diff options
Diffstat (limited to 'drivers/gles2')
-rw-r--r-- | drivers/gles2/SCsub | 2 | ||||
-rw-r--r-- | drivers/gles2/rasterizer_canvas_gles2.cpp | 2 | ||||
-rw-r--r-- | drivers/gles2/rasterizer_gles2.cpp | 2 | ||||
-rw-r--r-- | drivers/gles2/rasterizer_gles2.h | 2 | ||||
-rw-r--r-- | drivers/gles2/rasterizer_scene_gles2.cpp | 1958 | ||||
-rw-r--r-- | drivers/gles2/rasterizer_scene_gles2.h | 191 | ||||
-rw-r--r-- | drivers/gles2/rasterizer_storage_gles2.cpp | 414 | ||||
-rw-r--r-- | drivers/gles2/rasterizer_storage_gles2.h | 54 | ||||
-rw-r--r-- | drivers/gles2/shader_compiler_gles2.cpp | 26 | ||||
-rw-r--r-- | drivers/gles2/shader_gles2.cpp | 99 | ||||
-rw-r--r-- | drivers/gles2/shader_gles2.h | 16 | ||||
-rw-r--r-- | drivers/gles2/shaders/cubemap_filter.glsl | 14 | ||||
-rw-r--r-- | drivers/gles2/shaders/scene.glsl | 1575 | ||||
-rw-r--r-- | drivers/gles2/shaders/stdlib.glsl | 10 |
14 files changed, 3173 insertions, 1192 deletions
diff --git a/drivers/gles2/SCsub b/drivers/gles2/SCsub index 2471dd3739..9923e52c73 100644 --- a/drivers/gles2/SCsub +++ b/drivers/gles2/SCsub @@ -2,6 +2,6 @@ Import('env') -env.add_source_files(env.drivers_sources,"*.cpp") +env.add_source_files(env.drivers_sources, "*.cpp") SConscript("shaders/SCsub") diff --git a/drivers/gles2/rasterizer_canvas_gles2.cpp b/drivers/gles2/rasterizer_canvas_gles2.cpp index 4ae4441462..263f210fa2 100644 --- a/drivers/gles2/rasterizer_canvas_gles2.cpp +++ b/drivers/gles2/rasterizer_canvas_gles2.cpp @@ -811,8 +811,6 @@ void RasterizerCanvasGLES2::canvas_render_items(Item *p_item_list, int p_z, cons bool rebind_shader = true; - Size2 rt_size = Size2(storage->frame.current_rt->width, storage->frame.current_rt->height); - state.current_tex = RID(); state.current_tex_ptr = NULL; state.current_normal = RID(); diff --git a/drivers/gles2/rasterizer_gles2.cpp b/drivers/gles2/rasterizer_gles2.cpp index bd03bd71f6..1dd594cc20 100644 --- a/drivers/gles2/rasterizer_gles2.cpp +++ b/drivers/gles2/rasterizer_gles2.cpp @@ -32,7 +32,7 @@ #include "core/os/os.h" #include "core/project_settings.h" -#include "gl_context/context_gl.h" +#include "drivers/gl_context/context_gl.h" #define _EXT_DEBUG_OUTPUT_SYNCHRONOUS_ARB 0x8242 #define _EXT_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH_ARB 0x8243 diff --git a/drivers/gles2/rasterizer_gles2.h b/drivers/gles2/rasterizer_gles2.h index c76d5f7f20..45a9db73f2 100644 --- a/drivers/gles2/rasterizer_gles2.h +++ b/drivers/gles2/rasterizer_gles2.h @@ -66,6 +66,8 @@ public: static void make_current(); static void register_config(); + virtual bool is_low_end() const { return true; } + RasterizerGLES2(); ~RasterizerGLES2(); }; diff --git a/drivers/gles2/rasterizer_scene_gles2.cpp b/drivers/gles2/rasterizer_scene_gles2.cpp index ca9f6dcbf8..22cc45a0f6 100644 --- a/drivers/gles2/rasterizer_scene_gles2.cpp +++ b/drivers/gles2/rasterizer_scene_gles2.cpp @@ -110,8 +110,8 @@ void RasterizerSceneGLES2::shadow_atlas_set_size(RID p_atlas, int p_size) { glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, shadow_atlas->size, shadow_atlas->size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); @@ -437,29 +437,182 @@ void RasterizerSceneGLES2::reflection_atlas_set_subdivision(RID p_ref_atlas, int //////////////////////////////////////////////////// RID RasterizerSceneGLES2::reflection_probe_instance_create(RID p_probe) { - return RID(); + + RasterizerStorageGLES2::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!probe, RID()); + + ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance); + + rpi->probe_ptr = probe; + rpi->self = reflection_probe_instance_owner.make_rid(rpi); + rpi->probe = p_probe; + rpi->reflection_atlas_index = -1; + rpi->render_step = -1; + rpi->last_pass = 0; + rpi->current_resolution = 0; + rpi->dirty = true; + + rpi->last_pass = 0; + rpi->index = 0; + + for (int i = 0; i < 6; i++) { + glGenFramebuffers(1, &rpi->fbo[i]); + } + + glGenFramebuffers(1, &rpi->fbo_blur); + glGenRenderbuffers(1, &rpi->depth); + glGenTextures(1, &rpi->cubemap); + + return rpi->self; } void RasterizerSceneGLES2::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) { + + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND(!rpi); + rpi->transform = p_transform; } void RasterizerSceneGLES2::reflection_probe_release_atlas_index(RID p_instance) { } bool RasterizerSceneGLES2::reflection_probe_instance_needs_redraw(RID p_instance) { - return false; + const ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + + bool need_redraw = rpi->probe_ptr->resolution != rpi->current_resolution || rpi->dirty || rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS; + rpi->dirty = false; + return need_redraw; } bool RasterizerSceneGLES2::reflection_probe_instance_has_reflection(RID p_instance) { - return false; + return true; } bool RasterizerSceneGLES2::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { - return false; + + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + + rpi->render_step = 0; + + if (rpi->probe_ptr->resolution != rpi->current_resolution) { + + //update cubemap if resolution changed + int size = rpi->probe_ptr->resolution; + rpi->current_resolution = size; + + int lod = 0; + + GLenum internal_format = GL_RGBA; + GLenum format = GL_RGBA; + GLenum type = GL_UNSIGNED_BYTE; + + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap); + + // Set the initial (empty) mipmaps, all need to be set for this to work in GLES2, even if later wont be used. + while (size >= 1) { + + for (int i = 0; i < 6; i++) { + glTexImage2D(_cube_side_enum[i], lod, internal_format, size, size, 0, format, type, NULL); + if (size == rpi->current_resolution) { + //adjust framebuffer + glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]); + glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], rpi->cubemap, 0); + glBindRenderbuffer(GL_RENDERBUFFER, rpi->depth); + glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, size, size); + glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth); + +#ifdef DEBUG_ENABLED + GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); + ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); +#endif + } + } + + lod++; + + size >>= 1; + } + + glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); + glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); + glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + } + + return true; } bool RasterizerSceneGLES2::reflection_probe_instance_postprocess_step(RID p_instance) { - return false; + + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + + int size = rpi->probe_ptr->resolution; + + { + glBindBuffer(GL_ARRAY_BUFFER, 0); + glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); + glDisable(GL_CULL_FACE); + glDisable(GL_DEPTH_TEST); + glDisable(GL_SCISSOR_TEST); + glDisable(GL_BLEND); + glDepthMask(GL_FALSE); + + for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { + glDisableVertexAttribArray(i); + } + } + + //vdc cache + glActiveTexture(GL_TEXTURE1); + glBindTexture(GL_TEXTURE_2D, storage->resources.radical_inverse_vdc_cache_tex); + + glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo_blur); + // now render to the framebuffer, mipmap level for mipmap level + int lod = 1; + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap); + glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //use linear, no mipmaps so it does not read from what is being written to + + size >>= 1; + int mipmaps = 6; + int mm_level = mipmaps - 1; + + storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, false); + storage->shaders.cubemap_filter.bind(); + + //blur + while (size >= 1) { + + for (int i = 0; i < 6; i++) { + glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], rpi->cubemap, lod); + + glViewport(0, 0, size, size); + storage->bind_quad_array(); + storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i); + float roughness = CLAMP(lod / (float)(mipmaps - 1), 0, 1); + storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness); + storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::Z_FLIP, false); + + glDrawArrays(GL_TRIANGLE_FAN, 0, 4); + } + + size >>= 1; + + mm_level--; + + lod++; + } + + // restore ranges + + glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); + glBindFramebuffer(GL_FRAMEBUFFER, 0); + + return true; } /* ENVIRONMENT API */ @@ -604,6 +757,8 @@ RID RasterizerSceneGLES2::light_instance_create(RID p_light) { light_instance->light = p_light; light_instance->light_ptr = storage->light_owner.getornull(p_light); + light_instance->light_index = 0xFFFF; + ERR_FAIL_COND_V(!light_instance->light_ptr, RID()); light_instance->self = light_instance_owner.make_rid(light_instance); @@ -709,9 +864,39 @@ void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::G bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX; bool has_alpha = has_base_alpha || has_blend_alpha; - // TODO add this stuff - // bool mirror = p_instance->mirror; - // bool no_cull = false; + bool mirror = p_instance->mirror; + + if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED) { + mirror = false; + } else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT) { + mirror = !mirror; + } + + //if (p_material->shader->spatial.uses_sss) { + // state.used_sss = true; + //} + + if (p_material->shader->spatial.uses_screen_texture) { + state.used_screen_texture = true; + } + + if (p_depth_pass) { + + if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) + return; //bye + + if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { + //shader does not use discard and does not write a vertex position, use generic material + if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) { + p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided); + mirror = false; + } else { + p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material); + } + } + + has_alpha = false; + } RenderList::Element *e = has_alpha ? render_list.add_alpha_element() : render_list.add_element(); @@ -724,46 +909,130 @@ void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::G e->instance = p_instance; e->owner = p_owner; e->sort_key = 0; + e->depth_key = 0; + e->use_accum = false; + e->light_index = RenderList::MAX_LIGHTS; + e->use_accum_ptr = &e->use_accum; + e->instancing = (e->instance->base_type == VS::INSTANCE_MULTIMESH) ? 1 : 0; + + if (e->geometry->last_pass != render_pass) { + e->geometry->last_pass = render_pass; + e->geometry->index = current_geometry_index++; + } - // TODO check render pass of geometry - - // TODO check directional light flag + e->geometry_index = e->geometry->index; - if (p_depth_pass) { - // if we are in the depth pass we can sort out a few things to improve performance + if (e->material->last_pass != render_pass) { + e->material->last_pass = render_pass; + e->material->index = current_material_index++; - if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) { - return; + if (e->material->shader->last_pass != render_pass) { + e->material->shader->index = current_shader_index++; } + } - if (p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { + e->material_index = e->material->index; + + e->refprobe_0_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default + e->refprobe_1_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default + + if (!p_depth_pass) { - // shader doesn't use discard or writes a custom vertex position, - // so we can use a stripped down shader instead + e->depth_layer = e->instance->depth_layer; + e->priority = p_material->render_priority; - // TODO twosided and worldcoord stuff + int rpsize = e->instance->reflection_probe_instances.size(); + if (rpsize > 0) { + bool first = true; + rpsize = MIN(rpsize, 2); //more than 2 per object are not supported, this keeps it stable - p_material = storage->material_owner.getptr(default_material_twosided); + for (int i = 0; i < rpsize; i++) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(e->instance->reflection_probe_instances[i]); + if (rpi->last_pass != render_pass) { + continue; + } + if (first) { + e->refprobe_0_index = rpi->index; + first = false; + } else { + e->refprobe_1_index = rpi->index; + break; + } + } + + /* if (e->refprobe_0_index > e->refprobe_1_index) { //if both are valid, swap them to keep order as best as possible + uint64_t tmp = e->refprobe_0_index; + e->refprobe_0_index = e->refprobe_1_index; + e->refprobe_1_index = tmp; + }*/ } - has_alpha = false; - } + //add directional lights - e->sort_key |= uint64_t(e->geometry->index) << RenderList::SORT_KEY_GEOMETRY_INDEX_SHIFT; - e->sort_key |= uint64_t(e->instance->base_type) << RenderList::SORT_KEY_GEOMETRY_TYPE_SHIFT; + if (p_material->shader->spatial.unshaded) { + e->light_mode = LIGHTMODE_UNSHADED; + } else { - if (p_material->shader->spatial.unshaded) { - e->sort_key |= SORT_KEY_UNSHADED_FLAG; - } + bool copy = false; - if (!p_depth_pass) { - e->sort_key |= uint64_t(e->material->index) << RenderList::SORT_KEY_MATERIAL_INDEX_SHIFT; + for (int i = 0; i < render_directional_lights; i++) { - e->sort_key |= uint64_t(p_material->render_priority + 128) << RenderList::SORT_KEY_PRIORITY_SHIFT; - } else { - // TODO + if (copy) { + RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element(); + if (!e2) { + break; + } + *e2 = *e; //this includes accum ptr :) + e = e2; + } + + //directional sort key + e->light_type1 = 0; + e->light_type2 = 1; + e->light_index = i; + + copy = true; + } + + //add omni / spots + + for (int i = 0; i < e->instance->light_instances.size(); i++) { + + LightInstance *li = light_instance_owner.getornull(e->instance->light_instances[i]); + + if (li->light_index >= render_light_instance_count) { + continue; // too many + } + + if (copy) { + RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element(); + if (!e2) { + break; + } + *e2 = *e; //this includes accum ptr :) + e = e2; + } + + //directional sort key + e->light_type1 = 1; + e->light_type2 = li->light_ptr->type == VisualServer::LIGHT_OMNI ? 0 : 1; + e->light_index = li->light_index; + + copy = true; + } + + if (e->instance->lightmap.is_valid()) { + e->light_mode = LIGHTMODE_LIGHTMAP; + } else if (!e->instance->lightmap_capture_data.empty()) { + e->light_mode = LIGHTMODE_LIGHTMAP_CAPTURE; + } else { + e->light_mode = LIGHTMODE_NORMAL; + } + } } + // do not add anything here, as lights are duplicated elements.. + if (p_material->shader->spatial.uses_time) { VisualServerRaster::redraw_request(); } @@ -771,6 +1040,13 @@ void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::G void RasterizerSceneGLES2::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) { + render_pass++; + current_material_index = 0; + current_geometry_index = 0; + current_light_index = 0; + current_refprobe_index = 0; + current_shader_index = 0; + for (int i = 0; i < p_cull_count; i++) { InstanceBase *instance = p_cull_result[i]; @@ -821,9 +1097,7 @@ void RasterizerSceneGLES2::_fill_render_list(InstanceBase **p_cull_result, int p } break; - default: { - - } break; + default: {} } } } @@ -838,13 +1112,13 @@ static const GLenum gl_primitive[] = { GL_TRIANGLE_FAN }; -void RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_material, bool p_reverse_cull, bool p_alpha_pass, Size2i p_skeleton_tex_size) { +bool RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_material, bool p_reverse_cull, bool p_alpha_pass, Size2i p_skeleton_tex_size) { // material parameters state.scene_shader.set_custom_shader(p_material->shader->custom_code_id); - state.scene_shader.bind(); + bool shader_rebind = state.scene_shader.bind(); if (p_material->shader->spatial.no_depth_test) { glDisable(GL_DEPTH_TEST); @@ -923,203 +1197,178 @@ void RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_m glBindTexture(t->target, t->tex_id); } state.scene_shader.use_material((void *)p_material); + + return shader_rebind; } void RasterizerSceneGLES2::_setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton) { - state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, p_skeleton != NULL); - state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, !storage->config.float_texture_supported); - // state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, true); - switch (p_element->instance->base_type) { case VS::INSTANCE_MESH: { RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); - state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false); - state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_COLOR_INTERP, s->attribs[VS::ARRAY_COLOR].enabled); - state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_UV_INTERP, s->attribs[VS::ARRAY_TEX_UV].enabled); - state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_UV2_INTERP, s->attribs[VS::ARRAY_TEX_UV2].enabled); - - } break; - - case VS::INSTANCE_MULTIMESH: { - RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES2::MultiMesh *>(p_element->owner); - RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); - - state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_COLOR_INTERP, true); - state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, true); - - state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_UV_INTERP, s->attribs[VS::ARRAY_TEX_UV].enabled); - state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_UV2_INTERP, s->attribs[VS::ARRAY_TEX_UV2].enabled); - } break; - - case VS::INSTANCE_IMMEDIATE: { - state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false); - state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_COLOR_INTERP, true); - state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_UV_INTERP, true); - state.scene_shader.set_conditional(SceneShaderGLES2::ENABLE_UV2_INTERP, true); - } break; - - default: { - - } break; - } - - if (storage->config.float_texture_supported) { - if (p_skeleton) { - glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1); - glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id); - } - - return; - } - - if (p_skeleton) { - ERR_FAIL_COND(p_skeleton->use_2d); - - PoolVector<float> &transform_buffer = storage->resources.skeleton_transform_cpu_buffer; - - switch (p_element->instance->base_type) { - case VS::INSTANCE_MESH: { - RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); + glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id); - if (!s->attribs[VS::ARRAY_BONES].enabled || !s->attribs[VS::ARRAY_WEIGHTS].enabled) { - break; // the whole instance has a skeleton, but this surface is not affected by it. - } + if (s->index_array_len > 0) { + glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); + } - // 3 * vec4 per vertex - if (transform_buffer.size() < s->array_len * 12) { - transform_buffer.resize(s->array_len * 12); + for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { + if (s->attribs[i].enabled) { + glEnableVertexAttribArray(i); + glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, (uint8_t *)0 + s->attribs[i].offset); + } else { + glDisableVertexAttribArray(i); + switch (i) { + case VS::ARRAY_NORMAL: { + glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1); + } break; + case VS::ARRAY_COLOR: { + glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1); + + } break; + default: {} + } } + } - const size_t bones_offset = s->attribs[VS::ARRAY_BONES].offset; - const size_t bones_stride = s->attribs[VS::ARRAY_BONES].stride; - const size_t bone_weight_offset = s->attribs[VS::ARRAY_WEIGHTS].offset; - const size_t bone_weight_stride = s->attribs[VS::ARRAY_WEIGHTS].stride; - - { - PoolVector<float>::Write write = transform_buffer.write(); - float *buffer = write.ptr(); + bool clear_skeleton_buffer = !storage->config.float_texture_supported; - PoolVector<uint8_t>::Read vertex_array_read = s->data.read(); - const uint8_t *vertex_data = vertex_array_read.ptr(); + if (p_skeleton) { - for (int i = 0; i < s->array_len; i++) { + if (storage->config.float_texture_supported) { + //use float texture workflow + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1); + glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id); + } else { + //use transform buffer workflow + ERR_FAIL_COND(p_skeleton->use_2d); - // do magic + PoolVector<float> &transform_buffer = storage->resources.skeleton_transform_cpu_buffer; - size_t bones[4]; - float bone_weight[4]; + if (!s->attribs[VS::ARRAY_BONES].enabled || !s->attribs[VS::ARRAY_WEIGHTS].enabled) { + break; // the whole instance has a skeleton, but this surface is not affected by it. + } - if (s->attribs[VS::ARRAY_BONES].type == GL_UNSIGNED_BYTE) { - // read as byte - const uint8_t *bones_ptr = vertex_data + bones_offset + (i * bones_stride); - bones[0] = bones_ptr[0]; - bones[1] = bones_ptr[1]; - bones[2] = bones_ptr[2]; - bones[3] = bones_ptr[3]; - } else { - // read as short - const uint16_t *bones_ptr = (const uint16_t *)(vertex_data + bones_offset + (i * bones_stride)); - bones[0] = bones_ptr[0]; - bones[1] = bones_ptr[1]; - bones[2] = bones_ptr[2]; - bones[3] = bones_ptr[3]; - } + // 3 * vec4 per vertex + if (transform_buffer.size() < s->array_len * 12) { + transform_buffer.resize(s->array_len * 12); + } - if (s->attribs[VS::ARRAY_WEIGHTS].type == GL_FLOAT) { - // read as float - const float *weight_ptr = (const float *)(vertex_data + bone_weight_offset + (i * bone_weight_stride)); - bone_weight[0] = weight_ptr[0]; - bone_weight[1] = weight_ptr[1]; - bone_weight[2] = weight_ptr[2]; - bone_weight[3] = weight_ptr[3]; - } else { - // read as half - const uint16_t *weight_ptr = (const uint16_t *)(vertex_data + bone_weight_offset + (i * bone_weight_stride)); - bone_weight[0] = (weight_ptr[0] / (float)0xFFFF); - bone_weight[1] = (weight_ptr[1] / (float)0xFFFF); - bone_weight[2] = (weight_ptr[2] / (float)0xFFFF); - bone_weight[3] = (weight_ptr[3] / (float)0xFFFF); + const size_t bones_offset = s->attribs[VS::ARRAY_BONES].offset; + const size_t bones_stride = s->attribs[VS::ARRAY_BONES].stride; + const size_t bone_weight_offset = s->attribs[VS::ARRAY_WEIGHTS].offset; + const size_t bone_weight_stride = s->attribs[VS::ARRAY_WEIGHTS].stride; + + { + PoolVector<float>::Write write = transform_buffer.write(); + float *buffer = write.ptr(); + + PoolVector<uint8_t>::Read vertex_array_read = s->data.read(); + const uint8_t *vertex_data = vertex_array_read.ptr(); + + for (int i = 0; i < s->array_len; i++) { + + // do magic + + size_t bones[4]; + float bone_weight[4]; + + if (s->attribs[VS::ARRAY_BONES].type == GL_UNSIGNED_BYTE) { + // read as byte + const uint8_t *bones_ptr = vertex_data + bones_offset + (i * bones_stride); + bones[0] = bones_ptr[0]; + bones[1] = bones_ptr[1]; + bones[2] = bones_ptr[2]; + bones[3] = bones_ptr[3]; + } else { + // read as short + const uint16_t *bones_ptr = (const uint16_t *)(vertex_data + bones_offset + (i * bones_stride)); + bones[0] = bones_ptr[0]; + bones[1] = bones_ptr[1]; + bones[2] = bones_ptr[2]; + bones[3] = bones_ptr[3]; + } + + if (s->attribs[VS::ARRAY_WEIGHTS].type == GL_FLOAT) { + // read as float + const float *weight_ptr = (const float *)(vertex_data + bone_weight_offset + (i * bone_weight_stride)); + bone_weight[0] = weight_ptr[0]; + bone_weight[1] = weight_ptr[1]; + bone_weight[2] = weight_ptr[2]; + bone_weight[3] = weight_ptr[3]; + } else { + // read as half + const uint16_t *weight_ptr = (const uint16_t *)(vertex_data + bone_weight_offset + (i * bone_weight_stride)); + bone_weight[0] = (weight_ptr[0] / (float)0xFFFF); + bone_weight[1] = (weight_ptr[1] / (float)0xFFFF); + bone_weight[2] = (weight_ptr[2] / (float)0xFFFF); + bone_weight[3] = (weight_ptr[3] / (float)0xFFFF); + } + + Transform transform; + + Transform bone_transforms[4] = { + storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[0]), + storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[1]), + storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[2]), + storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[3]), + }; + + transform.origin = + bone_weight[0] * bone_transforms[0].origin + + bone_weight[1] * bone_transforms[1].origin + + bone_weight[2] * bone_transforms[2].origin + + bone_weight[3] * bone_transforms[3].origin; + + transform.basis = + bone_transforms[0].basis * bone_weight[0] + + bone_transforms[1].basis * bone_weight[1] + + bone_transforms[2].basis * bone_weight[2] + + bone_transforms[3].basis * bone_weight[3]; + + float row[3][4] = { + { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] }, + { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] }, + { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] }, + }; + + size_t transform_buffer_offset = i * 12; + + copymem(&buffer[transform_buffer_offset], row, sizeof(row)); } + } - size_t offset = i * 12; - - Transform transform; - - Transform bone_transforms[4] = { - storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[0]), - storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[1]), - storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[2]), - storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[3]), - }; - - transform.origin = - bone_weight[0] * bone_transforms[0].origin + - bone_weight[1] * bone_transforms[1].origin + - bone_weight[2] * bone_transforms[2].origin + - bone_weight[3] * bone_transforms[3].origin; + storage->_update_skeleton_transform_buffer(transform_buffer, s->array_len * 12); - transform.basis = - bone_transforms[0].basis * bone_weight[0] + - bone_transforms[1].basis * bone_weight[1] + - bone_transforms[2].basis * bone_weight[2] + - bone_transforms[3].basis * bone_weight[3]; + //enable transform buffer and bind it + glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer); - float row[3][4] = { - { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] }, - { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] }, - { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] }, - }; + glEnableVertexAttribArray(INSTANCE_BONE_BASE + 0); + glEnableVertexAttribArray(INSTANCE_BONE_BASE + 1); + glEnableVertexAttribArray(INSTANCE_BONE_BASE + 2); - size_t transform_buffer_offset = i * 12; + glVertexAttribPointer(INSTANCE_BONE_BASE + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0)); + glVertexAttribPointer(INSTANCE_BONE_BASE + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1)); + glVertexAttribPointer(INSTANCE_BONE_BASE + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2)); - copymem(&buffer[transform_buffer_offset], row, sizeof(row)); - } + clear_skeleton_buffer = false; } + } - storage->_update_skeleton_transform_buffer(transform_buffer, s->array_len * 12); - } break; - - default: { - - } break; - } - } -} - -void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) { + if (clear_skeleton_buffer) { - switch (p_element->instance->base_type) { + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2); + } - case VS::INSTANCE_MESH: { + } break; + case VS::INSTANCE_MULTIMESH: { RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); - // set up - - if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) { - glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer); - - glEnableVertexAttribArray(VS::ARRAY_MAX + 0); - glEnableVertexAttribArray(VS::ARRAY_MAX + 1); - glEnableVertexAttribArray(VS::ARRAY_MAX + 2); - - glVertexAttribPointer(VS::ARRAY_MAX + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0)); - glVertexAttribPointer(VS::ARRAY_MAX + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1)); - glVertexAttribPointer(VS::ARRAY_MAX + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2)); - } else { - // just to make sure - glDisableVertexAttribArray(VS::ARRAY_MAX + 0); - glDisableVertexAttribArray(VS::ARRAY_MAX + 1); - glDisableVertexAttribArray(VS::ARRAY_MAX + 2); - - glVertexAttrib4f(VS::ARRAY_MAX + 0, 1, 0, 0, 0); - glVertexAttrib4f(VS::ARRAY_MAX + 1, 0, 1, 0, 0); - glVertexAttrib4f(VS::ARRAY_MAX + 2, 0, 0, 1, 0); - } - glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id); if (s->index_array_len > 0) { @@ -1132,61 +1381,58 @@ void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) { glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, (uint8_t *)0 + s->attribs[i].offset); } else { glDisableVertexAttribArray(i); + switch (i) { + case VS::ARRAY_NORMAL: { + glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1); + } break; + case VS::ARRAY_COLOR: { + glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1); + + } break; + default: {} + } } } - // drawing + // prepare multimesh (disable) + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 0); + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 1); + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 2); + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 3); + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 4); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2); - if (s->index_array_len > 0) { - glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); - } else { - glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); - } - - // tear down - - for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { - glDisableVertexAttribArray(i); - } - - if (s->index_array_len > 0) { - glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); - } + } break; - if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) { - glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer); + case VS::INSTANCE_IMMEDIATE: { + } break; - glDisableVertexAttribArray(VS::ARRAY_MAX + 0); - glDisableVertexAttribArray(VS::ARRAY_MAX + 1); - glDisableVertexAttribArray(VS::ARRAY_MAX + 2); - } + default: {} + } +} - glBindBuffer(GL_ARRAY_BUFFER, 0); +void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) { - } break; + switch (p_element->instance->base_type) { - case VS::INSTANCE_MULTIMESH: { + case VS::INSTANCE_MESH: { - RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES2::MultiMesh *>(p_element->owner); RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); - int amount = MIN(multi_mesh->size, multi_mesh->visible_instances); - if (amount == -1) { - amount = multi_mesh->size; - } + // drawing + if (s->index_array_len > 0) { + glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); + } else { + glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); + } + /* if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) { + //clean up after skeleton glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer); - glEnableVertexAttribArray(VS::ARRAY_MAX + 0); - glEnableVertexAttribArray(VS::ARRAY_MAX + 1); - glEnableVertexAttribArray(VS::ARRAY_MAX + 2); - - glVertexAttribPointer(VS::ARRAY_MAX + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0)); - glVertexAttribPointer(VS::ARRAY_MAX + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1)); - glVertexAttribPointer(VS::ARRAY_MAX + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2)); - } else { - // just to make sure glDisableVertexAttribArray(VS::ARRAY_MAX + 0); glDisableVertexAttribArray(VS::ARRAY_MAX + 1); glDisableVertexAttribArray(VS::ARRAY_MAX + 2); @@ -1195,37 +1441,20 @@ void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) { glVertexAttrib4f(VS::ARRAY_MAX + 1, 0, 1, 0, 0); glVertexAttrib4f(VS::ARRAY_MAX + 2, 0, 0, 1, 0); } +*/ + } break; - glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id); - - if (s->index_array_len > 0) { - glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); - } - - for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { - if (s->attribs[i].enabled) { - glEnableVertexAttribArray(i); - glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, (uint8_t *)0 + s->attribs[i].offset); - } else { - glDisableVertexAttribArray(i); - } - } + case VS::INSTANCE_MULTIMESH: { - glDisableVertexAttribArray(12); // transform 0 - glDisableVertexAttribArray(13); // transform 1 - glDisableVertexAttribArray(14); // transform 2 - glDisableVertexAttribArray(15); // color - glDisableVertexAttribArray(8); // custom data + RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES2::MultiMesh *>(p_element->owner); + RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); - if (!s->attribs[VS::ARRAY_COLOR].enabled) { - glDisableVertexAttribArray(VS::ARRAY_COLOR); + int amount = MIN(multi_mesh->size, multi_mesh->visible_instances); - glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1); + if (amount == -1) { + amount = multi_mesh->size; } - glVertexAttrib4f(15, 1, 1, 1, 1); - glVertexAttrib4f(8, 0, 0, 0, 0); - int stride = multi_mesh->color_floats + multi_mesh->custom_data_floats + multi_mesh->xform_floats; int color_ofs = multi_mesh->xform_floats; @@ -1233,49 +1462,34 @@ void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) { // drawing + const float *base_buffer = multi_mesh->data.ptr(); + for (int i = 0; i < amount; i++) { - float *buffer = &multi_mesh->data.write[i * stride]; + const float *buffer = base_buffer + i * stride; { - // inline of multimesh_get_transform since it's such a pain - // to get a RID from here... - Transform transform; - - transform.basis.elements[0][0] = buffer[0]; - transform.basis.elements[0][1] = buffer[1]; - transform.basis.elements[0][2] = buffer[2]; - transform.origin.x = buffer[3]; - transform.basis.elements[1][0] = buffer[4]; - transform.basis.elements[1][1] = buffer[5]; - transform.basis.elements[1][2] = buffer[6]; - transform.origin.y = buffer[7]; - transform.basis.elements[2][0] = buffer[8]; - transform.basis.elements[2][1] = buffer[9]; - transform.basis.elements[2][2] = buffer[10]; - transform.origin.z = buffer[11]; - - float row[3][4] = { - { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] }, - { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] }, - { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] }, - }; - - glVertexAttrib4fv(12, row[0]); - glVertexAttrib4fv(13, row[1]); - glVertexAttrib4fv(14, row[2]); + + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 0, &buffer[0]); + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 1, &buffer[4]); + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 2, &buffer[8]); } if (multi_mesh->color_floats) { if (multi_mesh->color_format == VS::MULTIMESH_COLOR_8BIT) { uint8_t *color_data = (uint8_t *)(buffer + color_ofs); - glVertexAttrib4f(15, color_data[0] / 255.0, color_data[1] / 255.0, color_data[2] / 255.0, color_data[3] / 255.0); + glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, color_data[0] / 255.0, color_data[1] / 255.0, color_data[2] / 255.0, color_data[3] / 255.0); } else { - glVertexAttrib4fv(15, buffer + color_ofs); + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 3, buffer + color_ofs); } } if (multi_mesh->custom_data_floats) { - glVertexAttrib4fv(8, buffer + custom_data_ofs); + if (multi_mesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) { + uint8_t *custom_data = (uint8_t *)(buffer + custom_data_ofs); + glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 4, custom_data[0] / 255.0, custom_data[1] / 255.0, custom_data[2] / 255.0, custom_data[3] / 255.0); + } else { + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 4, buffer + custom_data_ofs); + } } if (s->index_array_len > 0) { @@ -1285,25 +1499,6 @@ void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) { } } - // tear down - - for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { - glDisableVertexAttribArray(i); - } - - if (s->index_array_len > 0) { - glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); - } - - if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) { - glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer); - - glDisableVertexAttribArray(VS::ARRAY_MAX + 0); - glDisableVertexAttribArray(VS::ARRAY_MAX + 1); - glDisableVertexAttribArray(VS::ARRAY_MAX + 2); - } - - glBindBuffer(GL_ARRAY_BUFFER, 0); } break; case VS::INSTANCE_IMMEDIATE: { @@ -1417,508 +1612,696 @@ void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) { } } break; + default: {} } } -void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements, int p_element_count, const RID *p_directional_lights, int p_directional_light_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow, bool p_directional_add) { +void RasterizerSceneGLES2::_setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas) { - ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); + //turn off all by default + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, false); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false); - Vector2 screen_pixel_size; - screen_pixel_size.x = 1.0 / storage->frame.current_rt->width; - screen_pixel_size.y = 1.0 / storage->frame.current_rt->height; + if (!p_light) { //no light, return off + return; + } - bool use_radiance_map = false; + //turn on lighting + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, true); - VMap<RID, Vector<RenderList::Element *> > lit_objects; + switch (p_light->light_ptr->type) { + case VS::LIGHT_DIRECTIONAL: { - for (int i = 0; i < p_element_count; i++) { - RenderList::Element *e = p_elements[i]; + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, true); + switch (p_light->light_ptr->directional_shadow_mode) { + case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { + //no need + } break; + case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: { + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, true); - RasterizerStorageGLES2::Material *material = e->material; + } break; + case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, true); + } break; + } - RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, p_light->light_ptr->directional_blend_splits); + if (!state.render_no_shadows && p_light->light_ptr->shadow) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true); + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); + glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); + } - if (p_base_env) { - glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2); - glBindTexture(GL_TEXTURE_CUBE_MAP, p_base_env); - use_radiance_map = true; - } - state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map); + } break; + case VS::LIGHT_OMNI: { + + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, true); + if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true); + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); + glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); + } + } break; + case VS::LIGHT_SPOT: { + + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, true); + if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true); + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); + glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); + } + } break; + } +} - if (material->shader->spatial.unshaded) { - state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false); - } else { - state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map); - } +void RasterizerSceneGLES2::_setup_light(LightInstance *light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform) { - // opaque pass + RasterizerStorageGLES2::Light *light_ptr = light->light_ptr; - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_PASS, false); + //common parameters + float energy = light_ptr->param[VS::LIGHT_PARAM_ENERGY]; + float specular = light_ptr->param[VS::LIGHT_PARAM_SPECULAR]; + float sign = light_ptr->negative ? -1 : 1; - _setup_geometry(e, skeleton); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular); + Color color = light_ptr->color * sign * energy * Math_PI; + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, color); - _setup_material(material, p_reverse_cull, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0)); + //specific parameters - if (use_radiance_map) { - state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, p_view_transform); - } + switch (light_ptr->type) { + case VS::LIGHT_DIRECTIONAL: { + //not using inverse for performance, view should be normalized anyway + Vector3 direction = p_view_transform.basis.xform_inv(light->transform.basis.xform(Vector3(0, 0, -1))).normalized(); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction); - if (p_shadow) { - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_BIAS, p_shadow_bias); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_NORMAL_BIAS, p_shadow_normal_bias); - } + CameraMatrix matrices[4]; - if (p_env) { - state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, p_env->bg_energy); - state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, p_env->ambient_sky_contribution); - state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, p_env->ambient_color); - state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, p_env->ambient_energy); + if (!state.render_no_shadows && light_ptr->shadow && directional_shadow.depth) { - } else { - state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, 1.0); - state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, 1.0); - state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, Color(1.0, 1.0, 1.0, 1.0)); - state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, 1.0); - } - - glEnable(GL_BLEND); + int shadow_count = 0; + Color split_offsets; - if (p_alpha_pass || p_directional_add) { - int desired_blend_mode; - if (p_directional_add) { - desired_blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD; - } else { - desired_blend_mode = material->shader->spatial.blend_mode; - } + switch (light_ptr->directional_shadow_mode) { + case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { + shadow_count = 1; + } break; - switch (desired_blend_mode) { + case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: { + shadow_count = 2; + } break; - case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX: { - glBlendEquation(GL_FUNC_ADD); - if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { - glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); - } else { - glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); - } + case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { + shadow_count = 4; + } break; + } - } break; - case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD: { + for (int k = 0; k < shadow_count; k++) { - glBlendEquation(GL_FUNC_ADD); - glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE); + uint32_t x = light->directional_rect.position.x; + uint32_t y = light->directional_rect.position.y; + uint32_t width = light->directional_rect.size.x; + uint32_t height = light->directional_rect.size.y; - } break; - case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB: { + if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { - glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); - glBlendFunc(GL_SRC_ALPHA, GL_ONE); - } break; - case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MUL: { - glBlendEquation(GL_FUNC_ADD); - if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { - glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); - } else { - glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); - } + width /= 2; + height /= 2; - } break; - } - } else { - // no blend mode given - assume mix - glBlendEquation(GL_FUNC_ADD); - if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { - glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); - } else { - glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); - } - } + if (k == 0) { - state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform.inverse()); - state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, p_view_transform); - state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection); - state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, p_projection.inverse()); + } else if (k == 1) { + x += width; + } else if (k == 2) { + y += height; + } else if (k == 3) { + x += width; + y += height; + } - state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]); + } else if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { - state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size); - state.scene_shader.set_uniform(SceneShaderGLES2::NORMAL_MULT, 1.0); // TODO mirror? - state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform); + height /= 2; - _render_geometry(e); + if (k == 0) { - if (material->shader->spatial.unshaded) - continue; + } else { + y += height; + } + } - if (p_shadow) - continue; + split_offsets[k] = light->shadow_transform[k].split; - for (int light = 0; light < e->instance->light_instances.size(); light++) { + Transform modelview = (p_view_transform.inverse() * light->shadow_transform[k].transform).affine_inverse(); - RID light_instance = e->instance->light_instances[light]; + CameraMatrix bias; + bias.set_light_bias(); + CameraMatrix rectm; + Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size); + rectm.set_light_atlas_rect(atlas_rect); - lit_objects[light_instance].push_back(e); - } - } + CameraMatrix shadow_mtx = rectm * bias * light->shadow_transform[k].camera * modelview; + matrices[k] = shadow_mtx; - if (p_shadow) { - state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false); - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false); - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false); - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false); - return; - } + /*Color light_clamp; + light_clamp[0] = atlas_rect.position.x; + light_clamp[1] = atlas_rect.position.y; + light_clamp[2] = atlas_rect.size.x; + light_clamp[3] = atlas_rect.size.y;*/ + } - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_PASS, true); + // state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / directional_shadow.size, 1.0 / directional_shadow.size)); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPLIT_OFFSETS, split_offsets); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, matrices[0]); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX2, matrices[1]); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX3, matrices[2]); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX4, matrices[3]); + } + } break; + case VS::LIGHT_OMNI: { - glEnable(GL_BLEND); - glBlendEquation(GL_FUNC_ADD); - glBlendFunc(GL_SRC_ALPHA, GL_ONE); + Vector3 position = p_view_transform.xform_inv(light->transform.origin); - for (int lo = 0; lo < lit_objects.size(); lo++) { + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position); - RID key = lit_objects.getk(lo); + float range = light_ptr->param[VS::LIGHT_PARAM_RANGE]; + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range); - LightInstance *light = light_instance_owner.getornull(key); - RasterizerStorageGLES2::Light *light_ptr = light->light_ptr; + float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation); - const Vector<RenderList::Element *> &list = lit_objects.getv(lo); + if (!state.render_no_shadows && light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) { - for (int i = 0; i < list.size(); i++) { + uint32_t key = shadow_atlas->shadow_owners[light->self]; - RenderList::Element *e = list[i]; - RasterizerStorageGLES2::Material *material = e->material; + uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; + uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; - RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton); + ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); - { - _setup_geometry(e, skeleton); + uint32_t atlas_size = shadow_atlas->size; + uint32_t quadrant_size = atlas_size >> 1; - _setup_material(material, p_reverse_cull, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0)); - if (shadow_atlas != NULL) { - glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); - glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); - } + uint32_t x = (quadrant & 1) * quadrant_size; + uint32_t y = (quadrant >> 1) * quadrant_size; - state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform.inverse()); - state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, p_view_transform); - state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection); - state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, p_projection.inverse()); + uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); + x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; - state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]); + uint32_t width = shadow_size; + uint32_t height = shadow_size; - state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size); - state.scene_shader.set_uniform(SceneShaderGLES2::NORMAL_MULT, 1.0); // TODO mirror? - state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform); - } + if (light->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { + height /= 2; + } else { + width /= 2; + } - switch (light_ptr->type) { - case VS::LIGHT_OMNI: { + Transform proj = (p_view_transform.inverse() * light->transform).inverse(); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_TYPE, (int)1); + Color light_clamp; + light_clamp[0] = float(x) / atlas_size; + light_clamp[1] = float(y) / atlas_size; + light_clamp[2] = float(width) / atlas_size; + light_clamp[3] = float(height) / atlas_size; - Vector3 position = p_view_transform.inverse().xform(light->transform.origin); + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size)); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, proj); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); + } + } break; - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position); + case VS::LIGHT_SPOT: { - float range = light_ptr->param[VS::LIGHT_PARAM_RANGE]; - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range); + Vector3 position = p_view_transform.xform_inv(light->transform.origin); - Color attenuation = Color(0.0, 0.0, 0.0, 0.0); - attenuation.a = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position); - if (light_ptr->shadow && shadow_atlas->shadow_owners.has(light->self)) { + Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized(); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction); + float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; + float range = light_ptr->param[VS::LIGHT_PARAM_RANGE]; + float spot_attenuation = light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION]; + float angle = light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE]; + angle = Math::cos(Math::deg2rad(angle)); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ATTENUATION, spot_attenuation); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_RANGE, spot_attenuation); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ANGLE, angle); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range); - uint32_t key = shadow_atlas->shadow_owners[light->self]; + if (!state.render_no_shadows && light->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) { + uint32_t key = shadow_atlas->shadow_owners[light->self]; - uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; - uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; + uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; + uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; - ERR_CONTINUE(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); + ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); - uint32_t atlas_size = shadow_atlas->size; - uint32_t quadrant_size = atlas_size >> 1; + uint32_t atlas_size = shadow_atlas->size; + uint32_t quadrant_size = atlas_size >> 1; - uint32_t x = (quadrant & 1) * quadrant_size; - uint32_t y = (quadrant >> 1) * quadrant_size; + uint32_t x = (quadrant & 1) * quadrant_size; + uint32_t y = (quadrant >> 1) * quadrant_size; - uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); - x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; - y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); + x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; - uint32_t width = shadow_size; - uint32_t height = shadow_size; + uint32_t width = shadow_size; + uint32_t height = shadow_size; - if (light->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { - height /= 2; - } else { - width /= 2; - } + Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size); - Transform proj = (p_view_transform.inverse() * light->transform).inverse(); + Color light_clamp; + light_clamp[0] = rect.position.x; + light_clamp[1] = rect.position.y; + light_clamp[2] = rect.size.x; + light_clamp[3] = rect.size.y; - Color light_clamp; - light_clamp[0] = float(x) / atlas_size; - light_clamp[1] = float(y) / atlas_size; - light_clamp[2] = float(width) / atlas_size; - light_clamp[3] = float(height) / atlas_size; + Transform modelview = (p_view_transform.inverse() * light->transform).inverse(); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, proj); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); + CameraMatrix bias; + bias.set_light_bias(); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_HAS_SHADOW, 1.0); - } else { - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_HAS_SHADOW, 0.0); - } - } break; + CameraMatrix rectm; + rectm.set_light_atlas_rect(rect); - case VS::LIGHT_SPOT: { - Vector3 position = p_view_transform.inverse().xform(light->transform.origin); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_TYPE, (int)2); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position); + CameraMatrix shadow_matrix = rectm * bias * light->shadow_transform[0].camera * modelview; - Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized(); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction); - Color attenuation = Color(0.0, 0.0, 0.0, 0.0); - attenuation.a = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; - float range = light_ptr->param[VS::LIGHT_PARAM_RANGE]; - float spot_attenuation = light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION]; - float angle = light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE]; - angle = Math::cos(Math::deg2rad(angle)); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ATTENUATION, spot_attenuation); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_RANGE, spot_attenuation); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ANGLE, angle); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range); + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size)); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, shadow_matrix); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); + } - if (light->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) { - uint32_t key = shadow_atlas->shadow_owners[light->self]; + } break; + default: {} + } +} - uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; - uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; +void RasterizerSceneGLES2::_setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env) { - ERR_CONTINUE(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); + if (p_refprobe1) { + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_USE_BOX_PROJECT, p_refprobe1->probe_ptr->box_projection); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_EXTENTS, p_refprobe1->probe_ptr->extents); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_OFFSET, p_refprobe1->probe_ptr->origin_offset); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_EXTERIOR, !p_refprobe1->probe_ptr->interior); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_INTENSITY, p_refprobe1->probe_ptr->intensity); - uint32_t atlas_size = shadow_atlas->size; - uint32_t quadrant_size = atlas_size >> 1; + Color ambient; + if (p_refprobe1->probe_ptr->interior) { + ambient = p_refprobe1->probe_ptr->interior_ambient * p_refprobe1->probe_ptr->interior_ambient_energy; + ambient.a = p_refprobe1->probe_ptr->interior_ambient_probe_contrib; + } else if (p_env) { + ambient = p_env->ambient_color * p_env->ambient_energy; + ambient.a = p_env->ambient_sky_contribution; + } - uint32_t x = (quadrant & 1) * quadrant_size; - uint32_t y = (quadrant >> 1) * quadrant_size; + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_AMBIENT, ambient); - uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); - x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; - y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + Transform proj = (p_view_transform.inverse() * p_refprobe1->transform).affine_inverse(); - uint32_t width = shadow_size; - uint32_t height = shadow_size; + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_LOCAL_MATRIX, proj); + } - Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size); + if (p_refprobe2) { + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_USE_BOX_PROJECT, p_refprobe2->probe_ptr->box_projection); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_EXTENTS, p_refprobe2->probe_ptr->extents); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_OFFSET, p_refprobe2->probe_ptr->origin_offset); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_EXTERIOR, !p_refprobe2->probe_ptr->interior); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_INTENSITY, p_refprobe2->probe_ptr->intensity); + + Color ambient; + if (p_refprobe2->probe_ptr->interior) { + ambient = p_refprobe2->probe_ptr->interior_ambient * p_refprobe2->probe_ptr->interior_ambient_energy; + ambient.a = p_refprobe2->probe_ptr->interior_ambient_probe_contrib; + } else if (p_env) { + ambient = p_env->ambient_color * p_env->ambient_energy; + ambient.a = p_env->ambient_sky_contribution; + } - Color light_clamp; - light_clamp[0] = rect.position.x; - light_clamp[1] = rect.position.y; - light_clamp[2] = rect.size.x; - light_clamp[3] = rect.size.y; + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_AMBIENT, ambient); - Transform modelview = (p_view_transform.inverse() * light->transform).inverse(); + Transform proj = (p_view_transform.inverse() * p_refprobe2->transform).affine_inverse(); - CameraMatrix bias; - bias.set_light_bias(); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_LOCAL_MATRIX, proj); + } +} - CameraMatrix rectm; - rectm.set_light_atlas_rect(rect); +void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow) { - CameraMatrix shadow_matrix = rectm * bias * light->shadow_transform[0].camera * modelview; + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_HAS_SHADOW, 1.0); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, shadow_matrix); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); + Vector2 screen_pixel_size = state.screen_pixel_size; - } else { - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_HAS_SHADOW, 0.0); - } + bool use_radiance_map = false; + if (!p_shadow && p_base_env) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2); + glBindTexture(GL_TEXTURE_CUBE_MAP, p_base_env); + use_radiance_map = true; + state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, true); //since prev unshaded is false, this needs to be true if exists + } - } break; + bool prev_unshaded = false; + bool prev_instancing = false; + state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false); + RasterizerStorageGLES2::Material *prev_material = NULL; + RasterizerStorageGLES2::Geometry *prev_geometry = NULL; + RasterizerStorageGLES2::Skeleton *prev_skeleton = NULL; + RasterizerStorageGLES2::GeometryOwner *prev_owner = NULL; - default: break; - } + Transform view_transform_inverse = p_view_transform.inverse(); + CameraMatrix projection_inverse = p_projection.inverse(); - float energy = light->light_ptr->param[VS::LIGHT_PARAM_ENERGY]; - float specular = light->light_ptr->param[VS::LIGHT_PARAM_SPECULAR]; + bool prev_base_pass = false; + LightInstance *prev_light = NULL; + bool prev_vertex_lit = false; + ReflectionProbeInstance *prev_refprobe_1 = NULL; + ReflectionProbeInstance *prev_refprobe_2 = NULL; - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ENERGY, energy); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, light->light_ptr->color.to_linear()); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular); + int prev_blend_mode = -2; //will always catch the first go - _render_geometry(e); - } + if (p_alpha_pass) { + glEnable(GL_BLEND); + } else { + glDisable(GL_BLEND); } - for (int dl = 0; dl < p_directional_light_count; dl++) { - RID light_rid = p_directional_lights[dl]; - LightInstance *light = light_instance_owner.getornull(light_rid); - RasterizerStorageGLES2::Light *light_ptr = light->light_ptr; - - switch (light_ptr->directional_shadow_mode) { - case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { - } break; - case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: { - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, true); - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, light_ptr->directional_blend_splits); - } break; - - case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, true); - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, light_ptr->directional_blend_splits); - } break; - default: - break; - } - - for (int i = 0; i < p_element_count; i++) { + RasterizerStorageGLES2::Texture *prev_lightmap = NULL; + float lightmap_energy = 1.0; + bool prev_use_lightmap_capture = false; - RenderList::Element *e = p_elements[i]; - RasterizerStorageGLES2::Material *material = e->material; - RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton); + for (int i = 0; i < p_element_count; i++) { + RenderList::Element *e = p_elements[i]; - { - _setup_material(material, p_reverse_cull, false, Size2i(skeleton ? skeleton->size * 3 : 0, 0)); + RasterizerStorageGLES2::Material *material = e->material; - if (directional_shadow.depth) { - glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); // TODO move into base pass - glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); + bool rebind = false; + bool accum_pass = *e->use_accum_ptr; + *e->use_accum_ptr = true; //set to accum for next time this is found + LightInstance *light = NULL; + ReflectionProbeInstance *refprobe_1 = NULL; + ReflectionProbeInstance *refprobe_2 = NULL; + RasterizerStorageGLES2::Texture *lightmap = NULL; + bool use_lightmap_capture = false; + bool rebind_light = false; + bool rebind_reflection = false; + bool rebind_lightmap = false; + + if (!p_shadow) { + + bool unshaded = material->shader->spatial.unshaded; + + if (unshaded != prev_unshaded) { + rebind = true; + if (unshaded) { + state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, true); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false); + } else { + state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map); } - state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform.inverse()); - state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, p_view_transform); - state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection); - state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, p_projection.inverse()); + prev_unshaded = unshaded; + } - state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]); + bool base_pass = !accum_pass && !unshaded; //conditions for a base pass - state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size); - state.scene_shader.set_uniform(SceneShaderGLES2::NORMAL_MULT, 1.0); // TODO mirror? - state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform); + if (base_pass != prev_base_pass) { + state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, base_pass); + rebind = true; + prev_base_pass = base_pass; + } + + if (!unshaded && e->light_index < RenderList::MAX_LIGHTS) { + light = render_light_instances[e->light_index]; } - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_TYPE, (int)0); - Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized(); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction); - float energy = light_ptr->param[VS::LIGHT_PARAM_ENERGY]; - float specular = light_ptr->param[VS::LIGHT_PARAM_SPECULAR]; + if (light != prev_light) { - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ENERGY, energy); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular); + _setup_light_type(light, shadow_atlas); + rebind = true; + rebind_light = true; + } - float sign = light_ptr->negative ? -1 : 1; + int blend_mode = p_alpha_pass ? material->shader->spatial.blend_mode : -1; // -1 no blend, no mix - Color linear_col = light_ptr->color.to_linear(); - Color color; - for (int c = 0; c < 3; c++) - color[c] = linear_col[c] * sign * energy * Math_PI; + if (accum_pass) { //accum pass force pass + blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD; + } - color[3] = 0; + if (prev_blend_mode != blend_mode) { - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, color); + if (prev_blend_mode == -1 && blend_mode != -1) { + //does blend + glEnable(GL_BLEND); + } else if (blend_mode == -1 && prev_blend_mode != -1) { + //do not blend + glDisable(GL_BLEND); + } - CameraMatrix matrices[4]; + switch (blend_mode) { + //-1 not handled because not blend is enabled anyway + case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX: { + glBlendEquation(GL_FUNC_ADD); + if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { + glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); + } else { + glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); + } - if (light_ptr->shadow && directional_shadow.depth) { + } break; + case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD: { - int shadow_count = 0; - Color split_offsets; + glBlendEquation(GL_FUNC_ADD); + glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE); - switch (light_ptr->directional_shadow_mode) { - case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { - shadow_count = 1; } break; + case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB: { - case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: { - shadow_count = 2; + glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); + glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; + case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MUL: { + glBlendEquation(GL_FUNC_ADD); + if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { + glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); + } else { + glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); + } - case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { - shadow_count = 4; } break; } - for (int k = 0; k < shadow_count; k++) { + prev_blend_mode = blend_mode; + } - uint32_t x = light->directional_rect.position.x; - uint32_t y = light->directional_rect.position.y; - uint32_t width = light->directional_rect.size.x; - uint32_t height = light->directional_rect.size.y; + //condition to enable vertex lighting on this object + bool vertex_lit = light && (material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading) && !unshaded; - if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { + if (vertex_lit != prev_vertex_lit) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, vertex_lit); + prev_vertex_lit = vertex_lit; + } - width /= 2; - height /= 2; + if (!unshaded && !accum_pass && e->refprobe_0_index != RenderList::MAX_REFLECTION_PROBES) { + ERR_FAIL_INDEX(e->refprobe_0_index, reflection_probe_count); + refprobe_1 = reflection_probe_instances[e->refprobe_0_index]; + } + if (!unshaded && !accum_pass && e->refprobe_1_index != RenderList::MAX_REFLECTION_PROBES) { + ERR_FAIL_INDEX(e->refprobe_1_index, reflection_probe_count); + refprobe_2 = reflection_probe_instances[e->refprobe_1_index]; + } - if (k == 0) { + if (refprobe_1 != prev_refprobe_1 || refprobe_2 != prev_refprobe_2) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, refprobe_1 != NULL); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, refprobe_2 != NULL); + if (refprobe_1 != NULL && refprobe_1 != prev_refprobe_1) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5); + glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_1->cubemap); + } + if (refprobe_2 != NULL && refprobe_2 != prev_refprobe_2) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 6); + glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_2->cubemap); + } + rebind = true; + rebind_reflection = true; + } - } else if (k == 1) { - x += width; - } else if (k == 2) { - y += height; - } else if (k == 3) { - x += width; - y += height; - } + use_lightmap_capture = !unshaded && !accum_pass && !e->instance->lightmap_capture_data.empty(); - } else if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { + if (use_lightmap_capture != prev_use_lightmap_capture) { - height /= 2; + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, use_lightmap_capture); + rebind = true; + } - if (k == 0) { + if (!unshaded && !accum_pass && e->instance->lightmap.is_valid()) { - } else { - y += height; - } + lightmap = storage->texture_owner.getornull(e->instance->lightmap); + lightmap_energy = 1.0; + if (lightmap) { + RasterizerStorageGLES2::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base); + if (capture) { + lightmap_energy = capture->energy; } + } + } - split_offsets[k] = light->shadow_transform[k].split; + if (lightmap != prev_lightmap) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, lightmap != NULL); + if (lightmap != NULL) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); + glBindTexture(GL_TEXTURE_2D, lightmap->tex_id); + } + rebind = true; + rebind_lightmap = true; + } + } - Transform modelview = (p_view_transform * light->shadow_transform[k].transform).inverse(); + bool instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH; - CameraMatrix bias; - bias.set_light_bias(); - CameraMatrix rectm; - Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size); - rectm.set_light_atlas_rect(atlas_rect); + if (instancing != prev_instancing) { - CameraMatrix shadow_mtx = rectm * bias * light->shadow_transform[k].camera * modelview; - matrices[k] = shadow_mtx.inverse(); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, instancing); + rebind = true; + } - Color light_clamp; - light_clamp[0] = atlas_rect.position.x; - light_clamp[1] = atlas_rect.position.y; - light_clamp[2] = atlas_rect.size.x; - light_clamp[3] = atlas_rect.size.y; + RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_HAS_SHADOW, 1.0); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPLIT_OFFSETS, split_offsets); - } + if (skeleton != prev_skeleton) { - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX1, matrices[0]); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX2, matrices[1]); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX3, matrices[2]); - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX4, matrices[3]); + if (skeleton) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, true); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, !storage->config.float_texture_supported); } else { - state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_HAS_SHADOW, 0.0); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, false); } - _render_geometry(e); + rebind = true; } - } - state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_PASS, false); + if (e->owner != prev_owner || e->geometry != prev_geometry || skeleton != prev_skeleton) { + _setup_geometry(e, skeleton); + } + + bool shader_rebind = false; + if (rebind || material != prev_material) { + shader_rebind = _setup_material(material, p_reverse_cull, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0)); + } + + if (i == 0 || shader_rebind) { //first time must rebind + + if (p_shadow) { + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_BIAS, p_shadow_bias); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_NORMAL_BIAS, p_shadow_normal_bias); + if (state.shadow_is_dual_parabolloid) { + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_SIDE, state.dual_parbolloid_direction); + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_ZFAR, state.dual_parbolloid_zfar); + } + } else { + if (use_radiance_map) { + state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, p_view_transform); + } + + if (p_env) { + state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, p_env->bg_energy); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, p_env->ambient_sky_contribution); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, p_env->ambient_color); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, p_env->ambient_energy); + + } else { + state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, 1.0); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, 1.0); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, Color(1.0, 1.0, 1.0, 1.0)); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, 1.0); + } + + //rebind all these + rebind_light = true; + rebind_reflection = true; + rebind_lightmap = true; + } + + state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, view_transform_inverse); + state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, p_view_transform); + state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection); + state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, projection_inverse); + + state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]); + + state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size); + state.scene_shader.set_uniform(SceneShaderGLES2::NORMAL_MULT, 1.0); // TODO mirror? + } + + if (rebind_light && light) { + _setup_light(light, shadow_atlas, p_view_transform); + } + + if (rebind_reflection && (refprobe_1 || refprobe_2)) { + _setup_refprobes(refprobe_1, refprobe_2, p_view_transform, p_env); + } + + if (rebind_lightmap && lightmap) { + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_ENERGY, lightmap_energy); + } + + state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform); + + if (use_lightmap_capture) { //this is per instance, must be set always if present + glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES2::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr()); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_CAPTURE_SKY, false); + } + + _render_geometry(e); + + prev_geometry = e->geometry; + prev_owner = e->owner; + prev_material = material; + prev_skeleton = skeleton; + prev_instancing = instancing; + prev_light = light; + prev_refprobe_1 = refprobe_1; + prev_refprobe_2 = refprobe_2; + prev_lightmap = lightmap; + prev_use_lightmap_capture = use_lightmap_capture; + } + + _setup_light_type(NULL, NULL); //clear light stuff + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false); + state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, false); } void RasterizerSceneGLES2::_draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy) { @@ -2013,10 +2396,84 @@ void RasterizerSceneGLES2::_draw_sky(RasterizerStorageGLES2::Sky *p_sky, const C void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { - glEnable(GL_BLEND); + GLuint current_fb = 0; + Environment *env = NULL; + + int viewport_width, viewport_height; + + if (p_reflection_probe.is_valid()) { + ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe); + ERR_FAIL_COND(!probe); + state.render_no_shadows = !probe->probe_ptr->enable_shadows; + + if (!probe->probe_ptr->interior) { //use env only if not interior + env = environment_owner.getornull(p_environment); + } + + current_fb = probe->fbo[p_reflection_probe_pass]; + state.screen_pixel_size.x = 1.0 / probe->probe_ptr->resolution; + state.screen_pixel_size.y = 1.0 / probe->probe_ptr->resolution; + + viewport_width = probe->probe_ptr->resolution; + viewport_height = probe->probe_ptr->resolution; + + } else { + state.render_no_shadows = false; + current_fb = storage->frame.current_rt->fbo; + env = environment_owner.getornull(p_environment); + state.screen_pixel_size.x = 1.0 / storage->frame.current_rt->width; + state.screen_pixel_size.y = 1.0 / storage->frame.current_rt->height; + viewport_width = storage->frame.current_rt->width; + viewport_height = storage->frame.current_rt->height; + } + //push back the directional lights + + if (p_light_cull_count) { + //harcoded limit of 256 lights + render_light_instance_count = MIN(RenderList::MAX_LIGHTS, p_light_cull_count); + render_light_instances = (LightInstance **)alloca(sizeof(LightInstance *) * render_light_instance_count); + render_directional_lights = 0; + + //doing this because directional lights are at the end, put them at the beginning + int index = 0; + for (int i = render_light_instance_count - 1; i >= 0; i--) { + RID light_rid = p_light_cull_result[i]; - GLuint current_fb = storage->frame.current_rt->fbo; - Environment *env = environment_owner.getornull(p_environment); + LightInstance *light = light_instance_owner.getornull(light_rid); + + if (light->light_ptr->type == VS::LIGHT_DIRECTIONAL) { + render_directional_lights++; + //as goin in reverse, directional lights are always first anyway + } + + light->light_index = index; + render_light_instances[index] = light; + + index++; + } + + } else { + render_light_instances = NULL; + render_directional_lights = 0; + render_light_instance_count = 0; + } + + if (p_reflection_probe_cull_count) { + + reflection_probe_instances = (ReflectionProbeInstance **)alloca(sizeof(ReflectionProbeInstance *) * p_reflection_probe_cull_count); + reflection_probe_count = p_reflection_probe_cull_count; + for (int i = 0; i < p_reflection_probe_cull_count; i++) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]); + ERR_CONTINUE(!rpi); + rpi->last_pass = render_pass + 1; //will be incremented later + rpi->index = i; + reflection_probe_instances[i] = rpi; + } + + } else { + reflection_probe_instances = NULL; + reflection_probe_count = 0; + } // render list stuff @@ -2026,6 +2483,7 @@ void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const // other stuff glBindFramebuffer(GL_FRAMEBUFFER, current_fb); + glViewport(0, 0, viewport_width, viewport_height); glDepthFunc(GL_LEQUAL); glDepthMask(GL_TRUE); @@ -2069,34 +2527,23 @@ void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const } } - Vector<RID> directional_lights; - - for (int i = 0; i < p_light_cull_count; i++) { - RID light_rid = p_light_cull_result[i]; - - LightInstance *light = light_instance_owner.getornull(light_rid); - - if (light->light_ptr->type == VS::LIGHT_DIRECTIONAL) { - directional_lights.push_back(light_rid); - } - } - // render opaque things first render_list.sort_by_key(false); - _render_render_list(render_list.elements, render_list.element_count, directional_lights.ptr(), directional_lights.size(), p_cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, false, false, false, false); + _render_render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, false, false, false); // alpha pass glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); - render_list.sort_by_key(true); - _render_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, directional_lights.ptr(), directional_lights.size(), p_cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, false, true, false, false); + render_list.sort_by_depth(true); + + _render_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, false, true, false); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); - // #define GLES2_SHADOW_ATLAS_DEBUG_VIEW + //#define GLES2_SHADOW_ATLAS_DEBUG_VIEW #ifdef GLES2_SHADOW_ATLAS_DEBUG_VIEW ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); @@ -2115,10 +2562,31 @@ void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const storage->_copy_screen(); } #endif + + //#define GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW + +#ifdef GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW + if (true) { + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); + + glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false); + storage->shaders.copy.bind(); + + storage->_copy_screen(); + } +#endif } void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) { + state.render_no_shadows = false; + LightInstance *light_instance = light_instance_owner.getornull(p_light); ERR_FAIL_COND(!light_instance); @@ -2129,13 +2597,13 @@ void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_ uint32_t y; uint32_t width; uint32_t height; - uint32_t vp_height; float zfar = 0; bool flip_facing = false; int custom_vp_size = 0; - GLuint fbo = 0; + state.shadow_is_dual_parabolloid = false; + state.dual_parbolloid_direction = 0.0; int current_cubemap = -1; float bias = 0; @@ -2214,14 +2682,12 @@ void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_ normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult; fbo = directional_shadow.fbo; - vp_height = directional_shadow.size; } else { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); fbo = shadow_atlas->fbo; - vp_height = shadow_atlas->size; uint32_t key = shadow_atlas->shadow_owners[p_light]; @@ -2264,8 +2730,32 @@ void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_ zfar = light->param[VS::LIGHT_PARAM_RANGE]; current_cubemap = cubemap_index; + } else { + //dual parabolloid + state.shadow_is_dual_parabolloid = true; + light_projection = light_instance->shadow_transform[0].camera; + light_transform = light_instance->shadow_transform[0].transform; + + if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { + + height /= 2; + y += p_pass * height; + } else { + width /= 2; + x += p_pass * width; + } + + state.dual_parbolloid_direction = p_pass == 0 ? 1.0 : -1.0; + flip_facing = (p_pass == 1); + zfar = light->param[VS::LIGHT_PARAM_RANGE]; + bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS]; + + state.dual_parbolloid_zfar = zfar; + + state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, true); } - } else { + + } else if (light->type == VS::LIGHT_SPOT) { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; @@ -2304,11 +2794,16 @@ void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_ glClear(GL_DEPTH_BUFFER_BIT); glDisable(GL_SCISSOR_TEST); + if (light->reverse_cull) { + flip_facing = !flip_facing; + } + state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, true); - _render_render_list(render_list.elements, render_list.element_count, NULL, 0, light_transform, light_projection, RID(), NULL, 0, bias, normal_bias, false, false, true, false); + _render_render_list(render_list.elements, render_list.element_count, light_transform, light_projection, RID(), NULL, 0, bias, normal_bias, flip_facing, false, true); state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, false); + state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, false); // convert cubemap to dual paraboloid if needed if (light->type == VS::LIGHT_OMNI && light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && p_pass == 5) { @@ -2358,6 +2853,7 @@ void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_ } glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); + glColorMask(1, 1, 1, 1); } void RasterizerSceneGLES2::set_scene_pass(uint64_t p_pass) { @@ -2365,6 +2861,44 @@ void RasterizerSceneGLES2::set_scene_pass(uint64_t p_pass) { } bool RasterizerSceneGLES2::free(RID p_rid) { + + if (light_instance_owner.owns(p_rid)) { + + LightInstance *light_instance = light_instance_owner.getptr(p_rid); + + //remove from shadow atlases.. + for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get()); + ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); + uint32_t key = shadow_atlas->shadow_owners[p_rid]; + uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; + uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; + + shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); + shadow_atlas->shadow_owners.erase(p_rid); + } + + light_instance_owner.free(p_rid); + memdelete(light_instance); + + } else if (shadow_atlas_owner.owns(p_rid)) { + + ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid); + shadow_atlas_set_size(p_rid, 0); + shadow_atlas_owner.free(p_rid); + memdelete(shadow_atlas); + } else if (reflection_probe_instance_owner.owns(p_rid)) { + + ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid); + + reflection_probe_release_atlas_index(p_rid); + reflection_probe_instance_owner.free(p_rid); + memdelete(reflection_instance); + + } else { + return false; + } + return true; } @@ -2377,6 +2911,8 @@ void RasterizerSceneGLES2::initialize() { render_list.init(); + render_pass = 1; + shadow_atlas_realloc_tolerance_msec = 500; { @@ -2394,6 +2930,27 @@ void RasterizerSceneGLES2::initialize() { } { + default_worldcoord_shader = storage->shader_create(); + storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n"); + default_worldcoord_material = storage->material_create(); + storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader); + + default_worldcoord_shader_twosided = storage->shader_create(); + default_worldcoord_material_twosided = storage->material_create(); + storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n"); + storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided); + } + + { + //default material and shader + + default_overdraw_shader = storage->shader_create(); + storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }"); + default_overdraw_material = storage->material_create(); + storage->material_set_shader(default_overdraw_material, default_overdraw_shader); + } + + { glGenBuffers(1, &state.sky_verts); glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts); glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, NULL, GL_DYNAMIC_DRAW); @@ -2463,8 +3020,8 @@ void RasterizerSceneGLES2::initialize() { glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); @@ -2475,9 +3032,12 @@ void RasterizerSceneGLES2::initialize() { ERR_PRINT("Directional shadow framebuffer status invalid"); } } + + shadow_filter_mode = SHADOW_FILTER_NEAREST; } void RasterizerSceneGLES2::iteration() { + shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode"))); } void RasterizerSceneGLES2::finalize() { diff --git a/drivers/gles2/rasterizer_scene_gles2.h b/drivers/gles2/rasterizer_scene_gles2.h index c5d28e55f4..14b9116952 100644 --- a/drivers/gles2/rasterizer_scene_gles2.h +++ b/drivers/gles2/rasterizer_scene_gles2.h @@ -53,12 +53,39 @@ class RasterizerSceneGLES2 : public RasterizerScene { public: + enum ShadowFilterMode { + SHADOW_FILTER_NEAREST, + SHADOW_FILTER_PCF5, + SHADOW_FILTER_PCF13, + }; + + enum { + INSTANCE_ATTRIB_BASE = 8, + INSTANCE_BONE_BASE = 13, + }; + + ShadowFilterMode shadow_filter_mode; + RID default_material; RID default_material_twosided; RID default_shader; RID default_shader_twosided; + RID default_worldcoord_material; + RID default_worldcoord_material_twosided; + RID default_worldcoord_shader; + RID default_worldcoord_shader_twosided; + + RID default_overdraw_material; + RID default_overdraw_shader; + + uint64_t render_pass; uint64_t scene_pass; + uint32_t current_material_index; + uint32_t current_geometry_index; + uint32_t current_light_index; + uint32_t current_refprobe_index; + uint32_t current_shader_index; RasterizerStorageGLES2 *storage; struct State { @@ -172,11 +199,19 @@ public: bool cull_front; bool cull_disabled; bool used_sss; - bool used_screen_texture; bool using_contact_shadows; VS::ViewportDebugDraw debug_draw; */ + + bool used_screen_texture; + bool shadow_is_dual_parabolloid; + float dual_parbolloid_direction; + float dual_parbolloid_zfar; + + bool render_no_shadows; + + Vector2 screen_pixel_size; } state; /* SHADOW ATLAS API */ @@ -260,6 +295,38 @@ public: /* REFLECTION PROBE INSTANCE */ + struct ReflectionProbeInstance : public RID_Data { + + RasterizerStorageGLES2::ReflectionProbe *probe_ptr; + RID probe; + RID self; + RID atlas; + + int reflection_atlas_index; + + int render_step; + int reflection_index; + + GLuint fbo[6]; + GLuint cubemap; + GLuint depth; + + GLuint fbo_blur; + + int current_resolution; + mutable bool dirty; + + uint64_t last_pass; + uint32_t index; + + Transform transform; + }; + + mutable RID_Owner<ReflectionProbeInstance> reflection_probe_instance_owner; + + ReflectionProbeInstance **reflection_probe_instances; + int reflection_probe_count; + virtual RID reflection_probe_instance_create(RID p_probe); virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform); virtual void reflection_probe_release_atlas_index(RID p_instance); @@ -373,6 +440,10 @@ public: virtual void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale = 1.0); virtual void light_instance_mark_visible(RID p_light_instance); + LightInstance **render_light_instances; + int render_directional_lights; + int render_light_instance_count; + /* REFLECTION INSTANCE */ virtual RID gi_probe_instance_create(); @@ -382,40 +453,19 @@ public: /* RENDER LIST */ + enum LightMode { + LIGHTMODE_NORMAL, + LIGHTMODE_UNSHADED, + LIGHTMODE_LIGHTMAP, + LIGHTMODE_LIGHTMAP_CAPTURE, + }; + struct RenderList { + enum { - DEFAULT_MAX_ELEMENTS = 65536, - SORT_FLAG_SKELETON = 1, - SORT_FLAG_INSTANCING = 2, - MAX_DIRECTIONAL_LIGHTS = 16, - MAX_LIGHTS = 4096, - MAX_REFLECTIONS = 1024, - - SORT_KEY_PRIORITY_SHIFT = 56, - SORT_KEY_PRIORITY_MASK = 0xFF, - //depth layer for opaque (56-52) - SORT_KEY_OPAQUE_DEPTH_LAYER_SHIFT = 52, - SORT_KEY_OPAQUE_DEPTH_LAYER_MASK = 0xF, -//64 bits unsupported in MSVC -#define SORT_KEY_UNSHADED_FLAG (uint64_t(1) << 49) -#define SORT_KEY_NO_DIRECTIONAL_FLAG (uint64_t(1) << 48) -#define SORT_KEY_LIGHTMAP_CAPTURE_FLAG (uint64_t(1) << 47) -#define SORT_KEY_LIGHTMAP_FLAG (uint64_t(1) << 46) -#define SORT_KEY_GI_PROBES_FLAG (uint64_t(1) << 45) -#define SORT_KEY_VERTEX_LIT_FLAG (uint64_t(1) << 44) - SORT_KEY_SHADING_SHIFT = 44, - SORT_KEY_SHADING_MASK = 63, - //44-28 material index - SORT_KEY_MATERIAL_INDEX_SHIFT = 28, - //28-8 geometry index - SORT_KEY_GEOMETRY_INDEX_SHIFT = 8, - //bits 5-7 geometry type - SORT_KEY_GEOMETRY_TYPE_SHIFT = 5, - //bits 0-5 for flags - SORT_KEY_OPAQUE_PRE_PASS = 8, - SORT_KEY_CULL_DISABLED_FLAG = 4, - SORT_KEY_SKELETON_FLAG = 2, - SORT_KEY_MIRROR_FLAG = 1 + MAX_LIGHTS = 255, + MAX_REFLECTION_PROBES = 255, + DEFAULT_MAX_ELEMENTS = 65536 }; int max_elements; @@ -427,7 +477,38 @@ public: RasterizerStorageGLES2::Material *material; RasterizerStorageGLES2::GeometryOwner *owner; - uint64_t sort_key; + bool use_accum; //is this an add pass for multipass + bool *use_accum_ptr; + + union { + //TODO: should be endian swapped on big endian + struct { + int32_t depth_layer : 16; + int32_t priority : 16; + }; + + uint32_t depth_key; + }; + + union { + struct { + //from least significant to most significant in sort, TODO: should be endian swapped on big endian + + uint64_t geometry_index : 14; + uint64_t instancing : 1; + uint64_t skeleton : 1; + uint64_t shader_index : 10; + uint64_t material_index : 10; + uint64_t light_index : 8; + uint64_t light_type2 : 1; // if 1==0 : nolight/directional, else omni/spot + uint64_t refprobe_1_index : 8; + uint64_t refprobe_0_index : 8; + uint64_t light_type1 : 1; //no light, directional is 0, omni spot is 1 + uint64_t light_mode : 2; // LightMode enum + }; + + uint64_t sort_key; + }; }; Element *base_elements; @@ -445,7 +526,11 @@ public: struct SortByKey { _FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const { - return A->sort_key < B->sort_key; + if (A->depth_key == B->depth_key) { + return A->sort_key < B->sort_key; + } else { + return A->depth_key < B->depth_key; + } } }; @@ -476,29 +561,6 @@ public: } } - struct SortByReverseDepthAndPriority { - - _FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const { - uint32_t layer_A = uint32_t(A->sort_key >> SORT_KEY_PRIORITY_SHIFT); - uint32_t layer_B = uint32_t(B->sort_key >> SORT_KEY_PRIORITY_SHIFT); - if (layer_A == layer_B) { - return A->instance->depth > B->instance->depth; - } else { - return layer_A < layer_B; - } - } - }; - - void sort_by_reverse_depth_and_priority(bool p_alpha) { //used for alpha - - SortArray<Element *, SortByReverseDepthAndPriority> sorter; - if (p_alpha) { - sorter.sort(&elements[max_elements - alpha_element_count], alpha_element_count); - } else { - sorter.sort(elements, element_count); - } - } - // element adding and stuff _FORCE_INLINE_ Element *add_element() { @@ -549,7 +611,6 @@ public: void _fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass); void _render_render_list(RenderList::Element **p_elements, int p_element_count, - const RID *p_directional_lights, int p_directional_light_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, @@ -559,14 +620,16 @@ public: float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, - bool p_shadow, - bool p_directional_add); + bool p_shadow); void _draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy); - void _setup_material(RasterizerStorageGLES2::Material *p_material, bool p_reverse_cull, bool p_alpha_pass, Size2i p_skeleton_tex_size = Size2i(0, 0)); - void _setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton); - void _render_geometry(RenderList::Element *p_element); + _FORCE_INLINE_ bool _setup_material(RasterizerStorageGLES2::Material *p_material, bool p_reverse_cull, bool p_alpha_pass, Size2i p_skeleton_tex_size = Size2i(0, 0)); + _FORCE_INLINE_ void _setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton); + _FORCE_INLINE_ void _setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas); + _FORCE_INLINE_ void _setup_light(LightInstance *p_light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform); + _FORCE_INLINE_ void _setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env); + _FORCE_INLINE_ void _render_geometry(RenderList::Element *p_element); virtual void render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass); virtual void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count); diff --git a/drivers/gles2/rasterizer_storage_gles2.cpp b/drivers/gles2/rasterizer_storage_gles2.cpp index d945132dc2..6314a69a90 100644 --- a/drivers/gles2/rasterizer_storage_gles2.cpp +++ b/drivers/gles2/rasterizer_storage_gles2.cpp @@ -52,6 +52,10 @@ GLuint RasterizerStorageGLES2::system_fbo = 0; #define _GL_HALF_FLOAT_OES 0x8D61 #endif +#define _EXT_TEXTURE_CUBE_MAP_SEAMLESS 0x884F + +#define _DEPTH_COMPONENT24_OES 0x81A6 + void RasterizerStorageGLES2::bind_quad_array() const { glBindBuffer(GL_ARRAY_BUFFER, resources.quadie); glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, 0); @@ -354,7 +358,6 @@ void RasterizerStorageGLES2::texture_allocate(RID p_texture, int p_width, int p_ GLenum type; bool compressed = false; - bool srgb = false; if (p_flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) { p_flags &= ~VS::TEXTURE_FLAG_MIPMAPS; // no mipies for video @@ -495,22 +498,6 @@ void RasterizerStorageGLES2::texture_set_data(RID p_texture, const Ref<Image> &p glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } -//set swizle for older format compatibility -#ifdef GLES_OVER_GL - switch (texture->format) { - - case Image::FORMAT_L8: { - - } break; - case Image::FORMAT_LA8: { - - } break; - default: { - - } break; - } -#endif - int mipmaps = ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && img->has_mipmaps()) ? img->get_mipmap_count() + 1 : 1; int w = img->get_width(); @@ -590,7 +577,7 @@ Ref<Image> RasterizerStorageGLES2::texture_get_data(RID p_texture, int p_layer) PoolVector<uint8_t> data; - int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, real_format, texture->mipmaps > 1 ? -1 : 0); + int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, real_format, texture->mipmaps > 1); data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers PoolVector<uint8_t>::Write wb = data.write(); @@ -963,6 +950,7 @@ void RasterizerStorageGLES2::sky_set_texture(RID p_sky, RID p_panorama, int p_ra shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i); float roughness = mm_level ? lod / (float)(mipmaps - 1) : 1; + roughness = MIN(1.0, roughness); //keep max at 1 shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); @@ -1308,8 +1296,13 @@ void RasterizerStorageGLES2::shader_get_param_list(RID p_shader, List<PropertyIn pi.hint_string = "CubeMap"; } break; - default: { - + case ShaderLanguage::TYPE_SAMPLER2DARRAY: + case ShaderLanguage::TYPE_ISAMPLER2DARRAY: + case ShaderLanguage::TYPE_USAMPLER2DARRAY: + case ShaderLanguage::TYPE_SAMPLER3D: + case ShaderLanguage::TYPE_ISAMPLER3D: + case ShaderLanguage::TYPE_USAMPLER3D: { + // Not implemented in GLES2 } break; } @@ -2634,10 +2627,10 @@ void RasterizerStorageGLES2::update_dirty_multimeshes() { if (multimesh->mesh.is_valid()) { mesh_aabb = mesh_get_aabb(multimesh->mesh, RID()); - } else { - mesh_aabb.size += Vector3(0.001, 0.001, 0.001); } + mesh_aabb.size += Vector3(0.001, 0.001, 0.001); //in case mesh is empty in one of the sides + int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats; int count = multimesh->data.size(); float *data = multimesh->data.ptrw(); @@ -3109,6 +3102,7 @@ void RasterizerStorageGLES2::light_set_param(RID p_light, VS::LightParam p_param light->version++; light->instance_change_notify(); } break; + default: {} } light->param[p_param] = p_value; @@ -3300,69 +3294,194 @@ AABB RasterizerStorageGLES2::light_get_aabb(RID p_light) const { /* PROBE API */ RID RasterizerStorageGLES2::reflection_probe_create() { - return RID(); + + ReflectionProbe *reflection_probe = memnew(ReflectionProbe); + + reflection_probe->intensity = 1.0; + reflection_probe->interior_ambient = Color(); + reflection_probe->interior_ambient_energy = 1.0; + reflection_probe->max_distance = 0; + reflection_probe->extents = Vector3(1, 1, 1); + reflection_probe->origin_offset = Vector3(0, 0, 0); + reflection_probe->interior = false; + reflection_probe->box_projection = false; + reflection_probe->enable_shadows = false; + reflection_probe->cull_mask = (1 << 20) - 1; + reflection_probe->update_mode = VS::REFLECTION_PROBE_UPDATE_ONCE; + reflection_probe->resolution = 128; + + return reflection_probe_owner.make_rid(reflection_probe); } void RasterizerStorageGLES2::reflection_probe_set_update_mode(RID p_probe, VS::ReflectionProbeUpdateMode p_mode) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->update_mode = p_mode; + reflection_probe->instance_change_notify(); } void RasterizerStorageGLES2::reflection_probe_set_intensity(RID p_probe, float p_intensity) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->intensity = p_intensity; } void RasterizerStorageGLES2::reflection_probe_set_interior_ambient(RID p_probe, const Color &p_ambient) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->interior_ambient = p_ambient; } void RasterizerStorageGLES2::reflection_probe_set_interior_ambient_energy(RID p_probe, float p_energy) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->interior_ambient_energy = p_energy; } void RasterizerStorageGLES2::reflection_probe_set_interior_ambient_probe_contribution(RID p_probe, float p_contrib) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->interior_ambient_probe_contrib = p_contrib; } void RasterizerStorageGLES2::reflection_probe_set_max_distance(RID p_probe, float p_distance) { -} -void RasterizerStorageGLES2::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) { + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->max_distance = p_distance; + reflection_probe->instance_change_notify(); } +void RasterizerStorageGLES2::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + reflection_probe->extents = p_extents; + reflection_probe->instance_change_notify(); +} void RasterizerStorageGLES2::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->origin_offset = p_offset; + reflection_probe->instance_change_notify(); } void RasterizerStorageGLES2::reflection_probe_set_as_interior(RID p_probe, bool p_enable) { -} + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->interior = p_enable; +} void RasterizerStorageGLES2::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->box_projection = p_enable; } void RasterizerStorageGLES2::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) { -} + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->enable_shadows = p_enable; + reflection_probe->instance_change_notify(); +} void RasterizerStorageGLES2::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->cull_mask = p_layers; + reflection_probe->instance_change_notify(); +} + +void RasterizerStorageGLES2::reflection_probe_set_resolution(RID p_probe, int p_resolution) { + + ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND(!reflection_probe); + + reflection_probe->resolution = p_resolution; } AABB RasterizerStorageGLES2::reflection_probe_get_aabb(RID p_probe) const { - return AABB(); + const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!reflection_probe, AABB()); + + AABB aabb; + aabb.position = -reflection_probe->extents; + aabb.size = reflection_probe->extents * 2.0; + + return aabb; } VS::ReflectionProbeUpdateMode RasterizerStorageGLES2::reflection_probe_get_update_mode(RID p_probe) const { - return VS::REFLECTION_PROBE_UPDATE_ALWAYS; + + const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!reflection_probe, VS::REFLECTION_PROBE_UPDATE_ALWAYS); + + return reflection_probe->update_mode; } uint32_t RasterizerStorageGLES2::reflection_probe_get_cull_mask(RID p_probe) const { - return 0; + + const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!reflection_probe, 0); + + return reflection_probe->cull_mask; } Vector3 RasterizerStorageGLES2::reflection_probe_get_extents(RID p_probe) const { - return Vector3(); + + const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!reflection_probe, Vector3()); + + return reflection_probe->extents; } Vector3 RasterizerStorageGLES2::reflection_probe_get_origin_offset(RID p_probe) const { - return Vector3(); + + const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!reflection_probe, Vector3()); + + return reflection_probe->origin_offset; } bool RasterizerStorageGLES2::reflection_probe_renders_shadows(RID p_probe) const { - return false; + + const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!reflection_probe, false); + + return reflection_probe->enable_shadows; } float RasterizerStorageGLES2::reflection_probe_get_origin_max_distance(RID p_probe) const { - return 0; + + const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!reflection_probe, 0); + + return reflection_probe->max_distance; +} + +int RasterizerStorageGLES2::reflection_probe_get_resolution(RID p_probe) const { + + const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!reflection_probe, 0); + + return reflection_probe->resolution; } RID RasterizerStorageGLES2::gi_probe_create() { @@ -3463,46 +3582,100 @@ void RasterizerStorageGLES2::gi_probe_dynamic_data_update(RID p_gi_probe_data, i /////// RID RasterizerStorageGLES2::lightmap_capture_create() { - return RID(); + + LightmapCapture *capture = memnew(LightmapCapture); + return lightmap_capture_data_owner.make_rid(capture); } void RasterizerStorageGLES2::lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) { -} -AABB RasterizerStorageGLES2::lightmap_capture_get_bounds(RID p_capture) const { - return AABB(); + LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND(!capture); + capture->bounds = p_bounds; + capture->instance_change_notify(); } +AABB RasterizerStorageGLES2::lightmap_capture_get_bounds(RID p_capture) const { -void RasterizerStorageGLES2::lightmap_capture_set_octree(RID p_capture, const PoolVector<uint8_t> &p_octree) { + const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND_V(!capture, AABB()); + return capture->bounds; } +void RasterizerStorageGLES2::lightmap_capture_set_octree(RID p_capture, const PoolVector<uint8_t> &p_octree) { + + LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND(!capture); + + ERR_FAIL_COND(p_octree.size() == 0 || (p_octree.size() % sizeof(LightmapCaptureOctree)) != 0); + capture->octree.resize(p_octree.size() / sizeof(LightmapCaptureOctree)); + if (p_octree.size()) { + PoolVector<LightmapCaptureOctree>::Write w = capture->octree.write(); + PoolVector<uint8_t>::Read r = p_octree.read(); + copymem(w.ptr(), r.ptr(), p_octree.size()); + } + capture->instance_change_notify(); +} PoolVector<uint8_t> RasterizerStorageGLES2::lightmap_capture_get_octree(RID p_capture) const { - return PoolVector<uint8_t>(); + + const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND_V(!capture, PoolVector<uint8_t>()); + + if (capture->octree.size() == 0) + return PoolVector<uint8_t>(); + + PoolVector<uint8_t> ret; + ret.resize(capture->octree.size() * sizeof(LightmapCaptureOctree)); + { + PoolVector<LightmapCaptureOctree>::Read r = capture->octree.read(); + PoolVector<uint8_t>::Write w = ret.write(); + copymem(w.ptr(), r.ptr(), ret.size()); + } + + return ret; } void RasterizerStorageGLES2::lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) { + LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND(!capture); + capture->cell_xform = p_xform; } Transform RasterizerStorageGLES2::lightmap_capture_get_octree_cell_transform(RID p_capture) const { - return Transform(); + const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND_V(!capture, Transform()); + return capture->cell_xform; } void RasterizerStorageGLES2::lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) { + LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND(!capture); + capture->cell_subdiv = p_subdiv; } int RasterizerStorageGLES2::lightmap_capture_get_octree_cell_subdiv(RID p_capture) const { - return 0; + const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND_V(!capture, 0); + return capture->cell_subdiv; } void RasterizerStorageGLES2::lightmap_capture_set_energy(RID p_capture, float p_energy) { + + LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND(!capture); + capture->energy = p_energy; } float RasterizerStorageGLES2::lightmap_capture_get_energy(RID p_capture) const { - return 0.0; + + const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND_V(!capture, 0); + return capture->energy; } const PoolVector<RasterizerStorage::LightmapCaptureOctree> *RasterizerStorageGLES2::lightmap_capture_get_octree_ptr(RID p_capture) const { - return NULL; + const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); + ERR_FAIL_COND_V(!capture, NULL); + return &capture->octree; } /////// @@ -3594,15 +3767,115 @@ void RasterizerStorageGLES2::update_particles() { //////// void RasterizerStorageGLES2::instance_add_skeleton(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) { + + Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); + ERR_FAIL_COND(!skeleton); + + skeleton->instances.insert(p_instance); } void RasterizerStorageGLES2::instance_remove_skeleton(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) { + + Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); + ERR_FAIL_COND(!skeleton); + + skeleton->instances.erase(p_instance); } void RasterizerStorageGLES2::instance_add_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) { + + Instantiable *inst = NULL; + switch (p_instance->base_type) { + case VS::INSTANCE_MESH: { + inst = mesh_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + case VS::INSTANCE_MULTIMESH: { + inst = multimesh_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + case VS::INSTANCE_IMMEDIATE: { + inst = immediate_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + /*case VS::INSTANCE_PARTICLES: { + inst = particles_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break;*/ + case VS::INSTANCE_REFLECTION_PROBE: { + inst = reflection_probe_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + case VS::INSTANCE_LIGHT: { + inst = light_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + /*case VS::INSTANCE_GI_PROBE: { + inst = gi_probe_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break;*/ + case VS::INSTANCE_LIGHTMAP_CAPTURE: { + inst = lightmap_capture_data_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + default: { + if (!inst) { + ERR_FAIL(); + } + } + } + + inst->instance_list.add(&p_instance->dependency_item); } void RasterizerStorageGLES2::instance_remove_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) { + + Instantiable *inst = NULL; + + switch (p_instance->base_type) { + case VS::INSTANCE_MESH: { + inst = mesh_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + case VS::INSTANCE_MULTIMESH: { + inst = multimesh_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + case VS::INSTANCE_IMMEDIATE: { + inst = immediate_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + /*case VS::INSTANCE_PARTICLES: { + inst = particles_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break;*/ + case VS::INSTANCE_REFLECTION_PROBE: { + inst = reflection_probe_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + case VS::INSTANCE_LIGHT: { + inst = light_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + /*case VS::INSTANCE_GI_PROBE: { + inst = gi_probe_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; */ + case VS::INSTANCE_LIGHTMAP_CAPTURE: { + inst = lightmap_capture_data_owner.getornull(p_base); + ERR_FAIL_COND(!inst); + } break; + default: { + + if (!inst) { + ERR_FAIL(); + } + } + } + + ERR_FAIL_COND(!inst); + + inst->instance_list.remove(&p_instance->dependency_item); } /* RENDER TARGET */ @@ -3644,7 +3917,7 @@ void RasterizerStorageGLES2::_render_target_allocate(RenderTarget *rt) { glGenRenderbuffers(1, &rt->depth); glBindRenderbuffer(GL_RENDERBUFFER, rt->depth); - glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, rt->width, rt->height); + glRenderbufferStorage(GL_RENDERBUFFER, _DEPTH_COMPONENT24_OES, rt->width, rt->height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); @@ -3860,6 +4133,10 @@ VS::InstanceType RasterizerStorageGLES2::get_base_type(RID p_rid) const { return VS::INSTANCE_MULTIMESH; } else if (immediate_owner.owns(p_rid)) { return VS::INSTANCE_IMMEDIATE; + } else if (reflection_probe_owner.owns(p_rid)) { + return VS::INSTANCE_REFLECTION_PROBE; + } else if (lightmap_capture_data_owner.owns(p_rid)) { + return VS::INSTANCE_LIGHTMAP_CAPTURE; } else { return VS::INSTANCE_NONE; } @@ -4037,6 +4314,25 @@ bool RasterizerStorageGLES2::free(RID p_rid) { memdelete(light); return true; + } else if (reflection_probe_owner.owns(p_rid)) { + + // delete the texture + ReflectionProbe *reflection_probe = reflection_probe_owner.get(p_rid); + reflection_probe->instance_remove_deps(); + + reflection_probe_owner.free(p_rid); + memdelete(reflection_probe); + + return true; + } else if (lightmap_capture_data_owner.owns(p_rid)) { + + // delete the texture + LightmapCapture *lightmap_capture = lightmap_capture_data_owner.get(p_rid); + lightmap_capture->instance_remove_deps(); + + lightmap_capture_data_owner.free(p_rid); + memdelete(lightmap_capture); + return true; } else { return false; } @@ -4088,15 +4384,15 @@ void RasterizerStorageGLES2::initialize() { } config.shrink_textures_x2 = false; - config.float_texture_supported = config.extensions.find("GL_ARB_texture_float") != NULL || config.extensions.find("GL_OES_texture_float") != NULL; - config.s3tc_supported = config.extensions.find("GL_EXT_texture_compression_s3tc") != NULL; - config.etc1_supported = config.extensions.has("GL_OES_compressed_ETC1_RGB8_texture") != NULL; + + config.float_texture_supported = config.extensions.has("GL_ARB_texture_float") || config.extensions.has("GL_OES_texture_float"); + config.s3tc_supported = config.extensions.has("GL_EXT_texture_compression_s3tc"); + config.etc1_supported = config.extensions.has("GL_OES_compressed_ETC1_RGB8_texture"); frame.count = 0; frame.delta = 0; frame.current_rt = NULL; frame.clear_request = false; - // config.keep_original_textures = false; glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &config.max_texture_image_units); glGetIntegerv(GL_MAX_TEXTURE_SIZE, &config.max_texture_size); @@ -4199,13 +4495,13 @@ void RasterizerStorageGLES2::initialize() { // radical inverse vdc cache texture // used for cubemap filtering - if (config.float_texture_supported) { + if (true /*||config.float_texture_supported*/) { //uint8 is similar and works everywhere glGenTextures(1, &resources.radical_inverse_vdc_cache_tex); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.radical_inverse_vdc_cache_tex); - float radical_inverse[512]; + uint8_t radical_inverse[512]; for (uint32_t i = 0; i < 512; i++) { uint32_t bits = i; @@ -4217,14 +4513,23 @@ void RasterizerStorageGLES2::initialize() { bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8); float value = float(bits) * 2.3283064365386963e-10; - - radical_inverse[i] = value; + radical_inverse[i] = uint8_t(CLAMP(value * 255.0, 0, 255)); } - glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, 512, 1, 0, GL_LUMINANCE, GL_FLOAT, radical_inverse); + glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, 512, 1, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, radical_inverse); glBindTexture(GL_TEXTURE_2D, 0); } + +#ifdef GLES_OVER_GL + //this needs to be enabled manually in OpenGL 2.1 + + glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS); + glEnable(GL_POINT_SPRITE); + glEnable(GL_VERTEX_PROGRAM_POINT_SIZE); +#endif + + config.force_vertex_shading = GLOBAL_GET("rendering/quality/shading/force_vertex_shading"); } void RasterizerStorageGLES2::finalize() { @@ -4239,6 +4544,7 @@ void RasterizerStorageGLES2::update_dirty_resources() { update_dirty_shaders(); update_dirty_materials(); update_dirty_skeletons(); + update_dirty_multimeshes(); } RasterizerStorageGLES2::RasterizerStorageGLES2() { diff --git a/drivers/gles2/rasterizer_storage_gles2.h b/drivers/gles2/rasterizer_storage_gles2.h index d9bf6b3ccb..b42e2dfb1f 100644 --- a/drivers/gles2/rasterizer_storage_gles2.h +++ b/drivers/gles2/rasterizer_storage_gles2.h @@ -157,7 +157,7 @@ public: //////////////////////////////////DATA/////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////// - struct Instanciable : public RID_Data { + struct Instantiable : public RID_Data { SelfList<RasterizerScene::InstanceBase>::List instance_list; _FORCE_INLINE_ void instance_change_notify() { @@ -187,15 +187,15 @@ public: } } - Instanciable() {} + Instantiable() {} - virtual ~Instanciable() {} + virtual ~Instantiable() {} }; - struct GeometryOwner : public Instanciable { + struct GeometryOwner : public Instantiable { }; - struct Geometry : public Instanciable { + struct Geometry : public Instantiable { enum Type { GEOMETRY_INVALID, @@ -406,6 +406,9 @@ public: String path; + uint32_t index; + uint64_t last_pass; + struct CanvasItem { enum BlendMode { @@ -491,6 +494,7 @@ public: valid = false; custom_code_id = 0; version = 1; + last_pass = 0; } }; @@ -889,7 +893,7 @@ public: /* Light API */ - struct Light : Instanciable { + struct Light : Instantiable { VS::LightType type; float param[VS::LIGHT_PARAM_MAX]; @@ -951,6 +955,26 @@ public: virtual uint64_t light_get_version(RID p_light) const; /* PROBE API */ + + struct ReflectionProbe : Instantiable { + + VS::ReflectionProbeUpdateMode update_mode; + float intensity; + Color interior_ambient; + float interior_ambient_energy; + float interior_ambient_probe_contrib; + float max_distance; + Vector3 extents; + Vector3 origin_offset; + bool interior; + bool box_projection; + bool enable_shadows; + uint32_t cull_mask; + int resolution; + }; + + mutable RID_Owner<ReflectionProbe> reflection_probe_owner; + virtual RID reflection_probe_create(); virtual void reflection_probe_set_update_mode(RID p_probe, VS::ReflectionProbeUpdateMode p_mode); @@ -965,11 +989,14 @@ public: virtual void reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable); virtual void reflection_probe_set_enable_shadows(RID p_probe, bool p_enable); virtual void reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers); + virtual void reflection_probe_set_resolution(RID p_probe, int p_resolution); virtual AABB reflection_probe_get_aabb(RID p_probe) const; virtual VS::ReflectionProbeUpdateMode reflection_probe_get_update_mode(RID p_probe) const; virtual uint32_t reflection_probe_get_cull_mask(RID p_probe) const; + virtual int reflection_probe_get_resolution(RID p_probe) const; + virtual Vector3 reflection_probe_get_extents(RID p_probe) const; virtual Vector3 reflection_probe_get_origin_offset(RID p_probe) const; virtual float reflection_probe_get_origin_max_distance(RID p_probe) const; @@ -1019,6 +1046,21 @@ public: /* LIGHTMAP */ + struct LightmapCapture : public Instantiable { + + PoolVector<LightmapCaptureOctree> octree; + AABB bounds; + Transform cell_xform; + int cell_subdiv; + float energy; + LightmapCapture() { + energy = 1.0; + cell_subdiv = 1; + } + }; + + mutable RID_Owner<LightmapCapture> lightmap_capture_data_owner; + virtual RID lightmap_capture_create(); virtual void lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds); virtual AABB lightmap_capture_get_bounds(RID p_capture) const; diff --git a/drivers/gles2/shader_compiler_gles2.cpp b/drivers/gles2/shader_compiler_gles2.cpp index 83b61dc288..082c520480 100644 --- a/drivers/gles2/shader_compiler_gles2.cpp +++ b/drivers/gles2/shader_compiler_gles2.cpp @@ -31,6 +31,7 @@ #include "shader_compiler_gles2.h" #include "core/os/os.h" +#include "core/project_settings.h" #include "core/string_buffer.h" #include "core/string_builder.h" @@ -642,11 +643,11 @@ String ShaderCompilerGLES2::_dump_node_code(SL::Node *p_node, int p_level, Gener case SL::OP_MOD: { - code += "mod("; + code += "mod(float("; code += _dump_node_code(op_node->arguments[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); - code += ", "; + code += "), float("; code += _dump_node_code(op_node->arguments[1], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); - code += ")"; + code += "))"; } break; default: { @@ -830,6 +831,7 @@ ShaderCompilerGLES2::ShaderCompilerGLES2() { actions[VS::SHADER_SPATIAL].renames["POINT_SIZE"] = "gl_PointSize"; // gl_InstanceID is not available in OpenGL ES 2.0 actions[VS::SHADER_SPATIAL].renames["INSTANCE_ID"] = "0"; + actions[VS::SHADER_SPATIAL].renames["OUTPUT_IS_SRGB"] = "SHADER_IS_SRGB"; //builtins @@ -900,16 +902,30 @@ ShaderCompilerGLES2::ShaderCompilerGLES2() { actions[VS::SHADER_SPATIAL].render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n"; actions[VS::SHADER_SPATIAL].render_mode_defines["world_vertex_coords"] = "#define VERTEX_WORLD_COORDS_USED\n"; - actions[VS::SHADER_SPATIAL].render_mode_defines["diffuse_burley"] = "#define DIFFUSE_BURLEY\n"; + bool force_lambert = GLOBAL_GET("rendering/quality/shading/force_lambert_over_burley"); + + if (!force_lambert) { + actions[VS::SHADER_SPATIAL].render_mode_defines["diffuse_burley"] = "#define DIFFUSE_BURLEY\n"; + } + actions[VS::SHADER_SPATIAL].render_mode_defines["diffuse_oren_nayar"] = "#define DIFFUSE_OREN_NAYAR\n"; actions[VS::SHADER_SPATIAL].render_mode_defines["diffuse_lambert_wrap"] = "#define DIFFUSE_LAMBERT_WRAP\n"; actions[VS::SHADER_SPATIAL].render_mode_defines["diffuse_toon"] = "#define DIFFUSE_TOON\n"; - actions[VS::SHADER_SPATIAL].render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_SCHLICK_GGX\n"; + bool force_blinn = GLOBAL_GET("rendering/quality/shading/force_blinn_over_ggx"); + + if (!force_blinn) { + actions[VS::SHADER_SPATIAL].render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_SCHLICK_GGX\n"; + } else { + actions[VS::SHADER_SPATIAL].render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_BLINN\n"; + } + actions[VS::SHADER_SPATIAL].render_mode_defines["specular_blinn"] = "#define SPECULAR_BLINN\n"; actions[VS::SHADER_SPATIAL].render_mode_defines["specular_phong"] = "#define SPECULAR_PHONG\n"; actions[VS::SHADER_SPATIAL].render_mode_defines["specular_toon"] = "#define SPECULAR_TOON\n"; actions[VS::SHADER_SPATIAL].render_mode_defines["specular_disabled"] = "#define SPECULAR_DISABLED\n"; + actions[VS::SHADER_SPATIAL].render_mode_defines["shadows_disabled"] = "#define SHADOWS_DISABLED\n"; + actions[VS::SHADER_SPATIAL].render_mode_defines["ambient_light_disabled"] = "#define AMBIENT_LIGHT_DISABLED\n"; /* PARTICLES SHADER */ diff --git a/drivers/gles2/shader_gles2.cpp b/drivers/gles2/shader_gles2.cpp index 445428acc5..628a57c06d 100644 --- a/drivers/gles2/shader_gles2.cpp +++ b/drivers/gles2/shader_gles2.cpp @@ -57,7 +57,7 @@ ShaderGLES2 *ShaderGLES2::active = NULL; -// #define DEBUG_SHADER +//#define DEBUG_SHADER #ifdef DEBUG_SHADER @@ -132,6 +132,11 @@ bool ShaderGLES2::bind() { ERR_FAIL_COND_V(!version, false); + if (!version->ok) { //broken, unable to bind (do not throw error, you saw it before already when it failed compilation). + glUseProgram(0); + return false; + } + glUseProgram(version->id); // find out uniform names and locations @@ -171,72 +176,24 @@ void ShaderGLES2::unbind() { active = NULL; } -static String _fix_error_code_line(const String &p_error, int p_code_start, int p_offset) { - - int last_find_pos = -1; - // NVIDIA - String error = p_error; - while ((last_find_pos = p_error.find("(", last_find_pos + 1)) != -1) { - - int end_pos = last_find_pos + 1; - - while (true) { - - if (p_error[end_pos] >= '0' && p_error[end_pos] <= '9') { +static void _display_error_with_code(const String &p_error, const Vector<const char *> &p_code) { - end_pos++; - continue; - } else if (p_error[end_pos] == ')') { - break; - } else { - - end_pos = -1; - break; - } - } + int line = 1; + String total_code; - if (end_pos == -1) - continue; - - String numstr = error.substr(last_find_pos + 1, (end_pos - last_find_pos) - 1); - String begin = error.substr(0, last_find_pos + 1); - String end = error.substr(end_pos, error.length()); - int num = numstr.to_int() + p_code_start - p_offset; - error = begin + itos(num) + end; + for (int i = 0; i < p_code.size(); i++) { + total_code += String(p_code[i]); } - // ATI - last_find_pos = -1; - while ((last_find_pos = p_error.find("ERROR: ", last_find_pos + 1)) != -1) { - - last_find_pos += 6; - int end_pos = last_find_pos + 1; + Vector<String> lines = String(total_code).split("\n"); - while (true) { + for (int j = 0; j < lines.size(); j++) { - if (p_error[end_pos] >= '0' && p_error[end_pos] <= '9') { - - end_pos++; - continue; - } else if (p_error[end_pos] == ':') { - break; - } else { - - end_pos = -1; - break; - } - } - continue; - if (end_pos == -1) - continue; - - String numstr = error.substr(last_find_pos + 1, (end_pos - last_find_pos) - 1); - String begin = error.substr(0, last_find_pos + 1); - String end = error.substr(end_pos, error.length()); - int num = numstr.to_int() + p_code_start - p_offset; - error = begin + itos(num) + end; + print_line(itos(line) + ": " + lines[j]); + line++; } - return error; + + ERR_PRINTS(p_error); } ShaderGLES2::Version *ShaderGLES2::get_current_version() { @@ -316,7 +273,7 @@ ShaderGLES2::Version *ShaderGLES2::get_current_version() { if (cc) { for (int i = 0; i < cc->custom_defines.size(); i++) { strings.push_back(cc->custom_defines.write[i]); - DEBUG_PRINT("CD #" + itos(i) + ": " + String(cc->custom_defines[i])); + DEBUG_PRINT("CD #" + itos(i) + ": " + String(cc->custom_defines[i].get_data())); } } @@ -375,9 +332,8 @@ ShaderGLES2::Version *ShaderGLES2::get_current_version() { String err_string = get_shader_name() + ": Vertex shader compilation failed:\n"; err_string += ilogmem; - err_string = _fix_error_code_line(err_string, vertex_code_start, define_line_ofs); - ERR_PRINTS(err_string); + _display_error_with_code(err_string, strings); Memory::free_static(ilogmem); glDeleteShader(v.vert_id); @@ -451,9 +407,8 @@ ShaderGLES2::Version *ShaderGLES2::get_current_version() { String err_string = get_shader_name() + ": Fragment shader compilation failed:\n"; err_string += ilogmem; - err_string = _fix_error_code_line(err_string, fragment_code_start, define_line_ofs); - ERR_PRINTS(err_string); + _display_error_with_code(err_string, strings); Memory::free_static(ilogmem); glDeleteShader(v.frag_id); @@ -503,9 +458,8 @@ ShaderGLES2::Version *ShaderGLES2::get_current_version() { String err_string = get_shader_name() + ": Program linking failed:\n"; err_string += ilogmem; - err_string = _fix_error_code_line(err_string, fragment_code_start, define_line_ofs); - ERR_PRINTS(err_string); + _display_error_with_code(err_string, strings); Memory::free_static(ilogmem); glDeleteShader(v.frag_id); @@ -736,11 +690,6 @@ void ShaderGLES2::use_material(void *p_material) { Version *v = version_map.getptr(conditional_version); - CustomCode *cc = NULL; - if (v) { - cc = custom_code_map.getptr(v->code_version); - } - // bind uniforms for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = material->shader->uniforms.front(); E; E = E->next()) { @@ -1028,7 +977,7 @@ void ShaderGLES2::use_material(void *p_material) { value.second.resize(default_arg_size); - for (int i = 0; i < default_arg_size; i++) { + for (size_t i = 0; i < default_arg_size; i++) { if (is_float) { value.second.write[i].real = 0.0; } else { @@ -1038,8 +987,6 @@ void ShaderGLES2::use_material(void *p_material) { } } - // GLint location = get_uniform_location(E->key()); - GLint location; if (v->custom_uniform_locations.has(E->key())) { location = v->custom_uniform_locations[E->key()]; @@ -1059,8 +1006,6 @@ void ShaderGLES2::use_material(void *p_material) { int tc = material->textures.size(); Pair<StringName, RID> *textures = material->textures.ptrw(); - ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = material->shader->texture_hints.ptrw(); - for (int i = 0; i < tc; i++) { Pair<ShaderLanguage::DataType, Vector<ShaderLanguage::ConstantNode::Value> > value; diff --git a/drivers/gles2/shader_gles2.h b/drivers/gles2/shader_gles2.h index 8e274b4f57..9160a7c265 100644 --- a/drivers/gles2/shader_gles2.h +++ b/drivers/gles2/shader_gles2.h @@ -335,6 +335,19 @@ public: case ShaderLanguage::TYPE_SAMPLERCUBE: { } break; + + case ShaderLanguage::TYPE_SAMPLER2DARRAY: + case ShaderLanguage::TYPE_ISAMPLER2DARRAY: + case ShaderLanguage::TYPE_USAMPLER2DARRAY: + case ShaderLanguage::TYPE_SAMPLER3D: + case ShaderLanguage::TYPE_ISAMPLER3D: + case ShaderLanguage::TYPE_USAMPLER3D: { + // Not implemented in GLES2 + } break; + + case ShaderLanguage::TYPE_VOID: { + // Nothing to do? + } break; } } @@ -468,7 +481,8 @@ public: // like forward declared nested classes. void use_material(void *p_material); - uint32_t get_version() const { return new_conditional_version.version; } + _FORCE_INLINE_ uint32_t get_version() const { return new_conditional_version.version; } + _FORCE_INLINE_ bool is_version_valid() const { return version && version->ok; } void set_uniform_camera(int p_idx, const CameraMatrix &p_mat) { diff --git a/drivers/gles2/shaders/cubemap_filter.glsl b/drivers/gles2/shaders/cubemap_filter.glsl index 2a1ad8d8f2..b1553c7cd5 100644 --- a/drivers/gles2/shaders/cubemap_filter.glsl +++ b/drivers/gles2/shaders/cubemap_filter.glsl @@ -167,18 +167,21 @@ void main() { vec3 H = ImportanceSampleGGX(xi, roughness, N); vec3 V = N; - vec3 L = normalize(2.0 * dot(V, H) * H - V); + vec3 L = (2.0 * dot(V, H) * H - V); float NdotL = clamp(dot(N, L), 0.0, 1.0); if (NdotL > 0.0) { #ifdef USE_SOURCE_PANORAMA - sum.rgb += texturePanorama(source_panorama, L).rgb * NdotL; + vec3 val = texturePanorama(source_panorama, L).rgb; #else - L.y = -L.y; - sum.rgb += textureCubeLod(source_cube, L, 0.0).rgb * NdotL; + vec3 val = textureCubeLod(source_cube, L, 0.0).rgb; #endif + //mix using Linear, to approximate high end back-end + val = mix(pow((val + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), val * (1.0 / 12.92), vec3(lessThan(val, vec3(0.04045)))); + + sum.rgb += val * NdotL; sum.a += NdotL; } @@ -186,5 +189,8 @@ void main() { sum /= sum.a; + vec3 a = vec3(0.055); + sum.rgb = mix((vec3(1.0) + a) * pow(sum.rgb, vec3(1.0 / 2.4)) - a, 12.92 * sum.rgb, vec3(lessThan(sum.rgb, vec3(0.0031308)))); + gl_FragColor = vec4(sum.rgb, 1.0); } diff --git a/drivers/gles2/shaders/scene.glsl b/drivers/gles2/shaders/scene.glsl index 906c089170..958de94485 100644 --- a/drivers/gles2/shaders/scene.glsl +++ b/drivers/gles2/shaders/scene.glsl @@ -5,12 +5,17 @@ #define mediump #define highp #else -precision mediump float; -precision mediump int; +precision highp float; +precision highp int; #endif #include "stdlib.glsl" +#define SHADER_IS_SRGB true + +#define M_PI 3.14159265359 + + // // attributes // @@ -23,15 +28,15 @@ attribute vec3 normal_attrib; // attrib:1 attribute vec4 tangent_attrib; // attrib:2 #endif -#ifdef ENABLE_COLOR_INTERP +#if defined(ENABLE_COLOR_INTERP) attribute vec4 color_attrib; // attrib:3 #endif -#ifdef ENABLE_UV_INTERP +#if defined(ENABLE_UV_INTERP) attribute vec2 uv_attrib; // attrib:4 #endif -#ifdef ENABLE_UV2_INTERP +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) attribute vec2 uv2_attrib; // attrib:5 #endif @@ -39,9 +44,9 @@ attribute vec2 uv2_attrib; // attrib:5 #ifdef USE_SKELETON_SOFTWARE -attribute highp vec4 bone_transform_row_0; // attrib:9 -attribute highp vec4 bone_transform_row_1; // attrib:10 -attribute highp vec4 bone_transform_row_2; // attrib:11 +attribute highp vec4 bone_transform_row_0; // attrib:13 +attribute highp vec4 bone_transform_row_1; // attrib:14 +attribute highp vec4 bone_transform_row_2; // attrib:15 #else @@ -57,12 +62,12 @@ uniform ivec2 skeleton_texture_size; #ifdef USE_INSTANCING -attribute highp vec4 instance_xform_row_0; // attrib:12 -attribute highp vec4 instance_xform_row_1; // attrib:13 -attribute highp vec4 instance_xform_row_2; // attrib:14 +attribute highp vec4 instance_xform_row_0; // attrib:8 +attribute highp vec4 instance_xform_row_1; // attrib:9 +attribute highp vec4 instance_xform_row_2; // attrib:10 -attribute highp vec4 instance_color; // attrib:15 -attribute highp vec4 instance_custom_data; // attrib:8 +attribute highp vec4 instance_color; // attrib:11 +attribute highp vec4 instance_custom_data; // attrib:12 #endif @@ -98,15 +103,15 @@ varying vec3 tangent_interp; varying vec3 binormal_interp; #endif -#ifdef ENABLE_COLOR_INTERP +#if defined(ENABLE_COLOR_INTERP) varying vec4 color_interp; #endif -#ifdef ENABLE_UV_INTERP +#if defined(ENABLE_UV_INTERP) varying vec2 uv_interp; #endif -#ifdef ENABLE_UV2_INTERP +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) varying vec2 uv2_interp; #endif @@ -116,6 +121,171 @@ VERTEX_SHADER_GLOBALS /* clang-format on */ +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + +varying highp float dp_clip; +uniform highp float shadow_dual_paraboloid_render_zfar; +uniform highp float shadow_dual_paraboloid_render_side; + +#endif + +#if defined(USE_SHADOW) && defined(USE_LIGHTING) + +uniform highp mat4 light_shadow_matrix; +varying highp vec4 shadow_coord; + +#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) +uniform highp mat4 light_shadow_matrix2; +varying highp vec4 shadow_coord2; +#endif + +#if defined(LIGHT_USE_PSSM4) + +uniform highp mat4 light_shadow_matrix3; +uniform highp mat4 light_shadow_matrix4; +varying highp vec4 shadow_coord3; +varying highp vec4 shadow_coord4; + +#endif + +#endif + +#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING) + +varying highp vec3 diffuse_interp; +varying highp vec3 specular_interp; + +// general for all lights +uniform vec4 light_color; +uniform float light_specular; + +// directional +uniform vec3 light_direction; + +// omni +uniform vec3 light_position; + +uniform float light_range; +uniform float light_attenuation; + +// spot +uniform float light_spot_attenuation; +uniform float light_spot_range; +uniform float light_spot_angle; + +void light_compute( + vec3 N, + vec3 L, + vec3 V, + vec3 light_color, + vec3 attenuation, + float roughness) { + +//this makes lights behave closer to linear, but then addition of lights looks bad +//better left disabled + +//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545); +/* +#define SRGB_APPROX(m_var) {\ + float S1 = sqrt(m_var);\ + float S2 = sqrt(S1);\ + float S3 = sqrt(S2);\ + m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\ + } +*/ +#define SRGB_APPROX(m_var) + + float NdotL = dot(N, L); + float cNdotL = max(NdotL, 0.0); // clamped NdotL + float NdotV = dot(N, V); + float cNdotV = max(NdotV, 0.0); + +#if defined(DIFFUSE_OREN_NAYAR) + vec3 diffuse_brdf_NL; +#else + float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance +#endif + +#if defined(DIFFUSE_LAMBERT_WRAP) + // energy conserving lambert wrap shader + diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); + +#elif defined(DIFFUSE_OREN_NAYAR) + + { + // see http://mimosa-pudica.net/improved-oren-nayar.html + float LdotV = dot(L, V); + + float s = LdotV - NdotL * NdotV; + float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); + + float sigma2 = roughness * roughness; // TODO: this needs checking + vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); + float B = 0.45 * sigma2 / (sigma2 + 0.09); + + diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); + } +#else + // lambert by default for everything else + diffuse_brdf_NL = cNdotL * (1.0 / M_PI); +#endif + + SRGB_APPROX(diffuse_brdf_NL) + + diffuse_interp += light_color * diffuse_brdf_NL * attenuation; + + if (roughness > 0.0) { + + // D + float specular_brdf_NL = 0.0; + +#if !defined(SPECULAR_DISABLED) + //normalized blinn always unless disabled + vec3 H = normalize(V + L); + float cNdotH = max(dot(N, H), 0.0); + float cVdotH = max(dot(V, H), 0.0); + float cLdotH = max(dot(L, H), 0.0); + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float blinn = pow(cNdotH, shininess); + blinn *= (shininess + 8.0) / (8.0 * 3.141592654); + specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75); +#endif + + SRGB_APPROX(specular_brdf_NL) + specular_interp += specular_brdf_NL * light_color * attenuation; + } +} + +#endif + +#ifdef USE_VERTEX_LIGHTING + +#ifdef USE_REFLECTION_PROBE1 + +uniform mat4 refprobe1_local_matrix; +varying mediump vec4 refprobe1_reflection_normal_blend; +uniform vec3 refprobe1_box_extents; + +#ifndef USE_LIGHTMAP +varying mediump vec3 refprobe1_ambient_normal; +#endif + +#endif //reflection probe1 + +#ifdef USE_REFLECTION_PROBE2 + +uniform mat4 refprobe2_local_matrix; +varying mediump vec4 refprobe2_reflection_normal_blend; +uniform vec3 refprobe2_box_extents; + +#ifndef USE_LIGHTMAP +varying mediump vec3 refprobe2_ambient_normal; +#endif + +#endif //reflection probe2 + +#endif //vertex lighting for refprobes + void main() { highp vec4 vertex = vertex_attrib; @@ -131,6 +301,7 @@ void main() { vec4(0.0, 0.0, 0.0, 1.0)); world_matrix = world_matrix * transpose(m); } + #endif vec3 normal = normal_attrib * normal_mult; @@ -142,18 +313,18 @@ void main() { vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif -#ifdef ENABLE_COLOR_INTERP +#if defined(ENABLE_COLOR_INTERP) color_interp = color_attrib; #ifdef USE_INSTANCING color_interp *= instance_color; #endif #endif -#ifdef ENABLE_UV_INTERP +#if defined(ENABLE_UV_INTERP) uv_interp = uv_attrib; #endif -#ifdef ENABLE_UV2_INTERP +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) uv2_interp = uv2_attrib; #endif @@ -209,6 +380,7 @@ void main() { #endif mat4 modelview = camera_matrix * world_matrix; + float roughness = 1.0; #define world_transform world_matrix @@ -252,13 +424,166 @@ VERTEX_SHADER_CODE #ifdef RENDER_DEPTH +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + + vertex_interp.z *= shadow_dual_paraboloid_render_side; + normal_interp.z *= shadow_dual_paraboloid_render_side; + + dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias + + //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges + + highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias; + highp float distance = length(vtx); + vtx = normalize(vtx); + vtx.xy /= 1.0 - vtx.z; + vtx.z = (distance / shadow_dual_paraboloid_render_zfar); + vtx.z = vtx.z * 2.0 - 1.0; + + vertex_interp = vtx; + +#else float z_ofs = light_bias; z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias; vertex_interp.z -= z_ofs; +#endif //dual parabolloid + +#endif //depth + +//vertex lighting +#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING) + //vertex shaded version of lighting (more limited) + vec3 L; + vec3 light_att; + +#ifdef LIGHT_MODE_OMNI + vec3 light_vec = light_position - vertex_interp; + float light_length = length(light_vec); + + float normalized_distance = light_length / light_range; + + if (normalized_distance < 1.0) { + + float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation); + + vec3 attenuation = vec3(omni_attenuation); + light_att = vec3(omni_attenuation); + } else { + light_att = vec3(0.0); + } + + L = normalize(light_vec); + +#endif + +#ifdef LIGHT_MODE_SPOT + + vec3 light_rel_vec = light_position - vertex_interp; + float light_length = length(light_rel_vec); + float normalized_distance = light_length / light_range; + + if (normalized_distance < 1.0) { + + float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation); + vec3 spot_dir = light_direction; + + float spot_cutoff = light_spot_angle; + + float angle = dot(-normalize(light_rel_vec), spot_dir); + + if (angle > spot_cutoff) { + + float scos = max(angle, spot_cutoff); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); + + spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); + + light_att = vec3(spot_attenuation); + } else { + light_att = vec3(0.0); + } + } else { + light_att = vec3(0.0); + } + + L = normalize(light_rel_vec); + +#endif + +#ifdef LIGHT_MODE_DIRECTIONAL + vec3 light_vec = -light_direction; + light_att = vec3(1.0); //no base attenuation + L = normalize(light_vec); +#endif + + diffuse_interp = vec3(0.0); + specular_interp = vec3(0.0); + light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness); + +#endif + +//shadows (for both vertex and fragment) +#if defined(USE_SHADOW) && defined(USE_LIGHTING) + + vec4 vi4 = vec4(vertex_interp, 1.0); + shadow_coord = light_shadow_matrix * vi4; + +#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) + shadow_coord2 = light_shadow_matrix2 * vi4; +#endif + +#if defined(LIGHT_USE_PSSM4) + shadow_coord3 = light_shadow_matrix3 * vi4; + shadow_coord4 = light_shadow_matrix4 * vi4; + +#endif + +#endif //use shadow and use lighting + +#ifdef USE_VERTEX_LIGHTING + +#ifdef USE_REFLECTION_PROBE1 + { + vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp)); + vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz; + vec3 inner_pos = abs(local_pos / refprobe1_box_extents); + float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); + + { + vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz; + refprobe1_reflection_normal_blend.xyz = local_ref_vec; + refprobe1_reflection_normal_blend.a = blend; + } +#ifndef USE_LIGHTMAP + refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz; #endif + } + +#endif //USE_REFLECTION_PROBE1 + +#ifdef USE_REFLECTION_PROBE2 + { + vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp)); + vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz; + vec3 inner_pos = abs(local_pos / refprobe2_box_extents); + float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); + + { + vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz; + refprobe2_reflection_normal_blend.xyz = local_ref_vec; + refprobe2_reflection_normal_blend.a = blend; + } +#ifndef USE_LIGHTMAP + + refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz; +#endif + } +#endif //USE_REFLECTION_PROBE2 + +#endif //use vertex lighting gl_Position = projection_matrix * vec4(vertex_interp, 1.0); } @@ -276,12 +601,13 @@ VERTEX_SHADER_CODE #define highp #else precision mediump float; -precision mediump int; +precision highp int; #endif #include "stdlib.glsl" #define M_PI 3.14159265359 +#define SHADER_IS_SRGB true // // uniforms @@ -297,20 +623,179 @@ uniform mat4 world_transform; uniform highp float time; -#ifdef SCREEN_UV_USED +#if defined(SCREEN_UV_USED) uniform vec2 screen_pixel_size; #endif -uniform highp sampler2D depth_buffer; //texunit:-5 +// I think supporting this in GLES2 is difficult +// uniform highp sampler2D depth_buffer; #if defined(SCREEN_TEXTURE_USED) -uniform highp sampler2D screen_texture; //texunit:-6 +uniform highp sampler2D screen_texture; //texunit:-4 #endif -#ifdef USE_RADIANCE_MAP +#ifdef USE_REFLECTION_PROBE1 + +#ifdef USE_VERTEX_LIGHTING + +varying mediump vec4 refprobe1_reflection_normal_blend; +#ifndef USE_LIGHTMAP +varying mediump vec3 refprobe1_ambient_normal; +#endif + +#else + +uniform bool refprobe1_use_box_project; +uniform vec3 refprobe1_box_extents; +uniform vec3 refprobe1_box_offset; +uniform mat4 refprobe1_local_matrix; + +#endif //use vertex lighting + +uniform bool refprobe1_exterior; + +uniform highp samplerCube reflection_probe1; //texunit:-5 + +uniform float refprobe1_intensity; +uniform vec4 refprobe1_ambient; + +#endif //USE_REFLECTION_PROBE1 + +#ifdef USE_REFLECTION_PROBE2 + +#ifdef USE_VERTEX_LIGHTING + +varying mediump vec4 refprobe2_reflection_normal_blend; +#ifndef USE_LIGHTMAP +varying mediump vec3 refprobe2_ambient_normal; +#endif + +#else + +uniform bool refprobe2_use_box_project; +uniform vec3 refprobe2_box_extents; +uniform vec3 refprobe2_box_offset; +uniform mat4 refprobe2_local_matrix; + +#endif //use vertex lighting + +uniform bool refprobe2_exterior; + +uniform highp samplerCube reflection_probe2; //texunit:-6 + +uniform float refprobe2_intensity; +uniform vec4 refprobe2_ambient; + +#endif //USE_REFLECTION_PROBE2 #define RADIANCE_MAX_LOD 6.0 +#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2) + +void reflection_process(samplerCube reflection_map, +#ifdef USE_VERTEX_LIGHTING + vec3 ref_normal, +#ifndef USE_LIGHTMAP + vec3 amb_normal, +#endif + float ref_blend, + +#else //no vertex lighting + vec3 normal, vec3 vertex, + mat4 local_matrix, + bool use_box_project, vec3 box_extents, vec3 box_offset, +#endif //vertex lighting + bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) { + + vec4 reflection; + +#ifdef USE_VERTEX_LIGHTING + + reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb; + + float blend = ref_blend; //crappier blend formula for vertex + blend *= blend; + blend = max(0.0, 1.0 - blend); + +#else //fragment lighting + + vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz; + + if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box + return; + } + + vec3 inner_pos = abs(local_pos / box_extents); + float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); + blend = mix(length(inner_pos), blend, blend); + blend *= blend; + blend = max(0.0, 1.0 - blend); + + //reflect and make local + vec3 ref_normal = normalize(reflect(vertex, normal)); + ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz; + + if (use_box_project) { //box project + + vec3 nrdir = normalize(ref_normal); + vec3 rbmax = (box_extents - local_pos) / nrdir; + vec3 rbmin = (-box_extents - local_pos) / nrdir; + + vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0)))); + + float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); + vec3 posonbox = local_pos + nrdir * fa; + ref_normal = posonbox - box_offset.xyz; + } + + reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb; +#endif + + if (exterior) { + reflection.rgb = mix(skybox, reflection.rgb, blend); + } + reflection.rgb *= intensity; + reflection.a = blend; + reflection.rgb *= blend; + + reflection_accum += reflection; + +#ifndef USE_LIGHTMAP + + vec4 ambient_out; +#ifndef USE_VERTEX_LIGHTING + + vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz; +#endif + + ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb; + ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a); + if (exterior) { + ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); + } + + ambient_out.a = blend; + ambient_out.rgb *= blend; + ambient_accum += ambient_out; + +#endif +} + +#endif //use refprobe 1 or 2 + +#ifdef USE_LIGHTMAP +uniform mediump sampler2D lightmap; //texunit:-4 +uniform mediump float lightmap_energy; +#endif + +#ifdef USE_LIGHTMAP_CAPTURE +uniform mediump vec4[12] lightmap_captures; +uniform bool lightmap_capture_sky; + +#endif + +#ifdef USE_RADIANCE_MAP + uniform samplerCube radiance_map; // texunit:-2 uniform mat4 radiance_inverse_xform; @@ -323,49 +808,68 @@ uniform float ambient_sky_contribution; uniform vec4 ambient_color; uniform float ambient_energy; -#ifdef LIGHT_PASS +#ifdef USE_LIGHTING -#define LIGHT_TYPE_DIRECTIONAL 0 -#define LIGHT_TYPE_OMNI 1 -#define LIGHT_TYPE_SPOT 2 +#ifdef USE_VERTEX_LIGHTING -// general for all lights -uniform int light_type; +//get from vertex +varying highp vec3 diffuse_interp; +varying highp vec3 specular_interp; -uniform float light_energy; +#else +//done in fragment +// general for all lights uniform vec4 light_color; uniform float light_specular; // directional uniform vec3 light_direction; - // omni uniform vec3 light_position; -uniform float light_range; -uniform vec4 light_attenuation; +uniform float light_attenuation; // spot uniform float light_spot_attenuation; uniform float light_spot_range; uniform float light_spot_angle; +#endif -// shadows -uniform highp sampler2D light_shadow_atlas; //texunit:-4 -uniform float light_has_shadow; +//this is needed outside above if because dual paraboloid wants it +uniform float light_range; + +#ifdef USE_SHADOW + +uniform highp vec2 shadow_pixel_size; + +#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT) +uniform highp sampler2D light_shadow_atlas; //texunit:-3 +#endif + +#ifdef LIGHT_MODE_DIRECTIONAL +uniform highp sampler2D light_directional_shadow; // texunit:-3 +uniform highp vec4 light_split_offsets; +#endif + +varying highp vec4 shadow_coord; + +#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) +varying highp vec4 shadow_coord2; +#endif + +#if defined(LIGHT_USE_PSSM4) + +varying highp vec4 shadow_coord3; +varying highp vec4 shadow_coord4; + +#endif -uniform mat4 light_shadow_matrix; uniform vec4 light_clamp; -// directional shadow +#endif // light shadow -uniform highp sampler2D light_directional_shadow; // texunit:-4 -uniform vec4 light_split_offsets; +// directional shadow -uniform mat4 light_shadow_matrix1; -uniform mat4 light_shadow_matrix2; -uniform mat4 light_shadow_matrix3; -uniform mat4 light_shadow_matrix4; #endif // @@ -380,15 +884,15 @@ varying vec3 tangent_interp; varying vec3 binormal_interp; #endif -#ifdef ENABLE_COLOR_INTERP +#if defined(ENABLE_COLOR_INTERP) varying vec4 color_interp; #endif -#ifdef ENABLE_UV_INTERP +#if defined(ENABLE_UV_INTERP) varying vec2 uv_interp; #endif -#ifdef ENABLE_UV2_INTERP +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) varying vec2 uv2_interp; #endif @@ -406,7 +910,79 @@ FRAGMENT_SHADER_GLOBALS /* clang-format on */ -#ifdef LIGHT_PASS +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + +varying highp float dp_clip; + +#endif + +#ifdef USE_LIGHTING + +// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. +// We're dividing this factor off because the overall term we'll end up looks like +// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): +// +// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) +// +// We're basically regouping this as +// +// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] +// +// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. +// +// The contents of the D and G (G1) functions (GGX) are taken from +// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). +// Eqns 71-72 and 85-86 (see also Eqns 43 and 80). + +float G_GGX_2cos(float cos_theta_m, float alpha) { + // Schlick's approximation + // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) + // Eq. (19), although see Heitz (2014) the about the problems with his derivation. + // It nevertheless approximates GGX well with k = alpha/2. + float k = 0.5 * alpha; + return 0.5 / (cos_theta_m * (1.0 - k) + k); + + // float cos2 = cos_theta_m * cos_theta_m; + // float sin2 = (1.0 - cos2); + // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); +} + +float D_GGX(float cos_theta_m, float alpha) { + float alpha2 = alpha * alpha; + float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; + return alpha2 / (M_PI * d * d); +} + +float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { + float cos2 = cos_theta_m * cos_theta_m; + float sin2 = (1.0 - cos2); + float s_x = alpha_x * cos_phi; + float s_y = alpha_y * sin_phi; + return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); +} + +float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { + float cos2 = cos_theta_m * cos_theta_m; + float sin2 = (1.0 - cos2); + float r_x = cos_phi / alpha_x; + float r_y = sin_phi / alpha_y; + float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); + return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); +} + +float SchlickFresnel(float u) { + float m = 1.0 - u; + float m2 = m * m; + return m2 * m2 * m; // pow(m,5) +} + +float GTR1(float NdotH, float a) { + if (a >= 1.0) return 1.0 / M_PI; + float a2 = a * a; + float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; + return (a2 - 1.0) / (M_PI * log(a2) * t); +} + void light_compute( vec3 N, vec3 L, @@ -428,52 +1004,274 @@ void light_compute( inout vec3 diffuse_light, inout vec3 specular_light) { +//this makes lights behave closer to linear, but then addition of lights looks bad +//better left disabled + +//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545); +/* +#define SRGB_APPROX(m_var) {\ + float S1 = sqrt(m_var);\ + float S2 = sqrt(S1);\ + float S3 = sqrt(S2);\ + m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\ + } +*/ +#define SRGB_APPROX(m_var) + +#if defined(USE_LIGHT_SHADER_CODE) + // light is written by the light shader + + vec3 normal = N; + vec3 albedo = diffuse_color; + vec3 light = L; + vec3 view = V; + + /* clang-format off */ + +LIGHT_SHADER_CODE + + /* clang-format on */ + +#else float NdotL = dot(N, L); - float cNdotL = max(NdotL, 0.0); + float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); - { - // calculate diffuse reflection - - // TODO hardcode Oren Nayar for now - float diffuse_brdf_NL; + if (metallic < 1.0) { +#if defined(DIFFUSE_OREN_NAYAR) + vec3 diffuse_brdf_NL; +#else + float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance +#endif +#if defined(DIFFUSE_LAMBERT_WRAP) + // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); - // diffuse_brdf_NL = cNdotL * (1.0 / M_PI); + +#elif defined(DIFFUSE_OREN_NAYAR) + + { + // see http://mimosa-pudica.net/improved-oren-nayar.html + float LdotV = dot(L, V); + + float s = LdotV - NdotL * NdotV; + float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); + + float sigma2 = roughness * roughness; // TODO: this needs checking + vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); + float B = 0.45 * sigma2 / (sigma2 + 0.09); + + diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); + } + +#elif defined(DIFFUSE_TOON) + + diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); + +#elif defined(DIFFUSE_BURLEY) + + { + + vec3 H = normalize(V + L); + float cLdotH = max(0.0, dot(L, H)); + + float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness; + float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV); + float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL); + diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; + /* + float energyBias = mix(roughness, 0.0, 0.5); + float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); + float fd90 = energyBias + 2.0 * VoH * VoH * roughness; + float f0 = 1.0; + float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); + float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); + + diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; + */ + } +#else + // lambert + diffuse_brdf_NL = cNdotL * (1.0 / M_PI); +#endif + + SRGB_APPROX(diffuse_brdf_NL) diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; + +#if defined(TRANSMISSION_USED) + diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation; +#endif + +#if defined(LIGHT_USE_RIM) + float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); + diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; +#endif } - { - // calculate specular reflection + if (roughness > 0.0) { + + // D + + float specular_brdf_NL; + +#if defined(SPECULAR_BLINN) + + //normalized blinn + vec3 H = normalize(V + L); + float cNdotH = max(dot(N, H), 0.0); + float cVdotH = max(dot(V, H), 0.0); + float cLdotH = max(dot(L, H), 0.0); + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float blinn = pow(cNdotH, shininess); + blinn *= (shininess + 8.0) / (8.0 * 3.141592654); + specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75); + +#elif defined(SPECULAR_PHONG) vec3 R = normalize(-reflect(L, N)); - float cRdotV = max(dot(R, V), 0.0); - float blob_intensity = pow(cRdotV, (1.0 - roughness) * 256.0); - specular_light += light_color * attenuation * blob_intensity * specular_blob_intensity; + float cRdotV = max(0.0, dot(R, V)); + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float phong = pow(cRdotV, shininess); + phong *= (shininess + 8.0) / (8.0 * 3.141592654); + specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); + +#elif defined(SPECULAR_TOON) + + vec3 R = normalize(-reflect(L, N)); + float RdotV = dot(R, V); + float mid = 1.0 - roughness; + mid *= mid; + specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; + +#elif defined(SPECULAR_DISABLED) + // none.. + specular_brdf_NL = 0.0; +#elif defined(SPECULAR_SCHLICK_GGX) + // shlick+ggx as default + + vec3 H = normalize(V + L); + + float cNdotH = max(dot(N, H), 0.0); + float cLdotH = max(dot(L, H), 0.0); + +#if defined(LIGHT_USE_ANISOTROPY) + + float aspect = sqrt(1.0 - anisotropy * 0.9); + float rx = roughness / aspect; + float ry = roughness * aspect; + float ax = rx * rx; + float ay = ry * ry; + float XdotH = dot(T, H); + float YdotH = dot(B, H); + float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); + float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); + +#else + float alpha = roughness * roughness; + float D = D_GGX(cNdotH, alpha); + float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha); +#endif + // F + //float F0 = 1.0; + //float cLdotH5 = SchlickFresnel(cLdotH); + //float F = mix(cLdotH5, 1.0, F0); + + specular_brdf_NL = cNdotL * D /* F */ * G; + +#endif + + SRGB_APPROX(specular_brdf_NL) + specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; + +#if defined(LIGHT_USE_CLEARCOAT) + if (clearcoat_gloss > 0.0) { +#if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) + vec3 H = normalize(V + L); +#endif +#if !defined(SPECULAR_SCHLICK_GGX) + float cNdotH = max(dot(N, H), 0.0); + float cLdotH = max(dot(L, H), 0.0); + float cLdotH5 = SchlickFresnel(cLdotH); +#endif + float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); + float Fr = mix(.04, 1.0, cLdotH5); + float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); + + float specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; + + specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; + } +#endif } + +#endif //defined(USE_LIGHT_SHADER_CODE) } +#endif // shadows +#ifdef USE_SHADOW + +#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, texture2D(p_shadow, p_pos).r) +#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, texture2DProj(p_shadow, p_pos).r) + float sample_shadow( - highp sampler2D shadow, - vec2 shadow_pixel_size, - vec2 pos, - float depth, - vec4 clamp_rect) { - // vec4 depth_value = texture2D(shadow, pos); - - // return depth_value.z; - return texture2DProj(shadow, vec4(pos, depth, 1.0)).r; - // return (depth_value.x + depth_value.y + depth_value.z + depth_value.w) / 4.0; + highp sampler2D shadow, highp vec4 spos) { + +#ifdef SHADOW_MODE_PCF_13 + + spos.xyz /= spos.w; + vec2 pos = spos.xy; + float depth = spos.z; + + float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth); + return avg * (1.0 / 13.0); +#endif + +#ifdef SHADOW_MODE_PCF_5 + + spos.xyz /= spos.w; + vec2 pos = spos.xy; + float depth = spos.z; + + float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth); + return avg * (1.0 / 5.0); + +#endif + +#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13) + + return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos); +#endif } #endif void main() { +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + + if (dp_clip > 0.0) + discard; +#endif highp vec3 vertex = vertex_interp; vec3 albedo = vec3(1.0); vec3 transmission = vec3(0.0); @@ -487,6 +1285,7 @@ void main() { float clearcoat_gloss = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); + float sss_strength = 0.0; //unused float alpha = 1.0; float side = 1.0; @@ -510,11 +1309,11 @@ void main() { #endif float normaldepth = 1.0; -#ifdef ALPHA_SCISSOR_USED +#if defined(ALPHA_SCISSOR_USED) float alpha_scissor = 0.5; #endif -#ifdef SCREEN_UV_USED +#if defined(SCREEN_UV_USED) vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #endif @@ -530,8 +1329,8 @@ FRAGMENT_SHADER_CODE normalmap.xy = normalmap.xy * 2.0 - 1.0; normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); - // normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side; - normal = normalmap; + normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side; + //normal = normalmap; #endif normal = normalize(normal); @@ -540,300 +1339,512 @@ FRAGMENT_SHADER_CODE vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); - vec3 ambient_light = vec3(0.0, 0.0, 0.0); - vec3 env_reflection_light = vec3(0.0, 0.0, 0.0); - vec3 eye_position = -normalize(vertex_interp); -#ifdef ALPHA_SCISSOR_USED +#if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #endif +#ifdef BASE_PASS + //none +#ifdef USE_RADIANCE_MAP + + vec3 ref_vec = reflect(-eye_position, N); + ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); + + ref_vec.z *= -1.0; + + specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy; + + { + vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz); + vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy; + + ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution); + } + +#else + + ambient_light = ambient_color.rgb; + +#endif + + ambient_light *= ambient_energy; + +#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2) + + vec4 ambient_accum = vec4(0.0); + vec4 reflection_accum = vec4(0.0); + +#ifdef USE_REFLECTION_PROBE1 + + reflection_process(reflection_probe1, +#ifdef USE_VERTEX_LIGHTING + refprobe1_reflection_normal_blend.rgb, +#ifndef USE_LIGHTMAP + refprobe1_ambient_normal, +#endif + refprobe1_reflection_normal_blend.a, +#else + normal_interp, vertex_interp, refprobe1_local_matrix, + refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset, +#endif + refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness, + ambient_light, specular_light, reflection_accum, ambient_accum); + +#endif // USE_REFLECTION_PROBE1 + +#ifdef USE_REFLECTION_PROBE2 + + reflection_process(reflection_probe2, +#ifdef USE_VERTEX_LIGHTING + refprobe2_reflection_normal_blend.rgb, +#ifndef USE_LIGHTMAP + refprobe2_ambient_normal, +#endif + refprobe2_reflection_normal_blend.a, +#else + normal_interp, vertex_interp, refprobe2_local_matrix, + refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset, +#endif + refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness, + ambient_light, specular_light, reflection_accum, ambient_accum); + +#endif // USE_REFLECTION_PROBE2 + + if (reflection_accum.a > 0.0) { + specular_light = reflection_accum.rgb / reflection_accum.a; + } + +#ifndef USE_LIGHTMAP + if (ambient_accum.a > 0.0) { + ambient_light = ambient_accum.rgb / ambient_accum.a; + } +#endif + +#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2) + +#ifdef USE_LIGHTMAP + //ambient light will come entirely from lightmap is lightmap is used + ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy; +#endif + +#ifdef USE_LIGHTMAP_CAPTURE + { + vec3 cone_dirs[12] = vec3[]( + vec3(0, 0, 1), + vec3(0.866025, 0, 0.5), + vec3(0.267617, 0.823639, 0.5), + vec3(-0.700629, 0.509037, 0.5), + vec3(-0.700629, -0.509037, 0.5), + vec3(0.267617, -0.823639, 0.5), + vec3(0, 0, -1), + vec3(0.866025, 0, -0.5), + vec3(0.267617, 0.823639, -0.5), + vec3(-0.700629, 0.509037, -0.5), + vec3(-0.700629, -0.509037, -0.5), + vec3(0.267617, -0.823639, -0.5)); + + vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz; + vec4 captured = vec4(0.0); + float sum = 0.0; + for (int i = 0; i < 12; i++) { + float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect + captured += lightmap_captures[i] * amount; + sum += amount; + } + + captured /= sum; + + if (lightmap_capture_sky) { + ambient_light = mix(ambient_light, captured.rgb, captured.a); + } else { + ambient_light = captured.rgb; + } + } +#endif + +#endif //BASE PASS + // // Lighting // -#ifdef LIGHT_PASS +#ifdef USE_LIGHTING + +#ifndef USE_VERTEX_LIGHTING + vec3 L; +#endif + vec3 light_att = vec3(1.0); - if (light_type == LIGHT_TYPE_OMNI) { - vec3 light_vec = light_position - vertex; - float light_length = length(light_vec); +#ifdef LIGHT_MODE_OMNI - float normalized_distance = light_length / light_range; +#ifndef USE_VERTEX_LIGHTING + vec3 light_vec = light_position - vertex; + float light_length = length(light_vec); - float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); + float normalized_distance = light_length / light_range; + if (normalized_distance < 1.0) { - vec3 attenuation = vec3(omni_attenuation); + float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation); - if (light_has_shadow > 0.5) { - highp vec3 splane = (light_shadow_matrix * vec4(vertex, 1.0)).xyz; - float shadow_len = length(splane); + light_att = vec3(omni_attenuation); + } else { + light_att = vec3(0.0); + } + L = normalize(light_vec); + +#endif - splane = normalize(splane); +#ifdef USE_SHADOW + { + highp vec4 splane = shadow_coord; + float shadow_len = length(splane.xyz); - vec4 clamp_rect = light_clamp; + splane = normalize(splane.xyz); - if (splane.z >= 0.0) { - splane.z += 1.0; + vec4 clamp_rect = light_clamp; - clamp_rect.y += clamp_rect.w; + if (splane.z >= 0.0) { + splane.z += 1.0; + + clamp_rect.y += clamp_rect.w; + } else { + splane.z = 1.0 - splane.z; + } + + splane.xy /= splane.z; + splane.xy = splane.xy * 0.5 + 0.5; + splane.z = shadow_len / light_range; + + splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; + splane.w = 1.0; + + float shadow = sample_shadow(light_shadow_atlas, splane); + + light_att *= shadow; + } +#endif + +#endif //type omni + +#ifdef LIGHT_MODE_DIRECTIONAL + +#ifndef USE_VERTEX_LIGHTING + vec3 light_vec = -light_direction; + L = normalize(light_vec); +#endif + float depth_z = -vertex.z; + +#ifdef USE_SHADOW + +#ifdef USE_VERTEX_LIGHTING + //compute shadows in a mobile friendly way + +#ifdef LIGHT_USE_PSSM4 + //take advantage of prefetch + float shadow1 = sample_shadow(light_directional_shadow, shadow_coord); + float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2); + float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3); + float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4); + + if (depth_z < light_split_offsets.w) { + float pssm_fade = 0.0; + float shadow_att = 1.0; +#ifdef LIGHT_USE_PSSM_BLEND + float shadow_att2 = 1.0; + float pssm_blend = 0.0; + bool use_blend = true; +#endif + if (depth_z < light_split_offsets.y) { + if (depth_z < light_split_offsets.x) { + shadow_att = shadow1; + +#ifdef LIGHT_USE_PSSM_BLEND + shadow_att2 = shadow2; + + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); +#endif } else { - splane.z = 1.0 - splane.z; - } + shadow_att = shadow2; + +#ifdef LIGHT_USE_PSSM_BLEND + shadow_att2 = shadow3; - splane.xy /= splane.z; - splane.xy = splane.xy * 0.5 + 0.5; - splane.z = shadow_len / light_range; + pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); +#endif + } + } else { + if (depth_z < light_split_offsets.z) { - splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; + shadow_att = shadow3; - float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, clamp_rect); +#if defined(LIGHT_USE_PSSM_BLEND) + shadow_att2 = shadow4; + pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); +#endif - if (shadow > splane.z) { } else { - attenuation = vec3(0.0); + + shadow_att = shadow4; + pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); + +#if defined(LIGHT_USE_PSSM_BLEND) + use_blend = false; +#endif } } +#if defined(LIGHT_USE_PSSM_BLEND) + if (use_blend) { + shadow_att = mix(shadow_att, shadow_att2, pssm_blend); + } +#endif + light_att *= shadow_att; + } + +#endif //LIGHT_USE_PSSM4 + +#ifdef LIGHT_USE_PSSM2 + + //take advantage of prefetch + float shadow1 = sample_shadow(light_directional_shadow, shadow_coord); + float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2); - light_compute( - normal, - normalize(light_vec), - eye_position, - binormal, - tangent, - light_color.xyz * light_energy, - attenuation, - albedo, - transmission, - specular * light_specular, - roughness, - metallic, - rim, - rim_tint, - clearcoat, - clearcoat_gloss, - anisotropy, - diffuse_light, - specular_light); - - } else if (light_type == LIGHT_TYPE_DIRECTIONAL) { - - vec3 light_vec = -light_direction; - vec3 attenuation = vec3(1.0, 1.0, 1.0); - - float depth_z = -vertex.z; - - if (light_has_shadow > 0.5) { + if (depth_z < light_split_offsets.y) { + float shadow_att = 1.0; + float pssm_fade = 0.0; +#ifdef LIGHT_USE_PSSM_BLEND + float shadow_att2 = 1.0; + float pssm_blend = 0.0; + bool use_blend = true; +#endif + if (depth_z < light_split_offsets.x) { + float pssm_fade = 0.0; + shadow_att = shadow1; + +#ifdef LIGHT_USE_PSSM_BLEND + shadow_att2 = shadow2; + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); +#endif + } else { + + shadow_att = shadow2; + pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); +#ifdef LIGHT_USE_PSSM_BLEND + use_blend = false; +#endif + } +#ifdef LIGHT_USE_PSSM_BLEND + if (use_blend) { + shadow_att = mix(shadow_att, shadow_att2, pssm_blend); + } +#endif + light_att *= shadow_att; + } + +#endif //LIGHT_USE_PSSM2 + +#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) + + light_att *= sample_shadow(light_directional_shadow, shadow_coord); +#endif //orthogonal + +#else //fragment version of pssm + + { #ifdef LIGHT_USE_PSSM4 - if (depth_z < light_split_offsets.w) { + if (depth_z < light_split_offsets.w) { #elif defined(LIGHT_USE_PSSM2) - if (depth_z < light_split_offsets.y) { + if (depth_z < light_split_offsets.y) { #else - if (depth_z < light_split_offsets.x) { -#endif + if (depth_z < light_split_offsets.x) { +#endif //pssm2 - vec3 pssm_coord; - float pssm_fade = 0.0; + highp vec4 pssm_coord; + float pssm_fade = 0.0; #ifdef LIGHT_USE_PSSM_BLEND - float pssm_blend; - vec3 pssm_coord2; - bool use_blend = true; + float pssm_blend; + highp vec4 pssm_coord2; + bool use_blend = true; #endif #ifdef LIGHT_USE_PSSM4 - if (depth_z < light_split_offsets.y) { - if (depth_z < light_split_offsets.x) { - highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; + + if (depth_z < light_split_offsets.y) { + if (depth_z < light_split_offsets.x) { + pssm_coord = shadow_coord; #ifdef LIGHT_USE_PSSM_BLEND - splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); - pssm_coord2 = splane.xyz / splane.w; + pssm_coord2 = shadow_coord2; - pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif - } else { - highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; + } else { + pssm_coord = shadow_coord2; #ifdef LIGHT_USE_PSSM_BLEND - splane = (light_shadow_matrix3 * vec4(vertex, 1.0)); - pssm_coord2 = splane.xyz / splane.w; + pssm_coord2 = shadow_coord3; - pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); + pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #endif - } - } else { - if (depth_z < light_split_offsets.z) { + } + } else { + if (depth_z < light_split_offsets.z) { - highp vec4 splane = (light_shadow_matrix3 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; + pssm_coord = shadow_coord3; #if defined(LIGHT_USE_PSSM_BLEND) - splane = (light_shadow_matrix4 * vec4(vertex, 1.0)); - pssm_coord2 = splane.xyz / splane.w; - pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); + pssm_coord2 = shadow_coord4; + pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); #endif - } else { + } else { - highp vec4 splane = (light_shadow_matrix4 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); + pssm_coord = shadow_coord4; + pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) - use_blend = false; + use_blend = false; #endif - } } + } #endif // LIGHT_USE_PSSM4 #ifdef LIGHT_USE_PSSM2 - if (depth_z < light_split_offsets.x) { + if (depth_z < light_split_offsets.x) { - highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; + pssm_coord = shadow_coord; #ifdef LIGHT_USE_PSSM_BLEND - splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); - pssm_coord2 = splane.xyz / splane.w; - pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); + pssm_coord2 = shadow_coord2; + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif - } else { - highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); + } else { + + pssm_coord = shadow_coord2; + pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #ifdef LIGHT_USE_PSSM_BLEND - use_blend = false; + use_blend = false; #endif - } + } #endif // LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) - { - highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0)); - pssm_coord = splane.xyz / splane.w; - } + { + pssm_coord = shadow_coord; + } #endif - float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord.xy, pssm_coord.z, light_clamp); + float shadow = sample_shadow(light_directional_shadow, pssm_coord); #ifdef LIGHT_USE_PSSM_BLEND - if (use_blend) { - shadow = mix(shadow, sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend); - } + if (use_blend) { + shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend); + } #endif - attenuation *= shadow; - } + light_att *= shadow; } + } +#endif //use vertex lighting - light_compute(normal, - normalize(light_vec), - eye_position, - binormal, - tangent, - light_color.xyz * light_energy, - attenuation, - albedo, - transmission, - specular * light_specular, - roughness, - metallic, - rim, - rim_tint, - clearcoat, - clearcoat_gloss, - anisotropy, - diffuse_light, - specular_light); - } else if (light_type == LIGHT_TYPE_SPOT) { - - vec3 light_att = vec3(1.0); - - if (light_has_shadow > 0.5) { - highp vec4 splane = (light_shadow_matrix * vec4(vertex, 1.0)); - splane.xyz /= splane.w; - - float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, light_clamp); - - if (shadow > splane.z) { - } else { - light_att = vec3(0.0); - } - } +#endif //use shadow - vec3 light_rel_vec = light_position - vertex; - float light_length = length(light_rel_vec); - float normalized_distance = light_length / light_range; +#endif - float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); - vec3 spot_dir = light_direction; +#ifdef LIGHT_MODE_SPOT - float spot_cutoff = light_spot_angle; + light_att = vec3(1.0); - float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); - float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); - - spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); - - light_att *= vec3(spot_attenuation); - - light_compute( - normal, - normalize(light_rel_vec), - eye_position, - binormal, - tangent, - light_color.xyz * light_energy, - light_att, - albedo, - transmission, - specular * light_specular, - roughness, - metallic, - rim, - rim_tint, - clearcoat, - clearcoat_gloss, - anisotropy, - diffuse_light, - specular_light); - } +#ifndef USE_VERTEX_LIGHTING - gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha); -#else + vec3 light_rel_vec = light_position - vertex; + float light_length = length(light_rel_vec); + float normalized_distance = light_length / light_range; -#ifdef RENDER_DEPTH + if (normalized_distance < 1.0) { + float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation); + vec3 spot_dir = light_direction; -#else + float spot_cutoff = light_spot_angle; + float angle = dot(-normalize(light_rel_vec), spot_dir); -#ifdef USE_RADIANCE_MAP + if (angle > spot_cutoff) { + float scos = max(angle, spot_cutoff); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); + spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); - vec3 ref_vec = reflect(-eye_position, N); - ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); + light_att = vec3(spot_attenuation); + } else { + light_att = vec3(0.0); + } + } else { + light_att = vec3(0.0); + } - ref_vec.z *= -1.0; + L = normalize(light_rel_vec); - env_reflection_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy; +#endif +#ifdef USE_SHADOW { - vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz); - vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy; + highp vec4 splane = shadow_coord; + splane.xyz /= splane.w; - ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution); + float shadow = sample_shadow(light_shadow_atlas, splane.xy, splane.z); + light_att *= shadow; } +#endif - ambient_light *= ambient_energy; +#endif + +#ifdef USE_VERTEX_LIGHTING + //vertex lighting + + specular_light += specular_interp * specular * light_att; + diffuse_light += diffuse_interp * albedo * light_att; - specular_light += env_reflection_light; +#else + //fragment lighting + light_compute( + normal, + L, + eye_position, + binormal, + tangent, + light_color.xyz, + light_att, + albedo, + transmission, + specular * light_specular, + roughness, + metallic, + rim, + rim_tint, + clearcoat, + clearcoat_gloss, + anisotropy, + diffuse_light, + specular_light); + +#endif //vertex lighting + +#endif //USE_LIGHTING + //compute and merge + +#ifndef RENDER_DEPTH + +#ifdef SHADELESS + + gl_FragColor = vec4(albedo, alpha); +#else ambient_light *= albedo; @@ -849,8 +1860,13 @@ FRAGMENT_SHADER_CODE // environment BRDF approximation - // TODO shadeless { + +#if defined(DIFFUSE_TOON) + //simplify for toon, as + specular_light *= specular * metallic * albedo * 2.0; +#else + //TODO: this curve is not really designed for gammaspace, should be adjusted const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; @@ -860,15 +1876,18 @@ FRAGMENT_SHADER_CODE vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo); specular_light *= AB.x * specular_color + AB.y; +#endif } gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha); - // gl_FragColor = vec4(normal, 1.0); -#else - gl_FragColor = vec4(albedo, alpha); + //add emission if in base pass +#ifdef BASE_PASS + gl_FragColor.rgb += emission; #endif -#endif // RENDER_DEPTH + // gl_FragColor = vec4(normal, 1.0); + +#endif //unshaded -#endif // lighting +#endif // not RENDER_DEPTH } diff --git a/drivers/gles2/shaders/stdlib.glsl b/drivers/gles2/shaders/stdlib.glsl index 6bc81a22d8..3674d70c9f 100644 --- a/drivers/gles2/shaders/stdlib.glsl +++ b/drivers/gles2/shaders/stdlib.glsl @@ -35,3 +35,13 @@ highp vec4 texel2DFetch(highp sampler2D tex, ivec2 size, ivec2 coord) { return texture2DLod(tex, vec2(x_coord, y_coord), 0.0); } + +#ifndef USE_GLES_OVER_GL +highp mat4 transpose(highp mat4 src) { + return mat4( + vec4(src[0].x, src[1].x, src[2].x, src[3].x), + vec4(src[0].y, src[1].y, src[2].y, src[3].y), + vec4(src[0].z, src[1].z, src[2].z, src[3].z), + vec4(src[0].w, src[1].w, src[2].w, src[3].w)); +} +#endif |