diff options
Diffstat (limited to 'drivers/gles3/shaders/scene.glsl')
-rw-r--r-- | drivers/gles3/shaders/scene.glsl | 1283 |
1 files changed, 580 insertions, 703 deletions
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl index 2d6f42679f..cacce93dc5 100644 --- a/drivers/gles3/shaders/scene.glsl +++ b/drivers/gles3/shaders/scene.glsl @@ -16,50 +16,49 @@ ARRAY_WEIGHTS=7, ARRAY_INDEX=8, */ -//hack to use uv if no uv present so it works with lightmap - +// hack to use uv if no uv present so it works with lightmap /* INPUT ATTRIBS */ -layout(location=0) in highp vec4 vertex_attrib; -layout(location=1) in vec3 normal_attrib; +layout(location = 0) in highp vec4 vertex_attrib; +layout(location = 1) in vec3 normal_attrib; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) -layout(location=2) in vec4 tangent_attrib; +layout(location = 2) in vec4 tangent_attrib; #endif #if defined(ENABLE_COLOR_INTERP) -layout(location=3) in vec4 color_attrib; +layout(location = 3) in vec4 color_attrib; #endif #if defined(ENABLE_UV_INTERP) -layout(location=4) in vec2 uv_attrib; +layout(location = 4) in vec2 uv_attrib; #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) -layout(location=5) in vec2 uv2_attrib; +layout(location = 5) in vec2 uv2_attrib; #endif uniform float normal_mult; #ifdef USE_SKELETON -layout(location=6) in uvec4 bone_indices; // attrib:6 -layout(location=7) in vec4 bone_weights; // attrib:7 +layout(location = 6) in uvec4 bone_indices; // attrib:6 +layout(location = 7) in vec4 bone_weights; // attrib:7 #endif #ifdef USE_INSTANCING -layout(location=8) in highp vec4 instance_xform0; -layout(location=9) in highp vec4 instance_xform1; -layout(location=10) in highp vec4 instance_xform2; -layout(location=11) in lowp vec4 instance_color; +layout(location = 8) in highp vec4 instance_xform0; +layout(location = 9) in highp vec4 instance_xform1; +layout(location = 10) in highp vec4 instance_xform2; +layout(location = 11) in lowp vec4 instance_color; #if defined(ENABLE_INSTANCE_CUSTOM) -layout(location=12) in highp vec4 instance_custom_data; +layout(location = 12) in highp vec4 instance_custom_data; #endif #endif -layout(std140) uniform SceneData { //ubo:0 +layout(std140) uniform SceneData { // ubo:0 highp mat4 projection_matrix; highp mat4 inv_projection_matrix; @@ -102,12 +101,10 @@ layout(std140) uniform SceneData { //ubo:0 highp float fog_height_min; highp float fog_height_max; highp float fog_height_curve; - }; uniform highp mat4 world_transform; - #ifdef USE_LIGHT_DIRECTIONAL layout(std140) uniform DirectionalLightData { //ubo:3 @@ -115,7 +112,7 @@ layout(std140) uniform DirectionalLightData { //ubo:3 highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color_contact; highp mat4 shadow_matrix1; @@ -135,14 +132,12 @@ struct LightData { highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color_contact; highp mat4 shadow_matrix; - }; - layout(std140) uniform OmniLightData { //ubo:4 LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; @@ -155,7 +150,6 @@ layout(std140) uniform SpotLightData { //ubo:5 #ifdef USE_FORWARD_LIGHTING - uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; uniform int omni_light_count; @@ -167,49 +161,45 @@ uniform int spot_light_count; out vec4 diffuse_light_interp; out vec4 specular_light_interp; -void light_compute(vec3 N, vec3 L,vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) { +void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) { - float dotNL = max(dot(N,L), 0.0 ); + float dotNL = max(dot(N, L), 0.0); diffuse += dotNL * light_color / M_PI; if (roughness > 0.0) { vec3 H = normalize(V + L); - float dotNH = max(dot(N,H), 0.0 ); - float intensity = (roughness >= 1.0 ? 1.0 : pow( dotNH, (1.0-roughness) * 256.0)); + float dotNH = max(dot(N, H), 0.0); + float intensity = (roughness >= 1.0 ? 1.0 : pow(dotNH, (1.0 - roughness) * 256.0)); specular += light_color * intensity; - } } -void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal, float roughness,inout vec3 diffuse, inout vec3 specular) { - - vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w )); +void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { - light_compute(normal,normalize(light_rel_vec),eye_vec,omni_lights[idx].light_color_energy.rgb * light_attenuation,roughness,diffuse,specular); + vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex; + float light_length = length(light_rel_vec); + float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w; + vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w)); + light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular); } void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { - vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w )); + vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex; + float light_length = length(light_rel_vec); + float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w; + vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w)); vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; - float spot_cutoff=spot_lights[idx].light_params.y; - float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff); + float spot_cutoff = spot_lights[idx].light_params.y; + float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); - light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x); - + light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x); - light_compute(normal,normalize(light_rel_vec),eye_vec,spot_lights[idx].light_color_energy.rgb*light_attenuation,roughness,diffuse,specular); + light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular); } - #endif /* Varyings */ @@ -225,20 +215,18 @@ out vec4 color_interp; out vec2 uv_interp; #endif -#if defined(ENABLE_UV2_INTERP) || defined (USE_LIGHTMAP) +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) out vec2 uv2_interp; #endif - #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) out vec3 tangent_interp; out vec3 binormal_interp; #endif - #if defined(USE_MATERIAL) -layout(std140) uniform UniformData { //ubo:1 +layout(std140) uniform UniformData { // ubo:1 MATERIAL_UNIFORMS @@ -257,7 +245,7 @@ out highp float dp_clip; #define SKELETON_TEXTURE_WIDTH 256 #ifdef USE_SKELETON -uniform highp sampler2D skeleton_texture; //texunit:-1 +uniform highp sampler2D skeleton_texture; // texunit:-1 #endif out highp vec4 position_interp; @@ -272,21 +260,19 @@ void main() { mat4 world_matrix = world_transform; - #ifdef USE_INSTANCING { - highp mat4 m=mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0)); + highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0)); world_matrix = world_matrix * transpose(m); } #endif vec3 normal = normal_attrib * normal_mult; - #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) vec3 tangent = tangent_attrib.xyz; - tangent*=normal_mult; + tangent *= normal_mult; float binormalf = tangent_attrib.a; #endif @@ -298,10 +284,9 @@ void main() { #endif - #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - vec3 binormal = normalize( cross(normal,tangent) * binormalf ); + vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif #if defined(ENABLE_UV_INTERP) @@ -329,13 +314,13 @@ void main() { mat3 normal_matrix = mat3(transpose(inverse(world_matrix))); normal = normal_matrix * normal; #else - normal = normalize((world_matrix * vec4(normal,0.0)).xyz); + normal = normalize((world_matrix * vec4(normal, 0.0)).xyz); #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent = normalize((world_matrix * vec4(tangent,0.0)).xyz); - binormal = normalize((world_matrix * vec4(binormal,0.0)).xyz); + tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz); + binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz); #endif #endif @@ -345,45 +330,44 @@ void main() { #define projection_matrix local_projection #define world_transform world_matrix - #ifdef USE_SKELETON { //skeleton transform ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int - ivec2 tex_ofs = ivec2( bone_indicesi.x%256, (bone_indicesi.x/256)*3 ); - highp mat3x4 m = mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.x; - - tex_ofs = ivec2( bone_indicesi.y%256, (bone_indicesi.y/256)*3 ); + ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3); + highp mat3x4 m; + m = mat3x4( + texelFetch(skeleton_texture, tex_ofs, 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) + * bone_weights.x; - m+= mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.y; + tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3); - tex_ofs = ivec2( bone_indicesi.z%256, (bone_indicesi.z/256)*3 ); + m += mat3x4( + texelFetch(skeleton_texture, tex_ofs, 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) + * bone_weights.y; - m+= mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.z; + tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3); + m += mat3x4( + texelFetch(skeleton_texture, tex_ofs, 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) + * bone_weights.z; - tex_ofs = ivec2( bone_indicesi.w%256, (bone_indicesi.w/256)*3 ); + tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3); - m+= mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.w; + m += mat3x4( + texelFetch(skeleton_texture, tex_ofs, 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), + texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) + * bone_weights.w; - mat4 bone_matrix = transpose(mat4(m[0],m[1],m[2],vec4(0.0,0.0,0.0,1.0))); + mat4 bone_matrix = transpose(mat4(m[0], m[1], m[2], vec4(0.0, 0.0, 0.0, 1.0))); world_matrix = bone_matrix * world_matrix; } @@ -396,9 +380,7 @@ VERTEX_SHADER_CODE } - - -//using local coordinates (default) +// using local coordinates (default) #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = modelview * vertex; @@ -407,13 +389,13 @@ VERTEX_SHADER_CODE mat3 normal_matrix = mat3(transpose(inverse(modelview))); normal = normal_matrix * normal; #else - normal = normalize((modelview * vec4(normal,0.0)).xyz); + normal = normalize((modelview * vec4(normal, 0.0)).xyz); #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent = normalize((modelview * vec4(tangent,0.0)).xyz); - binormal = normalize((modelview * vec4(binormal,0.0)).xyz); + tangent = normalize((modelview * vec4(tangent, 0.0)).xyz); + binormal = normalize((modelview * vec4(binormal, 0.0)).xyz); #endif #endif @@ -421,74 +403,70 @@ VERTEX_SHADER_CODE #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = camera_inverse_matrix * vertex; - normal = normalize((camera_inverse_matrix * vec4(normal,0.0)).xyz); + normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent = normalize((camera_inverse_matrix * vec4(tangent,0.0)).xyz); - binormal = normalize((camera_inverse_matrix * vec4(binormal,0.0)).xyz); + tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz); + binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz); #endif #endif vertex_interp = vertex.xyz; normal_interp = normal; - #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) tangent_interp = tangent; binormal_interp = binormal; #endif - #ifdef RENDER_DEPTH - #ifdef RENDER_DEPTH_DUAL_PARABOLOID - vertex_interp.z*= shadow_dual_paraboloid_render_side; - normal_interp.z*= shadow_dual_paraboloid_render_side; + vertex_interp.z *= shadow_dual_paraboloid_render_side; + normal_interp.z *= shadow_dual_paraboloid_render_side; - dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias + dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges - highp vec3 vtx = vertex_interp+normalize(vertex_interp)*z_offset; + highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset; highp float distance = length(vtx); vtx = normalize(vtx); - vtx.xy/=1.0-vtx.z; - vtx.z=(distance/shadow_dual_paraboloid_render_zfar); - vtx.z=vtx.z * 2.0 - 1.0; + vtx.xy /= 1.0 - vtx.z; + vtx.z = (distance / shadow_dual_paraboloid_render_zfar); + vtx.z = vtx.z * 2.0 - 1.0; vertex_interp = vtx; - #else float z_ofs = z_offset; - z_ofs += (1.0-abs(normal_interp.z))*z_slope_scale; - vertex_interp.z-=z_ofs; + z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale; + vertex_interp.z -= z_ofs; #endif //RENDER_DEPTH_DUAL_PARABOLOID #endif //RENDER_DEPTH - gl_Position = projection_matrix * vec4(vertex_interp,1.0); + gl_Position = projection_matrix * vec4(vertex_interp, 1.0); - position_interp=gl_Position; + position_interp = gl_Position; #ifdef USE_VERTEX_LIGHTING - diffuse_light_interp=vec4(0.0); - specular_light_interp=vec4(0.0); + diffuse_light_interp = vec4(0.0); + specular_light_interp = vec4(0.0); #ifdef USE_FORWARD_LIGHTING - for(int i=0;i<omni_light_count;i++) { - light_process_omni(omni_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb); + for (int i = 0; i < omni_light_count; i++) { + light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb); } - for(int i=0;i<spot_light_count;i++) { - light_process_spot(spot_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb); + for (int i = 0; i < spot_light_count; i++) { + light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb); } #endif @@ -496,36 +474,33 @@ VERTEX_SHADER_CODE vec3 directional_diffuse = vec3(0.0); vec3 directional_specular = vec3(0.0); - light_compute(normal_interp,-light_direction_attenuation.xyz,-normalize( vertex_interp ),light_color_energy.rgb,roughness,directional_diffuse,directional_specular); + light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular); - float diff_avg = dot(diffuse_light_interp.rgb,vec3(0.33333)); - float diff_dir_avg = dot(directional_diffuse,vec3(0.33333)); - if (diff_avg>0.0) { - diffuse_light_interp.a=diff_dir_avg/(diff_avg+diff_dir_avg); + float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333)); + float diff_dir_avg = dot(directional_diffuse, vec3(0.33333)); + if (diff_avg > 0.0) { + diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg); } else { - diffuse_light_interp.a=1.0; + diffuse_light_interp.a = 1.0; } - diffuse_light_interp.rgb+=directional_diffuse; + diffuse_light_interp.rgb += directional_diffuse; - float spec_avg = dot(specular_light_interp.rgb,vec3(0.33333)); - float spec_dir_avg = dot(directional_specular,vec3(0.33333)); - if (spec_avg>0.0) { - specular_light_interp.a=spec_dir_avg/(spec_avg+spec_dir_avg); + float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333)); + float spec_dir_avg = dot(directional_specular, vec3(0.33333)); + if (spec_avg > 0.0) { + specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg); } else { - specular_light_interp.a=1.0; + specular_light_interp.a = 1.0; } - specular_light_interp.rgb+=directional_specular; + specular_light_interp.rgb += directional_specular; #endif //USE_LIGHT_DIRECTIONAL - #endif // USE_VERTEX_LIGHTING - } - [fragment] /* texture unit usage, N is max_texture_unity-N @@ -569,14 +544,11 @@ in vec3 binormal_interp; in highp vec3 vertex_interp; in vec3 normal_interp; - /* PBR CHANNELS */ #ifdef USE_RADIANCE_MAP - - -layout(std140) uniform Radiance { //ubo:2 +layout(std140) uniform Radiance { // ubo:2 mat4 radiance_inverse_xform; float radiance_ambient_contribution; @@ -587,19 +559,19 @@ layout(std140) uniform Radiance { //ubo:2 #ifdef USE_RADIANCE_MAP_ARRAY -uniform sampler2DArray radiance_map; //texunit:-2 +uniform sampler2DArray radiance_map; // texunit:-2 -vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec,float p_roughness) { +vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) { vec3 norm = normalize(p_vec); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); + norm.xy /= 1.0 + abs(norm.z); + norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); // we need to lie the derivatives (normg) and assume that DP side is always the same // to get proper texture filtering - vec2 normg=norm.xy; - if (norm.z>0.0) { - norm.y=0.5-norm.y+0.5; + vec2 normg = norm.xy; + if (norm.z > 0.0) { + norm.y = 0.5 - norm.y + 0.5; } // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays, @@ -608,22 +580,22 @@ vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec,float p_roughness) { float index = p_roughness * RADIANCE_MAX_LOD; int indexi = int(index * 256.0); - vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi/256)),dFdx(normg),dFdy(normg)).xyz; - vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi/256+1)),dFdx(normg),dFdy(normg)).xyz; - return mix(base,next,float(indexi%256)/256.0); + vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz; + vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz; + return mix(base, next, float(indexi % 256) / 256.0); } #else -uniform sampler2D radiance_map; //texunit:-2 +uniform sampler2D radiance_map; // texunit:-2 -vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec,float p_roughness) { +vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) { vec3 norm = normalize(p_vec); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); - if (norm.z>0.0) { - norm.y=0.5-norm.y+0.5; + norm.xy /= 1.0 + abs(norm.z); + norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); + if (norm.z > 0.0) { + norm.y = 0.5 - norm.y + 0.5; } return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz; } @@ -634,8 +606,6 @@ vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec,float p_roughness) { /* Material Uniforms */ - - #if defined(USE_MATERIAL) layout(std140) uniform UniformData { @@ -702,7 +672,7 @@ layout(std140) uniform DirectionalLightData { highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color_contact; highp mat4 shadow_matrix1; @@ -712,8 +682,7 @@ layout(std140) uniform DirectionalLightData { mediump vec4 shadow_split_offsets; }; - -uniform highp sampler2DShadow directional_shadow; //texunit:-4 +uniform highp sampler2DShadow directional_shadow; // texunit:-4 #endif @@ -721,52 +690,48 @@ uniform highp sampler2DShadow directional_shadow; //texunit:-4 in vec4 diffuse_light_interp; in vec4 specular_light_interp; #endif -//omni and spot +// omni and spot struct LightData { highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color_contact; highp mat4 shadow_matrix; }; - -layout(std140) uniform OmniLightData { //ubo:4 +layout(std140) uniform OmniLightData { // ubo:4 LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; }; -layout(std140) uniform SpotLightData { //ubo:5 +layout(std140) uniform SpotLightData { // ubo:5 LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; }; - -uniform highp sampler2DShadow shadow_atlas; //texunit:-5 - +uniform highp sampler2DShadow shadow_atlas; // texunit:-5 struct ReflectionData { mediump vec4 box_extents; mediump vec4 box_offset; mediump vec4 params; // intensity, 0, interior , boxproject - mediump vec4 ambient; //ambient color, energy + mediump vec4 ambient; // ambient color, energy mediump vec4 atlas_clamp; - highp mat4 local_matrix; //up to here for spot and omni, rest is for directional - //notes: for ambientblend, use distance to edge to blend between already existing global environment + highp mat4 local_matrix; // up to here for spot and omni, rest is for directional + // notes: for ambientblend, use distance to edge to blend between already existing global environment }; layout(std140) uniform ReflectionProbeData { //ubo:6 ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS]; }; -uniform mediump sampler2D reflection_atlas; //texunit:-3 - +uniform mediump sampler2D reflection_atlas; // texunit:-3 #ifdef USE_FORWARD_LIGHTING @@ -781,39 +746,38 @@ uniform int reflection_count; #endif - #if defined(SCREEN_TEXTURE_USED) -uniform highp sampler2D screen_texture; //texunit:-7 +uniform highp sampler2D screen_texture; // texunit:-7 #endif #ifdef USE_MULTIPLE_RENDER_TARGETS -layout(location=0) out vec4 diffuse_buffer; -layout(location=1) out vec4 specular_buffer; -layout(location=2) out vec4 normal_mr_buffer; +layout(location = 0) out vec4 diffuse_buffer; +layout(location = 1) out vec4 specular_buffer; +layout(location = 2) out vec4 normal_mr_buffer; #if defined(ENABLE_SSS) -layout(location=3) out float sss_buffer; +layout(location = 3) out float sss_buffer; #endif #else -layout(location=0) out vec4 frag_color; +layout(location = 0) out vec4 frag_color; #endif in highp vec4 position_interp; -uniform highp sampler2D depth_buffer; //texunit:-8 +uniform highp sampler2D depth_buffer; // texunit:-8 #ifdef USE_CONTACT_SHADOWS float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) { - if (abs(dir.z)>0.99) + if (abs(dir.z) > 0.99) return 1.0; - vec3 endpoint = pos+dir*max_distance; + vec3 endpoint = pos + dir * max_distance; vec4 source = position_interp; vec4 dest = projection_matrix * vec4(endpoint, 1.0); @@ -822,51 +786,48 @@ float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) { vec2 screen_rel = to_screen - from_screen; - if (length(screen_rel)<0.00001) - return 1.0; //too small, don't do anything + if (length(screen_rel) < 0.00001) + return 1.0; // too small, don't do anything - /*float pixel_size; //approximate pixel size + /* + float pixel_size; // approximate pixel size if (screen_rel.x > screen_rel.y) { - pixel_size = abs((pos.x-endpoint.x)/(screen_rel.x/screen_pixel_size.x)); + pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x)); } else { - pixel_size = abs((pos.y-endpoint.y)/(screen_rel.y/screen_pixel_size.y)); - - }*/ - vec4 bias = projection_matrix * vec4(pos+vec3(0.0,0.0,max_distance*0.5), 1.0); //todo un-harcode the 0.04 - - - - vec2 pixel_incr = normalize(screen_rel)*screen_pixel_size; + pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y)); + } + */ + vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0); + vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size; float steps = length(screen_rel) / length(pixel_incr); - steps = min(2000.0,steps); //put a limit to avoid freezing in some strange situation - //steps=10.0; + steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation + //steps = 10.0; - vec4 incr = (dest - source)/steps; - float ratio=0.0; - float ratio_incr = 1.0/steps; + vec4 incr = (dest - source) / steps; + float ratio = 0.0; + float ratio_incr = 1.0 / steps; - while(steps>0.0) { - source += incr*2.0; - bias+=incr*2.0; + while (steps > 0.0) { + source += incr * 2.0; + bias += incr * 2.0; vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5; - float depth = texture(depth_buffer,uv_depth.xy).r; + float depth = texture(depth_buffer, uv_depth.xy).r; if (depth < uv_depth.z) { - if (depth > (bias.z/bias.w) * 0.5 + 0.5) { - return min(pow(ratio,4.0),1.0); + if (depth > (bias.z / bias.w) * 0.5 + 0.5) { + return min(pow(ratio, 4.0), 1.0); } else { return 1.0; } } - - ratio+=ratio_incr; - steps-=1.0; + ratio += ratio_incr; + steps -= 1.0; } return 1.0; @@ -874,7 +835,6 @@ float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) { #endif - // This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. // We're dividing this factor off because the overall term we'll end up looks like // (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): @@ -896,51 +856,48 @@ float G_GGX_2cos(float cos_theta_m, float alpha) { // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) // Eq. (19), although see Heitz (2014) the about the problems with his derivation. // It nevertheless approximates GGX well with k = alpha/2. - float k = 0.5*alpha; + float k = 0.5 * alpha; return 0.5 / (cos_theta_m * (1.0 - k) + k); - // float cos2 = cos_theta_m*cos_theta_m; - // float sin2 = (1.0-cos2); - // return 1.0 /( cos_theta_m + sqrt(cos2 + alpha*alpha*sin2) ); + // float cos2 = cos_theta_m * cos_theta_m; + // float sin2 = (1.0 - cos2); + // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); } float D_GGX(float cos_theta_m, float alpha) { - float alpha2 = alpha*alpha; - float d = 1.0 + (alpha2-1.0)*cos_theta_m*cos_theta_m; - return alpha2/(M_PI * d * d); + float alpha2 = alpha * alpha; + float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; + return alpha2 / (M_PI * d * d); } float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; - float sin2 = (1.0-cos2); + float sin2 = (1.0 - cos2); float s_x = alpha_x * cos_phi; float s_y = alpha_y * sin_phi; - return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x*s_x + s_y*s_y)*sin2 ), 0.001); + return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); } float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; - float sin2 = (1.0-cos2); - float r_x = cos_phi/alpha_x; - float r_y = sin_phi/alpha_y; - float d = cos2 + sin2*(r_x * r_x + r_y * r_y); + float sin2 = (1.0 - cos2); + float r_x = cos_phi / alpha_x; + float r_y = sin_phi / alpha_y; + float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); } - -float SchlickFresnel(float u) -{ - float m = 1.0-u; - float m2 = m*m; - return m2*m2*m; // pow(m,5) +float SchlickFresnel(float u) { + float m = 1.0 - u; + float m2 = m * m; + return m2 * m2 * m; // pow(m,5) } -float GTR1(float NdotH, float a) -{ - if (a >= 1.0) return 1.0/M_PI; - float a2 = a*a; - float t = 1.0 + (a2-1.0)*NdotH*NdotH; - return (a2-1.0) / (M_PI*log(a2)*t); +float GTR1(float NdotH, float a) { + if (a >= 1.0) return 1.0 / M_PI; + float a2 = a * a; + float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; + return (a2 - 1.0) / (M_PI * log(a2) * t); } vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) { @@ -952,7 +909,7 @@ vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) { void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) { #if defined(USE_LIGHT_SHADER_CODE) -//light is written by the light shader + // light is written by the light shader vec3 normal = N; vec3 albedo = diffuse_color; @@ -961,9 +918,8 @@ void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec LIGHT_SHADER_CODE - #else - float NdotL = dot(N,L); + float NdotL = dot(N, L); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); @@ -975,10 +931,9 @@ LIGHT_SHADER_CODE float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #endif - #if defined(DIFFUSE_LAMBERT_WRAP) - //energy conserving lambert wrap shader - diffuse_brdf_NL = max(0.0,(NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); + // energy conserving lambert wrap shader + diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_OREN_NAYAR) @@ -986,12 +941,11 @@ LIGHT_SHADER_CODE // see http://mimosa-pudica.net/improved-oren-nayar.html float LdotV = dot(L, V); - float s = LdotV - NdotL * NdotV; float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); float sigma2 = roughness * roughness; // TODO: this needs checking - vec3 A = 1.0 + sigma2 * (- 0.5 / (sigma2 + 0.33) + 0.17*diffuse_color / (sigma2 + 0.13) ); + vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); float B = 0.45 * sigma2 / (sigma2 + 0.09); diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); @@ -999,21 +953,20 @@ LIGHT_SHADER_CODE #elif defined(DIFFUSE_TOON) - diffuse_brdf_NL = smoothstep(-roughness,max(roughness,0.01),NdotL); + diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); #elif defined(DIFFUSE_BURLEY) { - vec3 H = normalize(V + L); - float cLdotH = max(0.0,dot(L, H)); + float cLdotH = max(0.0, dot(L, H)); float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness; float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV); float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL); diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; - /* + /* float energyBias = mix(roughness, 0.0, 0.5); float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); float fd90 = energyBias + 2.0 * VoH * VoH * roughness; @@ -1021,10 +974,11 @@ LIGHT_SHADER_CODE float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); - diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;*/ + diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; + */ } #else - //lambert + // lambert diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif @@ -1034,70 +988,67 @@ LIGHT_SHADER_CODE diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation; #endif - #if defined(LIGHT_USE_RIM) - float rim_light = pow(max(0.0,1.0-cNdotV), max(0.0,(1.0-roughness)*16.0)); - diffuse_light += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color; + float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); + diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; #endif } - if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely - // D #if defined(SPECULAR_BLINN) vec3 H = normalize(V + L); - float cNdotH = max(dot(N,H), 0.0 ); - float intensity = pow( cNdotH, (1.0-roughness) * 256.0); + float cNdotH = max(dot(N, H), 0.0); + float intensity = pow(cNdotH, (1.0 - roughness) * 256.0); specular_light += light_color * intensity * specular_blob_intensity * attenuation; #elif defined(SPECULAR_PHONG) - vec3 R = normalize(-reflect(L,N)); - float cRdotV = max(0.0,dot(R,V)); - float intensity = pow( cRdotV, (1.0-roughness) * 256.0); - specular_light += light_color * intensity * specular_blob_intensity * attenuation; + vec3 R = normalize(-reflect(L, N)); + float cRdotV = max(0.0, dot(R, V)); + float intensity = pow(cRdotV, (1.0 - roughness) * 256.0); + specular_light += light_color * intensity * specular_blob_intensity * attenuation; #elif defined(SPECULAR_TOON) - vec3 R = normalize(-reflect(L,N)); - float RdotV = dot(R,V); - float mid = 1.0-roughness; - mid*=mid; - float intensity = smoothstep(mid-roughness*0.5, mid+roughness*0.5, RdotV) * mid; + vec3 R = normalize(-reflect(L, N)); + float RdotV = dot(R, V); + float mid = 1.0 - roughness; + mid *= mid; + float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection #elif defined(SPECULAR_DISABLED) - //none.. + // none.. #elif defined(SPECULAR_SCHLICK_GGX) // shlick+ggx as default vec3 H = normalize(V + L); - float cNdotH = max(dot(N,H), 0.0); - float cLdotH = max(dot(L,H), 0.0); + float cNdotH = max(dot(N, H), 0.0); + float cLdotH = max(dot(L, H), 0.0); -# if defined(LIGHT_USE_ANISOTROPY) +#if defined(LIGHT_USE_ANISOTROPY) - float aspect = sqrt(1.0-anisotropy*0.9); - float rx = roughness/aspect; - float ry = roughness*aspect; - float ax = rx*rx; - float ay = ry*ry; - float XdotH = dot( T, H ); - float YdotH = dot( B, H ); + float aspect = sqrt(1.0 - anisotropy * 0.9); + float rx = roughness / aspect; + float ry = roughness * aspect; + float ax = rx * rx; + float ay = ry * ry; + float XdotH = dot(T, H); + float YdotH = dot(B, H); float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); -# else +#else float alpha = roughness * roughness; float D = D_GGX(cNdotH, alpha); float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha); -# endif +#endif // F float F0 = 1.0; // FIXME float cLdotH5 = SchlickFresnel(cLdotH); @@ -1110,19 +1061,18 @@ LIGHT_SHADER_CODE #if defined(LIGHT_USE_CLEARCOAT) if (clearcoat_gloss > 0.0) { -# if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) +#if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) vec3 H = normalize(V + L); -# endif -# if !defined(SPECULAR_SCHLICK_GGX) - float cNdotH = max(dot(N,H), 0.0); - float cLdotH = max(dot(L,H), 0.0); +#endif +#if !defined(SPECULAR_SCHLICK_GGX) + float cNdotH = max(dot(N, H), 0.0); + float cLdotH = max(dot(L, H), 0.0); float cLdotH5 = SchlickFresnel(cLdotH); #endif float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); float Fr = mix(.04, 1.0, cLdotH5); float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); - float specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; @@ -1130,45 +1080,42 @@ LIGHT_SHADER_CODE #endif } - #endif //defined(USE_LIGHT_SHADER_CODE) } - float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) { #ifdef SHADOW_MODE_PCF_13 - float avg=textureProj(shadow,vec4(pos,depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0)); - return avg*(1.0/13.0); + float avg = textureProj(shadow, vec4(pos, depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0)); + return avg * (1.0 / 13.0); #elif defined(SHADOW_MODE_PCF_5) - float avg=textureProj(shadow,vec4(pos,depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); - return avg*(1.0/5.0); + float avg = textureProj(shadow, vec4(pos, depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); + avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); + return avg * (1.0 / 5.0); #else - return textureProj(shadow,vec4(pos,depth,1.0)); + return textureProj(shadow, vec4(pos, depth, 1.0)); #endif - } #ifdef RENDER_DEPTH_DUAL_PARABOLOID @@ -1177,239 +1124,227 @@ in highp float dp_clip; #endif - - #if 0 -//need to save texture depth for this - +// need to save texture depth for this vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) { float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width; float d = scale * distance; - /** - * Armed with the thickness, we can now calculate the color by means of the - * precalculated transmittance profile. - * (It can be precomputed into a texture, for maximum performance): - */ + /** + * Armed with the thickness, we can now calculate the color by means of the + * precalculated transmittance profile. + * (It can be precomputed into a texture, for maximum performance): + */ float dd = -d * d; - vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + - vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + - vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + - vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + - vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + - vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); - - /** - * Using the profile, we finally approximate the transmitted lighting from - * the back of the object: - */ - return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0); + vec3 profile = + vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + + vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + + vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + + vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + + vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + + vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); + + /** + * Using the profile, we finally approximate the transmitted lighting from + * the back of the object: + */ + return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0); } #endif -void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) { +void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) { - vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w; - float omni_attenuation = pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ); + vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex; + float light_length = length(light_rel_vec); + float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w; + float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w); vec3 light_attenuation = vec3(omni_attenuation); #if !defined(SHADOWS_DISABLED) - if (omni_lights[idx].light_params.w>0.5) { - //there is a shadowmap + if (omni_lights[idx].light_params.w > 0.5) { + // there is a shadowmap - highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz; - float shadow_len=length(splane); - splane=normalize(splane); - vec4 clamp_rect=omni_lights[idx].light_clamp; + highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; + float shadow_len = length(splane); + splane = normalize(splane); + vec4 clamp_rect = omni_lights[idx].light_clamp; - if (splane.z>=0.0) { + if (splane.z >= 0.0) { - splane.z+=1.0; + splane.z += 1.0; - clamp_rect.y+=clamp_rect.w; + clamp_rect.y += clamp_rect.w; } else { - splane.z=1.0 - splane.z; + splane.z = 1.0 - splane.z; /* - if (clamp_rect.z<clamp_rect.w) { - clamp_rect.x+=clamp_rect.z; + if (clamp_rect.z < clamp_rect.w) { + clamp_rect.x += clamp_rect.z; } else { - clamp_rect.y+=clamp_rect.w; + clamp_rect.y += clamp_rect.w; } */ - } - splane.xy/=splane.z; - splane.xy=splane.xy * 0.5 + 0.5; + splane.xy /= splane.z; + splane.xy = splane.xy * 0.5 + 0.5; splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w; - splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw; - float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect); + splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; + float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect); #ifdef USE_CONTACT_SHADOWS - if (shadow>0.01 && omni_lights[idx].shadow_color_contact.a>0.0) { - - float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,omni_lights[idx].shadow_color_contact.a)); - shadow=min(shadow,contact_shadow); + if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) { + float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a)); + shadow = min(shadow, contact_shadow); } #endif - light_attenuation*=mix(omni_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow); + light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow); } #endif //SHADOWS_DISABLED - - light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,omni_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim * omni_attenuation,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); - + light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); } -void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent,vec3 albedo, vec3 transmission,float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) { +void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) { - vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w; - float spot_attenuation = pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ); + vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex; + float light_length = length(light_rel_vec); + float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w; + float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w); vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; - float spot_cutoff=spot_lights[idx].light_params.y; - float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff); - float spot_rim = max(0.0001,(1.0 - scos) / (1.0 - spot_cutoff)); - spot_attenuation*= 1.0 - pow( spot_rim, spot_lights[idx].light_params.x); + float spot_cutoff = spot_lights[idx].light_params.y; + float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); + spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x); vec3 light_attenuation = vec3(spot_attenuation); #if !defined(SHADOWS_DISABLED) - if (spot_lights[idx].light_params.w>0.5) { + if (spot_lights[idx].light_params.w > 0.5) { //there is a shadowmap - highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0)); - splane.xyz/=splane.w; + highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0)); + splane.xyz /= splane.w; - float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp); + float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp); #ifdef USE_CONTACT_SHADOWS - if (shadow>0.01 && spot_lights[idx].shadow_color_contact.a>0.0) { - - float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,spot_lights[idx].shadow_color_contact.a)); - shadow=min(shadow,contact_shadow); + if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) { + float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a)); + shadow = min(shadow, contact_shadow); } #endif - light_attenuation*=mix(spot_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow); + light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow); } #endif //SHADOWS_DISABLED - light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,spot_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim * spot_attenuation,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); - + light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); } -void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) { +void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) { - vec3 ref_vec = normalize(reflect(vertex,normal)); - vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz; + vec3 ref_vec = normalize(reflect(vertex, normal)); + vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz; vec3 box_extents = reflections[idx].box_extents.xyz; - if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box + if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box return; } vec3 inner_pos = abs(local_pos / box_extents); - float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z)); + float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); //make blend more rounded - blend=mix(length(inner_pos),blend,blend); - blend*=blend; - blend=max(0.0, 1.0-blend); + blend = mix(length(inner_pos), blend, blend); + blend *= blend; + blend = max(0.0, 1.0 - blend); - if (reflections[idx].params.x>0.0){// compute reflection + if (reflections[idx].params.x > 0.0) { // compute reflection - vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz; + vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz; if (reflections[idx].params.w > 0.5) { //box project vec3 nrdir = normalize(local_ref_vec); - vec3 rbmax = (box_extents - local_pos)/nrdir; - vec3 rbmin = (-box_extents - local_pos)/nrdir; + vec3 rbmax = (box_extents - local_pos) / nrdir; + vec3 rbmin = (-box_extents - local_pos) / nrdir; - - vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0))); + vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0))); float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); vec3 posonbox = local_pos + nrdir * fa; local_ref_vec = posonbox - reflections[idx].box_offset.xyz; } - - vec4 clamp_rect=reflections[idx].atlas_clamp; + vec4 clamp_rect = reflections[idx].atlas_clamp; vec3 norm = normalize(local_ref_vec); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); - if (norm.z>0.0) { - norm.y=0.5-norm.y+0.5; + norm.xy /= 1.0 + abs(norm.z); + norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); + if (norm.z > 0.0) { + norm.y = 0.5 - norm.y + 0.5; } - vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy; - atlas_uv = clamp(atlas_uv,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); + vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy; + atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw); highp vec4 reflection; - reflection.rgb = textureLod(reflection_atlas,atlas_uv,roughness*5.0).rgb; + reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb; if (reflections[idx].params.z < 0.5) { - reflection.rgb = mix(skybox,reflection.rgb,blend); + reflection.rgb = mix(skybox, reflection.rgb, blend); } - reflection.rgb*=reflections[idx].params.x; + reflection.rgb *= reflections[idx].params.x; reflection.a = blend; - reflection.rgb*=reflection.a; + reflection.rgb *= reflection.a; - reflection_accum+=reflection; + reflection_accum += reflection; } #ifndef USE_LIGHTMAP - if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox - + if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox - vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz; + vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz; - vec3 splane=normalize(local_amb_vec); - vec4 clamp_rect=reflections[idx].atlas_clamp; + vec3 splane = normalize(local_amb_vec); + vec4 clamp_rect = reflections[idx].atlas_clamp; - splane.z*=-1.0; - if (splane.z>=0.0) { - splane.z+=1.0; - clamp_rect.y+=clamp_rect.w; + splane.z *= -1.0; + if (splane.z >= 0.0) { + splane.z += 1.0; + clamp_rect.y += clamp_rect.w; } else { - splane.z=1.0 - splane.z; - splane.y=-splane.y; + splane.z = 1.0 - splane.z; + splane.y = -splane.y; } - splane.xy/=splane.z; - splane.xy=splane.xy * 0.5 + 0.5; + splane.xy /= splane.z; + splane.xy = splane.xy * 0.5 + 0.5; splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy; - splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); + splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw); highp vec4 ambient_out; - ambient_out.a=blend; - ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb; - ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a); + ambient_out.a = blend; + ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb; + ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a); if (reflections[idx].params.z < 0.5) { - ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); + ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; - ambient_accum+=ambient_out; + ambient_accum += ambient_out; } else { highp vec4 ambient_out; - ambient_out.a=blend; - ambient_out.rgb=reflections[idx].ambient.rgb; + ambient_out.a = blend; + ambient_out.rgb = reflections[idx].ambient.rgb; if (reflections[idx].params.z < 0.5) { - ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); + ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; - ambient_accum+=ambient_out; - + ambient_accum += ambient_out; } #endif } @@ -1448,13 +1383,13 @@ uniform bool gi_probe_blend_ambient2; vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { - float dist = p_bias;//1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0; - float alpha=0.0; + float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0; + float alpha = 0.0; vec3 color = vec3(0.0); - while(dist < max_distance && alpha < 0.95) { + while (dist < max_distance && alpha < 0.95) { float diameter = max(1.0, 2.0 * tan_half_angle * dist); - vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) ); + vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter)); float a = (1.0 - alpha); color += scolor.rgb * a; alpha += a * scolor.a; @@ -1462,35 +1397,33 @@ vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 am } if (blend_ambient) { - color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95)); + color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95)); } return color; } -void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds,vec3 cell_size,vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient,float multiplier, mat3 normal_mtx,vec3 ref_vec, float roughness,float p_bias,float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) { - - +void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) { - vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz; - vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz; + vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz; + vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz; ref_vec = normalize(ref_pos - probe_pos); - probe_pos+=(probe_xform * vec4(normal_mtx[2],0.0)).xyz*p_normal_bias; + probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias; -/* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0); + /* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0); out_diff.a = 1.0; return;*/ //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0); //return; //this causes corrupted pixels, i have no idea why.. - if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) { + if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) { return; } - vec3 blendv = abs(probe_pos/bounds * 2.0 - 1.0); - float blend = clamp(1.0-max(blendv.x,max(blendv.y,blendv.z)), 0.0, 1.0); + vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0); + float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); //float blend=1.0; float max_distance = length(bounds); @@ -1499,14 +1432,13 @@ void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds,vec #ifdef VCT_QUALITY_HIGH #define MAX_CONE_DIRS 6 - vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( - vec3(0, 0, 1), - vec3(0.866025, 0, 0.5), - vec3(0.267617, 0.823639, 0.5), - vec3(-0.700629, 0.509037, 0.5), - vec3(-0.700629, -0.509037, 0.5), - vec3(0.267617, -0.823639, 0.5) - ); + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( + vec3(0, 0, 1), + vec3(0.866025, 0, 0.5), + vec3(0.267617, 0.823639, 0.5), + vec3(-0.700629, 0.509037, 0.5), + vec3(-0.700629, -0.509037, 0.5), + vec3(0.267617, -0.823639, 0.5)); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); float cone_angle_tan = 0.577; @@ -1515,54 +1447,50 @@ void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds,vec #define MAX_CONE_DIRS 4 - vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( vec3(0.707107, 0, 0.707107), vec3(0, 0.707107, 0.707107), vec3(-0.707107, 0, 0.707107), - vec3(0, -0.707107, 0.707107) - ); + vec3(0, -0.707107, 0.707107)); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); float cone_angle_tan = 0.98269; - max_distance*=0.5; + max_distance *= 0.5; float min_ref_tan = 0.2; #endif - vec3 light=vec3(0.0); - for(int i=0;i<MAX_CONE_DIRS;i++) { - - vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos); - light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance,p_bias); + vec3 light = vec3(0.0); + for (int i = 0; i < MAX_CONE_DIRS; i++) { + vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos); + light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias); } - light*=multiplier; + light *= multiplier; - out_diff += vec4(light*blend,blend); + out_diff += vec4(light * blend, blend); //irradiance - vec3 irr_light = voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance,p_bias); + vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI)), max_distance, p_bias); irr_light *= multiplier; //irr_light=vec3(0.0); - out_spec += vec4(irr_light*blend,blend); - + out_spec += vec4(irr_light * blend, blend); } - void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) { roughness = roughness * roughness; - vec3 ref_vec = normalize(reflect(normalize(pos),normal)); + vec3 ref_vec = normalize(reflect(normalize(pos), normal)); //find arbitrary tangent and bitangent, then build a matrix vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0); vec3 tangent = normalize(cross(v0, normal)); vec3 bitangent = normalize(cross(tangent, normal)); - mat3 normal_mat = mat3(tangent,bitangent,normal); + mat3 normal_mat = mat3(tangent, bitangent, normal); vec4 diff_accum = vec4(0.0); vec4 spec_accum = vec4(0.0); @@ -1574,35 +1502,32 @@ void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_sp out_specular = vec3(0.0); - gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,gi_probe_bias1,gi_probe_normal_bias1,spec_accum,diff_accum); + gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum); if (gi_probe2_enabled) { - gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,gi_probe_bias2,gi_probe_normal_bias2,spec_accum,diff_accum); + gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum); } - if (diff_accum.a>0.0) { - diff_accum.rgb/=diff_accum.a; + if (diff_accum.a > 0.0) { + diff_accum.rgb /= diff_accum.a; } - if (spec_accum.a>0.0) { - spec_accum.rgb/=spec_accum.a; + if (spec_accum.a > 0.0) { + spec_accum.rgb /= spec_accum.a; } - out_specular+=spec_accum.rgb; - out_ambient+=diff_accum.rgb; - + out_specular += spec_accum.rgb; + out_ambient += diff_accum.rgb; } #endif - - void main() { #ifdef RENDER_DEPTH_DUAL_PARABOLOID - if (dp_clip>0.0) + if (dp_clip > 0.0) discard; #endif @@ -1622,37 +1547,36 @@ void main() { vec2 anisotropy_flow = vec2(1.0, 0.0); #if defined(ENABLE_AO) - float ao=1.0; - float ao_light_affect=0.0; + float ao = 1.0; + float ao_light_affect = 0.0; #endif float alpha = 1.0; #if defined(DO_SIDE_CHECK) - float side=gl_FrontFacing ? 1.0 : -1.0; + float side = gl_FrontFacing ? 1.0 : -1.0; #else - float side=1.0; + float side = 1.0; #endif - #if defined(ALPHA_SCISSOR_USED) float alpha_scissor = 0.5; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - vec3 binormal = normalize(binormal_interp)*side; - vec3 tangent = normalize(tangent_interp)*side; + vec3 binormal = normalize(binormal_interp) * side; + vec3 tangent = normalize(tangent_interp) * side; #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif - vec3 normal = normalize(normal_interp)*side; + vec3 normal = normalize(normal_interp) * side; #if defined(ENABLE_UV_INTERP) vec2 uv = uv_interp; #endif -#if defined(ENABLE_UV2_INTERP) || defined (USE_LIGHTMAP) +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) vec2 uv2 = uv2_interp; #endif @@ -1665,33 +1589,31 @@ void main() { vec3 normalmap = vec3(0.5); #endif - float normaldepth=1.0; + float normaldepth = 1.0; #if defined(SCREEN_UV_USED) - vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size; + vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #endif -#if defined (ENABLE_SSS) - float sss_strength=0.0; +#if defined(ENABLE_SSS) + float sss_strength = 0.0; #endif { - FRAGMENT_SHADER_CODE } - #if defined(ALPHA_SCISSOR_USED) - if (alpha<alpha_scissor) { + if (alpha < alpha_scissor) { discard; } #endif #ifdef USE_OPAQUE_PREPASS - if (alpha<opaque_prepass_threshold) { + if (alpha < opaque_prepass_threshold) { discard; } @@ -1699,33 +1621,33 @@ FRAGMENT_SHADER_CODE #if defined(ENABLE_NORMALMAP) - normalmap.xy=normalmap.xy*2.0-1.0; - normalmap.z=sqrt(max(0.0, 1.0-dot(normalmap.xy,normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. + normalmap.xy = normalmap.xy * 2.0 - 1.0; + normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. - normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side; + normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side; #endif #if defined(LIGHT_USE_ANISOTROPY) - if (anisotropy>0.01) { + if (anisotropy > 0.01) { //rotation matrix - mat3 rot = mat3( tangent, binormal, normal ); + mat3 rot = mat3(tangent, binormal, normal); //make local to space - tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0)); - binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0)); + tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); + binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); } #endif #ifdef ENABLE_CLIP_ALPHA - if (albedo.a<0.99) { + if (albedo.a < 0.99) { //used for doublepass and shadowmapping discard; } #endif -/////////////////////// LIGHTING ////////////////////////////// + /////////////////////// LIGHTING ////////////////////////////// //apply energy conservation @@ -1735,44 +1657,40 @@ FRAGMENT_SHADER_CODE vec3 diffuse_light = diffuse_light_interp.rgb; #else - vec3 specular_light = vec3(0.0,0.0,0.0); - vec3 diffuse_light = vec3(0.0,0.0,0.0); + vec3 specular_light = vec3(0.0, 0.0, 0.0); + vec3 diffuse_light = vec3(0.0, 0.0, 0.0); #endif vec3 ambient_light; - vec3 env_reflection_light = vec3(0.0,0.0,0.0); - - vec3 eye_vec = -normalize( vertex_interp ); - + vec3 env_reflection_light = vec3(0.0, 0.0, 0.0); + vec3 eye_vec = -normalize(vertex_interp); #ifdef USE_RADIANCE_MAP #ifdef AMBIENT_LIGHT_DISABLED - ambient_light=vec3(0.0,0.0,0.0); + ambient_light = vec3(0.0, 0.0, 0.0); #else { { //read radiance from dual paraboloid - vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n); - ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz); - vec3 radiance = textureDualParaboloid(radiance_map,ref_vec,roughness) * bg_energy; + vec3 ref_vec = reflect(-eye_vec, normal); //2.0 * ndotv * normal - view; // reflect(v, n); + ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); + vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy; env_reflection_light = radiance; - } //no longer a cubemap //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y); - } #ifndef USE_LIGHTMAP { - vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz); - vec3 env_ambient=textureDualParaboloid(radiance_map,ambient_dir,1.0) * bg_energy; + vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz); + vec3 env_ambient = textureDualParaboloid(radiance_map, ambient_dir, 1.0) * bg_energy; - ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution); + ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution); //ambient_light=vec3(0.0,0.0,0.0); } #endif @@ -1781,23 +1699,23 @@ FRAGMENT_SHADER_CODE #else #ifdef AMBIENT_LIGHT_DISABLED - ambient_light=vec3(0.0,0.0,0.0); + ambient_light = vec3(0.0, 0.0, 0.0); #else - ambient_light=ambient_light_color.rgb; + ambient_light = ambient_light_color.rgb; #endif //AMBIENT_LIGHT_DISABLED #endif - ambient_light*=ambient_energy; + ambient_light *= ambient_energy; - float specular_blob_intensity=1.0; + float specular_blob_intensity = 1.0; #if defined(SPECULAR_TOON) - specular_blob_intensity*=specular * 2.0; + specular_blob_intensity *= specular * 2.0; #endif #if defined(USE_LIGHT_DIRECTIONAL) - vec3 light_attenuation=vec3(1.0); + vec3 light_attenuation = vec3(1.0); float depth_z = -vertex.z; #ifdef LIGHT_DIRECTIONAL_SHADOW @@ -1811,261 +1729,234 @@ FRAGMENT_SHADER_CODE if (depth_z < shadow_split_offsets.x) { #endif //LIGHT_USE_PSSM4 - vec3 pssm_coord; - float pssm_fade=0.0; + vec3 pssm_coord; + float pssm_fade = 0.0; #ifdef LIGHT_USE_PSSM_BLEND - float pssm_blend; - vec3 pssm_coord2; - bool use_blend=true; + float pssm_blend; + vec3 pssm_coord2; + bool use_blend = true; #endif - #ifdef LIGHT_USE_PSSM4 + if (depth_z < shadow_split_offsets.y) { - if (depth_z < shadow_split_offsets.y) { - - if (depth_z < shadow_split_offsets.x) { - - highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; + if (depth_z < shadow_split_offsets.x) { + highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z); + splane = (shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z); #endif - } else { + } else { - highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; + highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix3 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z); + splane = (shadow_matrix3 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z); #endif + } + } else { - } - } else { - - - if (depth_z < shadow_split_offsets.z) { + if (depth_z < shadow_split_offsets.z) { - highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; + highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix4 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(shadow_split_offsets.y,shadow_split_offsets.z,depth_z); + splane = (shadow_matrix4 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z); #endif - } else { + } else { - highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - pssm_fade = smoothstep(shadow_split_offsets.z,shadow_split_offsets.w,depth_z); + highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) - use_blend=false; + use_blend = false; #endif - + } } - } - - #endif //LIGHT_USE_PSSM4 #ifdef LIGHT_USE_PSSM2 - if (depth_z < shadow_split_offsets.x) { - - highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; + if (depth_z < shadow_split_offsets.x) { + highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z); + splane = (shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z); #endif - } else { - highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - pssm_fade = smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z); + } else { + highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) - use_blend=false; + use_blend = false; #endif - - } + } #endif //LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) - { //regular orthogonal - highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - } + { //regular orthogonal + highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + } #endif + //one one sample - //one one sample - - float shadow = sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp); + float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp); #if defined(LIGHT_USE_PSSM_BLEND) - if (use_blend) { - shadow=mix(shadow, sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp),pssm_blend); - } + if (use_blend) { + shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend); + } #endif #ifdef USE_CONTACT_SHADOWS - if (shadow>0.01 && shadow_color_contact.a>0.0) { + if (shadow > 0.01 && shadow_color_contact.a > 0.0) { - float contact_shadow = contact_shadow_compute(vertex,-light_direction_attenuation.xyz,shadow_color_contact.a); - shadow=min(shadow,contact_shadow); - - } + float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a); + shadow = min(shadow, contact_shadow); + } #endif - light_attenuation=mix(mix(shadow_color_contact.rgb,vec3(1.0),shadow),vec3(1.0),pssm_fade); - - + light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade); } - #endif // !defined(SHADOWS_DISABLED) #endif //LIGHT_DIRECTIONAL_SHADOW #ifdef USE_VERTEX_LIGHTING - diffuse_light*=mix(vec3(1.0),light_attenuation,diffuse_light_interp.a); - specular_light*=mix(vec3(1.0),light_attenuation,specular_light_interp.a); + diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a); + specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a); #else - light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb,light_attenuation,albedo,transmission,light_params.z*specular_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); + light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); #endif - #endif //#USE_LIGHT_DIRECTIONAL #ifdef USE_GI_PROBES - gi_probes_compute(vertex,normal,roughness,env_reflection_light,ambient_light); + gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light); #endif #ifdef USE_LIGHTMAP - ambient_light = texture(lightmap,uv2).rgb * lightmap_energy; + ambient_light = texture(lightmap, uv2).rgb * lightmap_energy; #endif #ifdef USE_LIGHTMAP_CAPTURE { - vec3 cone_dirs[12] = vec3[] ( - vec3(0, 0, 1), - vec3(0.866025, 0, 0.5), - vec3(0.267617, 0.823639, 0.5), - vec3(-0.700629, 0.509037, 0.5), - vec3(-0.700629, -0.509037, 0.5), - vec3(0.267617, -0.823639, 0.5), - vec3(0, 0, -1), - vec3(0.866025, 0, -0.5), - vec3(0.267617, 0.823639, -0.5), - vec3(-0.700629, 0.509037, -0.5), - vec3(-0.700629, -0.509037, -0.5), - vec3(0.267617, -0.823639, -0.5) - ); - - - vec3 local_normal = normalize(camera_matrix * vec4(normal,0.0)).xyz; + vec3 cone_dirs[12] = vec3[]( + vec3(0, 0, 1), + vec3(0.866025, 0, 0.5), + vec3(0.267617, 0.823639, 0.5), + vec3(-0.700629, 0.509037, 0.5), + vec3(-0.700629, -0.509037, 0.5), + vec3(0.267617, -0.823639, 0.5), + vec3(0, 0, -1), + vec3(0.866025, 0, -0.5), + vec3(0.267617, 0.823639, -0.5), + vec3(-0.700629, 0.509037, -0.5), + vec3(-0.700629, -0.509037, -0.5), + vec3(0.267617, -0.823639, -0.5)); + + vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz; vec4 captured = vec4(0.0); float sum = 0.0; - for(int i=0;i<12;i++) { - float amount = max(0.0,dot(local_normal,cone_dirs[i])); //not correct, but creates a nice wrap around effect - captured += lightmap_captures[i]*amount; - sum+=amount; + for (int i = 0; i < 12; i++) { + float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect + captured += lightmap_captures[i] * amount; + sum += amount; } - captured/=sum; + captured /= sum; if (lightmap_capture_sky) { - ambient_light = mix( ambient_light, captured.rgb, captured.a); + ambient_light = mix(ambient_light, captured.rgb, captured.a); } else { ambient_light = captured.rgb; } - } #endif #ifdef USE_FORWARD_LIGHTING - - highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0); - highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0); - for(int i=0;i<reflection_count;i++) { - reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,env_reflection_light,reflection_accum,ambient_accum); + highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); + highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0); + for (int i = 0; i < reflection_count; i++) { + reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum); } - if (reflection_accum.a>0.0) { - specular_light+=reflection_accum.rgb/reflection_accum.a; + if (reflection_accum.a > 0.0) { + specular_light += reflection_accum.rgb / reflection_accum.a; } else { - specular_light+=env_reflection_light; + specular_light += env_reflection_light; } #ifndef USE_LIGHTMAP - if (ambient_accum.a>0.0) { - ambient_light=ambient_accum.rgb/ambient_accum.a; + if (ambient_accum.a > 0.0) { + ambient_light = ambient_accum.rgb / ambient_accum.a; } #endif - #ifdef USE_VERTEX_LIGHTING - diffuse_light*=albedo; + diffuse_light *= albedo; #else - for(int i=0;i<omni_light_count;i++) { - light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light); + for (int i = 0; i < omni_light_count; i++) { + light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light); } - for(int i=0;i<spot_light_count;i++) { - light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light); + for (int i = 0; i < spot_light_count; i++) { + light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light); } #endif //USE_VERTEX_LIGHTING #endif - - - #ifdef RENDER_DEPTH //nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else - specular_light*=reflection_multiplier; - ambient_light*=albedo; //ambient must be multiplied by albedo at the end + specular_light *= reflection_multiplier; + ambient_light *= albedo; //ambient must be multiplied by albedo at the end #if defined(ENABLE_AO) - ambient_light*=ao; - ao_light_affect = mix(1.0,ao,ao_light_affect); - specular_light*=ao_light_affect; - diffuse_light*=ao_light_affect; + ambient_light *= ao; + ao_light_affect = mix(1.0, ao, ao_light_affect); + specular_light *= ao_light_affect; + diffuse_light *= ao_light_affect; #endif - - //energy conservation - diffuse_light *= 1.0-metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point - ambient_light *= 1.0-metallic; - + diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point + ambient_light *= 1.0 - metallic; { @@ -2076,27 +1967,24 @@ FRAGMENT_SHADER_CODE // Environment brdf approximation (Lazarov 2013) // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); - const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04); + const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; - float ndotv = clamp(dot(normal,eye_vec),0.0,1.0); - float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y; - vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw; + float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0); + float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; + vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw; vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo); specular_light *= AB.x * specular_color + AB.y; #endif - } if (fog_color_enabled.a > 0.5) { - float fog_amount=0.0; - - + float fog_amount = 0.0; #ifdef USE_LIGHT_DIRECTIONAL - vec3 fog_color = mix( fog_color_enabled.rgb, fog_sun_color_amount.rgb,fog_sun_color_amount.a * pow(max( dot(normalize(vertex),-light_direction_attenuation.xyz), 0.0),8.0) ); + vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0)); #else vec3 fog_color = fog_color_enabled.rgb; @@ -2106,78 +1994,67 @@ FRAGMENT_SHADER_CODE if (fog_depth_enabled) { - float fog_z = smoothstep(fog_depth_begin,z_far,length(vertex)); + float fog_z = smoothstep(fog_depth_begin, z_far, length(vertex)); - fog_amount = pow(fog_z,fog_depth_curve); + fog_amount = pow(fog_z, fog_depth_curve); if (fog_transmit_enabled) { vec3 total_light = emission + ambient_light + specular_light + diffuse_light; - float transmit = pow(fog_z,fog_transmit_curve); - fog_color = mix(max(total_light,fog_color),fog_color,transmit); + float transmit = pow(fog_z, fog_transmit_curve); + fog_color = mix(max(total_light, fog_color), fog_color, transmit); } } if (fog_height_enabled) { - float y = (camera_matrix * vec4(vertex,1.0)).y; - fog_amount = max(fog_amount,pow(smoothstep(fog_height_min,fog_height_max,y),fog_height_curve)); + float y = (camera_matrix * vec4(vertex, 1.0)).y; + fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve)); } float rev_amount = 1.0 - fog_amount; - emission = emission * rev_amount + fog_color * fog_amount; - ambient_light*=rev_amount; - specular_light*rev_amount; - diffuse_light*=rev_amount; - + ambient_light *= rev_amount; + specular_light *rev_amount; + diffuse_light *= rev_amount; } #ifdef USE_MULTIPLE_RENDER_TARGETS - #ifdef SHADELESS - diffuse_buffer=vec4(albedo.rgb,0.0); - specular_buffer=vec4(0.0); + diffuse_buffer = vec4(albedo.rgb, 0.0); + specular_buffer = vec4(0.0); #else - - //approximate ambient scale for SSAO, since we will lack full ambient - float max_emission=max(emission.r,max(emission.g,emission.b)); - float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b)); - float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b)); - float total_ambient = max_ambient+max_diffuse+max_emission; - float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0; + float max_emission = max(emission.r, max(emission.g, emission.b)); + float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b)); + float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b)); + float total_ambient = max_ambient + max_diffuse + max_emission; + float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0; #if defined(ENABLE_AO) - ambient_scale=mix(0.0,ambient_scale,ambient_occlusion_affect_ao_channel); + ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel); #endif - diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale); - specular_buffer=vec4(specular_light,metallic); + diffuse_buffer = vec4(emission + diffuse_light + ambient_light, ambient_scale); + specular_buffer = vec4(specular_light, metallic); #endif //SHADELESS - normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness); + normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness); -#if defined (ENABLE_SSS) +#if defined(ENABLE_SSS) sss_buffer = sss_strength; #endif - #else //USE_MULTIPLE_RENDER_TARGETS - #ifdef SHADELESS - frag_color=vec4(albedo,alpha); + frag_color = vec4(albedo, alpha); #else - frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha); + frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha); #endif //SHADELESS #endif //USE_MULTIPLE_RENDER_TARGETS - - #endif //RENDER_DEPTH - - } |