diff options
Diffstat (limited to 'drivers/gles3/shaders/scene.glsl')
-rw-r--r-- | drivers/gles3/shaders/scene.glsl | 2187 |
1 files changed, 0 insertions, 2187 deletions
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl deleted file mode 100644 index a45ac2eb8a..0000000000 --- a/drivers/gles3/shaders/scene.glsl +++ /dev/null @@ -1,2187 +0,0 @@ -/* clang-format off */ -[vertex] - -#define M_PI 3.14159265359 - -#define SHADER_IS_SRGB false - -/* -from VisualServer: - -ARRAY_VERTEX=0, -ARRAY_NORMAL=1, -ARRAY_TANGENT=2, -ARRAY_COLOR=3, -ARRAY_TEX_UV=4, -ARRAY_TEX_UV2=5, -ARRAY_BONES=6, -ARRAY_WEIGHTS=7, -ARRAY_INDEX=8, -*/ - -// hack to use uv if no uv present so it works with lightmap - -/* INPUT ATTRIBS */ - -layout(location = 0) in highp vec4 vertex_attrib; -/* clang-format on */ -layout(location = 1) in vec3 normal_attrib; -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) -layout(location = 2) in vec4 tangent_attrib; -#endif - -#if defined(ENABLE_COLOR_INTERP) -layout(location = 3) in vec4 color_attrib; -#endif - -#if defined(ENABLE_UV_INTERP) -layout(location = 4) in vec2 uv_attrib; -#endif - -#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) -layout(location = 5) in vec2 uv2_attrib; -#endif - -#ifdef USE_SKELETON -layout(location = 6) in uvec4 bone_indices; // attrib:6 -layout(location = 7) in highp vec4 bone_weights; // attrib:7 -#endif - -#ifdef USE_INSTANCING - -layout(location = 8) in highp vec4 instance_xform0; -layout(location = 9) in highp vec4 instance_xform1; -layout(location = 10) in highp vec4 instance_xform2; -layout(location = 11) in lowp vec4 instance_color; - -#if defined(ENABLE_INSTANCE_CUSTOM) -layout(location = 12) in highp vec4 instance_custom_data; -#endif - -#endif - -layout(std140) uniform SceneData { // ubo:0 - - highp mat4 projection_matrix; - highp mat4 inv_projection_matrix; - highp mat4 camera_inverse_matrix; - highp mat4 camera_matrix; - - mediump vec4 ambient_light_color; - mediump vec4 bg_color; - - mediump vec4 fog_color_enabled; - mediump vec4 fog_sun_color_amount; - - mediump float ambient_energy; - mediump float bg_energy; - - mediump float z_offset; - mediump float z_slope_scale; - highp float shadow_dual_paraboloid_render_zfar; - highp float shadow_dual_paraboloid_render_side; - - highp vec2 viewport_size; - highp vec2 screen_pixel_size; - highp vec2 shadow_atlas_pixel_size; - highp vec2 directional_shadow_pixel_size; - - highp float time; - highp float z_far; - mediump float reflection_multiplier; - mediump float subsurface_scatter_width; - mediump float ambient_occlusion_affect_light; - mediump float ambient_occlusion_affect_ao_channel; - mediump float opaque_prepass_threshold; - - bool fog_depth_enabled; - highp float fog_depth_begin; - highp float fog_depth_end; - mediump float fog_density; - highp float fog_depth_curve; - bool fog_transmit_enabled; - highp float fog_transmit_curve; - bool fog_height_enabled; - highp float fog_height_min; - highp float fog_height_max; - highp float fog_height_curve; -}; - -uniform highp mat4 world_transform; - -#ifdef USE_LIGHT_DIRECTIONAL - -layout(std140) uniform DirectionalLightData { //ubo:3 - - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix1; - highp mat4 shadow_matrix2; - highp mat4 shadow_matrix3; - highp mat4 shadow_matrix4; - mediump vec4 shadow_split_offsets; -}; - -#endif - -#ifdef USE_VERTEX_LIGHTING -//omni and spot - -struct LightData { - - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix; -}; - -layout(std140) uniform OmniLightData { //ubo:4 - - LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; -}; - -layout(std140) uniform SpotLightData { //ubo:5 - - LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; -}; - -#ifdef USE_FORWARD_LIGHTING - -uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; -uniform int omni_light_count; - -uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; -uniform int spot_light_count; - -#endif - -out vec4 diffuse_light_interp; -out vec4 specular_light_interp; - -void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) { - - float NdotL = dot(N, L); - float cNdotL = max(NdotL, 0.0); // clamped NdotL - float NdotV = dot(N, V); - float cNdotV = max(NdotV, 0.0); - -#if defined(DIFFUSE_OREN_NAYAR) - vec3 diffuse_brdf_NL; -#else - float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance -#endif - -#if defined(DIFFUSE_LAMBERT_WRAP) - // energy conserving lambert wrap shader - diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); - -#elif defined(DIFFUSE_OREN_NAYAR) - - { - // see http://mimosa-pudica.net/improved-oren-nayar.html - float LdotV = dot(L, V); - - float s = LdotV - NdotL * NdotV; - float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); - - float sigma2 = roughness * roughness; // TODO: this needs checking - vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); - float B = 0.45 * sigma2 / (sigma2 + 0.09); - - diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); - } -#else - // lambert by default for everything else - diffuse_brdf_NL = cNdotL * (1.0 / M_PI); -#endif - - diffuse += light_color * diffuse_brdf_NL; - - if (roughness > 0.0) { - - // D - float specular_brdf_NL = 0.0; - -#if !defined(SPECULAR_DISABLED) - //normalized blinn always unless disabled - vec3 H = normalize(V + L); - float cNdotH = max(dot(N, H), 0.0); - float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; - float blinn = pow(cNdotH, shininess) * cNdotL; - blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); - specular_brdf_NL = blinn; -#endif - - specular += specular_brdf_NL * light_color * (1.0 / M_PI); - } -} - -void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { - - vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex; - float light_length = length(light_rel_vec); - float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w)); - - light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular); -} - -void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { - - vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex; - float light_length = length(light_rel_vec); - float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w)); - vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; - float spot_cutoff = spot_lights[idx].light_params.y; - float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); - float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); - light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x); - - light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular); -} - -#endif - -/* Varyings */ - -out highp vec3 vertex_interp; -out vec3 normal_interp; - -#if defined(ENABLE_COLOR_INTERP) -out vec4 color_interp; -#endif - -#if defined(ENABLE_UV_INTERP) -out vec2 uv_interp; -#endif - -#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) -out vec2 uv2_interp; -#endif - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) -out vec3 tangent_interp; -out vec3 binormal_interp; -#endif - -#if defined(USE_MATERIAL) - -/* clang-format off */ -layout(std140) uniform UniformData { // ubo:1 - -MATERIAL_UNIFORMS - -}; -/* clang-format on */ - -#endif - -/* clang-format off */ - -VERTEX_SHADER_GLOBALS - -/* clang-format on */ - -#ifdef RENDER_DEPTH_DUAL_PARABOLOID - -out highp float dp_clip; - -#endif - -#define SKELETON_TEXTURE_WIDTH 256 - -#ifdef USE_SKELETON -uniform highp sampler2D skeleton_texture; // texunit:-1 -#endif - -out highp vec4 position_interp; - -// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now. -// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316 -//invariant gl_Position; - -void main() { - - highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0); - - highp mat4 world_matrix = world_transform; - -#ifdef USE_INSTANCING - - { - highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0)); - world_matrix = world_matrix * transpose(m); - } -#endif - - vec3 normal = normal_attrib; - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - vec3 tangent = tangent_attrib.xyz; - float binormalf = tangent_attrib.a; -#endif - -#if defined(ENABLE_COLOR_INTERP) - color_interp = color_attrib; -#if defined(USE_INSTANCING) - color_interp *= instance_color; -#endif - -#endif - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - - vec3 binormal = normalize(cross(normal, tangent) * binormalf); -#endif - -#if defined(ENABLE_UV_INTERP) - uv_interp = uv_attrib; -#endif - -#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) - uv2_interp = uv2_attrib; -#endif - -#ifdef OVERRIDE_POSITION - highp vec4 position; -#endif - -#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM) - vec4 instance_custom = instance_custom_data; -#else - vec4 instance_custom = vec4(0.0); -#endif - - highp mat4 local_projection = projection_matrix; - -//using world coordinates -#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) - - vertex = world_matrix * vertex; - -#if defined(ENSURE_CORRECT_NORMALS) - mat3 normal_matrix = mat3(transpose(inverse(world_matrix))); - normal = normal_matrix * normal; -#else - normal = normalize((world_matrix * vec4(normal, 0.0)).xyz); -#endif - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - - tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz); - binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz); -#endif -#endif - - float roughness = 1.0; - -//defines that make writing custom shaders easier -#define projection_matrix local_projection -#define world_transform world_matrix - -#ifdef USE_SKELETON - { - //skeleton transform - ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int - - ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3); - highp mat4 m; - m = mat4( - texelFetch(skeleton_texture, tex_ofs, 0), - texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), - texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0), - vec4(0.0, 0.0, 0.0, 1.0)) * - bone_weights.x; - - tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3); - - m += mat4( - texelFetch(skeleton_texture, tex_ofs, 0), - texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), - texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0), - vec4(0.0, 0.0, 0.0, 1.0)) * - bone_weights.y; - - tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3); - - m += mat4( - texelFetch(skeleton_texture, tex_ofs, 0), - texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), - texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0), - vec4(0.0, 0.0, 0.0, 1.0)) * - bone_weights.z; - - tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3); - - m += mat4( - texelFetch(skeleton_texture, tex_ofs, 0), - texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), - texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0), - vec4(0.0, 0.0, 0.0, 1.0)) * - bone_weights.w; - - world_matrix = world_matrix * transpose(m); - } -#endif - - float point_size = 1.0; - - highp mat4 modelview = camera_inverse_matrix * world_matrix; - { - /* clang-format off */ - -VERTEX_SHADER_CODE - - /* clang-format on */ - } - - gl_PointSize = point_size; - -// using local coordinates (default) -#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) - - vertex = modelview * vertex; - -#if defined(ENSURE_CORRECT_NORMALS) - mat3 normal_matrix = mat3(transpose(inverse(modelview))); - normal = normal_matrix * normal; -#else - normal = normalize((modelview * vec4(normal, 0.0)).xyz); -#endif - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - - tangent = normalize((modelview * vec4(tangent, 0.0)).xyz); - binormal = normalize((modelview * vec4(binormal, 0.0)).xyz); -#endif -#endif - -//using world coordinates -#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) - - vertex = camera_inverse_matrix * vertex; - normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz); - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - - tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz); - binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz); -#endif -#endif - - vertex_interp = vertex.xyz; - normal_interp = normal; - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent_interp = tangent; - binormal_interp = binormal; -#endif - -#ifdef RENDER_DEPTH - -#ifdef RENDER_DEPTH_DUAL_PARABOLOID - - vertex_interp.z *= shadow_dual_paraboloid_render_side; - normal_interp.z *= shadow_dual_paraboloid_render_side; - - dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias - - //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges - - highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset; - highp float distance = length(vtx); - vtx = normalize(vtx); - vtx.xy /= 1.0 - vtx.z; - vtx.z = (distance / shadow_dual_paraboloid_render_zfar); - vtx.z = vtx.z * 2.0 - 1.0; - - vertex_interp = vtx; - -#else - - float z_ofs = z_offset; - z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale; - vertex_interp.z -= z_ofs; - -#endif //RENDER_DEPTH_DUAL_PARABOLOID - -#endif //RENDER_DEPTH - -#ifdef OVERRIDE_POSITION - gl_Position = position; -#else - gl_Position = projection_matrix * vec4(vertex_interp, 1.0); -#endif - - position_interp = gl_Position; - -#ifdef USE_VERTEX_LIGHTING - - diffuse_light_interp = vec4(0.0); - specular_light_interp = vec4(0.0); - -#ifdef USE_FORWARD_LIGHTING - - for (int i = 0; i < omni_light_count; i++) { - light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb); - } - - for (int i = 0; i < spot_light_count; i++) { - light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb); - } -#endif - -#ifdef USE_LIGHT_DIRECTIONAL - - vec3 directional_diffuse = vec3(0.0); - vec3 directional_specular = vec3(0.0); - light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular); - - float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333)); - float diff_dir_avg = dot(directional_diffuse, vec3(0.33333)); - if (diff_avg > 0.0) { - diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg); - } else { - diffuse_light_interp.a = 1.0; - } - - diffuse_light_interp.rgb += directional_diffuse; - - float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333)); - float spec_dir_avg = dot(directional_specular, vec3(0.33333)); - if (spec_avg > 0.0) { - specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg); - } else { - specular_light_interp.a = 1.0; - } - - specular_light_interp.rgb += directional_specular; - -#endif //USE_LIGHT_DIRECTIONAL - -#endif // USE_VERTEX_LIGHTING -} - -/* clang-format off */ -[fragment] - - -/* texture unit usage, N is max_texture_unity-N - -1-skeleton -2-radiance -3-reflection_atlas -4-directional_shadow -5-shadow_atlas -6-decal_atlas -7-screen -8-depth -9-probe1 -10-probe2 - -*/ - -uniform highp mat4 world_transform; -/* clang-format on */ - -#define M_PI 3.14159265359 -#define SHADER_IS_SRGB false - -/* Varyings */ - -#if defined(ENABLE_COLOR_INTERP) -in vec4 color_interp; -#endif - -#if defined(ENABLE_UV_INTERP) -in vec2 uv_interp; -#endif - -#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) -in vec2 uv2_interp; -#endif - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) -in vec3 tangent_interp; -in vec3 binormal_interp; -#endif - -in highp vec3 vertex_interp; -in vec3 normal_interp; - -/* PBR CHANNELS */ - -#ifdef USE_RADIANCE_MAP - -layout(std140) uniform Radiance { // ubo:2 - - mat4 radiance_inverse_xform; - float radiance_ambient_contribution; -}; - -#define RADIANCE_MAX_LOD 5.0 - -uniform sampler2D irradiance_map; // texunit:-6 - -#ifdef USE_RADIANCE_MAP_ARRAY - -uniform sampler2DArray radiance_map; // texunit:-2 - -vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) { - - vec3 norm = normalize(p_vec); - norm.xy /= 1.0 + abs(norm.z); - norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); - - // we need to lie the derivatives (normg) and assume that DP side is always the same - // to get proper texture filtering - vec2 normg = norm.xy; - if (norm.z > 0.0) { - norm.y = 0.5 - norm.y + 0.5; - } - - // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays, - // it's easy to have precision errors using fract() to interpolate layers - // as such, using fixed point to ensure it works. - - float index = p_roughness * RADIANCE_MAX_LOD; - int indexi = int(index * 256.0); - vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz; - vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz; - return mix(base, next, float(indexi % 256) / 256.0); -} - -#else - -uniform sampler2D radiance_map; // texunit:-2 - -vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) { - - vec3 norm = normalize(p_vec); - norm.xy /= 1.0 + abs(norm.z); - norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); - if (norm.z > 0.0) { - norm.y = 0.5 - norm.y + 0.5; - } - return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz; -} - -#endif - -#endif - -/* Material Uniforms */ - -#if defined(USE_MATERIAL) - -/* clang-format off */ -layout(std140) uniform UniformData { - -MATERIAL_UNIFORMS - -}; -/* clang-format on */ - -#endif - -/* clang-format off */ - -FRAGMENT_SHADER_GLOBALS - -/* clang-format on */ - -layout(std140) uniform SceneData { - - highp mat4 projection_matrix; - highp mat4 inv_projection_matrix; - highp mat4 camera_inverse_matrix; - highp mat4 camera_matrix; - - mediump vec4 ambient_light_color; - mediump vec4 bg_color; - - mediump vec4 fog_color_enabled; - mediump vec4 fog_sun_color_amount; - - mediump float ambient_energy; - mediump float bg_energy; - - mediump float z_offset; - mediump float z_slope_scale; - highp float shadow_dual_paraboloid_render_zfar; - highp float shadow_dual_paraboloid_render_side; - - highp vec2 viewport_size; - highp vec2 screen_pixel_size; - highp vec2 shadow_atlas_pixel_size; - highp vec2 directional_shadow_pixel_size; - - highp float time; - highp float z_far; - mediump float reflection_multiplier; - mediump float subsurface_scatter_width; - mediump float ambient_occlusion_affect_light; - mediump float ambient_occlusion_affect_ao_channel; - mediump float opaque_prepass_threshold; - - bool fog_depth_enabled; - highp float fog_depth_begin; - highp float fog_depth_end; - mediump float fog_density; - highp float fog_depth_curve; - bool fog_transmit_enabled; - highp float fog_transmit_curve; - bool fog_height_enabled; - highp float fog_height_min; - highp float fog_height_max; - highp float fog_height_curve; -}; - - //directional light data - -#ifdef USE_LIGHT_DIRECTIONAL - -layout(std140) uniform DirectionalLightData { - - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix1; - highp mat4 shadow_matrix2; - highp mat4 shadow_matrix3; - highp mat4 shadow_matrix4; - mediump vec4 shadow_split_offsets; -}; - -uniform highp sampler2DShadow directional_shadow; // texunit:-4 - -#endif - -#ifdef USE_VERTEX_LIGHTING -in vec4 diffuse_light_interp; -in vec4 specular_light_interp; -#endif -// omni and spot - -struct LightData { - - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix; -}; - -layout(std140) uniform OmniLightData { // ubo:4 - - LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; -}; - -layout(std140) uniform SpotLightData { // ubo:5 - - LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; -}; - -uniform highp sampler2DShadow shadow_atlas; // texunit:-5 - -struct ReflectionData { - - mediump vec4 box_extents; - mediump vec4 box_offset; - mediump vec4 params; // intensity, 0, interior , boxproject - mediump vec4 ambient; // ambient color, energy - mediump vec4 atlas_clamp; - highp mat4 local_matrix; // up to here for spot and omni, rest is for directional - // notes: for ambientblend, use distance to edge to blend between already existing global environment -}; - -layout(std140) uniform ReflectionProbeData { //ubo:6 - - ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS]; -}; -uniform mediump sampler2D reflection_atlas; // texunit:-3 - -#ifdef USE_FORWARD_LIGHTING - -uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; -uniform int omni_light_count; - -uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; -uniform int spot_light_count; - -uniform int reflection_indices[MAX_FORWARD_LIGHTS]; -uniform int reflection_count; - -#endif - -#if defined(SCREEN_TEXTURE_USED) - -uniform highp sampler2D screen_texture; // texunit:-7 - -#endif - -#ifdef USE_MULTIPLE_RENDER_TARGETS - -layout(location = 0) out vec4 diffuse_buffer; -layout(location = 1) out vec4 specular_buffer; -layout(location = 2) out vec4 normal_mr_buffer; -#if defined(ENABLE_SSS) -layout(location = 3) out float sss_buffer; -#endif - -#else - -layout(location = 0) out vec4 frag_color; - -#endif - -in highp vec4 position_interp; -uniform highp sampler2D depth_buffer; // texunit:-8 - -#ifdef USE_CONTACT_SHADOWS - -float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) { - - if (abs(dir.z) > 0.99) - return 1.0; - - vec3 endpoint = pos + dir * max_distance; - vec4 source = position_interp; - vec4 dest = projection_matrix * vec4(endpoint, 1.0); - - vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5; - vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5; - - vec2 screen_rel = to_screen - from_screen; - - if (length(screen_rel) < 0.00001) - return 1.0; // too small, don't do anything - - /* - float pixel_size; // approximate pixel size - - if (screen_rel.x > screen_rel.y) { - - pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x)); - } else { - pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y)); - } - */ - vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0); - - vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size; - - float steps = length(screen_rel) / length(pixel_incr); - steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation - //steps = 10.0; - - vec4 incr = (dest - source) / steps; - float ratio = 0.0; - float ratio_incr = 1.0 / steps; - - while (steps > 0.0) { - source += incr * 2.0; - bias += incr * 2.0; - - vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5; - if (uv_depth.x > 0.0 && uv_depth.x < 1.0 && uv_depth.y > 0.0 && uv_depth.y < 1.0) { - float depth = texture(depth_buffer, uv_depth.xy).r; - - if (depth < uv_depth.z) { - if (depth > (bias.z / bias.w) * 0.5 + 0.5) { - return min(pow(ratio, 4.0), 1.0); - } else { - return 1.0; - } - } - - ratio += ratio_incr; - steps -= 1.0; - } else { - return 1.0; - } - } - - return 1.0; -} - -#endif - -// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. -// We're dividing this factor off because the overall term we'll end up looks like -// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): -// -// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) -// -// We're basically regouping this as -// -// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] -// -// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. -// -// The contents of the D and G (G1) functions (GGX) are taken from -// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). -// Eqns 71-72 and 85-86 (see also Eqns 43 and 80). - -float G_GGX_2cos(float cos_theta_m, float alpha) { - // Schlick's approximation - // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) - // Eq. (19), although see Heitz (2014) the about the problems with his derivation. - // It nevertheless approximates GGX well with k = alpha/2. - float k = 0.5 * alpha; - return 0.5 / (cos_theta_m * (1.0 - k) + k); - - // float cos2 = cos_theta_m * cos_theta_m; - // float sin2 = (1.0 - cos2); - // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); -} - -float D_GGX(float cos_theta_m, float alpha) { - float alpha2 = alpha * alpha; - float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; - return alpha2 / (M_PI * d * d); -} - -float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { - float cos2 = cos_theta_m * cos_theta_m; - float sin2 = (1.0 - cos2); - float s_x = alpha_x * cos_phi; - float s_y = alpha_y * sin_phi; - return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); -} - -float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { - float cos2 = cos_theta_m * cos_theta_m; - float sin2 = (1.0 - cos2); - float r_x = cos_phi / alpha_x; - float r_y = sin_phi / alpha_y; - float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); - return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); -} - -float SchlickFresnel(float u) { - float m = 1.0 - u; - float m2 = m * m; - return m2 * m2 * m; // pow(m,5) -} - -float GTR1(float NdotH, float a) { - if (a >= 1.0) return 1.0 / M_PI; - float a2 = a * a; - float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; - return (a2 - 1.0) / (M_PI * log(a2) * t); -} - -vec3 F0(float metallic, float specular, vec3 albedo) { - float dielectric = 0.16 * specular * specular; - // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; - // see https://google.github.io/filament/Filament.md.html - return mix(vec3(dielectric), albedo, vec3(metallic)); -} - -void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) { - -#if defined(USE_LIGHT_SHADER_CODE) - // light is written by the light shader - - vec3 normal = N; - vec3 albedo = diffuse_color; - vec3 light = L; - vec3 view = V; - - /* clang-format off */ - -LIGHT_SHADER_CODE - - /* clang-format on */ - -#else - float NdotL = dot(N, L); - float cNdotL = max(NdotL, 0.0); // clamped NdotL - float NdotV = dot(N, V); - float cNdotV = max(NdotV, 0.0); - -#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) - vec3 H = normalize(V + L); -#endif - -#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) - float cNdotH = max(dot(N, H), 0.0); -#endif - -#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) - float cLdotH = max(dot(L, H), 0.0); -#endif - - if (metallic < 1.0) { -#if defined(DIFFUSE_OREN_NAYAR) - vec3 diffuse_brdf_NL; -#else - float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance -#endif - -#if defined(DIFFUSE_LAMBERT_WRAP) - // energy conserving lambert wrap shader - diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); - -#elif defined(DIFFUSE_OREN_NAYAR) - - { - // see http://mimosa-pudica.net/improved-oren-nayar.html - float LdotV = dot(L, V); - - float s = LdotV - NdotL * NdotV; - float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); - - float sigma2 = roughness * roughness; // TODO: this needs checking - vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); - float B = 0.45 * sigma2 / (sigma2 + 0.09); - - diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); - } - -#elif defined(DIFFUSE_TOON) - - diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); - -#elif defined(DIFFUSE_BURLEY) - - { - float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; - float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); - float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); - diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; - /* - float energyBias = mix(roughness, 0.0, 0.5); - float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); - float fd90 = energyBias + 2.0 * VoH * VoH * roughness; - float f0 = 1.0; - float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); - float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); - - diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; - */ - } -#else - // lambert - diffuse_brdf_NL = cNdotL * (1.0 / M_PI); -#endif - - diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; - -#if defined(TRANSMISSION_USED) - diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation; -#endif - -#if defined(LIGHT_USE_RIM) - float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); - diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; -#endif - } - - if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely - - // D - -#if defined(SPECULAR_BLINN) - - //normalized blinn - float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; - float blinn = pow(cNdotH, shininess) * cNdotL; - blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); - float intensity = blinn; - - specular_light += light_color * intensity * specular_blob_intensity * attenuation; - -#elif defined(SPECULAR_PHONG) - - vec3 R = normalize(-reflect(L, N)); - float cRdotV = max(0.0, dot(R, V)); - float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; - float phong = pow(cRdotV, shininess); - phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); - float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); - - specular_light += light_color * intensity * specular_blob_intensity * attenuation; - -#elif defined(SPECULAR_TOON) - - vec3 R = normalize(-reflect(L, N)); - float RdotV = dot(R, V); - float mid = 1.0 - roughness; - mid *= mid; - float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; - diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection - -#elif defined(SPECULAR_DISABLED) - // none.. - -#elif defined(SPECULAR_SCHLICK_GGX) - // shlick+ggx as default - -#if defined(LIGHT_USE_ANISOTROPY) - - float alpha_ggx = roughness * roughness; - float aspect = sqrt(1.0 - anisotropy * 0.9); - float ax = alpha_ggx / aspect; - float ay = alpha_ggx * aspect; - float XdotH = dot(T, H); - float YdotH = dot(B, H); - float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); - float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); - -#else - float alpha_ggx = roughness * roughness; - float D = D_GGX(cNdotH, alpha_ggx); - float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx); -#endif - // F - vec3 f0 = F0(metallic, specular, diffuse_color); - float cLdotH5 = SchlickFresnel(cLdotH); - vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); - - vec3 specular_brdf_NL = cNdotL * D * F * G; - - specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; -#endif - -#if defined(LIGHT_USE_CLEARCOAT) - -#if !defined(SPECULAR_SCHLICK_GGX) - float cLdotH5 = SchlickFresnel(cLdotH); -#endif - float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); - float Fr = mix(.04, 1.0, cLdotH5); - float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); - - float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; - - specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation; -#endif - } - -#ifdef USE_SHADOW_TO_OPACITY - alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0)); -#endif - -#endif //defined(USE_LIGHT_SHADER_CODE) -} - -float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) { - -#ifdef SHADOW_MODE_PCF_13 - - float avg = textureProj(shadow, vec4(pos, depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0)); - return avg * (1.0 / 13.0); -#endif - -#ifdef SHADOW_MODE_PCF_5 - - float avg = textureProj(shadow, vec4(pos, depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); - avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); - return avg * (1.0 / 5.0); - -#endif - -#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13) - - return textureProj(shadow, vec4(pos, depth, 1.0)); - -#endif -} - -#ifdef RENDER_DEPTH_DUAL_PARABOLOID - -in highp float dp_clip; - -#endif - -void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) { - - vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex; - float light_length = length(light_rel_vec); - float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w; - float omni_attenuation; - if (normalized_distance < 1.0) { - omni_attenuation = pow(1.0 - normalized_distance, omni_lights[idx].light_direction_attenuation.w); - } else { - omni_attenuation = 0.0; - } - vec3 light_attenuation = vec3(omni_attenuation); - -#if !defined(SHADOWS_DISABLED) -#ifdef USE_SHADOW - if (omni_lights[idx].light_params.w > 0.5) { - // there is a shadowmap - - highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; - float shadow_len = length(splane); - splane = normalize(splane); - vec4 clamp_rect = omni_lights[idx].light_clamp; - - if (splane.z >= 0.0) { - - splane.z += 1.0; - - clamp_rect.y += clamp_rect.w; - - } else { - - splane.z = 1.0 - splane.z; - - /* - if (clamp_rect.z < clamp_rect.w) { - clamp_rect.x += clamp_rect.z; - } else { - clamp_rect.y += clamp_rect.w; - } - */ - } - - splane.xy /= splane.z; - splane.xy = splane.xy * 0.5 + 0.5; - splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w; - - splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; - float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect); - -#ifdef USE_CONTACT_SHADOWS - - if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) { - - float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a)); - shadow = min(shadow, contact_shadow); - } -#endif - light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow); - } -#endif //USE_SHADOW -#endif //SHADOWS_DISABLED - light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha); -} - -void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light, inout float alpha) { - - vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex; - float light_length = length(light_rel_vec); - float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w; - float spot_attenuation; - if (normalized_distance < 1.0) { - spot_attenuation = pow(1.0 - normalized_distance, spot_lights[idx].light_direction_attenuation.w); - } else { - spot_attenuation = 0.0; - } - vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; - float spot_cutoff = spot_lights[idx].light_params.y; - float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); - float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); - spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x); - vec3 light_attenuation = vec3(spot_attenuation); - -#if !defined(SHADOWS_DISABLED) -#ifdef USE_SHADOW - if (spot_lights[idx].light_params.w > 0.5) { - //there is a shadowmap - highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0)); - splane.xyz /= splane.w; - - float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp); - -#ifdef USE_CONTACT_SHADOWS - if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) { - - float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a)); - shadow = min(shadow, contact_shadow); - } -#endif - light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow); - } -#endif //USE_SHADOW -#endif //SHADOWS_DISABLED - - light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha); -} - -void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) { - - vec3 ref_vec = normalize(reflect(vertex, normal)); - vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz; - vec3 box_extents = reflections[idx].box_extents.xyz; - - if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box - return; - } - - vec3 inner_pos = abs(local_pos / box_extents); - float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); - //make blend more rounded - blend = mix(length(inner_pos), blend, blend); - blend *= blend; - blend = max(0.0, 1.0 - blend); - - if (reflections[idx].params.x > 0.0) { // compute reflection - - vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz; - - if (reflections[idx].params.w > 0.5) { //box project - - vec3 nrdir = normalize(local_ref_vec); - vec3 rbmax = (box_extents - local_pos) / nrdir; - vec3 rbmin = (-box_extents - local_pos) / nrdir; - - vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0))); - - float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); - vec3 posonbox = local_pos + nrdir * fa; - local_ref_vec = posonbox - reflections[idx].box_offset.xyz; - } - - vec4 clamp_rect = reflections[idx].atlas_clamp; - vec3 norm = normalize(local_ref_vec); - norm.xy /= 1.0 + abs(norm.z); - norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); - if (norm.z > 0.0) { - norm.y = 0.5 - norm.y + 0.5; - } - - vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy; - atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw); - - highp vec4 reflection; - reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb; - - if (reflections[idx].params.z < 0.5) { - reflection.rgb = mix(skybox, reflection.rgb, blend); - } - reflection.rgb *= reflections[idx].params.x; - reflection.a = blend; - reflection.rgb *= reflection.a; - - reflection_accum += reflection; - } -#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE) - if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox - - vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz; - - vec3 splane = normalize(local_amb_vec); - vec4 clamp_rect = reflections[idx].atlas_clamp; - - splane.z *= -1.0; - if (splane.z >= 0.0) { - splane.z += 1.0; - clamp_rect.y += clamp_rect.w; - } else { - splane.z = 1.0 - splane.z; - splane.y = -splane.y; - } - - splane.xy /= splane.z; - splane.xy = splane.xy * 0.5 + 0.5; - - splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy; - splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw); - - highp vec4 ambient_out; - ambient_out.a = blend; - ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb; - ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a); - if (reflections[idx].params.z < 0.5) { - ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); - } - - ambient_out.rgb *= ambient_out.a; - ambient_accum += ambient_out; - } else { - - highp vec4 ambient_out; - ambient_out.a = blend; - ambient_out.rgb = reflections[idx].ambient.rgb; - if (reflections[idx].params.z < 0.5) { - ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); - } - ambient_out.rgb *= ambient_out.a; - ambient_accum += ambient_out; - } -#endif -} - -#ifdef USE_LIGHTMAP -uniform mediump sampler2D lightmap; //texunit:-9 -uniform mediump float lightmap_energy; -#endif - -#ifdef USE_LIGHTMAP_CAPTURE -uniform mediump vec4[12] lightmap_captures; -uniform bool lightmap_capture_sky; - -#endif - -#ifdef USE_GI_PROBES - -uniform mediump sampler3D gi_probe1; //texunit:-9 -uniform highp mat4 gi_probe_xform1; -uniform highp vec3 gi_probe_bounds1; -uniform highp vec3 gi_probe_cell_size1; -uniform highp float gi_probe_multiplier1; -uniform highp float gi_probe_bias1; -uniform highp float gi_probe_normal_bias1; -uniform bool gi_probe_blend_ambient1; - -uniform mediump sampler3D gi_probe2; //texunit:-10 -uniform highp mat4 gi_probe_xform2; -uniform highp vec3 gi_probe_bounds2; -uniform highp vec3 gi_probe_cell_size2; -uniform highp float gi_probe_multiplier2; -uniform highp float gi_probe_bias2; -uniform highp float gi_probe_normal_bias2; -uniform bool gi_probe2_enabled; -uniform bool gi_probe_blend_ambient2; - -vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { - - float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0; - float alpha = 0.0; - vec3 color = vec3(0.0); - - while (dist < max_distance && alpha < 0.95) { - float diameter = max(1.0, 2.0 * tan_half_angle * dist); - vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter)); - float a = (1.0 - alpha); - color += scolor.rgb * a; - alpha += a * scolor.a; - dist += diameter * 0.5; - } - - if (blend_ambient) { - color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95)); - } - - return color; -} - -void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) { - - vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz; - vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz; - ref_vec = normalize(ref_pos - probe_pos); - - probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias; - - /* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0); - out_diff.a = 1.0; - return;*/ - //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0); - //return; - - //this causes corrupted pixels, i have no idea why.. - if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) { - return; - } - - vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0); - float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); - //float blend=1.0; - - float max_distance = length(bounds); - - //radiance -#ifdef VCT_QUALITY_HIGH - -#define MAX_CONE_DIRS 6 - vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( - vec3(0.0, 0.0, 1.0), - vec3(0.866025, 0.0, 0.5), - vec3(0.267617, 0.823639, 0.5), - vec3(-0.700629, 0.509037, 0.5), - vec3(-0.700629, -0.509037, 0.5), - vec3(0.267617, -0.823639, 0.5)); - - float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); - float cone_angle_tan = 0.577; - float min_ref_tan = 0.0; -#else - -#define MAX_CONE_DIRS 4 - - vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( - vec3(0.707107, 0.0, 0.707107), - vec3(0.0, 0.707107, 0.707107), - vec3(-0.707107, 0.0, 0.707107), - vec3(0.0, -0.707107, 0.707107)); - - float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); - float cone_angle_tan = 0.98269; - max_distance *= 0.5; - float min_ref_tan = 0.2; - -#endif - vec3 light = vec3(0.0); - for (int i = 0; i < MAX_CONE_DIRS; i++) { - - vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos); - light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias); - } - - light *= multiplier; - - out_diff += vec4(light * blend, blend); - - //irradiance - - vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI * 0.99)), max_distance, p_bias); - - irr_light *= multiplier; - //irr_light=vec3(0.0); - - out_spec += vec4(irr_light * blend, blend); -} - -void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) { - - roughness = roughness * roughness; - - vec3 ref_vec = normalize(reflect(normalize(pos), normal)); - - //find arbitrary tangent and bitangent, then build a matrix - vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); - vec3 tangent = normalize(cross(v0, normal)); - vec3 bitangent = normalize(cross(tangent, normal)); - mat3 normal_mat = mat3(tangent, bitangent, normal); - - vec4 diff_accum = vec4(0.0); - vec4 spec_accum = vec4(0.0); - - vec3 ambient = out_ambient; - out_ambient = vec3(0.0); - - vec3 environment = out_specular; - - out_specular = vec3(0.0); - - gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum); - - if (gi_probe2_enabled) { - - gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum); - } - - if (diff_accum.a > 0.0) { - diff_accum.rgb /= diff_accum.a; - } - - if (spec_accum.a > 0.0) { - spec_accum.rgb /= spec_accum.a; - } - - out_specular += spec_accum.rgb; - out_ambient += diff_accum.rgb; -} - -#endif - -void main() { - -#ifdef RENDER_DEPTH_DUAL_PARABOLOID - - if (dp_clip > 0.0) - discard; -#endif - - //lay out everything, whathever is unused is optimized away anyway - highp vec3 vertex = vertex_interp; - vec3 view = -normalize(vertex_interp); - vec3 albedo = vec3(1.0); - vec3 transmission = vec3(0.0); - float metallic = 0.0; - float specular = 0.5; - vec3 emission = vec3(0.0); - float roughness = 1.0; - float rim = 0.0; - float rim_tint = 0.0; - float clearcoat = 0.0; - float clearcoat_gloss = 0.0; - float anisotropy = 0.0; - vec2 anisotropy_flow = vec2(1.0, 0.0); - -#if defined(ENABLE_AO) - float ao = 1.0; - float ao_light_affect = 0.0; -#endif - - float alpha = 1.0; - -#if defined(ALPHA_SCISSOR_USED) - float alpha_scissor = 0.5; -#endif - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - vec3 binormal = normalize(binormal_interp); - vec3 tangent = normalize(tangent_interp); -#else - vec3 binormal = vec3(0.0); - vec3 tangent = vec3(0.0); -#endif - vec3 normal = normalize(normal_interp); - -#if defined(DO_SIDE_CHECK) - if (!gl_FrontFacing) { - normal = -normal; - } -#endif - -#if defined(ENABLE_UV_INTERP) - vec2 uv = uv_interp; -#endif - -#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) - vec2 uv2 = uv2_interp; -#endif - -#if defined(ENABLE_COLOR_INTERP) - vec4 color = color_interp; -#endif - -#if defined(ENABLE_NORMALMAP) - - vec3 normalmap = vec3(0.5); -#endif - - float normaldepth = 1.0; - -#if defined(SCREEN_UV_USED) - vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; -#endif - -#if defined(ENABLE_SSS) - float sss_strength = 0.0; -#endif - - { - /* clang-format off */ - -FRAGMENT_SHADER_CODE - - /* clang-format on */ - } - -#if !defined(USE_SHADOW_TO_OPACITY) - -#if defined(ALPHA_SCISSOR_USED) - if (alpha < alpha_scissor) { - discard; - } -#endif // ALPHA_SCISSOR_USED - -#ifdef USE_OPAQUE_PREPASS - - if (alpha < opaque_prepass_threshold) { - discard; - } - -#endif // USE_OPAQUE_PREPASS - -#endif // !USE_SHADOW_TO_OPACITY - -#if defined(ENABLE_NORMALMAP) - - normalmap.xy = normalmap.xy * 2.0 - 1.0; - normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. - - normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)); - -#endif - -#if defined(LIGHT_USE_ANISOTROPY) - - if (anisotropy > 0.01) { - //rotation matrix - mat3 rot = mat3(tangent, binormal, normal); - //make local to space - tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); - binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); - } - -#endif - -#ifdef ENABLE_CLIP_ALPHA - if (albedo.a < 0.99) { - //used for doublepass and shadowmapping - discard; - } -#endif - - /////////////////////// LIGHTING ////////////////////////////// - - //apply energy conservation - -#ifdef USE_VERTEX_LIGHTING - - vec3 specular_light = specular_light_interp.rgb; - vec3 diffuse_light = diffuse_light_interp.rgb; -#else - - vec3 specular_light = vec3(0.0, 0.0, 0.0); - vec3 diffuse_light = vec3(0.0, 0.0, 0.0); - -#endif - - vec3 ambient_light; - vec3 env_reflection_light = vec3(0.0, 0.0, 0.0); - - vec3 eye_vec = view; - - // IBL precalculations - float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0); - vec3 f0 = F0(metallic, specular, albedo); - vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0); - -#ifdef USE_RADIANCE_MAP - -#ifdef AMBIENT_LIGHT_DISABLED - ambient_light = vec3(0.0, 0.0, 0.0); -#else - { - - { //read radiance from dual paraboloid - - vec3 ref_vec = reflect(-eye_vec, normal); - ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); - vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy; - env_reflection_light = radiance; - } - } -#ifndef USE_LIGHTMAP - { - - vec3 norm = normal; - norm = normalize((radiance_inverse_xform * vec4(norm, 0.0)).xyz); - norm.xy /= 1.0 + abs(norm.z); - norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); - if (norm.z > 0.0) { - norm.y = 0.5 - norm.y + 0.5; - } - - vec3 env_ambient = texture(irradiance_map, norm.xy).rgb * bg_energy; - env_ambient *= 1.0 - F; - - ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution); - } -#endif -#endif //AMBIENT_LIGHT_DISABLED - -#else - -#ifdef AMBIENT_LIGHT_DISABLED - ambient_light = vec3(0.0, 0.0, 0.0); -#else - ambient_light = ambient_light_color.rgb; - env_reflection_light = bg_color.rgb * bg_energy; -#endif //AMBIENT_LIGHT_DISABLED - -#endif - - ambient_light *= ambient_energy; - - float specular_blob_intensity = 1.0; - -#if defined(SPECULAR_TOON) - specular_blob_intensity *= specular * 2.0; -#endif - -#ifdef USE_GI_PROBES - gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light); - -#endif - -#ifdef USE_LIGHTMAP - ambient_light = texture(lightmap, uv2).rgb * lightmap_energy; -#endif - -#ifdef USE_LIGHTMAP_CAPTURE - { - vec3 cone_dirs[12] = vec3[]( - vec3(0.0, 0.0, 1.0), - vec3(0.866025, 0.0, 0.5), - vec3(0.267617, 0.823639, 0.5), - vec3(-0.700629, 0.509037, 0.5), - vec3(-0.700629, -0.509037, 0.5), - vec3(0.267617, -0.823639, 0.5), - vec3(0.0, 0.0, -1.0), - vec3(0.866025, 0.0, -0.5), - vec3(0.267617, 0.823639, -0.5), - vec3(-0.700629, 0.509037, -0.5), - vec3(-0.700629, -0.509037, -0.5), - vec3(0.267617, -0.823639, -0.5)); - - vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz; - vec4 captured = vec4(0.0); - float sum = 0.0; - for (int i = 0; i < 12; i++) { - float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect - captured += lightmap_captures[i] * amount; - sum += amount; - } - - captured /= sum; - - if (lightmap_capture_sky) { - ambient_light = mix(ambient_light, captured.rgb, captured.a); - } else { - ambient_light = captured.rgb; - } - } -#endif - -#ifdef USE_FORWARD_LIGHTING - - highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); - highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0); - for (int i = 0; i < reflection_count; i++) { - reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum); - } - - if (reflection_accum.a > 0.0) { - specular_light += reflection_accum.rgb / reflection_accum.a; - } else { - specular_light += env_reflection_light; - } -#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE) - if (ambient_accum.a > 0.0) { - ambient_light = ambient_accum.rgb / ambient_accum.a; - } -#endif -#endif - - { - -#if defined(DIFFUSE_TOON) - //simplify for toon, as - specular_light *= specular * metallic * albedo * 2.0; -#else - - // scales the specular reflections, needs to be be computed before lighting happens, - // but after environment, GI, and reflection probes are added - // Environment brdf approximation (Lazarov 2013) - // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile - const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); - const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); - vec4 r = roughness * c0 + c1; - float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; - vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; - specular_light *= env.x * F + env.y; -#endif - } - -#if defined(USE_LIGHT_DIRECTIONAL) - - vec3 light_attenuation = vec3(1.0); - - float depth_z = -vertex.z; -#ifdef LIGHT_DIRECTIONAL_SHADOW -#if !defined(SHADOWS_DISABLED) - -#ifdef LIGHT_USE_PSSM4 - if (depth_z < shadow_split_offsets.w) { -#elif defined(LIGHT_USE_PSSM2) - if (depth_z < shadow_split_offsets.y) { -#else - if (depth_z < shadow_split_offsets.x) { -#endif //LIGHT_USE_PSSM4 - - vec3 pssm_coord; - float pssm_fade = 0.0; - -#ifdef LIGHT_USE_PSSM_BLEND - float pssm_blend; - vec3 pssm_coord2; - bool use_blend = true; -#endif - -#ifdef LIGHT_USE_PSSM4 - - if (depth_z < shadow_split_offsets.y) { - - if (depth_z < shadow_split_offsets.x) { - - highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - -#if defined(LIGHT_USE_PSSM_BLEND) - - splane = (shadow_matrix2 * vec4(vertex, 1.0)); - pssm_coord2 = splane.xyz / splane.w; - pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z); -#endif - - } else { - - highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - -#if defined(LIGHT_USE_PSSM_BLEND) - splane = (shadow_matrix3 * vec4(vertex, 1.0)); - pssm_coord2 = splane.xyz / splane.w; - pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z); -#endif - } - } else { - - if (depth_z < shadow_split_offsets.z) { - - highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - -#if defined(LIGHT_USE_PSSM_BLEND) - splane = (shadow_matrix4 * vec4(vertex, 1.0)); - pssm_coord2 = splane.xyz / splane.w; - pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z); -#endif - - } else { - - highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z); - -#if defined(LIGHT_USE_PSSM_BLEND) - use_blend = false; - -#endif - } - } - -#endif //LIGHT_USE_PSSM4 - -#ifdef LIGHT_USE_PSSM2 - - if (depth_z < shadow_split_offsets.x) { - - highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - -#if defined(LIGHT_USE_PSSM_BLEND) - - splane = (shadow_matrix2 * vec4(vertex, 1.0)); - pssm_coord2 = splane.xyz / splane.w; - pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z); -#endif - - } else { - highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z); -#if defined(LIGHT_USE_PSSM_BLEND) - use_blend = false; - -#endif - } - -#endif //LIGHT_USE_PSSM2 - -#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) - { //regular orthogonal - highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - } -#endif - - //one one sample - - float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp); - -#if defined(LIGHT_USE_PSSM_BLEND) - - if (use_blend) { - shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend); - } -#endif - -#ifdef USE_CONTACT_SHADOWS - if (shadow > 0.01 && shadow_color_contact.a > 0.0) { - - float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a); - shadow = min(shadow, contact_shadow); - } -#endif - light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade); - } - -#endif // !defined(SHADOWS_DISABLED) -#endif //LIGHT_DIRECTIONAL_SHADOW - -#ifdef USE_VERTEX_LIGHTING - diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a); - specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a); - -#else - light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light, alpha); -#endif - -#endif //#USE_LIGHT_DIRECTIONAL - -#ifdef USE_FORWARD_LIGHTING - -#ifdef USE_VERTEX_LIGHTING - - diffuse_light *= albedo; -#else - - for (int i = 0; i < omni_light_count; i++) { - light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha); - } - - for (int i = 0; i < spot_light_count; i++) { - light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light, alpha); - } - -#endif //USE_VERTEX_LIGHTING - -#endif - -#ifdef USE_SHADOW_TO_OPACITY - alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); - -#if defined(ALPHA_SCISSOR_USED) - if (alpha < alpha_scissor) { - discard; - } -#endif // ALPHA_SCISSOR_USED - -#ifdef USE_OPAQUE_PREPASS - - if (alpha < opaque_prepass_threshold) { - discard; - } - -#endif // USE_OPAQUE_PREPASS - -#endif // USE_SHADOW_TO_OPACITY - -#ifdef RENDER_DEPTH -//nothing happens, so a tree-ssa optimizer will result in no fragment shader :) -#else - - specular_light *= reflection_multiplier; - ambient_light *= albedo; //ambient must be multiplied by albedo at the end - -#if defined(ENABLE_AO) - ambient_light *= ao; - ao_light_affect = mix(1.0, ao, ao_light_affect); - specular_light *= ao_light_affect; - diffuse_light *= ao_light_affect; -#endif - - // base color remapping - diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point - ambient_light *= 1.0 - metallic; - - if (fog_color_enabled.a > 0.5) { - - float fog_amount = 0.0; - -#ifdef USE_LIGHT_DIRECTIONAL - - vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0)); -#else - - vec3 fog_color = fog_color_enabled.rgb; -#endif - - //apply fog - - if (fog_depth_enabled) { - float fog_far = fog_depth_end > 0.0 ? fog_depth_end : z_far; - - float fog_z = smoothstep(fog_depth_begin, fog_far, length(vertex)); - - fog_amount = pow(fog_z, fog_depth_curve) * fog_density; - if (fog_transmit_enabled) { - vec3 total_light = emission + ambient_light + specular_light + diffuse_light; - float transmit = pow(fog_z, fog_transmit_curve); - fog_color = mix(max(total_light, fog_color), fog_color, transmit); - } - } - - if (fog_height_enabled) { - float y = (camera_matrix * vec4(vertex, 1.0)).y; - fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve)); - } - - float rev_amount = 1.0 - fog_amount; - - emission = emission * rev_amount + fog_color * fog_amount; - ambient_light *= rev_amount; - specular_light *= rev_amount; - diffuse_light *= rev_amount; - } - -#ifdef USE_MULTIPLE_RENDER_TARGETS - -#ifdef SHADELESS - diffuse_buffer = vec4(albedo.rgb, 0.0); - specular_buffer = vec4(0.0); - -#else - - //approximate ambient scale for SSAO, since we will lack full ambient - float max_emission = max(emission.r, max(emission.g, emission.b)); - float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b)); - float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b)); - float total_ambient = max_ambient + max_diffuse + max_emission; - float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0; - -#if defined(ENABLE_AO) - ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel); -#endif - diffuse_buffer = vec4(emission + diffuse_light + ambient_light, ambient_scale); - specular_buffer = vec4(specular_light, metallic); - -#endif //SHADELESS - - normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness); - -#if defined(ENABLE_SSS) - sss_buffer = sss_strength; -#endif - -#else //USE_MULTIPLE_RENDER_TARGETS - -#ifdef SHADELESS - frag_color = vec4(albedo, alpha); -#else - frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha); -#endif //SHADELESS - -#endif //USE_MULTIPLE_RENDER_TARGETS - -#endif //RENDER_DEPTH -} |