.0 / 5.0);
-
-#endif
-
-#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
-
- return textureProj(shadow, vec4(pos, depth, 1.0));
-
-#endif
-}
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-in highp float dp_clip;
-
-#endif
-
-void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) {
-
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
- float omni_attenuation;
- if (normalized_distance < 1.0) {
- omni_attenuation = pow(1.0 - normalized_distance, omni_lights[idx].light_direction_attenuation.w);
- } else {
- omni_attenuation = 0.0;
- }
- vec3 light_attenuation = vec3(omni_attenuation);
-
-#if !defined(SHADOWS_DISABLED)
-#ifdef USE_SHADOW
- if (omni_lights[idx].light_params.w > 0.5) {
- // there is a shadowmap
-
- highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
- float shadow_len = length(splane);
- splane = normalize(splane);
- vec4 clamp_rect = omni_lights[idx].light_clamp;
-
- if (splane.z >= 0.0) {
-
- splane.z += 1.0;
-
- clamp_rect.y += clamp_rect.w;
-
- } else {
-
- splane.z = 1.0 - splane.z;
-
- /*
- if (clamp_rect.z < clamp_rect.w) {
- clamp_rect.x += clamp_rect.z;
- } else {
- clamp_rect.y += clamp_rect.w;
- }
- */
- }
-
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
-
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect);
-
-#ifdef USE_CONTACT_SHADOWS
-
- if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a));
- shadow = min(shadow, contact_shadow);
- }
-#endif
- light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
- }
-#endif //USE_SHADOW
-#endif //SHADOWS_DISABLED
- light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha);
-}
-
-void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) {
-
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
- float spot_attenuation;
- if (normalized_distance < 1.0) {
- spot_attenuation = pow(1.0 - normalized_distance, spot_lights[idx].light_direction_attenuation.w);
- } else {
- spot_attenuation = 0.0;
- }
- vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff = spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
- spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x);
- vec3 light_attenuation = vec3(spot_attenuation);
-
-#if !defined(SHADOWS_DISABLED)
-#ifdef USE_SHADOW
- if (spot_lights[idx].light_params.w > 0.5) {
- //there is a shadowmap
- highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0));
- splane.xyz /= splane.w;
-
- float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp);
-
-#ifdef USE_CONTACT_SHADOWS
- if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a));
- shadow = min(shadow, contact_shadow);
- }
-#endif
- light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
- }
-#endif //USE_SHADOW
-#endif //SHADOWS_DISABLED
-
- light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha);
-}
-
-void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
-
- vec3 ref_vec = normalize(reflect(vertex, normal));
- vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz;
- vec3 box_extents = reflections[idx].box_extents.xyz;
-
- if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
- return;
- }
-
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- //make blend more rounded
- blend = mix(length(inner_pos), blend, blend);
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
- if (reflections[idx].params.x > 0.0) { // compute reflection
-
- vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz;
-
- if (reflections[idx].params.w > 0.5) { //box project
-
- vec3 nrdir = normalize(local_ref_vec);
- vec3 rbmax = (box_extents - local_pos) / nrdir;
- vec3 rbmin = (-box_extents - local_pos) / nrdir;
-
- vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
-
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
- }
-
- vec4 clamp_rect = reflections[idx].atlas_clamp;
- vec3 norm = normalize(local_ref_vec);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
- if (norm.z > 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
-
- vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
- atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
-
- highp vec4 reflection;
- reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb;
-
- if (reflections[idx].params.z < 0.5) {
- reflection.rgb = mix(skybox, reflection.rgb, blend);
- }
- reflection.rgb *= reflections[idx].params.x;
- reflection.a = blend;
- reflection.rgb *= reflection.a;
-
- reflection_accum += reflection;
- }
-#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
- if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox
-
- vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz;
-
- vec3 splane = normalize(local_amb_vec);
- vec4 clamp_rect = reflections[idx].atlas_clamp;
-
- splane.z *= -1.0;
- if (splane.z >= 0.0) {
- splane.z += 1.0;
- clamp_rect.y += clamp_rect.w;
- } else {
- splane.z = 1.0 - splane.z;
- splane.y = -splane.y;
- }
-
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
-
- splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
- splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);
-
- highp vec4 ambient_out;
- ambient_out.a = blend;
- ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb;
- ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a);
- if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
- }
-
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- } else {
-
- highp vec4 ambient_out;
- ambient_out.a = blend;
- ambient_out.rgb = reflections[idx].ambient.rgb;
- if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- }
-#endif
-}
-
-#ifdef USE_LIGHTMAP
-uniform mediump sampler2D lightmap; //texunit:-9
-uniform mediump float lightmap_energy;
-#endif
-
-#ifdef USE_LIGHTMAP_CAPTURE
-uniform mediump vec4[12] lightmap_captures;
-uniform bool lightmap_capture_sky;
-
-#endif
-
-#ifdef USE_GI_PROBES
-
-uniform mediump sampler3D gi_probe1; //texunit:-9
-uniform highp mat4 gi_probe_xform1;
-uniform highp vec3 gi_probe_bounds1;
-uniform highp vec3 gi_probe_cell_size1;
-uniform highp float gi_probe_multiplier1;
-uniform highp float gi_probe_bias1;
-uniform highp float gi_probe_normal_bias1;
-uniform bool gi_probe_blend_ambient1;
-
-uniform mediump sampler3D gi_probe2; //texunit:-10
-uniform highp mat4 gi_probe_xform2;
-uniform highp vec3 gi_probe_bounds2;
-uniform highp vec3 gi_probe_cell_size2;
-uniform highp float gi_probe_multiplier2;
-uniform highp float gi_probe_bias2;
-uniform highp float gi_probe_normal_bias2;
-uniform bool gi_probe2_enabled;
-uniform bool gi_probe_blend_ambient2;
-
-vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
-
- float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
- float alpha = 0.0;
- vec3 color = vec3(0.0);
-
- while (dist < max_distance && alpha < 0.95) {
- float diameter = max(1.0, 2.0 * tan_half_angle * dist);
- vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter));
- float a = (1.0 - alpha);
- color += scolor.rgb * a;
- alpha += a * scolor.a;
- dist += diameter * 0.5;
- }
-
- if (blend_ambient) {
- color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95));
- }
-
- return color;
-}
-
-void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {
-
- vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz;
- vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz;
- ref_vec = normalize(ref_pos - probe_pos);
-
- probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias;
-
- /* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
- out_diff.a = 1.0;
- return;*/
- //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
- //return;
-
- //this causes corrupted pixels, i have no idea why..
- if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) {
- return;
- }
-
- vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0);
- float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
- //float blend=1.0;
-
- float max_distance = length(bounds);
-
- //radiance
-#ifdef VCT_QUALITY_HIGH
-
-#define MAX_CONE_DIRS 6
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
- vec3(0.0, 0.0, 1.0),
- vec3(0.866025, 0.0, 0.5),
- vec3(0.267617, 0.823639, 0.5),
- vec3(-0.700629, 0.509037, 0.5),
- vec3(-0.700629, -0.509037, 0.5),
- vec3(0.267617, -0.823639, 0.5));
-
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
- float cone_angle_tan = 0.577;
- float min_ref_tan = 0.0;
-#else
-
-#define MAX_CONE_DIRS 4
-
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
- vec3(0.707107, 0.0, 0.707107),
- vec3(0.0, 0.707107, 0.707107),
- vec3(-0.707107, 0.0, 0.707107),
- vec3(0.0, -0.707107, 0.707107));
-
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
- float cone_angle_tan = 0.98269;
- max_distance *= 0.5;
- float min_ref_tan = 0.2;
-
-#endif
- vec3 light = vec3(0.0);
- for (int i = 0; i < MAX_CONE_DIRS; i++) {
-
- vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos);
- light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias);
- }
-
- light *= multiplier;
-
- out_diff += vec4(light * blend, blend);
-
- //irradiance
-
- vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI * 0.99)), max_distance, p_bias);
-
- irr_light *= multiplier;
- //irr_light=vec3(0.0);
-
- out_spec += vec4(irr_light * blend, blend);
-}
-
-void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) {
-
- roughness = roughness * roughness;
-
- vec3 ref_vec = normalize(reflect(normalize(pos), normal));
-
- //find arbitrary tangent and bitangent, then build a matrix
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- mat3 normal_mat = mat3(tangent, bitangent, normal);
-
- vec4 diff_accum = vec4(0.0);
- vec4 spec_accum = vec4(0.0);
-
- vec3 ambient = out_ambient;
- out_ambient = vec3(0.0);
-
- vec3 environment = out_specular;
-
- out_specular = vec3(0.0);
-
- gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum);
-
- if (gi_probe2_enabled) {
-
- gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum);
- }
-
- if (diff_accum.a > 0.0) {
- diff_accum.rgb /= diff_accum.a;
- }
-
- if (spec_accum.a > 0.0) {
- spec_accum.rgb /= spec_accum.a;
- }
-
- out_specular += spec_accum.rgb;
- out_ambient += diff_accum.rgb;
-}
-
-#endif
-
-void main() {
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- if (dp_clip > 0.0)
- discard;
-#endif
-
- //lay out everything, whathever is unused is optimized away anyway
- highp vec3 vertex = vertex_interp;
- vec3 view = -normalize(vertex_interp);
- vec3 albedo = vec3(1.0);
- vec3 transmission = vec3(0.0);
- float metallic = 0.0;
- float specular = 0.5;
- vec3 emission = vec3(0.0);
- float roughness = 1.0;
- float rim = 0.0;
- float rim_tint = 0.0;
- float clearcoat = 0.0;
- float clearcoat_gloss = 0.0;
- float anisotropy = 0.0;
- vec2 anisotropy_flow = vec2(1.0, 0.0);
-
-#if defined(ENABLE_AO)
- float ao = 1.0;
- float ao_light_affect = 0.0;
-#endif
-
- float alpha = 1.0;
-
-#if defined(ALPHA_SCISSOR_USED)
- float alpha_scissor = 0.5;
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 binormal = normalize(binormal_interp);
- vec3 tangent = normalize(tangent_interp);
-#else
- vec3 binormal = vec3(0.0);
- vec3 tangent = vec3(0.0);
-#endif
- vec3 normal = normalize(normal_interp);
-
-#if defined(DO_SIDE_CHECK)
- if (!gl_FrontFacing) {
- normal = -normal;
- }
-#endif
-
-#if defined(ENABLE_UV_INTERP)
- vec2 uv = uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
- vec2 uv2 = uv2_interp;
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
- vec4 color = color_interp;
-#endif
-
-#if defined(ENABLE_NORMALMAP)
-
- vec3 normalmap = vec3(0.5);
-#endif
-
- float normaldepth = 1.0;
-
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
-#endif
-
-#if defined(ENABLE_SSS)
- float sss_strength = 0.0;
-#endif
-
- {
- /* clang-format off */
-
-FRAGMENT_SHADER_CODE
-
- /* clang-format on */
- }
-
-#if !defined(USE_SHADOW_TO_OPACITY)
-
-#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
- discard;
- }
-#endif // ALPHA_SCISSOR_USED
-
-#ifdef USE_OPAQUE_PREPASS
-
- if (alpha < opaque_prepass_threshold) {
- discard;
- }
-
-#endif // USE_OPAQUE_PREPASS
-
-#endif // !USE_SHADOW_TO_OPACITY
-
-#if defined(ENABLE_NORMALMAP)
-
- normalmap.xy = normalmap.xy * 2.0 - 1.0;
- normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
-
- normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth));
-
-#endif
-
-#if defined(LIGHT_USE_ANISOTROPY)
-
- if (anisotropy > 0.01) {
- //rotation matrix
- mat3 rot = mat3(tangent, binormal, normal);
- //make local to space
- tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
- binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
- }
-
-#endif
-
-#ifdef ENABLE_CLIP_ALPHA
- if (albedo.a < 0.99) {
- //used for doublepass and shadowmapping
- discard;
- }
-#endif
-
- /////////////////////// LIGHTING //////////////////////////////
-
- //apply energy conservation
-
-#ifdef USE_VERTEX_LIGHTING
-
- vec3 specular_light = specular_light_interp.rgb;
- vec3 diffuse_light = diffuse_light_interp.rgb;
-#else
-
- vec3 specular_light = vec3(0.0, 0.0, 0.0);
- vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
-
-#endif
-
- vec3 ambient_light;
- vec3 env_reflection_light = vec3(0.0, 0.0, 0.0);
-
- vec3 eye_vec = view;
-
- // IBL precalculations
- float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0);
- vec3 f0 = F0(metallic, specular, albedo);
- vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
-
-#ifdef USE_RADIANCE_MAP
-
-#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light = vec3(0.0, 0.0, 0.0);
-#else
- {
-
- { //read radiance from dual paraboloid
-
- vec3 ref_vec = reflect(-eye_vec, normal);
- ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
- vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy;
- env_reflection_light = radiance;
- }
- }
-#ifndef USE_LIGHTMAP
- {
-
- vec3 norm = normal;
- norm = normalize((radiance_inverse_xform * vec4(norm, 0.0)).xyz);
- norm.xy /= 1.0 + abs(norm.z);
- norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
- if (norm.z > 0.0) {
- norm.y = 0.5 - norm.y + 0.5;
- }
-
- vec3 env_ambient = texture(irradiance_map, norm.xy).rgb * bg_energy;
- env_ambient *= 1.0 - F;
-
- ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution);
- }
-#endif
-#endif //AMBIENT_LIGHT_DISABLED
-
-#else
-
-#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light = vec3(0.0, 0.0, 0.0);
-#else
- ambient_light = ambient_light_color.rgb;
- env_reflection_light = bg_color.rgb * bg_energy;
-#endif //AMBIENT_LIGHT_DISABLED
-
-#endif
-
- ambient_light *= ambient_energy;
-
- float specular_blob_intensity = 1.0;
-
-#if defined(SPECULAR_TOON)
- specular_blob_intensity *= specular * 2.0;
-#endif
-
-#ifdef USE_GI_PROBES
- gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light);
-
-#endif
-
-#ifdef USE_LIGHTMAP
- ambient_light = texture(lightmap, uv2).rgb * lightmap_energy;
-#endif
-
-#ifdef USE_LIGHTMAP_CAPTURE
- {
- vec3 cone_dirs[12] = vec3[](
- vec3(0.0, 0.0, 1.0),
- vec3(0.866025, 0.0, 0.5),
- vec3(0.267617, 0.823639, 0.5),
- vec3(-0.700629, 0.509037, 0.5),
- vec3(-0.700629, -0.509037, 0.5),
- vec3(0.267617, -0.823639, 0.5),
- vec3(0.0, 0.0, -1.0),
- vec3(0.866025, 0.0, -0.5),
- vec3(0.267617, 0.823639, -0.5),
- vec3(-0.700629, 0.509037, -0.5),
- vec3(-0.700629, -0.509037, -0.5),
- vec3(0.267617, -0.823639, -0.5));
-
- vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
- vec4 captured = vec4(0.0);
- float sum = 0.0;
- for (int i = 0; i < 12; i++) {
- float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
- captured += lightmap_captures[i] * amount;
- sum += amount;
- }
-
- captured /= sum;
-
- if (lightmap_capture_sky) {
- ambient_light = mix(ambient_light, captured.rgb, captured.a);
- } else {
- ambient_light = captured.rgb;
- }
- }
-#endif
-
-#ifdef USE_FORWARD_LIGHTING
-
- highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
- highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
- for (int i = 0; i < reflection_count; i++) {
- reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum);
- }
-
- if (reflection_accum.a > 0.0) {
- specular_light += reflection_accum.rgb / reflection_accum.a;
- } else {
- specular_light += env_reflection_light;
- }
-#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
- if (ambient_accum.a > 0.0) {
- ambient_light = ambient_accum.rgb / ambient_accum.a;
- }
-#endif
-#endif
-
- {
-
-#if defined(DIFFUSE_TOON)
- //simplify for toon, as
- specular_light *= specular * metallic * albedo * 2.0;
-#else
-
- // scales the specular reflections, needs to be be computed before lighting happens,
- // but after environment, GI, and reflection probes are added
- // Environment brdf approximation (Lazarov 2013)
- // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
- const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
- const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
- vec4 r = roughness * c0 + c1;
- float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
- vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
- specular_light *= env.x * F + env.y;
-#endif
- }
-
-#if defined(USE_LIGHT_DIRECTIONAL)
-
- vec3 light_attenuation = vec3(1.0);
-
- float depth_z = -vertex.z;
-#ifdef LIGHT_DIRECTIONAL_SHADOW
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef LIGHT_USE_PSSM4
- if (depth_z < shadow_split_offsets.w) {
-#elif defined(LIGHT_USE_PSSM2)
- if (depth_z < shadow_split_offsets.y) {
-#else
- if (depth_z < shadow_split_offsets.x) {
-#endif //LIGHT_USE_PSSM4
-
- vec3 pssm_coord;
- float pssm_fade = 0.0;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- vec3 pssm_coord2;
- bool use_blend = true;
-#endif
-
-#ifdef LIGHT_USE_PSSM4
-
- if (depth_z < shadow_split_offsets.y) {
-
- if (depth_z < shadow_split_offsets.x) {
-
- highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
-
- splane = (shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
-#endif
-
- } else {
-
- highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- splane = (shadow_matrix3 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
-#endif
- }
- } else {
-
- if (depth_z < shadow_split_offsets.z) {
-
- highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- splane = (shadow_matrix4 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z);
-#endif
-
- } else {
-
- highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-
-#endif
- }
- }
-
-#endif //LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
-
- if (depth_z < shadow_split_offsets.x) {
-
- highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
-
- splane = (shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
-#endif
-
- } else {
- highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-
-#endif
- }
-
-#endif //LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- { //regular orthogonal
- highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
- }
-#endif
-
- //one one sample
-
- float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
-
- if (use_blend) {
- shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
- }
-#endif
-
-#ifdef USE_CONTACT_SHADOWS
- if (shadow > 0.01 && shadow_color_contact.a > 0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a);
- shadow = min(shadow, contact_shadow);
- }
-#endif
- light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade);
- }
-
-#endif // !defined(SHADOWS_DISABLED)
-#endif //LIGHT_DIRECTIONAL_SHADOW
-
-#ifdef USE_VERTEX_LIGHTING
- diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a);
- specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a);
-
-#else
- light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha);
-#endif
-
-#endif //#USE_LIGHT_DIRECTIONAL
-
-#ifdef USE_FORWARD_LIGHTING
-
-#ifdef USE_VERTEX_LIGHTING
-
- diffuse_light *= albedo;
-#else
-
- for (int i = 0; i < omni_light_count; i++) {
- light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha);
- }
-
- for (int i = 0; i < spot_light_count; i++) {
- light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha);
- }
-
-#endif //USE_VERTEX_LIGHTING
-
-#endif
-
-#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
-
-#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
- discard;
- }
-#endif // ALPHA_SCISSOR_USED
-
-#ifdef USE_OPAQUE_PREPASS
-
- if (alpha < opaque_prepass_threshold) {
- discard;
- }
-
-#endif // USE_OPAQUE_PREPASS
-
-#endif // USE_SHADOW_TO_OPACITY
-
-#ifdef RENDER_DEPTH
-//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
-#else
-
- specular_light *= reflection_multiplier;
- ambient_light *= albedo; //ambient must be multiplied by albedo at the end
-
-#if defined(ENABLE_AO)
- ambient_light *= ao;
- ao_light_affect = mix(1.0, ao, ao_light_affect);
- specular_light *= ao_light_affect;
- diffuse_light *= ao_light_affect;
-#endif
-
- // base color remapping
- diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
- ambient_light *= 1.0 - metallic;
-
- if (fog_color_enabled.a > 0.5) {
-
- float fog_amount = 0.0;
-
-#ifdef USE_LIGHT_DIRECTIONAL
-
- vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0));
-#else
-
- vec3 fog_color = fog_color_enabled.rgb;
-#endif
-
- //apply fog
-
- if (fog_depth_enabled) {
- float fog_far = fog_depth_end > 0.0 ? fog_depth_end : z_far;
-
- float fog_z = smoothstep(fog_depth_begin, fog_far, length(vertex));
-
- fog_amount = pow(fog_z, fog_depth_curve) * fog_density;
- if (fog_transmit_enabled) {
- vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
- float transmit = pow(fog_z, fog_transmit_curve);
- fog_color = mix(max(total_light, fog_color), fog_color, transmit);
- }
- }
-
- if (fog_height_enabled) {
- float y = (camera_matrix * vec4(vertex, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
-
- float rev_amount = 1.0 - fog_amount;
-
- emission = emission * rev_amount + fog_color * fog_amount;
- ambient_light *= rev_amount;
- specular_light *= rev_amount;
- diffuse_light *= rev_amount;
- }
-
-#ifdef USE_MULTIPLE_RENDER_TARGETS
-
-#ifdef SHADELESS
- diffuse_buffer = vec4(albedo.rgb, 0.0);
- specular_buffer = vec4(0.0);
-
-#else
-
- //approximate ambient scale for SSAO, since we will lack full ambient
- float max_emission = max(emission.r, max(emission.g, emission.b));
- float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b));
- float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b));
- float total_ambient = max_ambient + max_diffuse + max_emission;
- float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0;
-
-#if defined(ENABLE_AO)
- ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel);
-#endif
- diffuse_buffer = vec4(emission + diffuse_light + ambient_light, ambient_scale);
- specular_buffer = vec4(specular_light, metallic);
-
-#endif //SHADELESS
-
- normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness);
-
-#if defined(ENABLE_SSS)
- sss_buffer = sss_strength;
-#endif
-
-#else //USE_MULTIPLE_RENDER_TARGETS
-
-#ifdef SHADELESS
- frag_color = vec4(albedo, alpha);
-#else
- frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
-#endif //SHADELESS
-
-#endif //USE_MULTIPLE_RENDER_TARGETS
-
-#endif //RENDER_DEPTH
-}