summaryrefslogtreecommitdiff
path: root/drivers/gles2/shaders
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gles2/shaders')
-rw-r--r--drivers/gles2/shaders/SCsub23
-rw-r--r--drivers/gles2/shaders/blend_shape.glsl194
-rw-r--r--drivers/gles2/shaders/canvas.glsl619
-rw-r--r--drivers/gles2/shaders/canvas_shadow.glsl60
-rw-r--r--drivers/gles2/shaders/copy.glsl191
-rw-r--r--drivers/gles2/shaders/cube_to_dp.glsl100
-rw-r--r--drivers/gles2/shaders/cubemap_filter.glsl231
-rw-r--r--drivers/gles2/shaders/effect_blur.glsl308
-rw-r--r--drivers/gles2/shaders/exposure.glsl86
-rw-r--r--drivers/gles2/shaders/lens_distorted.glsl84
-rw-r--r--drivers/gles2/shaders/particles.glsl261
-rw-r--r--drivers/gles2/shaders/resolve.glsl42
-rw-r--r--drivers/gles2/shaders/scene.glsl2192
-rw-r--r--drivers/gles2/shaders/screen_space_reflection.glsl284
-rw-r--r--drivers/gles2/shaders/ssao.glsl283
-rw-r--r--drivers/gles2/shaders/ssao_blur.glsl116
-rw-r--r--drivers/gles2/shaders/ssao_minify.glsl54
-rw-r--r--drivers/gles2/shaders/stdlib.glsl440
-rw-r--r--drivers/gles2/shaders/subsurf_scattering.glsl171
-rw-r--r--drivers/gles2/shaders/tonemap.glsl289
20 files changed, 0 insertions, 6028 deletions
diff --git a/drivers/gles2/shaders/SCsub b/drivers/gles2/shaders/SCsub
deleted file mode 100644
index bcd6ea79fb..0000000000
--- a/drivers/gles2/shaders/SCsub
+++ /dev/null
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-
-Import("env")
-
-if "GLES2_GLSL" in env["BUILDERS"]:
- env.GLES2_GLSL("copy.glsl")
- # env.GLES2_GLSL('resolve.glsl');
- env.GLES2_GLSL("canvas.glsl")
- env.GLES2_GLSL("canvas_shadow.glsl")
- env.GLES2_GLSL("scene.glsl")
- env.GLES2_GLSL("cubemap_filter.glsl")
- env.GLES2_GLSL("cube_to_dp.glsl")
- # env.GLES2_GLSL('blend_shape.glsl');
- # env.GLES2_GLSL('screen_space_reflection.glsl');
- env.GLES2_GLSL("effect_blur.glsl")
- # env.GLES2_GLSL('subsurf_scattering.glsl');
- # env.GLES2_GLSL('ssao.glsl');
- # env.GLES2_GLSL('ssao_minify.glsl');
- # env.GLES2_GLSL('ssao_blur.glsl');
- # env.GLES2_GLSL('exposure.glsl');
- env.GLES2_GLSL("tonemap.glsl")
- # env.GLES2_GLSL('particles.glsl');
- env.GLES2_GLSL("lens_distorted.glsl")
diff --git a/drivers/gles2/shaders/blend_shape.glsl b/drivers/gles2/shaders/blend_shape.glsl
deleted file mode 100644
index e229da6f18..0000000000
--- a/drivers/gles2/shaders/blend_shape.glsl
+++ /dev/null
@@ -1,194 +0,0 @@
-/* clang-format off */
-[vertex]
-
-/*
-from RenderingServer:
-
-ARRAY_VERTEX=0,
-ARRAY_NORMAL=1,
-ARRAY_TANGENT=2,
-ARRAY_COLOR=3,
-ARRAY_TEX_UV=4,
-ARRAY_TEX_UV2=5,
-ARRAY_BONES=6,
-ARRAY_WEIGHTS=7,
-ARRAY_INDEX=8,
-*/
-
-#ifdef USE_2D_VERTEX
-#define VFORMAT vec2
-#else
-#define VFORMAT vec3
-#endif
-
-/* INPUT ATTRIBS */
-
-layout(location = 0) in highp VFORMAT vertex_attrib;
-/* clang-format on */
-layout(location = 1) in vec3 normal_attrib;
-
-#ifdef ENABLE_TANGENT
-layout(location = 2) in vec4 tangent_attrib;
-#endif
-
-#ifdef ENABLE_COLOR
-layout(location = 3) in vec4 color_attrib;
-#endif
-
-#ifdef ENABLE_UV
-layout(location = 4) in vec2 uv_attrib;
-#endif
-
-#ifdef ENABLE_UV2
-layout(location = 5) in vec2 uv2_attrib;
-#endif
-
-#ifdef ENABLE_SKELETON
-layout(location = 6) in ivec4 bone_attrib;
-layout(location = 7) in vec4 weight_attrib;
-#endif
-
-/* BLEND ATTRIBS */
-
-#ifdef ENABLE_BLEND
-
-layout(location = 8) in highp VFORMAT vertex_attrib_blend;
-layout(location = 9) in vec3 normal_attrib_blend;
-
-#ifdef ENABLE_TANGENT
-layout(location = 10) in vec4 tangent_attrib_blend;
-#endif
-
-#ifdef ENABLE_COLOR
-layout(location = 11) in vec4 color_attrib_blend;
-#endif
-
-#ifdef ENABLE_UV
-layout(location = 12) in vec2 uv_attrib_blend;
-#endif
-
-#ifdef ENABLE_UV2
-layout(location = 13) in vec2 uv2_attrib_blend;
-#endif
-
-#ifdef ENABLE_SKELETON
-layout(location = 14) in ivec4 bone_attrib_blend;
-layout(location = 15) in vec4 weight_attrib_blend;
-#endif
-
-#endif
-
-/* OUTPUTS */
-
-out VFORMAT vertex_out; //tfb:
-
-#ifdef ENABLE_NORMAL
-out vec3 normal_out; //tfb:ENABLE_NORMAL
-#endif
-
-#ifdef ENABLE_TANGENT
-out vec4 tangent_out; //tfb:ENABLE_TANGENT
-#endif
-
-#ifdef ENABLE_COLOR
-out vec4 color_out; //tfb:ENABLE_COLOR
-#endif
-
-#ifdef ENABLE_UV
-out vec2 uv_out; //tfb:ENABLE_UV
-#endif
-
-#ifdef ENABLE_UV2
-out vec2 uv2_out; //tfb:ENABLE_UV2
-#endif
-
-#ifdef ENABLE_SKELETON
-out ivec4 bone_out; //tfb:ENABLE_SKELETON
-out vec4 weight_out; //tfb:ENABLE_SKELETON
-#endif
-
-uniform float blend_amount;
-
-void main() {
-#ifdef ENABLE_BLEND
-
- vertex_out = vertex_attrib_blend + vertex_attrib * blend_amount;
-
-#ifdef ENABLE_NORMAL
- normal_out = normal_attrib_blend + normal_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_TANGENT
-
- tangent_out.xyz = tangent_attrib_blend.xyz + tangent_attrib.xyz * blend_amount;
- tangent_out.w = tangent_attrib_blend.w; //just copy, no point in blending his
-#endif
-
-#ifdef ENABLE_COLOR
-
- color_out = color_attrib_blend + color_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV
-
- uv_out = uv_attrib_blend + uv_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV2
-
- uv2_out = uv2_attrib_blend + uv2_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_SKELETON
-
- bone_out = bone_attrib_blend;
- weight_out = weight_attrib_blend + weight_attrib * blend_amount;
-#endif
-
-#else //ENABLE_BLEND
-
- vertex_out = vertex_attrib * blend_amount;
-
-#ifdef ENABLE_NORMAL
- normal_out = normal_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_TANGENT
-
- tangent_out.xyz = tangent_attrib.xyz * blend_amount;
- tangent_out.w = tangent_attrib.w; //just copy, no point in blending his
-#endif
-
-#ifdef ENABLE_COLOR
-
- color_out = color_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV
-
- uv_out = uv_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV2
-
- uv2_out = uv2_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_SKELETON
-
- bone_out = bone_attrib;
- weight_out = weight_attrib * blend_amount;
-#endif
-
-#endif
- gl_Position = vec4(0.0);
-}
-
-/* clang-format off */
-[fragment]
-
-void main() {
-
-}
-
-/* clang-format on */
diff --git a/drivers/gles2/shaders/canvas.glsl b/drivers/gles2/shaders/canvas.glsl
deleted file mode 100644
index 1fadf44d97..0000000000
--- a/drivers/gles2/shaders/canvas.glsl
+++ /dev/null
@@ -1,619 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-#ifndef USE_GLES_OVER_GL
-#extension GL_OES_texture_3D : enable
-#else
-#extension GL_EXT_texture_array : enable
-#endif
-
-uniform highp mat4 projection_matrix;
-/* clang-format on */
-
-#include "stdlib.glsl"
-
-uniform highp mat4 modelview_matrix;
-uniform highp mat4 extra_matrix;
-attribute highp vec2 vertex; // attrib:0
-attribute vec4 color_attrib; // attrib:3
-attribute vec2 uv_attrib; // attrib:4
-
-#ifdef USE_SKELETON
-attribute highp vec4 bone_indices; // attrib:6
-attribute highp vec4 bone_weights; // attrib:7
-#endif
-
-#ifdef USE_INSTANCING
-
-attribute highp vec4 instance_xform0; //attrib:8
-attribute highp vec4 instance_xform1; //attrib:9
-attribute highp vec4 instance_xform2; //attrib:10
-attribute highp vec4 instance_color; //attrib:11
-
-#ifdef USE_INSTANCE_CUSTOM
-attribute highp vec4 instance_custom_data; //attrib:12
-#endif
-
-#endif
-
-#ifdef USE_SKELETON
-uniform highp sampler2D skeleton_texture; // texunit:-3
-uniform highp ivec2 skeleton_texture_size;
-uniform highp mat4 skeleton_transform;
-uniform highp mat4 skeleton_transform_inverse;
-#endif
-
-varying vec2 uv_interp;
-varying vec4 color_interp;
-
-uniform highp vec2 color_texpixel_size;
-
-#ifdef USE_TEXTURE_RECT
-
-uniform vec4 dst_rect;
-uniform vec4 src_rect;
-
-#endif
-
-uniform highp float time;
-
-#ifdef USE_LIGHTING
-
-// light matrices
-uniform highp mat4 light_matrix;
-uniform highp mat4 light_matrix_inverse;
-uniform highp mat4 light_local_matrix;
-uniform highp mat4 shadow_matrix;
-uniform highp vec4 light_color;
-uniform highp vec4 light_shadow_color;
-uniform highp vec2 light_pos;
-uniform highp float shadowpixel_size;
-uniform highp float shadow_gradient;
-uniform highp float light_height;
-uniform highp float light_outside_alpha;
-uniform highp float shadow_distance_mult;
-
-varying vec4 light_uv_interp;
-varying vec2 transformed_light_uv;
-varying vec4 local_rot;
-
-#ifdef USE_SHADOWS
-varying highp vec2 pos;
-#endif
-
-const bool at_light_pass = true;
-#else
-const bool at_light_pass = false;
-#endif
-
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-vec2 select(vec2 a, vec2 b, bvec2 c) {
- vec2 ret;
-
- ret.x = c.x ? b.x : a.x;
- ret.y = c.y ? b.y : a.y;
-
- return ret;
-}
-
-void main() {
- vec4 color = color_attrib;
- vec2 uv;
-
-#ifdef USE_INSTANCING
- mat4 extra_matrix_instance = extra_matrix * transpose(mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0)));
- color *= instance_color;
-
-#ifdef USE_INSTANCE_CUSTOM
- vec4 instance_custom = instance_custom_data;
-#else
- vec4 instance_custom = vec4(0.0);
-#endif
-
-#else
- mat4 extra_matrix_instance = extra_matrix;
- vec4 instance_custom = vec4(0.0);
-#endif
-
-#ifdef USE_TEXTURE_RECT
-
- if (dst_rect.z < 0.0) { // Transpose is encoded as negative dst_rect.z
- uv = src_rect.xy + abs(src_rect.zw) * vertex.yx;
- } else {
- uv = src_rect.xy + abs(src_rect.zw) * vertex;
- }
-
- vec4 outvec = vec4(0.0, 0.0, 0.0, 1.0);
-
- // This is what is done in the GLES 3 bindings and should
- // take care of flipped rects.
- //
- // But it doesn't.
- // I don't know why, will need to investigate further.
-
- outvec.xy = dst_rect.xy + abs(dst_rect.zw) * select(vertex, vec2(1.0, 1.0) - vertex, lessThan(src_rect.zw, vec2(0.0, 0.0)));
-
- // outvec.xy = dst_rect.xy + abs(dst_rect.zw) * vertex;
-#else
- vec4 outvec = vec4(vertex.xy, 0.0, 1.0);
-
- uv = uv_attrib;
-#endif
-
- float point_size = 1.0;
-
- {
- vec2 src_vtx = outvec.xy;
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
- }
-
- gl_PointSize = point_size;
-
-#if !defined(SKIP_TRANSFORM_USED)
- outvec = extra_matrix_instance * outvec;
- outvec = modelview_matrix * outvec;
-#endif
-
- color_interp = color;
-
-#ifdef USE_PIXEL_SNAP
- outvec.xy = floor(outvec + 0.5).xy;
- // precision issue on some hardware creates artifacts within texture
- // offset uv by a small amount to avoid
- uv += 1e-5;
-#endif
-
-#ifdef USE_SKELETON
-
- // look up transform from the "pose texture"
- if (bone_weights != vec4(0.0)) {
- highp mat4 bone_transform = mat4(0.0);
-
- for (int i = 0; i < 4; i++) {
- ivec2 tex_ofs = ivec2(int(bone_indices[i]) * 2, 0);
-
- highp mat4 b = mat4(
- texel2DFetch(skeleton_texture, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
- texel2DFetch(skeleton_texture, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
- vec4(0.0, 0.0, 1.0, 0.0),
- vec4(0.0, 0.0, 0.0, 1.0));
-
- bone_transform += b * bone_weights[i];
- }
-
- mat4 bone_matrix = skeleton_transform * transpose(bone_transform) * skeleton_transform_inverse;
-
- outvec = bone_matrix * outvec;
- }
-
-#endif
-
- uv_interp = uv;
- gl_Position = projection_matrix * outvec;
-
-#ifdef USE_LIGHTING
-
- light_uv_interp.xy = (light_matrix * outvec).xy;
- light_uv_interp.zw = (light_local_matrix * outvec).xy;
-
- transformed_light_uv = (mat3(light_matrix_inverse) * vec3(light_uv_interp.zw, 0.0)).xy; //for normal mapping
-
-#ifdef USE_SHADOWS
- pos = outvec.xy;
-#endif
-
- local_rot.xy = normalize((modelview_matrix * (extra_matrix_instance * vec4(1.0, 0.0, 0.0, 0.0))).xy);
- local_rot.zw = normalize((modelview_matrix * (extra_matrix_instance * vec4(0.0, 1.0, 0.0, 0.0))).xy);
-#ifdef USE_TEXTURE_RECT
- local_rot.xy *= sign(src_rect.z);
- local_rot.zw *= sign(src_rect.w);
-#endif
-
-#endif
-}
-
-/* clang-format off */
-[fragment]
-
-#ifndef USE_GLES_OVER_GL
-#extension GL_OES_texture_3D : enable
-#else
-#extension GL_EXT_texture_array : enable
-#endif
-
-// texture2DLodEXT and textureCubeLodEXT are fragment shader specific.
-// Do not copy these defines in the vertex section.
-#ifndef USE_GLES_OVER_GL
-#ifdef GL_EXT_shader_texture_lod
-#extension GL_EXT_shader_texture_lod : enable
-#define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod)
-#endif
-#endif // !USE_GLES_OVER_GL
-
-#ifdef GL_ARB_shader_texture_lod
-#extension GL_ARB_shader_texture_lod : enable
-#endif
-
-#if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod)
-#define texture2DLod(img, coord, lod) texture2D(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCube(img, coord, lod)
-#endif
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-#include "stdlib.glsl"
-
-uniform sampler2D color_texture; // texunit:-1
-/* clang-format on */
-uniform highp vec2 color_texpixel_size;
-uniform mediump sampler2D normal_texture; // texunit:-2
-
-varying mediump vec2 uv_interp;
-varying mediump vec4 color_interp;
-
-uniform highp float time;
-
-uniform vec4 final_modulate;
-
-#ifdef SCREEN_TEXTURE_USED
-
-uniform sampler2D screen_texture; // texunit:-4
-
-#endif
-
-#ifdef SCREEN_UV_USED
-
-uniform vec2 screen_pixel_size;
-
-#endif
-
-#ifdef USE_LIGHTING
-
-uniform highp mat4 light_matrix;
-uniform highp mat4 light_local_matrix;
-uniform highp mat4 shadow_matrix;
-uniform highp vec4 light_color;
-uniform highp vec4 light_shadow_color;
-uniform highp vec2 light_pos;
-uniform highp float shadowpixel_size;
-uniform highp float shadow_gradient;
-uniform highp float light_height;
-uniform highp float light_outside_alpha;
-uniform highp float shadow_distance_mult;
-
-uniform lowp sampler2D light_texture; // texunit:-4
-varying vec4 light_uv_interp;
-varying vec2 transformed_light_uv;
-
-varying vec4 local_rot;
-
-#ifdef USE_SHADOWS
-
-uniform highp sampler2D shadow_texture; // texunit:-5
-varying highp vec2 pos;
-
-#endif
-
-const bool at_light_pass = true;
-#else
-const bool at_light_pass = false;
-#endif
-
-uniform bool use_default_normal;
-
-/* clang-format off */
-
-FRAGMENT_SHADER_GLOBALS
-
-/* clang-format on */
-
-void light_compute(
- inout vec4 light,
- inout vec2 light_vec,
- inout float light_height,
- inout vec4 light_color,
- vec2 light_uv,
- inout vec4 shadow_color,
- inout vec2 shadow_vec,
- vec3 normal,
- vec2 uv,
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv,
-#endif
- vec4 color) {
-
-#if defined(USE_LIGHT_SHADER_CODE)
-
- /* clang-format off */
-
-LIGHT_SHADER_CODE
-
- /* clang-format on */
-
-#endif
-}
-
-void main() {
- vec4 color = color_interp;
- vec2 uv = uv_interp;
-#ifdef USE_FORCE_REPEAT
- //needs to use this to workaround GLES2/WebGL1 forcing tiling that textures that don't support it
- uv = mod(uv, vec2(1.0, 1.0));
-#endif
-
-#if !defined(COLOR_USED)
- //default behavior, texture by color
- color *= texture2D(color_texture, uv);
-#endif
-
-#ifdef SCREEN_UV_USED
- vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
-#endif
-
- vec3 normal;
-
-#if defined(NORMAL_USED)
-
- bool normal_used = true;
-#else
- bool normal_used = false;
-#endif
-
- if (use_default_normal) {
- normal.xy = texture2D(normal_texture, uv).xy * 2.0 - 1.0;
- normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
- normal_used = true;
- } else {
- normal = vec3(0.0, 0.0, 1.0);
- }
-
- {
- float normal_depth = 1.0;
-
-#if defined(NORMALMAP_USED)
- vec3 normal_map = vec3(0.0, 0.0, 1.0);
- normal_used = true;
-#endif
-
- /* clang-format off */
-
-FRAGMENT_SHADER_CODE
-
- /* clang-format on */
-
-#if defined(NORMALMAP_USED)
- normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_depth);
-#endif
- }
- color *= final_modulate;
-
-#ifdef USE_LIGHTING
-
- vec2 light_vec = transformed_light_uv;
- vec2 shadow_vec = transformed_light_uv;
-
- if (normal_used) {
- normal.xy = mat2(local_rot.xy, local_rot.zw) * normal.xy;
- }
-
- float att = 1.0;
-
- vec2 light_uv = light_uv_interp.xy;
- vec4 light = texture2D(light_texture, light_uv);
-
- if (any(lessThan(light_uv_interp.xy, vec2(0.0, 0.0))) || any(greaterThanEqual(light_uv_interp.xy, vec2(1.0, 1.0)))) {
- color.a *= light_outside_alpha; //invisible
-
- } else {
- float real_light_height = light_height;
- vec4 real_light_color = light_color;
- vec4 real_light_shadow_color = light_shadow_color;
-
-#if defined(USE_LIGHT_SHADER_CODE)
- //light is written by the light shader
- light_compute(
- light,
- light_vec,
- real_light_height,
- real_light_color,
- light_uv,
- real_light_shadow_color,
- shadow_vec,
- normal,
- uv,
-#if defined(SCREEN_UV_USED)
- screen_uv,
-#endif
- color);
-#endif
-
- light *= real_light_color;
-
- if (normal_used) {
- vec3 light_normal = normalize(vec3(light_vec, -real_light_height));
- light *= max(dot(-light_normal, normal), 0.0);
- }
-
- color *= light;
-
-#ifdef USE_SHADOWS
-
-#ifdef SHADOW_VEC_USED
- mat3 inverse_light_matrix = mat3(light_matrix);
- inverse_light_matrix[0] = normalize(inverse_light_matrix[0]);
- inverse_light_matrix[1] = normalize(inverse_light_matrix[1]);
- inverse_light_matrix[2] = normalize(inverse_light_matrix[2]);
- shadow_vec = (inverse_light_matrix * vec3(shadow_vec, 0.0)).xy;
-#else
- shadow_vec = light_uv_interp.zw;
-#endif
-
- float angle_to_light = -atan(shadow_vec.x, shadow_vec.y);
- float PI = 3.14159265358979323846264;
- /*int i = int(mod(floor((angle_to_light+7.0*PI/6.0)/(4.0*PI/6.0))+1.0, 3.0)); // +1 pq os indices estao em ordem 2,0,1 nos arrays
- float ang*/
-
- float su, sz;
-
- float abs_angle = abs(angle_to_light);
- vec2 point;
- float sh;
- if (abs_angle < 45.0 * PI / 180.0) {
- point = shadow_vec;
- sh = 0.0 + (1.0 / 8.0);
- } else if (abs_angle > 135.0 * PI / 180.0) {
- point = -shadow_vec;
- sh = 0.5 + (1.0 / 8.0);
- } else if (angle_to_light > 0.0) {
- point = vec2(shadow_vec.y, -shadow_vec.x);
- sh = 0.25 + (1.0 / 8.0);
- } else {
- point = vec2(-shadow_vec.y, shadow_vec.x);
- sh = 0.75 + (1.0 / 8.0);
- }
-
- highp vec4 s = shadow_matrix * vec4(point, 0.0, 1.0);
- s.xyz /= s.w;
- su = s.x * 0.5 + 0.5;
- sz = s.z * 0.5 + 0.5;
- //sz=lightlength(light_vec);
-
- highp float shadow_attenuation = 0.0;
-
-#ifdef USE_RGBA_SHADOWS
-#define SHADOW_DEPTH(m_tex, m_uv) dot(texture2D((m_tex), (m_uv)), vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0))
-
-#else
-
-#define SHADOW_DEPTH(m_tex, m_uv) (texture2D((m_tex), (m_uv)).r)
-
-#endif
-
-#ifdef SHADOW_USE_GRADIENT
-
- /* clang-format off */
- /* GLSL es 100 doesn't support line continuation characters(backslashes) */
-#define SHADOW_TEST(m_ofs) { highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); shadow_attenuation += 1.0 - smoothstep(sd, sd + shadow_gradient, sz); }
-
-#else
-
-#define SHADOW_TEST(m_ofs) { highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); shadow_attenuation += step(sz, sd); }
- /* clang-format on */
-
-#endif
-
-#ifdef SHADOW_FILTER_NEAREST
-
- SHADOW_TEST(su);
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF3
-
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- shadow_attenuation /= 3.0;
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF5
-
- SHADOW_TEST(su + shadowpixel_size * 2.0);
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- SHADOW_TEST(su - shadowpixel_size * 2.0);
- shadow_attenuation /= 5.0;
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF7
-
- SHADOW_TEST(su + shadowpixel_size * 3.0);
- SHADOW_TEST(su + shadowpixel_size * 2.0);
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- SHADOW_TEST(su - shadowpixel_size * 2.0);
- SHADOW_TEST(su - shadowpixel_size * 3.0);
- shadow_attenuation /= 7.0;
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF9
-
- SHADOW_TEST(su + shadowpixel_size * 4.0);
- SHADOW_TEST(su + shadowpixel_size * 3.0);
- SHADOW_TEST(su + shadowpixel_size * 2.0);
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- SHADOW_TEST(su - shadowpixel_size * 2.0);
- SHADOW_TEST(su - shadowpixel_size * 3.0);
- SHADOW_TEST(su - shadowpixel_size * 4.0);
- shadow_attenuation /= 9.0;
-
-#endif
-
-#ifdef SHADOW_FILTER_PCF13
-
- SHADOW_TEST(su + shadowpixel_size * 6.0);
- SHADOW_TEST(su + shadowpixel_size * 5.0);
- SHADOW_TEST(su + shadowpixel_size * 4.0);
- SHADOW_TEST(su + shadowpixel_size * 3.0);
- SHADOW_TEST(su + shadowpixel_size * 2.0);
- SHADOW_TEST(su + shadowpixel_size);
- SHADOW_TEST(su);
- SHADOW_TEST(su - shadowpixel_size);
- SHADOW_TEST(su - shadowpixel_size * 2.0);
- SHADOW_TEST(su - shadowpixel_size * 3.0);
- SHADOW_TEST(su - shadowpixel_size * 4.0);
- SHADOW_TEST(su - shadowpixel_size * 5.0);
- SHADOW_TEST(su - shadowpixel_size * 6.0);
- shadow_attenuation /= 13.0;
-
-#endif
-
- //color *= shadow_attenuation;
- color = mix(real_light_shadow_color, color, shadow_attenuation);
-//use shadows
-#endif
- }
-
-//use lighting
-#endif
-
- gl_FragColor = color;
-}
diff --git a/drivers/gles2/shaders/canvas_shadow.glsl b/drivers/gles2/shaders/canvas_shadow.glsl
deleted file mode 100644
index 2abcd5e67c..0000000000
--- a/drivers/gles2/shaders/canvas_shadow.glsl
+++ /dev/null
@@ -1,60 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-attribute highp vec3 vertex; // attrib:0
-
-uniform highp mat4 projection_matrix;
-/* clang-format on */
-uniform highp mat4 light_matrix;
-uniform highp mat4 world_matrix;
-uniform highp float distance_norm;
-
-varying highp vec4 position_interp;
-
-void main() {
- gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex, 1.0)));
- position_interp = gl_Position;
-}
-
-/* clang-format off */
-[fragment]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-varying highp vec4 position_interp;
-/* clang-format on */
-
-void main() {
- highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
-
-#ifdef USE_RGBA_SHADOWS
-
- highp vec4 comp = fract(depth * vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0));
- comp -= comp.xxyz * vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0);
- gl_FragColor = comp;
-#else
-
- gl_FragColor = vec4(depth);
-#endif
-}
diff --git a/drivers/gles2/shaders/copy.glsl b/drivers/gles2/shaders/copy.glsl
deleted file mode 100644
index e833722ac3..0000000000
--- a/drivers/gles2/shaders/copy.glsl
+++ /dev/null
@@ -1,191 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-attribute highp vec4 vertex_attrib; // attrib:0
-/* clang-format on */
-
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-attribute vec3 cube_in; // attrib:4
-#else
-attribute vec2 uv_in; // attrib:4
-#endif
-
-attribute vec2 uv2_in; // attrib:5
-
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-varying vec3 cube_interp;
-#else
-varying vec2 uv_interp;
-#endif
-varying vec2 uv2_interp;
-
-// These definitions are here because the shader-wrapper builder does
-// not understand `#elif defined()`
-#ifdef USE_DISPLAY_TRANSFORM
-#endif
-
-#ifdef USE_COPY_SECTION
-uniform highp vec4 copy_section;
-#elif defined(USE_DISPLAY_TRANSFORM)
-uniform highp mat4 display_transform;
-#endif
-
-void main() {
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
- cube_interp = cube_in;
-#elif defined(USE_ASYM_PANO)
- uv_interp = vertex_attrib.xy;
-#else
- uv_interp = uv_in;
-#endif
-
- uv2_interp = uv2_in;
- gl_Position = vertex_attrib;
-
-#ifdef USE_COPY_SECTION
- uv_interp = copy_section.xy + uv_interp * copy_section.zw;
- gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
-#elif defined(USE_DISPLAY_TRANSFORM)
- uv_interp = (display_transform * vec4(uv_in, 1.0, 1.0)).xy;
-#endif
-}
-
-/* clang-format off */
-[fragment]
-
-#define M_PI 3.14159265359
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
-varying vec3 cube_interp;
-#else
-varying vec2 uv_interp;
-#endif
-/* clang-format on */
-
-#ifdef USE_ASYM_PANO
-uniform highp mat4 pano_transform;
-uniform highp vec4 asym_proj;
-#endif
-
-#ifdef USE_CUBEMAP
-uniform samplerCube source_cube; // texunit:0
-#else
-uniform sampler2D source; // texunit:0
-#endif
-
-#ifdef SEP_CBCR_TEXTURE
-uniform sampler2D CbCr; //texunit:1
-#endif
-
-varying vec2 uv2_interp;
-
-#ifdef USE_MULTIPLIER
-uniform float multiplier;
-#endif
-
-#ifdef USE_CUSTOM_ALPHA
-uniform float custom_alpha;
-#endif
-
-#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
-uniform highp mat4 sky_transform;
-
-vec4 texturePanorama(sampler2D pano, vec3 normal) {
- vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y));
-
- if (st.x < 0.0)
- st.x += M_PI * 2.0;
-
- st /= vec2(M_PI * 2.0, M_PI);
-
- return texture2D(pano, st);
-}
-
-#endif
-
-void main() {
-#ifdef USE_PANORAMA
-
- vec3 cube_normal = normalize(cube_interp);
- cube_normal.z = -cube_normal.z;
- cube_normal = mat3(sky_transform) * cube_normal;
- cube_normal.z = -cube_normal.z;
-
- vec4 color = texturePanorama(source, cube_normal);
-
-#elif defined(USE_ASYM_PANO)
-
- // When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
- // Asymmetrical projection means the center of projection is no longer in the center of the screen but shifted.
- // The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
-
- vec3 cube_normal;
- cube_normal.z = -1.0;
- cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
- cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
- cube_normal = mat3(sky_transform) * mat3(pano_transform) * cube_normal;
- cube_normal.z = -cube_normal.z;
-
- vec4 color = texturePanorama(source, normalize(cube_normal.xyz));
-
-#elif defined(USE_CUBEMAP)
- vec4 color = textureCube(source_cube, normalize(cube_interp));
-#elif defined(SEP_CBCR_TEXTURE)
- vec4 color;
- color.r = texture2D(source, uv_interp).r;
- color.gb = texture2D(CbCr, uv_interp).rg - vec2(0.5, 0.5);
- color.a = 1.0;
-#else
- vec4 color = texture2D(source, uv_interp);
-#endif
-
-#ifdef YCBCR_TO_RGB
- // YCbCr -> RGB conversion
-
- // Using BT.601, which is the standard for SDTV is provided as a reference
- color.rgb = mat3(
- vec3(1.00000, 1.00000, 1.00000),
- vec3(0.00000, -0.34413, 1.77200),
- vec3(1.40200, -0.71414, 0.00000)) *
- color.rgb;
-#endif
-
-#ifdef USE_NO_ALPHA
- color.a = 1.0;
-#endif
-
-#ifdef USE_CUSTOM_ALPHA
- color.a = custom_alpha;
-#endif
-
-#ifdef USE_MULTIPLIER
- color.rgb *= multiplier;
-#endif
-
- gl_FragColor = color;
-}
diff --git a/drivers/gles2/shaders/cube_to_dp.glsl b/drivers/gles2/shaders/cube_to_dp.glsl
deleted file mode 100644
index 1612ec3d5a..0000000000
--- a/drivers/gles2/shaders/cube_to_dp.glsl
+++ /dev/null
@@ -1,100 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision mediump float;
-precision mediump int;
-#endif
-
-attribute highp vec4 vertex_attrib; // attrib:0
-/* clang-format on */
-attribute vec2 uv_in; // attrib:4
-
-varying vec2 uv_interp;
-
-void main() {
- uv_interp = uv_in;
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-uniform highp samplerCube source_cube; //texunit:0
-/* clang-format on */
-varying vec2 uv_interp;
-
-uniform bool z_flip;
-uniform highp float z_far;
-uniform highp float z_near;
-uniform highp float bias;
-
-void main() {
- highp vec3 normal = vec3(uv_interp * 2.0 - 1.0, 0.0);
- /*
- if (z_flip) {
- normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
- } else {
- normal.z = -0.5 + 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
- }
- */
-
- //normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
- //normal.xy *= 1.0 + normal.z;
-
- normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
- normal = normalize(normal);
- /*
- normal.z = 0.5;
- normal = normalize(normal);
- */
-
- if (!z_flip) {
- normal.z = -normal.z;
- }
-
- //normal = normalize(vec3( uv_interp * 2.0 - 1.0, 1.0 ));
- float depth = textureCube(source_cube, normal).r;
-
- // absolute values for direction cosines, bigger value equals closer to basis axis
- vec3 unorm = abs(normal);
-
- if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
- // x code
- unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
- } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
- // y code
- unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
- } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
- // z code
- unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
- } else {
- // oh-no we messed up code
- // has to be
- unorm = vec3(1.0, 0.0, 0.0);
- }
-
- float depth_fix = 1.0 / dot(normal, unorm);
-
- depth = 2.0 * depth - 1.0;
- float linear_depth = 2.0 * z_near * z_far / (z_far + z_near - depth * (z_far - z_near));
- gl_FragDepth = (linear_depth * depth_fix + bias) / z_far;
-}
diff --git a/drivers/gles2/shaders/cubemap_filter.glsl b/drivers/gles2/shaders/cubemap_filter.glsl
deleted file mode 100644
index f5c91cc707..0000000000
--- a/drivers/gles2/shaders/cubemap_filter.glsl
+++ /dev/null
@@ -1,231 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-attribute highp vec2 vertex; // attrib:0
-/* clang-format on */
-attribute highp vec2 uv; // attrib:4
-
-varying highp vec2 uv_interp;
-
-void main() {
- uv_interp = uv;
- gl_Position = vec4(vertex, 0, 1);
-}
-
-/* clang-format off */
-[fragment]
-
-// texture2DLodEXT and textureCubeLodEXT are fragment shader specific.
-// Do not copy these defines in the vertex section.
-#ifndef USE_GLES_OVER_GL
-#ifdef GL_EXT_shader_texture_lod
-#extension GL_EXT_shader_texture_lod : enable
-#define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod)
-#endif
-#endif // !USE_GLES_OVER_GL
-
-#ifdef GL_ARB_shader_texture_lod
-#extension GL_ARB_shader_texture_lod : enable
-#endif
-
-#if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod)
-#define texture2DLod(img, coord, lod) texture2D(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCube(img, coord, lod)
-#endif
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-
-#endif
-
-#ifdef USE_SOURCE_PANORAMA
-uniform sampler2D source_panorama; //texunit:0
-#else
-uniform samplerCube source_cube; //texunit:0
-#endif
-/* clang-format on */
-
-uniform int face_id;
-uniform float roughness;
-varying highp vec2 uv_interp;
-
-uniform sampler2D radical_inverse_vdc_cache; // texunit:1
-
-#define M_PI 3.14159265359
-
-#ifdef LOW_QUALITY
-
-#define SAMPLE_COUNT 64
-
-#else
-
-#define SAMPLE_COUNT 512
-
-#endif
-
-#ifdef USE_SOURCE_PANORAMA
-
-vec4 texturePanorama(sampler2D pano, vec3 normal) {
- vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y));
-
- if (st.x < 0.0)
- st.x += M_PI * 2.0;
-
- st /= vec2(M_PI * 2.0, M_PI);
-
- return texture2DLod(pano, st, 0.0);
-}
-
-#endif
-
-vec3 texelCoordToVec(vec2 uv, int faceID) {
- mat3 faceUvVectors[6];
-
- // -x
- faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
- faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
-
- // +x
- faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
- faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
-
- // -y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
- faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
-
- // +y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
-
- // -z
- faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
- faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
-
- // +z
- faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
-
- // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
- vec3 result;
- for (int i = 0; i < 6; i++) {
- if (i == faceID) {
- result = (faceUvVectors[i][0] * uv.x) + (faceUvVectors[i][1] * uv.y) + faceUvVectors[i][2];
- break;
- }
- }
- return normalize(result);
-}
-
-vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
- float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
-
- // Compute distribution direction
- float Phi = 2.0 * M_PI * Xi.x;
- float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y));
- float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
-
- // Convert to spherical direction
- vec3 H;
- H.x = SinTheta * cos(Phi);
- H.y = SinTheta * sin(Phi);
- H.z = CosTheta;
-
- vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
- vec3 TangentX = normalize(cross(UpVector, N));
- vec3 TangentY = cross(N, TangentX);
-
- // Tangent to world space
- return TangentX * H.x + TangentY * H.y + N * H.z;
-}
-
-float radical_inverse_VdC(int i) {
- return texture2D(radical_inverse_vdc_cache, vec2(float(i) / 512.0, 0.0)).x;
-}
-
-vec2 Hammersley(int i, int N) {
- return vec2(float(i) / float(N), radical_inverse_VdC(i));
-}
-
-uniform bool z_flip;
-
-void main() {
- vec3 color = vec3(0.0);
-
- vec2 uv = (uv_interp * 2.0) - 1.0;
- vec3 N = texelCoordToVec(uv, face_id);
-
-#ifdef USE_DIRECT_WRITE
-
-#ifdef USE_SOURCE_PANORAMA
-
- gl_FragColor = vec4(texturePanorama(source_panorama, N).rgb, 1.0);
-#else
-
- gl_FragColor = vec4(textureCube(source_cube, N).rgb, 1.0);
-#endif //USE_SOURCE_PANORAMA
-
-#else
-
- vec4 sum = vec4(0.0);
-
- for (int sample_num = 0; sample_num < SAMPLE_COUNT; sample_num++) {
- vec2 xi = Hammersley(sample_num, SAMPLE_COUNT);
-
- vec3 H = ImportanceSampleGGX(xi, roughness, N);
- vec3 V = N;
- vec3 L = (2.0 * dot(V, H) * H - V);
-
- float NdotL = clamp(dot(N, L), 0.0, 1.0);
-
- if (NdotL > 0.0) {
-
-#ifdef USE_SOURCE_PANORAMA
- vec3 val = texturePanorama(source_panorama, L).rgb;
-#else
- vec3 val = textureCubeLod(source_cube, L, 0.0).rgb;
-#endif
- //mix using Linear, to approximate high end back-end
- val = mix(pow((val + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), val * (1.0 / 12.92), vec3(lessThan(val, vec3(0.04045))));
-
- sum.rgb += val * NdotL;
-
- sum.a += NdotL;
- }
- }
-
- sum /= sum.a;
-
- vec3 a = vec3(0.055);
- sum.rgb = mix((vec3(1.0) + a) * pow(sum.rgb, vec3(1.0 / 2.4)) - a, 12.92 * sum.rgb, vec3(lessThan(sum.rgb, vec3(0.0031308))));
-
- gl_FragColor = vec4(sum.rgb, 1.0);
-#endif
-}
diff --git a/drivers/gles2/shaders/effect_blur.glsl b/drivers/gles2/shaders/effect_blur.glsl
deleted file mode 100644
index 7b607dd76a..0000000000
--- a/drivers/gles2/shaders/effect_blur.glsl
+++ /dev/null
@@ -1,308 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-attribute vec2 vertex_attrib; // attrib:0
-/* clang-format on */
-attribute vec2 uv_in; // attrib:4
-
-varying vec2 uv_interp;
-
-#ifdef USE_BLUR_SECTION
-
-uniform vec4 blur_section;
-
-#endif
-
-void main() {
- uv_interp = uv_in;
- gl_Position = vec4(vertex_attrib, 0.0, 1.0);
-#ifdef USE_BLUR_SECTION
-
- uv_interp = blur_section.xy + uv_interp * blur_section.zw;
- gl_Position.xy = (blur_section.xy + (gl_Position.xy * 0.5 + 0.5) * blur_section.zw) * 2.0 - 1.0;
-#endif
-}
-
-/* clang-format off */
-[fragment]
-
-// texture2DLodEXT and textureCubeLodEXT are fragment shader specific.
-// Do not copy these defines in the vertex section.
-#ifndef USE_GLES_OVER_GL
-#ifdef GL_EXT_shader_texture_lod
-#extension GL_EXT_shader_texture_lod : enable
-#define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod)
-#endif
-#endif // !USE_GLES_OVER_GL
-
-#ifdef GL_ARB_shader_texture_lod
-#extension GL_ARB_shader_texture_lod : enable
-#endif
-
-#if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod)
-#define texture2DLod(img, coord, lod) texture2D(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCube(img, coord, lod)
-#endif
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-varying vec2 uv_interp;
-/* clang-format on */
-uniform sampler2D source_color; //texunit:0
-
-uniform float lod;
-uniform vec2 pixel_size;
-
-#if defined(GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
-
-uniform float glow_strength;
-
-#endif
-
-#if defined(DOF_FAR_BLUR) || defined(DOF_NEAR_BLUR)
-
-#ifdef USE_GLES_OVER_GL
-#ifdef DOF_QUALITY_LOW
-const int dof_kernel_size = 5;
-const int dof_kernel_from = 2;
-const float dof_kernel[5] = float[](0.153388, 0.221461, 0.250301, 0.221461, 0.153388);
-#endif
-
-#ifdef DOF_QUALITY_MEDIUM
-const int dof_kernel_size = 11;
-const int dof_kernel_from = 5;
-const float dof_kernel[11] = float[](0.055037, 0.072806, 0.090506, 0.105726, 0.116061, 0.119726, 0.116061, 0.105726, 0.090506, 0.072806, 0.055037);
-
-#endif
-
-#ifdef DOF_QUALITY_HIGH
-const int dof_kernel_size = 21;
-const int dof_kernel_from = 10;
-const float dof_kernel[21] = float[](0.028174, 0.032676, 0.037311, 0.041944, 0.046421, 0.050582, 0.054261, 0.057307, 0.059587, 0.060998, 0.061476, 0.060998, 0.059587, 0.057307, 0.054261, 0.050582, 0.046421, 0.041944, 0.037311, 0.032676, 0.028174);
-#endif
-#endif
-
-uniform sampler2D dof_source_depth; //texunit:1
-uniform float dof_begin;
-uniform float dof_end;
-uniform vec2 dof_dir;
-uniform float dof_radius;
-
-#endif
-
-#ifdef GLOW_FIRST_PASS
-
-uniform highp float luminance_cap;
-
-uniform float glow_bloom;
-uniform float glow_hdr_threshold;
-uniform float glow_hdr_scale;
-
-#endif
-
-uniform float camera_z_far;
-uniform float camera_z_near;
-
-void main() {
-#ifdef GLOW_GAUSSIAN_HORIZONTAL
- vec2 pix_size = pixel_size;
- pix_size *= 0.5; //reading from larger buffer, so use more samples
- vec4 color = texture2DLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.174938;
- color += texture2DLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.165569;
- color += texture2DLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.140367;
- color += texture2DLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.106595;
- color += texture2DLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.165569;
- color += texture2DLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.140367;
- color += texture2DLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.106595;
- color *= glow_strength;
- gl_FragColor = color;
-#endif
-
-#ifdef GLOW_GAUSSIAN_VERTICAL
- vec4 color = texture2DLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.288713;
- color += texture2DLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.233062;
- color += texture2DLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.122581;
- color += texture2DLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.233062;
- color += texture2DLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.122581;
- color *= glow_strength;
- gl_FragColor = color;
-#endif
-
-#ifndef USE_GLES_OVER_GL
-#if defined(DOF_FAR_BLUR) || defined(DOF_NEAR_BLUR)
-
-#ifdef DOF_QUALITY_LOW
- const int dof_kernel_size = 5;
- const int dof_kernel_from = 2;
- float dof_kernel[5];
- dof_kernel[0] = 0.153388;
- dof_kernel[1] = 0.221461;
- dof_kernel[2] = 0.250301;
- dof_kernel[3] = 0.221461;
- dof_kernel[4] = 0.153388;
-#endif
-
-#ifdef DOF_QUALITY_MEDIUM
- const int dof_kernel_size = 11;
- const int dof_kernel_from = 5;
- float dof_kernel[11];
- dof_kernel[0] = 0.055037;
- dof_kernel[1] = 0.072806;
- dof_kernel[2] = 0.090506;
- dof_kernel[3] = 0.105726;
- dof_kernel[4] = 0.116061;
- dof_kernel[5] = 0.119726;
- dof_kernel[6] = 0.116061;
- dof_kernel[7] = 0.105726;
- dof_kernel[8] = 0.090506;
- dof_kernel[9] = 0.072806;
- dof_kernel[10] = 0.055037;
-#endif
-
-#ifdef DOF_QUALITY_HIGH
- const int dof_kernel_size = 21;
- const int dof_kernel_from = 10;
- float dof_kernel[21];
- dof_kernel[0] = 0.028174;
- dof_kernel[1] = 0.032676;
- dof_kernel[2] = 0.037311;
- dof_kernel[3] = 0.041944;
- dof_kernel[4] = 0.046421;
- dof_kernel[5] = 0.050582;
- dof_kernel[6] = 0.054261;
- dof_kernel[7] = 0.057307;
- dof_kernel[8] = 0.059587;
- dof_kernel[9] = 0.060998;
- dof_kernel[10] = 0.061476;
- dof_kernel[11] = 0.060998;
- dof_kernel[12] = 0.059587;
- dof_kernel[13] = 0.057307;
- dof_kernel[14] = 0.054261;
- dof_kernel[15] = 0.050582;
- dof_kernel[16] = 0.046421;
- dof_kernel[17] = 0.041944;
- dof_kernel[18] = 0.037311;
- dof_kernel[19] = 0.032676;
- dof_kernel[20] = 0.028174;
-#endif
-#endif
-#endif //!USE_GLES_OVER_GL
-
-#ifdef DOF_FAR_BLUR
-
- vec4 color_accum = vec4(0.0);
-
- float depth = texture2DLod(dof_source_depth, uv_interp, 0.0).r;
- depth = depth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
-#endif
-
- float amount = smoothstep(dof_begin, dof_end, depth);
- float k_accum = 0.0;
-
- for (int i = 0; i < dof_kernel_size; i++) {
- int int_ofs = i - dof_kernel_from;
- vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * amount * dof_radius;
-
- float tap_k = dof_kernel[i];
-
- float tap_depth = texture2D(dof_source_depth, tap_uv, 0.0).r;
- tap_depth = tap_depth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
-#endif
- float tap_amount = int_ofs == 0 ? 1.0 : smoothstep(dof_begin, dof_end, tap_depth);
- tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
-
- vec4 tap_color = texture2DLod(source_color, tap_uv, 0.0) * tap_k;
-
- k_accum += tap_k * tap_amount;
- color_accum += tap_color * tap_amount;
- }
-
- if (k_accum > 0.0) {
- color_accum /= k_accum;
- }
-
- gl_FragColor = color_accum; ///k_accum;
-
-#endif
-
-#ifdef DOF_NEAR_BLUR
-
- vec4 color_accum = vec4(0.0);
-
- float max_accum = 0.0;
-
- for (int i = 0; i < dof_kernel_size; i++) {
- int int_ofs = i - dof_kernel_from;
- vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * dof_radius;
- float ofs_influence = max(0.0, 1.0 - abs(float(int_ofs)) / float(dof_kernel_from));
-
- float tap_k = dof_kernel[i];
-
- vec4 tap_color = texture2DLod(source_color, tap_uv, 0.0);
-
- float tap_depth = texture2D(dof_source_depth, tap_uv, 0.0).r;
- tap_depth = tap_depth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
-#endif
- float tap_amount = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
- tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
-
-#ifdef DOF_NEAR_FIRST_TAP
-
- tap_color.a = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
-
-#endif
-
- max_accum = max(max_accum, tap_amount * ofs_influence);
-
- color_accum += tap_color * tap_k;
- }
-
- color_accum.a = max(color_accum.a, sqrt(max_accum));
-
- gl_FragColor = color_accum;
-
-#endif
-
-#ifdef GLOW_FIRST_PASS
-
- float luminance = max(gl_FragColor.r, max(gl_FragColor.g, gl_FragColor.b));
- float feedback = max(smoothstep(glow_hdr_threshold, glow_hdr_threshold + glow_hdr_scale, luminance), glow_bloom);
-
- gl_FragColor = min(gl_FragColor * feedback, vec4(luminance_cap));
-
-#endif
-}
diff --git a/drivers/gles2/shaders/exposure.glsl b/drivers/gles2/shaders/exposure.glsl
deleted file mode 100644
index c20812bfa3..0000000000
--- a/drivers/gles2/shaders/exposure.glsl
+++ /dev/null
@@ -1,86 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-uniform highp sampler2D source_exposure; //texunit:0
-/* clang-format on */
-
-#ifdef EXPOSURE_BEGIN
-
-uniform highp ivec2 source_render_size;
-uniform highp ivec2 target_size;
-
-#endif
-
-#ifdef EXPOSURE_END
-
-uniform highp sampler2D prev_exposure; //texunit:1
-uniform highp float exposure_adjust;
-uniform highp float min_luminance;
-uniform highp float max_luminance;
-
-#endif
-
-layout(location = 0) out highp float exposure;
-
-void main() {
-#ifdef EXPOSURE_BEGIN
-
- ivec2 src_pos = ivec2(gl_FragCoord.xy) * source_render_size / target_size;
-
-#if 1
- //more precise and expensive, but less jittery
- ivec2 next_pos = ivec2(gl_FragCoord.xy + ivec2(1)) * source_render_size / target_size;
- next_pos = max(next_pos, src_pos + ivec2(1)); //so it at least reads one pixel
- highp vec3 source_color = vec3(0.0);
- for (int i = src_pos.x; i < next_pos.x; i++) {
- for (int j = src_pos.y; j < next_pos.y; j++) {
- source_color += texelFetch(source_exposure, ivec2(i, j), 0).rgb;
- }
- }
-
- source_color /= float((next_pos.x - src_pos.x) * (next_pos.y - src_pos.y));
-#else
- highp vec3 source_color = texelFetch(source_exposure, src_pos, 0).rgb;
-
-#endif
-
- exposure = max(source_color.r, max(source_color.g, source_color.b));
-
-#else
-
- ivec2 coord = ivec2(gl_FragCoord.xy);
- exposure = texelFetch(source_exposure, coord * 3 + ivec2(0, 0), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 0), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 0), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 1), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 1), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 1), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 2), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 2), 0).r;
- exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 2), 0).r;
- exposure *= (1.0 / 9.0);
-
-#ifdef EXPOSURE_END
-
-#ifdef EXPOSURE_FORCE_SET
- //will stay as is
-#else
- highp float prev_lum = texelFetch(prev_exposure, ivec2(0, 0), 0).r; //1 pixel previous exposure
- exposure = clamp(prev_lum + (exposure - prev_lum) * exposure_adjust, min_luminance, max_luminance);
-
-#endif //EXPOSURE_FORCE_SET
-
-#endif //EXPOSURE_END
-
-#endif //EXPOSURE_BEGIN
-}
diff --git a/drivers/gles2/shaders/lens_distorted.glsl b/drivers/gles2/shaders/lens_distorted.glsl
deleted file mode 100644
index d568006ccc..0000000000
--- a/drivers/gles2/shaders/lens_distorted.glsl
+++ /dev/null
@@ -1,84 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-attribute highp vec2 vertex; // attrib:0
-/* clang-format on */
-
-uniform vec2 offset;
-uniform vec2 scale;
-
-varying vec2 uv_interp;
-
-void main() {
- uv_interp = vertex.xy * 2.0 - 1.0;
-
- vec2 v = vertex.xy * scale + offset;
- gl_Position = vec4(v, 0.0, 1.0);
-}
-
-/* clang-format off */
-[fragment]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-uniform sampler2D source; //texunit:0
-/* clang-format on */
-
-uniform vec2 eye_center;
-uniform float k1;
-uniform float k2;
-uniform float upscale;
-uniform float aspect_ratio;
-
-varying vec2 uv_interp;
-
-void main() {
- vec2 coords = uv_interp;
- vec2 offset = coords - eye_center;
-
- // take aspect ratio into account
- offset.y /= aspect_ratio;
-
- // distort
- vec2 offset_sq = offset * offset;
- float radius_sq = offset_sq.x + offset_sq.y;
- float radius_s4 = radius_sq * radius_sq;
- float distortion_scale = 1.0 + (k1 * radius_sq) + (k2 * radius_s4);
- offset *= distortion_scale;
-
- // reapply aspect ratio
- offset.y *= aspect_ratio;
-
- // add our eye center back in
- coords = offset + eye_center;
- coords /= upscale;
-
- // and check our color
- if (coords.x < -1.0 || coords.y < -1.0 || coords.x > 1.0 || coords.y > 1.0) {
- gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
- } else {
- coords = (coords + vec2(1.0)) / vec2(2.0);
- gl_FragColor = texture2D(source, coords);
- }
-}
diff --git a/drivers/gles2/shaders/particles.glsl b/drivers/gles2/shaders/particles.glsl
deleted file mode 100644
index d762dade2f..0000000000
--- a/drivers/gles2/shaders/particles.glsl
+++ /dev/null
@@ -1,261 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 color;
-/* clang-format on */
-layout(location = 1) in highp vec4 velocity_active;
-layout(location = 2) in highp vec4 custom;
-layout(location = 3) in highp vec4 xform_1;
-layout(location = 4) in highp vec4 xform_2;
-layout(location = 5) in highp vec4 xform_3;
-
-struct Attractor {
- vec3 pos;
- vec3 dir;
- float radius;
- float eat_radius;
- float strength;
- float attenuation;
-};
-
-#define MAX_ATTRACTORS 64
-
-uniform bool emitting;
-uniform float system_phase;
-uniform float prev_system_phase;
-uniform int total_particles;
-uniform float explosiveness;
-uniform float randomness;
-uniform float time;
-uniform float delta;
-
-uniform int attractor_count;
-uniform Attractor attractors[MAX_ATTRACTORS];
-uniform bool clear;
-uniform uint cycle;
-uniform float lifetime;
-uniform mat4 emission_transform;
-uniform uint random_seed;
-
-out highp vec4 out_color; //tfb:
-out highp vec4 out_velocity_active; //tfb:
-out highp vec4 out_custom; //tfb:
-out highp vec4 out_xform_1; //tfb:
-out highp vec4 out_xform_2; //tfb:
-out highp vec4 out_xform_3; //tfb:
-
-#if defined(USE_MATERIAL)
-
-/* clang-format off */
-layout(std140) uniform UniformData { //ubo:0
-
-MATERIAL_UNIFORMS
-
-};
-/* clang-format on */
-
-#endif
-
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-uint hash(uint x) {
- x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
- x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
- x = (x >> uint(16)) ^ x;
- return x;
-}
-
-void main() {
-#ifdef PARTICLES_COPY
-
- out_color = color;
- out_velocity_active = velocity_active;
- out_custom = custom;
- out_xform_1 = xform_1;
- out_xform_2 = xform_2;
- out_xform_3 = xform_3;
-
-#else
-
- bool apply_forces = true;
- bool apply_velocity = true;
- float local_delta = delta;
-
- float mass = 1.0;
-
- float restart_phase = float(gl_VertexID) / float(total_particles);
-
- if (randomness > 0.0) {
- uint seed = cycle;
- if (restart_phase >= system_phase) {
- seed -= uint(1);
- }
- seed *= uint(total_particles);
- seed += uint(gl_VertexID);
- float random = float(hash(seed) % uint(65536)) / 65536.0;
- restart_phase += randomness * random * 1.0 / float(total_particles);
- }
-
- restart_phase *= (1.0 - explosiveness);
- bool restart = false;
- bool shader_active = velocity_active.a > 0.5;
-
- if (system_phase > prev_system_phase) {
- // restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
-
- if (restart_phase >= prev_system_phase && restart_phase < system_phase) {
- restart = true;
-#ifdef USE_FRACTIONAL_DELTA
- local_delta = (system_phase - restart_phase) * lifetime;
-#endif
- }
-
- } else {
- if (restart_phase >= prev_system_phase) {
- restart = true;
-#ifdef USE_FRACTIONAL_DELTA
- local_delta = (1.0 - restart_phase + system_phase) * lifetime;
-#endif
- } else if (restart_phase < system_phase) {
- restart = true;
-#ifdef USE_FRACTIONAL_DELTA
- local_delta = (system_phase - restart_phase) * lifetime;
-#endif
- }
- }
-
- uint current_cycle = cycle;
-
- if (system_phase < restart_phase) {
- current_cycle -= uint(1);
- }
-
- uint particle_number = current_cycle * uint(total_particles) + uint(gl_VertexID);
- int index = int(gl_VertexID);
-
- if (restart) {
- shader_active = emitting;
- }
-
- mat4 xform;
-
-#if defined(ENABLE_KEEP_DATA)
- if (clear) {
-#else
- if (clear || restart) {
-#endif
- out_color = vec4(1.0);
- out_velocity_active = vec4(0.0);
- out_custom = vec4(0.0);
- if (!restart)
- shader_active = false;
-
- xform = mat4(
- vec4(1.0, 0.0, 0.0, 0.0),
- vec4(0.0, 1.0, 0.0, 0.0),
- vec4(0.0, 0.0, 1.0, 0.0),
- vec4(0.0, 0.0, 0.0, 1.0));
- } else {
- out_color = color;
- out_velocity_active = velocity_active;
- out_custom = custom;
- xform = transpose(mat4(xform_1, xform_2, xform_3, vec4(vec3(0.0), 1.0)));
- }
-
- if (shader_active) {
- //execute shader
-
- {
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
- }
-
-#if !defined(DISABLE_FORCE)
-
- if (false) {
- vec3 force = vec3(0.0);
- for (int i = 0; i < attractor_count; i++) {
- vec3 rel_vec = xform[3].xyz - attractors[i].pos;
- float dist = length(rel_vec);
- if (attractors[i].radius < dist)
- continue;
- if (attractors[i].eat_radius > 0.0 && attractors[i].eat_radius > dist) {
- out_velocity_active.a = 0.0;
- }
-
- rel_vec = normalize(rel_vec);
-
- float attenuation = pow(dist / attractors[i].radius, attractors[i].attenuation);
-
- if (attractors[i].dir == vec3(0.0)) {
- //towards center
- force += attractors[i].strength * rel_vec * attenuation * mass;
- } else {
- force += attractors[i].strength * attractors[i].dir * attenuation * mass;
- }
- }
-
- out_velocity_active.xyz += force * local_delta;
- }
-#endif
-
-#if !defined(DISABLE_VELOCITY)
-
- if (true) {
- xform[3].xyz += out_velocity_active.xyz * local_delta;
- }
-#endif
- } else {
- xform = mat4(0.0);
- }
-
- xform = transpose(xform);
-
- out_velocity_active.a = mix(0.0, 1.0, shader_active);
-
- out_xform_1 = xform[0];
- out_xform_2 = xform[1];
- out_xform_3 = xform[2];
-
-#endif //PARTICLES_COPY
-}
-
-/* clang-format off */
-[fragment]
-
-//any code here is never executed, stuff is filled just so it works
-
-#if defined(USE_MATERIAL)
-
-layout(std140) uniform UniformData {
-
-MATERIAL_UNIFORMS
-
-};
-
-#endif
-
-FRAGMENT_SHADER_GLOBALS
-
-void main() {
- {
-
-LIGHT_SHADER_CODE
-
- }
-
- {
-
-FRAGMENT_SHADER_CODE
-
- }
-}
-
-/* clang-format on */
diff --git a/drivers/gles2/shaders/resolve.glsl b/drivers/gles2/shaders/resolve.glsl
deleted file mode 100644
index 071cb37a99..0000000000
--- a/drivers/gles2/shaders/resolve.glsl
+++ /dev/null
@@ -1,42 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-
-void main() {
- uv_interp = uv_in;
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-#if !defined(GLES_OVER_GL)
-precision mediump float;
-#endif
-
-in vec2 uv_interp;
-/* clang-format on */
-uniform sampler2D source_specular; //texunit:0
-uniform sampler2D source_ssr; //texunit:1
-
-uniform vec2 pixel_size;
-
-in vec2 uv2_interp;
-
-layout(location = 0) out vec4 frag_color;
-
-void main() {
- vec4 specular = texture(source_specular, uv_interp);
-
-#ifdef USE_SSR
- vec4 ssr = textureLod(source_ssr, uv_interp, 0.0);
- specular.rgb = mix(specular.rgb, ssr.rgb * specular.a, ssr.a);
-#endif
-
- frag_color = vec4(specular.rgb, 1.0);
-}
diff --git a/drivers/gles2/shaders/scene.glsl b/drivers/gles2/shaders/scene.glsl
deleted file mode 100644
index 0311dc4742..0000000000
--- a/drivers/gles2/shaders/scene.glsl
+++ /dev/null
@@ -1,2192 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-#ifndef USE_GLES_OVER_GL
-#extension GL_OES_texture_3D : enable
-#else
-#extension GL_EXT_texture_array : enable
-#endif
-
-/* clang-format on */
-#include "stdlib.glsl"
-/* clang-format off */
-
-#define SHADER_IS_SRGB true
-
-#define M_PI 3.14159265359
-
-
-//
-// attributes
-//
-
-attribute highp vec4 vertex_attrib; // attrib:0
-/* clang-format on */
-attribute vec3 normal_attrib; // attrib:1
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-attribute vec4 tangent_attrib; // attrib:2
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
-attribute vec4 color_attrib; // attrib:3
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-attribute vec2 uv_attrib; // attrib:4
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-attribute vec2 uv2_attrib; // attrib:5
-#endif
-
-#ifdef USE_SKELETON
-
-#ifdef USE_SKELETON_SOFTWARE
-
-attribute highp vec4 bone_transform_row_0; // attrib:13
-attribute highp vec4 bone_transform_row_1; // attrib:14
-attribute highp vec4 bone_transform_row_2; // attrib:15
-
-#else
-
-attribute vec4 bone_ids; // attrib:6
-attribute highp vec4 bone_weights; // attrib:7
-
-uniform highp sampler2D bone_transforms; // texunit:-1
-uniform ivec2 skeleton_texture_size;
-
-#endif
-
-#endif
-
-#ifdef USE_INSTANCING
-
-attribute highp vec4 instance_xform_row_0; // attrib:8
-attribute highp vec4 instance_xform_row_1; // attrib:9
-attribute highp vec4 instance_xform_row_2; // attrib:10
-
-attribute highp vec4 instance_color; // attrib:11
-attribute highp vec4 instance_custom_data; // attrib:12
-
-#endif
-
-//
-// uniforms
-//
-
-uniform highp mat4 camera_matrix;
-uniform highp mat4 camera_inverse_matrix;
-uniform highp mat4 projection_matrix;
-uniform highp mat4 projection_inverse_matrix;
-
-uniform highp mat4 world_transform;
-
-uniform highp float time;
-
-uniform highp vec2 viewport_size;
-
-#ifdef RENDER_DEPTH
-uniform float light_bias;
-uniform float light_normal_bias;
-#endif
-
-//
-// varyings
-//
-
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
-varying highp vec4 position_interp;
-#endif
-
-varying highp vec3 vertex_interp;
-varying vec3 normal_interp;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-varying vec3 tangent_interp;
-varying vec3 binormal_interp;
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
-varying vec4 color_interp;
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-varying vec2 uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-varying vec2 uv2_interp;
-#endif
-
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-varying highp float dp_clip;
-uniform highp float shadow_dual_paraboloid_render_zfar;
-uniform highp float shadow_dual_paraboloid_render_side;
-
-#endif
-
-#if defined(USE_SHADOW) && defined(USE_LIGHTING)
-
-uniform highp mat4 light_shadow_matrix;
-varying highp vec4 shadow_coord;
-
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
-uniform highp mat4 light_shadow_matrix2;
-varying highp vec4 shadow_coord2;
-#endif
-
-#if defined(LIGHT_USE_PSSM4)
-
-uniform highp mat4 light_shadow_matrix3;
-uniform highp mat4 light_shadow_matrix4;
-varying highp vec4 shadow_coord3;
-varying highp vec4 shadow_coord4;
-
-#endif
-
-#endif
-
-#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
-
-varying highp vec3 diffuse_interp;
-varying highp vec3 specular_interp;
-
-// general for all lights
-uniform highp vec4 light_color;
-uniform highp vec4 shadow_color;
-uniform highp float light_specular;
-
-// directional
-uniform highp vec3 light_direction;
-
-// omni
-uniform highp vec3 light_position;
-
-uniform highp float light_range;
-uniform highp float light_attenuation;
-
-// spot
-uniform highp float light_spot_attenuation;
-uniform highp float light_spot_range;
-uniform highp float light_spot_angle;
-
-void light_compute(
- vec3 N,
- vec3 L,
- vec3 V,
- vec3 light_color,
- vec3 attenuation,
- float roughness) {
-//this makes lights behave closer to linear, but then addition of lights looks bad
-//better left disabled
-
-//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
-/*
-#define SRGB_APPROX(m_var) {\
- float S1 = sqrt(m_var);\
- float S2 = sqrt(S1);\
- float S3 = sqrt(S2);\
- m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
- }
-*/
-#define SRGB_APPROX(m_var)
-
- float NdotL = dot(N, L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
-
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
-
-#if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-#else
- // lambert by default for everything else
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
-#endif
-
- SRGB_APPROX(diffuse_brdf_NL)
-
- diffuse_interp += light_color * diffuse_brdf_NL * attenuation;
-
- if (roughness > 0.0) {
- // D
- float specular_brdf_NL = 0.0;
-
-#if !defined(SPECULAR_DISABLED)
- //normalized blinn always unless disabled
- vec3 H = normalize(V + L);
- float cNdotH = max(dot(N, H), 0.0);
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
-#endif
-
- SRGB_APPROX(specular_brdf_NL)
- specular_interp += specular_brdf_NL * light_color * attenuation * (1.0 / M_PI);
- }
-}
-
-#endif
-
-#ifdef USE_VERTEX_LIGHTING
-
-#ifdef USE_REFLECTION_PROBE1
-
-uniform highp mat4 refprobe1_local_matrix;
-varying mediump vec4 refprobe1_reflection_normal_blend;
-uniform highp vec3 refprobe1_box_extents;
-
-#ifndef USE_LIGHTMAP
-varying mediump vec3 refprobe1_ambient_normal;
-#endif
-
-#endif //reflection probe1
-
-#ifdef USE_REFLECTION_PROBE2
-
-uniform highp mat4 refprobe2_local_matrix;
-varying mediump vec4 refprobe2_reflection_normal_blend;
-uniform highp vec3 refprobe2_box_extents;
-
-#ifndef USE_LIGHTMAP
-varying mediump vec3 refprobe2_ambient_normal;
-#endif
-
-#endif //reflection probe2
-
-#endif //vertex lighting for refprobes
-
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-varying vec4 fog_interp;
-
-uniform mediump vec4 fog_color_base;
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform mediump vec4 fog_sun_color_amount;
-#endif
-
-uniform bool fog_transmit_enabled;
-uniform mediump float fog_transmit_curve;
-
-#ifdef FOG_DEPTH_ENABLED
-uniform highp float fog_depth_begin;
-uniform mediump float fog_depth_curve;
-uniform mediump float fog_max_distance;
-#endif
-
-#ifdef FOG_HEIGHT_ENABLED
-uniform highp float fog_height_min;
-uniform highp float fog_height_max;
-uniform mediump float fog_height_curve;
-#endif
-
-#endif //fog
-
-void main() {
- highp vec4 vertex = vertex_attrib;
-
- mat4 world_matrix = world_transform;
-
-#ifdef USE_INSTANCING
- {
- highp mat4 m = mat4(
- instance_xform_row_0,
- instance_xform_row_1,
- instance_xform_row_2,
- vec4(0.0, 0.0, 0.0, 1.0));
- world_matrix = world_matrix * transpose(m);
- }
-
-#endif
-
- vec3 normal = normal_attrib;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- vec3 tangent = tangent_attrib.xyz;
- float binormalf = tangent_attrib.a;
- vec3 binormal = normalize(cross(normal, tangent) * binormalf);
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
- color_interp = color_attrib;
-#ifdef USE_INSTANCING
- color_interp *= instance_color;
-#endif
-#endif
-
-#if defined(ENABLE_UV_INTERP)
- uv_interp = uv_attrib;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
- uv2_interp = uv2_attrib;
-#endif
-
-#if defined(OVERRIDE_POSITION)
- highp vec4 position;
-#endif
-
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = world_matrix * vertex;
- normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-
- tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
-#ifdef USE_SKELETON
-
- highp mat4 bone_transform = mat4(0.0);
-
-#ifdef USE_SKELETON_SOFTWARE
- // passing the transform as attributes
-
- bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
- bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
- bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
- bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
-
-#else
- // look up transform from the "pose texture"
- {
- for (int i = 0; i < 4; i++) {
- ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
-
- highp mat4 b = mat4(
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
- vec4(0.0, 0.0, 0.0, 1.0));
-
- bone_transform += transpose(b) * bone_weights[i];
- }
- }
-
-#endif
-
- world_matrix = world_matrix * bone_transform;
-
-#endif
-
-#ifdef USE_INSTANCING
- vec4 instance_custom = instance_custom_data;
-#else
- vec4 instance_custom = vec4(0.0);
-
-#endif
-
- mat4 local_projection_matrix = projection_matrix;
-
- mat4 modelview = camera_inverse_matrix * world_matrix;
- float roughness = 1.0;
-
-#define projection_matrix local_projection_matrix
-#define world_transform world_matrix
-
- float point_size = 1.0;
-
- {
- /* clang-format off */
-
-VERTEX_SHADER_CODE
-
- /* clang-format on */
- }
-
- gl_PointSize = point_size;
- vec4 outvec = vertex;
-
- // use local coordinates
-#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
- vertex = modelview * vertex;
- normal = normalize((modelview * vec4(normal, 0.0)).xyz);
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
- binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = camera_inverse_matrix * vertex;
- normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
- binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
-#endif
-#endif
-
- vertex_interp = vertex.xyz;
- normal_interp = normal;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent_interp = tangent;
- binormal_interp = binormal;
-#endif
-
-#ifdef RENDER_DEPTH
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- vertex_interp.z *= shadow_dual_paraboloid_render_side;
- normal_interp.z *= shadow_dual_paraboloid_render_side;
-
- dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
-
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
-
- highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias;
- highp float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy /= 1.0 - vtx.z;
- vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
- vtx.z = vtx.z * 2.0 - 1.0;
-
- vertex_interp = vtx;
-
-#else
- float z_ofs = light_bias;
- z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
-
- vertex_interp.z -= z_ofs;
-#endif //dual parabolloid
-
-#endif //depth
-
-//vertex lighting
-#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
- //vertex shaded version of lighting (more limited)
- vec3 L;
- vec3 light_att;
-
-#ifdef LIGHT_MODE_OMNI
- vec3 light_vec = light_position - vertex_interp;
- float light_length = length(light_vec);
-
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
-
- vec3 attenuation = vec3(omni_attenuation);
- light_att = vec3(omni_attenuation);
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_vec);
-
-#endif
-
-#ifdef LIGHT_MODE_SPOT
-
- vec3 light_rel_vec = light_position - vertex_interp;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
- vec3 spot_dir = light_direction;
-
- float spot_cutoff = light_spot_angle;
-
- float angle = dot(-normalize(light_rel_vec), spot_dir);
-
- if (angle > spot_cutoff) {
- float scos = max(angle, spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
-
- spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
-
- light_att = vec3(spot_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_rel_vec);
-
-#endif
-
-#ifdef LIGHT_MODE_DIRECTIONAL
- vec3 light_vec = -light_direction;
- light_att = vec3(1.0); //no base attenuation
- L = normalize(light_vec);
-#endif
-
- diffuse_interp = vec3(0.0);
- specular_interp = vec3(0.0);
- light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness);
-
-#endif
-
-//shadows (for both vertex and fragment)
-#if defined(USE_SHADOW) && defined(USE_LIGHTING)
-
- vec4 vi4 = vec4(vertex_interp, 1.0);
- shadow_coord = light_shadow_matrix * vi4;
-
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
- shadow_coord2 = light_shadow_matrix2 * vi4;
-#endif
-
-#if defined(LIGHT_USE_PSSM4)
- shadow_coord3 = light_shadow_matrix3 * vi4;
- shadow_coord4 = light_shadow_matrix4 * vi4;
-
-#endif
-
-#endif //use shadow and use lighting
-
-#ifdef USE_VERTEX_LIGHTING
-
-#ifdef USE_REFLECTION_PROBE1
- {
- vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
- vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz;
- vec3 inner_pos = abs(local_pos / refprobe1_box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
-
- {
- vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz;
- refprobe1_reflection_normal_blend.xyz = local_ref_vec;
- refprobe1_reflection_normal_blend.a = blend;
- }
-#ifndef USE_LIGHTMAP
-
- refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz;
-#endif
- }
-
-#endif //USE_REFLECTION_PROBE1
-
-#ifdef USE_REFLECTION_PROBE2
- {
- vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
- vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz;
- vec3 inner_pos = abs(local_pos / refprobe2_box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
-
- {
- vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz;
- refprobe2_reflection_normal_blend.xyz = local_ref_vec;
- refprobe2_reflection_normal_blend.a = blend;
- }
-#ifndef USE_LIGHTMAP
-
- refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz;
-#endif
- }
-
-#endif //USE_REFLECTION_PROBE2
-
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
- float fog_amount = 0.0;
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-
- vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0));
-#else
- vec3 fog_color = fog_color_base.rgb;
-#endif
-
-#ifdef FOG_DEPTH_ENABLED
-
- {
- float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
-
- fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
- }
-#endif
-
-#ifdef FOG_HEIGHT_ENABLED
- {
- float y = (camera_matrix * vec4(vertex_interp, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
-#endif
- fog_interp = vec4(fog_color, fog_amount);
-
-#endif //fog
-
-#endif //use vertex lighting
-
-#if defined(OVERRIDE_POSITION)
- gl_Position = position;
-#else
- gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
-#endif
-
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
- position_interp = gl_Position;
-#endif
-}
-
-/* clang-format off */
-[fragment]
-
-#ifndef USE_GLES_OVER_GL
-#extension GL_OES_texture_3D : enable
-#else
-#extension GL_EXT_texture_array : enable
-#endif
-
-// texture2DLodEXT and textureCubeLodEXT are fragment shader specific.
-// Do not copy these defines in the vertex section.
-#ifndef USE_GLES_OVER_GL
-#ifdef GL_EXT_shader_texture_lod
-#extension GL_EXT_shader_texture_lod : enable
-#define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod)
-#endif
-#endif // !USE_GLES_OVER_GL
-
-#ifdef GL_ARB_shader_texture_lod
-#extension GL_ARB_shader_texture_lod : enable
-#endif
-
-#if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod)
-#define texture2DLod(img, coord, lod) texture2D(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCube(img, coord, lod)
-#endif
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-#include "stdlib.glsl"
-
-#define M_PI 3.14159265359
-#define SHADER_IS_SRGB true
-
-//
-// uniforms
-//
-
-uniform highp mat4 camera_matrix;
-/* clang-format on */
-uniform highp mat4 camera_inverse_matrix;
-uniform highp mat4 projection_matrix;
-uniform highp mat4 projection_inverse_matrix;
-
-uniform highp mat4 world_transform;
-
-uniform highp float time;
-
-uniform highp vec2 viewport_size;
-
-#if defined(SCREEN_UV_USED)
-uniform vec2 screen_pixel_size;
-#endif
-
-#if defined(SCREEN_TEXTURE_USED)
-uniform highp sampler2D screen_texture; //texunit:-4
-#endif
-#if defined(DEPTH_TEXTURE_USED)
-uniform highp sampler2D depth_texture; //texunit:-4
-#endif
-
-#ifdef USE_REFLECTION_PROBE1
-
-#ifdef USE_VERTEX_LIGHTING
-
-varying mediump vec4 refprobe1_reflection_normal_blend;
-#ifndef USE_LIGHTMAP
-varying mediump vec3 refprobe1_ambient_normal;
-#endif
-
-#else
-
-uniform bool refprobe1_use_box_project;
-uniform highp vec3 refprobe1_box_extents;
-uniform vec3 refprobe1_box_offset;
-uniform highp mat4 refprobe1_local_matrix;
-
-#endif //use vertex lighting
-
-uniform bool refprobe1_exterior;
-
-uniform highp samplerCube reflection_probe1; //texunit:-5
-
-uniform float refprobe1_intensity;
-uniform vec4 refprobe1_ambient;
-
-#endif //USE_REFLECTION_PROBE1
-
-#ifdef USE_REFLECTION_PROBE2
-
-#ifdef USE_VERTEX_LIGHTING
-
-varying mediump vec4 refprobe2_reflection_normal_blend;
-#ifndef USE_LIGHTMAP
-varying mediump vec3 refprobe2_ambient_normal;
-#endif
-
-#else
-
-uniform bool refprobe2_use_box_project;
-uniform highp vec3 refprobe2_box_extents;
-uniform vec3 refprobe2_box_offset;
-uniform highp mat4 refprobe2_local_matrix;
-
-#endif //use vertex lighting
-
-uniform bool refprobe2_exterior;
-
-uniform highp samplerCube reflection_probe2; //texunit:-6
-
-uniform float refprobe2_intensity;
-uniform vec4 refprobe2_ambient;
-
-#endif //USE_REFLECTION_PROBE2
-
-#define RADIANCE_MAX_LOD 6.0
-
-#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
-
-void reflection_process(samplerCube reflection_map,
-#ifdef USE_VERTEX_LIGHTING
- vec3 ref_normal,
-#ifndef USE_LIGHTMAP
- vec3 amb_normal,
-#endif
- float ref_blend,
-
-#else //no vertex lighting
- vec3 normal, vec3 vertex,
- mat4 local_matrix,
- bool use_box_project, vec3 box_extents, vec3 box_offset,
-#endif //vertex lighting
- bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
-
- vec4 reflection;
-
-#ifdef USE_VERTEX_LIGHTING
-
- reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
-
- float blend = ref_blend; //crappier blend formula for vertex
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
-#else //fragment lighting
-
- vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz;
-
- if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
- return;
- }
-
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- blend = mix(length(inner_pos), blend, blend);
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
-
- //reflect and make local
- vec3 ref_normal = normalize(reflect(vertex, normal));
- ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz;
-
- if (use_box_project) { //box project
-
- vec3 nrdir = normalize(ref_normal);
- vec3 rbmax = (box_extents - local_pos) / nrdir;
- vec3 rbmin = (-box_extents - local_pos) / nrdir;
-
- vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0))));
-
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- ref_normal = posonbox - box_offset.xyz;
- }
-
- reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
-#endif
-
- if (exterior) {
- reflection.rgb = mix(skybox, reflection.rgb, blend);
- }
- reflection.rgb *= intensity;
- reflection.a = blend;
- reflection.rgb *= blend;
-
- reflection_accum += reflection;
-
-#ifndef USE_LIGHTMAP
-
- vec4 ambient_out;
-#ifndef USE_VERTEX_LIGHTING
-
- vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz;
-#endif
-
- ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb;
- ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a);
- if (exterior) {
- ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
- }
-
- ambient_out.a = blend;
- ambient_out.rgb *= blend;
- ambient_accum += ambient_out;
-
-#endif
-}
-
-#endif //use refprobe 1 or 2
-
-#ifdef USE_LIGHTMAP
-uniform mediump sampler2D lightmap; //texunit:-4
-uniform mediump float lightmap_energy;
-#endif
-
-#ifdef USE_LIGHTMAP_CAPTURE
-uniform mediump vec4[12] lightmap_captures;
-uniform bool lightmap_capture_sky;
-
-#endif
-
-#ifdef USE_RADIANCE_MAP
-
-uniform samplerCube radiance_map; // texunit:-2
-
-uniform mat4 radiance_inverse_xform;
-
-#endif
-
-uniform vec4 bg_color;
-uniform float bg_energy;
-
-uniform float ambient_sky_contribution;
-uniform vec4 ambient_color;
-uniform float ambient_energy;
-
-#ifdef USE_LIGHTING
-
-uniform highp vec4 shadow_color;
-
-#ifdef USE_VERTEX_LIGHTING
-
-//get from vertex
-varying highp vec3 diffuse_interp;
-varying highp vec3 specular_interp;
-
-uniform highp vec3 light_direction; //may be used by fog, so leave here
-
-#else
-//done in fragment
-// general for all lights
-uniform highp vec4 light_color;
-
-uniform highp float light_specular;
-
-// directional
-uniform highp vec3 light_direction;
-// omni
-uniform highp vec3 light_position;
-
-uniform highp float light_attenuation;
-
-// spot
-uniform highp float light_spot_attenuation;
-uniform highp float light_spot_range;
-uniform highp float light_spot_angle;
-#endif
-
-//this is needed outside above if because dual paraboloid wants it
-uniform highp float light_range;
-
-#ifdef USE_SHADOW
-
-uniform highp vec2 shadow_pixel_size;
-
-#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT)
-uniform highp sampler2D light_shadow_atlas; //texunit:-3
-#endif
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform highp sampler2D light_directional_shadow; // texunit:-3
-uniform highp vec4 light_split_offsets;
-#endif
-
-varying highp vec4 shadow_coord;
-
-#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
-varying highp vec4 shadow_coord2;
-#endif
-
-#if defined(LIGHT_USE_PSSM4)
-
-varying highp vec4 shadow_coord3;
-varying highp vec4 shadow_coord4;
-
-#endif
-
-uniform vec4 light_clamp;
-
-#endif // light shadow
-
-// directional shadow
-
-#endif
-
-//
-// varyings
-//
-
-#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
-varying highp vec4 position_interp;
-#endif
-
-varying highp vec3 vertex_interp;
-varying vec3 normal_interp;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
-varying vec3 tangent_interp;
-varying vec3 binormal_interp;
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
-varying vec4 color_interp;
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-varying vec2 uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
-varying vec2 uv2_interp;
-#endif
-
-varying vec3 view_interp;
-
-vec3 F0(float metallic, float specular, vec3 albedo) {
- float dielectric = 0.16 * specular * specular;
- // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
- // see https://google.github.io/filament/Filament.md.html
- return mix(vec3(dielectric), albedo, vec3(metallic));
-}
-
-/* clang-format off */
-
-FRAGMENT_SHADER_GLOBALS
-
-/* clang-format on */
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-varying highp float dp_clip;
-
-#endif
-
-#ifdef USE_LIGHTING
-
-// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
-// We're dividing this factor off because the overall term we'll end up looks like
-// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
-//
-// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
-//
-// We're basically regouping this as
-//
-// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
-//
-// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
-//
-// The contents of the D and G (G1) functions (GGX) are taken from
-// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
-// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
-
-/*
-float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5 * alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
-
- // float cos2 = cos_theta_m * cos_theta_m;
- // float sin2 = (1.0 - cos2);
- // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
-}
-
-*/
-
-// This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha)
-// See Filament docs, Specular G section.
-float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) {
- return 0.5 / mix(2.0 * cos_theta_l * cos_theta_v, cos_theta_l + cos_theta_v, alpha);
-}
-
-float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha * alpha;
- float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
- return alpha2 / (M_PI * d * d);
-}
-
-/*
-float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
-}
-
-*/
-
-// This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...)
-// See Filament docs, Anisotropic specular BRDF section.
-float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
- float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
- float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
- return 0.5 / (Lambda_V + Lambda_L);
-}
-
-float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) {
- float alpha2 = alpha_x * alpha_y;
- highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH);
- highp float v2 = dot(v, v);
- float w2 = alpha2 / v2;
- float D = alpha2 * w2 * w2 * (1.0 / M_PI);
- return D;
-
- /* float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float r_x = cos_phi / alpha_x;
- float r_y = sin_phi / alpha_y;
- float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
- return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */
-}
-
-float SchlickFresnel(float u) {
- float m = 1.0 - u;
- float m2 = m * m;
- return m2 * m2 * m; // pow(m,5)
-}
-
-float GTR1(float NdotH, float a) {
- if (a >= 1.0)
- return 1.0 / M_PI;
- float a2 = a * a;
- float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
- return (a2 - 1.0) / (M_PI * log(a2) * t);
-}
-
-void light_compute(
- vec3 N,
- vec3 L,
- vec3 V,
- vec3 B,
- vec3 T,
- vec3 light_color,
- vec3 attenuation,
- vec3 diffuse_color,
- vec3 transmission,
- float specular_blob_intensity,
- float roughness,
- float metallic,
- float specular,
- float rim,
- float rim_tint,
- float clearcoat,
- float clearcoat_gloss,
- float anisotropy,
- inout vec3 diffuse_light,
- inout vec3 specular_light,
- inout float alpha) {
-//this makes lights behave closer to linear, but then addition of lights looks bad
-//better left disabled
-
-//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
-/*
-#define SRGB_APPROX(m_var) {\
- float S1 = sqrt(m_var);\
- float S2 = sqrt(S1);\
- float S3 = sqrt(S2);\
- m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
- }
-*/
-#define SRGB_APPROX(m_var)
-
-#if defined(USE_LIGHT_SHADER_CODE)
- // light is written by the light shader
-
- vec3 normal = N;
- vec3 albedo = diffuse_color;
- vec3 light = L;
- vec3 view = V;
-
- /* clang-format off */
-
-LIGHT_SHADER_CODE
-
- /* clang-format on */
-
-#else
- float NdotL = dot(N, L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(abs(NdotV), 1e-6);
-
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- vec3 H = normalize(V + L);
-#endif
-
-#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cNdotH = max(dot(N, H), 0.0);
-#endif
-
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
- float cLdotH = max(dot(L, H), 0.0);
-#endif
-
- if (metallic < 1.0) {
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
-
-#if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-
-#elif defined(DIFFUSE_TOON)
-
- diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
-
-#elif defined(DIFFUSE_BURLEY)
-
- {
- float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
- float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
- float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
- diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
-
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
- */
- }
-#else
- // lambert
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
-#endif
-
- SRGB_APPROX(diffuse_brdf_NL)
-
- diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
-
-#if defined(TRANSMISSION_USED)
- diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
-#endif
-
-#if defined(LIGHT_USE_RIM)
- float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
-#endif
- }
-
- if (roughness > 0.0) {
-
-#if defined(SPECULAR_SCHLICK_GGX)
- vec3 specular_brdf_NL = vec3(0.0);
-#else
- float specular_brdf_NL = 0.0;
-#endif
-
-#if defined(SPECULAR_BLINN)
-
- //normalized blinn
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = blinn;
-
-#elif defined(SPECULAR_PHONG)
-
- vec3 R = normalize(-reflect(L, N));
- float cRdotV = max(0.0, dot(R, V));
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float phong = pow(cRdotV, shininess);
- phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
-
-#elif defined(SPECULAR_TOON)
-
- vec3 R = normalize(-reflect(L, N));
- float RdotV = dot(R, V);
- float mid = 1.0 - roughness;
- mid *= mid;
- specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
-
-#elif defined(SPECULAR_DISABLED)
- // none..
-#elif defined(SPECULAR_SCHLICK_GGX)
- // shlick+ggx as default
-
-#if defined(LIGHT_USE_ANISOTROPY)
- float alpha_ggx = roughness * roughness;
- float aspect = sqrt(1.0 - anisotropy * 0.9);
- float ax = alpha_ggx / aspect;
- float ay = alpha_ggx * aspect;
- float XdotH = dot(T, H);
- float YdotH = dot(B, H);
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH);
- //float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
- float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
-
-#else
- float alpha_ggx = roughness * roughness;
- float D = D_GGX(cNdotH, alpha_ggx);
- //float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
- float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
-#endif
- // F
- vec3 f0 = F0(metallic, specular, diffuse_color);
- float cLdotH5 = SchlickFresnel(cLdotH);
- vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
-
- specular_brdf_NL = cNdotL * D * F * G;
-
-#endif
-
- SRGB_APPROX(specular_brdf_NL)
- specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-
-#if defined(LIGHT_USE_CLEARCOAT)
-
-#if !defined(SPECULAR_SCHLICK_GGX)
- float cLdotH5 = SchlickFresnel(cLdotH);
-#endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
- float Fr = mix(.04, 1.0, cLdotH5);
- //float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
- float Gr = V_GGX(cNdotL, cNdotV, 0.25);
-
- float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
-
- specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-#endif
- }
-
-#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
-#endif
-
-#endif //defined(USE_LIGHT_SHADER_CODE)
-}
-
-#endif
-// shadows
-
-#ifdef USE_SHADOW
-
-#ifdef USE_RGBA_SHADOWS
-
-#define SHADOW_DEPTH(m_val) dot(m_val, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0))
-
-#else
-
-#define SHADOW_DEPTH(m_val) (m_val).r
-
-#endif
-
-#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, SHADOW_DEPTH(texture2D(p_shadow, p_pos)))
-#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, SHADOW_DEPTH(texture2DProj(p_shadow, p_pos)))
-
-float sample_shadow(highp sampler2D shadow, highp vec4 spos) {
-#ifdef SHADOW_MODE_PCF_13
-
- spos.xyz /= spos.w;
- vec2 pos = spos.xy;
- float depth = spos.z;
-
- float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth);
- return avg * (1.0 / 13.0);
-#endif
-
-#ifdef SHADOW_MODE_PCF_5
-
- spos.xyz /= spos.w;
- vec2 pos = spos.xy;
- float depth = spos.z;
-
- float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
- avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
- return avg * (1.0 / 5.0);
-
-#endif
-
-#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
-
- return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos);
-#endif
-}
-
-#endif
-
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#if defined(USE_VERTEX_LIGHTING)
-
-varying vec4 fog_interp;
-
-#else
-uniform mediump vec4 fog_color_base;
-#ifdef LIGHT_MODE_DIRECTIONAL
-uniform mediump vec4 fog_sun_color_amount;
-#endif
-
-uniform bool fog_transmit_enabled;
-uniform mediump float fog_transmit_curve;
-
-#ifdef FOG_DEPTH_ENABLED
-uniform highp float fog_depth_begin;
-uniform mediump float fog_depth_curve;
-uniform mediump float fog_max_distance;
-#endif
-
-#ifdef FOG_HEIGHT_ENABLED
-uniform highp float fog_height_min;
-uniform highp float fog_height_max;
-uniform mediump float fog_height_curve;
-#endif
-
-#endif //vertex lit
-#endif //fog
-
-void main() {
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- if (dp_clip > 0.0)
- discard;
-#endif
- highp vec3 vertex = vertex_interp;
- vec3 view = -normalize(vertex_interp);
- vec3 albedo = vec3(1.0);
- vec3 transmission = vec3(0.0);
- float metallic = 0.0;
- float specular = 0.5;
- vec3 emission = vec3(0.0);
- float roughness = 1.0;
- float rim = 0.0;
- float rim_tint = 0.0;
- float clearcoat = 0.0;
- float clearcoat_gloss = 0.0;
- float anisotropy = 0.0;
- vec2 anisotropy_flow = vec2(1.0, 0.0);
- float sss_strength = 0.0; //unused
- // gl_FragDepth is not available in GLES2, so writing to DEPTH is not converted to gl_FragDepth by Godot compiler resulting in a
- // compile error because DEPTH is not a variable.
- float m_DEPTH = 0.0;
-
- float alpha = 1.0;
- float side = 1.0;
-
- float specular_blob_intensity = 1.0;
-#if defined(SPECULAR_TOON)
- specular_blob_intensity *= specular * 2.0;
-#endif
-
-#if defined(ENABLE_AO)
- float ao = 1.0;
- float ao_light_affect = 0.0;
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- vec3 binormal = normalize(binormal_interp) * side;
- vec3 tangent = normalize(tangent_interp) * side;
-#else
- vec3 binormal = vec3(0.0);
- vec3 tangent = vec3(0.0);
-#endif
- vec3 normal = normalize(normal_interp) * side;
-
-#if defined(ENABLE_NORMALMAP)
- vec3 normalmap = vec3(0.5);
-#endif
- float normaldepth = 1.0;
-
-#if defined(ALPHA_SCISSOR_USED)
- float alpha_scissor = 0.5;
-#endif
-
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
-#endif
-
- {
- /* clang-format off */
-
-FRAGMENT_SHADER_CODE
-
- /* clang-format on */
- }
-
-#if defined(ENABLE_NORMALMAP)
- normalmap.xy = normalmap.xy * 2.0 - 1.0;
- normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
-
- normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
- //normal = normalmap;
-#endif
-
- normal = normalize(normal);
-
- vec3 N = normal;
-
- vec3 specular_light = vec3(0.0, 0.0, 0.0);
- vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
- vec3 ambient_light = vec3(0.0, 0.0, 0.0);
-
- vec3 eye_position = view;
-
-#if !defined(USE_SHADOW_TO_OPACITY)
-
-#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
- discard;
- }
-#endif // ALPHA_SCISSOR_USED
-
-#ifdef USE_DEPTH_PREPASS
- if (alpha < 0.1) {
- discard;
- }
-#endif // USE_DEPTH_PREPASS
-
-#endif // !USE_SHADOW_TO_OPACITY
-
-#ifdef BASE_PASS
-
- // IBL precalculations
- float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
- vec3 f0 = F0(metallic, specular, albedo);
- vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
-
-#ifdef AMBIENT_LIGHT_DISABLED
- ambient_light = vec3(0.0, 0.0, 0.0);
-#else
-
-#ifdef USE_RADIANCE_MAP
-
- vec3 ref_vec = reflect(-eye_position, N);
- ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
-
- ref_vec.z *= -1.0;
-
- specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
-#ifndef USE_LIGHTMAP
- {
- vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
- vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, 4.0).xyz * bg_energy;
- env_ambient *= 1.0 - F;
-
- ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
- }
-#endif
-
-#else
-
- ambient_light = ambient_color.rgb;
- specular_light = bg_color.rgb * bg_energy;
-
-#endif
-#endif // AMBIENT_LIGHT_DISABLED
- ambient_light *= ambient_energy;
-
-#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
-
- vec4 ambient_accum = vec4(0.0);
- vec4 reflection_accum = vec4(0.0);
-
-#ifdef USE_REFLECTION_PROBE1
-
- reflection_process(reflection_probe1,
-#ifdef USE_VERTEX_LIGHTING
- refprobe1_reflection_normal_blend.rgb,
-#ifndef USE_LIGHTMAP
- refprobe1_ambient_normal,
-#endif
- refprobe1_reflection_normal_blend.a,
-#else
- normal_interp, vertex_interp, refprobe1_local_matrix,
- refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
-#endif
- refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
- ambient_light, specular_light, reflection_accum, ambient_accum);
-
-#endif // USE_REFLECTION_PROBE1
-
-#ifdef USE_REFLECTION_PROBE2
-
- reflection_process(reflection_probe2,
-#ifdef USE_VERTEX_LIGHTING
- refprobe2_reflection_normal_blend.rgb,
-#ifndef USE_LIGHTMAP
- refprobe2_ambient_normal,
-#endif
- refprobe2_reflection_normal_blend.a,
-#else
- normal_interp, vertex_interp, refprobe2_local_matrix,
- refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
-#endif
- refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
- ambient_light, specular_light, reflection_accum, ambient_accum);
-
-#endif // USE_REFLECTION_PROBE2
-
- if (reflection_accum.a > 0.0) {
- specular_light = reflection_accum.rgb / reflection_accum.a;
- }
-
-#ifndef USE_LIGHTMAP
- if (ambient_accum.a > 0.0) {
- ambient_light = ambient_accum.rgb / ambient_accum.a;
- }
-#endif
-
-#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
-
- // environment BRDF approximation
- {
-#if defined(DIFFUSE_TOON)
- //simplify for toon, as
- specular_light *= specular * metallic * albedo * 2.0;
-#else
-
- // scales the specular reflections, needs to be be computed before lighting happens,
- // but after environment and reflection probes are added
- //TODO: this curve is not really designed for gammaspace, should be adjusted
- const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
- const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
- vec4 r = roughness * c0 + c1;
- float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
- vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
- specular_light *= env.x * F + env.y;
-
-#endif
- }
-
-#ifdef USE_LIGHTMAP
- //ambient light will come entirely from lightmap is lightmap is used
- ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy;
-#endif
-
-#ifdef USE_LIGHTMAP_CAPTURE
- {
- vec3 cone_dirs[12];
- cone_dirs[0] = vec3(0.0, 0.0, 1.0);
- cone_dirs[1] = vec3(0.866025, 0.0, 0.5);
- cone_dirs[2] = vec3(0.267617, 0.823639, 0.5);
- cone_dirs[3] = vec3(-0.700629, 0.509037, 0.5);
- cone_dirs[4] = vec3(-0.700629, -0.509037, 0.5);
- cone_dirs[5] = vec3(0.267617, -0.823639, 0.5);
- cone_dirs[6] = vec3(0.0, 0.0, -1.0);
- cone_dirs[7] = vec3(0.866025, 0.0, -0.5);
- cone_dirs[8] = vec3(0.267617, 0.823639, -0.5);
- cone_dirs[9] = vec3(-0.700629, 0.509037, -0.5);
- cone_dirs[10] = vec3(-0.700629, -0.509037, -0.5);
- cone_dirs[11] = vec3(0.267617, -0.823639, -0.5);
-
- vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
- vec4 captured = vec4(0.0);
- float sum = 0.0;
- for (int i = 0; i < 12; i++) {
- float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
- captured += lightmap_captures[i] * amount;
- sum += amount;
- }
-
- captured /= sum;
-
- if (lightmap_capture_sky) {
- ambient_light = mix(ambient_light, captured.rgb, captured.a);
- } else {
- ambient_light = captured.rgb;
- }
- }
-#endif
-
-#endif //BASE PASS
-
-//
-// Lighting
-//
-#ifdef USE_LIGHTING
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 L;
-#endif
- vec3 light_att = vec3(1.0);
-
-#ifdef LIGHT_MODE_OMNI
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 light_vec = light_position - vertex;
- float light_length = length(light_vec);
-
- float normalized_distance = light_length / light_range;
- if (normalized_distance < 1.0) {
- float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
-
- light_att = vec3(omni_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- L = normalize(light_vec);
-
-#endif
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
- {
- highp vec4 splane = shadow_coord;
- float shadow_len = length(splane.xyz);
-
- splane.xyz = normalize(splane.xyz);
-
- vec4 clamp_rect = light_clamp;
-
- if (splane.z >= 0.0) {
- splane.z += 1.0;
-
- clamp_rect.y += clamp_rect.w;
- } else {
- splane.z = 1.0 - splane.z;
- }
-
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len / light_range;
-
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0;
-
- float shadow = sample_shadow(light_shadow_atlas, splane);
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
-#endif
-
-#endif //SHADOWS_DISABLED
-
-#endif //type omni
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-
-#ifndef USE_VERTEX_LIGHTING
- vec3 light_vec = -light_direction;
- L = normalize(light_vec);
-#endif
- float depth_z = -vertex.z;
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
-
-#ifdef USE_VERTEX_LIGHTING
- //compute shadows in a mobile friendly way
-
-#ifdef LIGHT_USE_PSSM4
- //take advantage of prefetch
- float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
- float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
- float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3);
- float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4);
-
- if (depth_z < light_split_offsets.w) {
- float pssm_fade = 0.0;
- float shadow_att = 1.0;
-#ifdef LIGHT_USE_PSSM_BLEND
- float shadow_att2 = 1.0;
- float pssm_blend = 0.0;
- bool use_blend = true;
-#endif
- if (depth_z < light_split_offsets.y) {
- if (depth_z < light_split_offsets.x) {
- shadow_att = shadow1;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow2;
-
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
-#endif
- } else {
- shadow_att = shadow2;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow3;
-
- pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#endif
- }
- } else {
- if (depth_z < light_split_offsets.z) {
- shadow_att = shadow3;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- shadow_att2 = shadow4;
- pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
-#endif
-
- } else {
- shadow_att = shadow4;
- pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-#endif
- }
- }
-#if defined(LIGHT_USE_PSSM_BLEND)
- if (use_blend) {
- shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
- }
-#endif
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
- }
-
-#endif //LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
-
- //take advantage of prefetch
- float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
- float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
-
- if (depth_z < light_split_offsets.y) {
- float shadow_att = 1.0;
- float pssm_fade = 0.0;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- float shadow_att2 = 1.0;
- float pssm_blend = 0.0;
- bool use_blend = true;
-#endif
- if (depth_z < light_split_offsets.x) {
- float pssm_fade = 0.0;
- shadow_att = shadow1;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- shadow_att2 = shadow2;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
-#endif
- } else {
- shadow_att = shadow2;
- pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#ifdef LIGHT_USE_PSSM_BLEND
- use_blend = false;
-#endif
- }
-#ifdef LIGHT_USE_PSSM_BLEND
- if (use_blend) {
- shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
- }
-#endif
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
- }
-
-#endif //LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), sample_shadow(light_directional_shadow, shadow_coord));
-#endif //orthogonal
-
-#else //fragment version of pssm
-
- {
-#ifdef LIGHT_USE_PSSM4
- if (depth_z < light_split_offsets.w) {
-#elif defined(LIGHT_USE_PSSM2)
- if (depth_z < light_split_offsets.y) {
-#else
- if (depth_z < light_split_offsets.x) {
-#endif //pssm2
-
- highp vec4 pssm_coord;
- float pssm_fade = 0.0;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- highp vec4 pssm_coord2;
- bool use_blend = true;
-#endif
-
-#ifdef LIGHT_USE_PSSM4
-
- if (depth_z < light_split_offsets.y) {
- if (depth_z < light_split_offsets.x) {
- pssm_coord = shadow_coord;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord2;
-
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
-#endif
- } else {
- pssm_coord = shadow_coord2;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord3;
-
- pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#endif
- }
- } else {
- if (depth_z < light_split_offsets.z) {
- pssm_coord = shadow_coord3;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- pssm_coord2 = shadow_coord4;
- pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
-#endif
-
- } else {
- pssm_coord = shadow_coord4;
- pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
-#endif
- }
- }
-
-#endif // LIGHT_USE_PSSM4
-
-#ifdef LIGHT_USE_PSSM2
- if (depth_z < light_split_offsets.x) {
- pssm_coord = shadow_coord;
-
-#ifdef LIGHT_USE_PSSM_BLEND
- pssm_coord2 = shadow_coord2;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
-#endif
- } else {
- pssm_coord = shadow_coord2;
- pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
-#ifdef LIGHT_USE_PSSM_BLEND
- use_blend = false;
-#endif
- }
-
-#endif // LIGHT_USE_PSSM2
-
-#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- {
- pssm_coord = shadow_coord;
- }
-#endif
-
- float shadow = sample_shadow(light_directional_shadow, pssm_coord);
-
-#ifdef LIGHT_USE_PSSM_BLEND
- if (use_blend) {
- shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend);
- }
-#endif
-
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
- }
-#endif //use vertex lighting
-
-#endif //use shadow
-
-#endif // SHADOWS_DISABLED
-
-#endif
-
-#ifdef LIGHT_MODE_SPOT
-
- light_att = vec3(1.0);
-
-#ifndef USE_VERTEX_LIGHTING
-
- vec3 light_rel_vec = light_position - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length / light_range;
-
- if (normalized_distance < 1.0) {
- float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
- vec3 spot_dir = light_direction;
-
- float spot_cutoff = light_spot_angle;
- float angle = dot(-normalize(light_rel_vec), spot_dir);
-
- if (angle > spot_cutoff) {
- float scos = max(angle, spot_cutoff);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
- spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
-
- light_att = vec3(spot_attenuation);
- } else {
- light_att = vec3(0.0);
- }
- } else {
- light_att = vec3(0.0);
- }
-
- L = normalize(light_rel_vec);
-
-#endif
-
-#if !defined(SHADOWS_DISABLED)
-
-#ifdef USE_SHADOW
- {
- highp vec4 splane = shadow_coord;
-
- float shadow = sample_shadow(light_shadow_atlas, splane);
- light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
- }
-#endif
-
-#endif // SHADOWS_DISABLED
-
-#endif // LIGHT_MODE_SPOT
-
-#ifdef USE_VERTEX_LIGHTING
- //vertex lighting
-
- specular_light += specular_interp * specular_blob_intensity * light_att;
- diffuse_light += diffuse_interp * albedo * light_att;
-
-#else
- //fragment lighting
- light_compute(
- normal,
- L,
- eye_position,
- binormal,
- tangent,
- light_color.xyz,
- light_att,
- albedo,
- transmission,
- specular_blob_intensity * light_specular,
- roughness,
- metallic,
- specular,
- rim,
- rim_tint,
- clearcoat,
- clearcoat_gloss,
- anisotropy,
- diffuse_light,
- specular_light,
- alpha);
-
-#endif //vertex lighting
-
-#endif //USE_LIGHTING
- //compute and merge
-
-#ifdef USE_SHADOW_TO_OPACITY
-
- alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
-
-#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
- discard;
- }
-#endif // ALPHA_SCISSOR_USED
-
-#ifdef USE_DEPTH_PREPASS
- if (alpha < 0.1) {
- discard;
- }
-#endif // USE_DEPTH_PREPASS
-
-#endif // !USE_SHADOW_TO_OPACITY
-
-#ifndef RENDER_DEPTH
-
-#ifdef SHADELESS
-
- gl_FragColor = vec4(albedo, alpha);
-#else
-
- ambient_light *= albedo;
-
-#if defined(ENABLE_AO)
- ambient_light *= ao;
- ao_light_affect = mix(1.0, ao, ao_light_affect);
- specular_light *= ao_light_affect;
- diffuse_light *= ao_light_affect;
-#endif
-
- diffuse_light *= 1.0 - metallic;
- ambient_light *= 1.0 - metallic;
-
- gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
-
- //add emission if in base pass
-#ifdef BASE_PASS
- gl_FragColor.rgb += emission;
-#endif
- // gl_FragColor = vec4(normal, 1.0);
-
-//apply fog
-#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#if defined(USE_VERTEX_LIGHTING)
-
-#if defined(BASE_PASS)
- gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_interp.rgb, fog_interp.a);
-#else
- gl_FragColor.rgb *= (1.0 - fog_interp.a);
-#endif // BASE_PASS
-
-#else //pixel based fog
- float fog_amount = 0.0;
-
-#ifdef LIGHT_MODE_DIRECTIONAL
-
- vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0));
-#else
- vec3 fog_color = fog_color_base.rgb;
-#endif
-
-#ifdef FOG_DEPTH_ENABLED
-
- {
- float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
-
- fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
-
- if (fog_transmit_enabled) {
- vec3 total_light = gl_FragColor.rgb;
- float transmit = pow(fog_z, fog_transmit_curve);
- fog_color = mix(max(total_light, fog_color), fog_color, transmit);
- }
- }
-#endif
-
-#ifdef FOG_HEIGHT_ENABLED
- {
- float y = (camera_matrix * vec4(vertex, 1.0)).y;
- fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
- }
-#endif
-
-#if defined(BASE_PASS)
- gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_color, fog_amount);
-#else
- gl_FragColor.rgb *= (1.0 - fog_amount);
-#endif // BASE_PASS
-
-#endif //use vertex lit
-
-#endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
-
-#endif //unshaded
-
-#else // not RENDER_DEPTH
-//depth render
-#ifdef USE_RGBA_SHADOWS
-
- highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
- highp vec4 comp = fract(depth * vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0));
- comp -= comp.xxyz * vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0);
- gl_FragColor = comp;
-
-#endif
-#endif
-}
diff --git a/drivers/gles2/shaders/screen_space_reflection.glsl b/drivers/gles2/shaders/screen_space_reflection.glsl
deleted file mode 100644
index 6b5b7c885c..0000000000
--- a/drivers/gles2/shaders/screen_space_reflection.glsl
+++ /dev/null
@@ -1,284 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-out vec2 pos_interp;
-
-void main() {
- uv_interp = uv_in;
- gl_Position = vertex_attrib;
- pos_interp.xy = gl_Position.xy;
-}
-
-/* clang-format off */
-[fragment]
-
-in vec2 uv_interp;
-/* clang-format on */
-in vec2 pos_interp;
-
-uniform sampler2D source_diffuse; //texunit:0
-uniform sampler2D source_normal_roughness; //texunit:1
-uniform sampler2D source_depth; //texunit:2
-
-uniform float camera_z_near;
-uniform float camera_z_far;
-
-uniform vec2 viewport_size;
-uniform vec2 pixel_size;
-
-uniform float filter_mipmap_levels;
-
-uniform mat4 inverse_projection;
-uniform mat4 projection;
-
-uniform int num_steps;
-uniform float depth_tolerance;
-uniform float distance_fade;
-uniform float curve_fade_in;
-
-layout(location = 0) out vec4 frag_color;
-
-vec2 view_to_screen(vec3 view_pos, out float w) {
- vec4 projected = projection * vec4(view_pos, 1.0);
- projected.xyz /= projected.w;
- projected.xy = projected.xy * 0.5 + 0.5;
- w = projected.w;
- return projected.xy;
-}
-
-#define M_PI 3.14159265359
-
-void main() {
- vec4 diffuse = texture(source_diffuse, uv_interp);
- vec4 normal_roughness = texture(source_normal_roughness, uv_interp);
-
- vec3 normal;
-
- normal = normal_roughness.xyz * 2.0 - 1.0;
-
- float roughness = normal_roughness.w;
-
- float depth_tex = texture(source_depth, uv_interp).r;
-
- vec4 world_pos = inverse_projection * vec4(uv_interp * 2.0 - 1.0, depth_tex * 2.0 - 1.0, 1.0);
- vec3 vertex = world_pos.xyz / world_pos.w;
-
- vec3 view_dir = normalize(vertex);
- vec3 ray_dir = normalize(reflect(view_dir, normal));
-
- if (dot(ray_dir, normal) < 0.001) {
- frag_color = vec4(0.0);
- return;
- }
- //ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
-
- //ray_dir = normalize(vec3(1,1,-1));
-
- ////////////////
-
- //make ray length and clip it against the near plane (don't want to trace beyond visible)
- float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far;
- vec3 ray_end = vertex + ray_dir * ray_len;
-
- float w_begin;
- vec2 vp_line_begin = view_to_screen(vertex, w_begin);
- float w_end;
- vec2 vp_line_end = view_to_screen(ray_end, w_end);
- vec2 vp_line_dir = vp_line_end - vp_line_begin;
-
- //we need to interpolate w along the ray, to generate perspective correct reflections
-
- w_begin = 1.0 / w_begin;
- w_end = 1.0 / w_end;
-
- float z_begin = vertex.z * w_begin;
- float z_end = ray_end.z * w_end;
-
- vec2 line_begin = vp_line_begin / pixel_size;
- vec2 line_dir = vp_line_dir / pixel_size;
- float z_dir = z_end - z_begin;
- float w_dir = w_end - w_begin;
-
- // clip the line to the viewport edges
-
- float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
- float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y));
- float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x));
- float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y));
- float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
- line_dir *= line_clip;
- z_dir *= line_clip;
- w_dir *= line_clip;
-
- //clip z and w advance to line advance
- vec2 line_advance = normalize(line_dir); //down to pixel
- float step_size = length(line_advance) / length(line_dir);
- float z_advance = z_dir * step_size; // adapt z advance to line advance
- float w_advance = w_dir * step_size; // adapt w advance to line advance
-
- //make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
- float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
- line_advance *= advance_angle_adj; // adapt z advance to line advance
- z_advance *= advance_angle_adj;
- w_advance *= advance_angle_adj;
-
- vec2 pos = line_begin;
- float z = z_begin;
- float w = w_begin;
- float z_from = z / w;
- float z_to = z_from;
- float depth;
- vec2 prev_pos = pos;
-
- bool found = false;
-
- float steps_taken = 0.0;
-
- for (int i = 0; i < num_steps; i++) {
- pos += line_advance;
- z += z_advance;
- w += w_advance;
-
- //convert to linear depth
-
- depth = texture(source_depth, pos * pixel_size).r * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
-#endif
- depth = -depth;
-
- z_from = z_to;
- z_to = z / w;
-
- if (depth > z_to) {
- //if depth was surpassed
- if (depth <= max(z_to, z_from) + depth_tolerance) {
- //check the depth tolerance
- found = true;
- }
- break;
- }
-
- steps_taken += 1.0;
- prev_pos = pos;
- }
-
- if (found) {
- float margin_blend = 1.0;
-
- vec2 margin = vec2((viewport_size.x + viewport_size.y) * 0.5 * 0.05); //make a uniform margin
- if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, viewport_size + margin)))) {
- //clip outside screen + margin
- frag_color = vec4(0.0);
- return;
- }
-
- {
- //blend fading out towards external margin
- vec2 margin_grad = mix(pos - viewport_size, -pos, lessThan(pos, vec2(0.0)));
- margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y));
- //margin_blend=1.0;
- }
-
- vec2 final_pos;
- float grad;
- grad = steps_taken / float(num_steps);
- float initial_fade = curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), curve_fade_in);
- float fade = pow(clamp(1.0 - grad, 0.0, 1.0), distance_fade) * initial_fade;
- final_pos = pos;
-
-#ifdef REFLECT_ROUGHNESS
-
- vec4 final_color;
- //if roughness is enabled, do screen space cone tracing
- if (roughness > 0.001) {
- ///////////////////////////////////////////////////////////////////////////////////////
- //use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
-
- float gloss = 1.0 - roughness;
- float cone_angle = roughness * M_PI * 0.5;
- vec2 cone_dir = final_pos - line_begin;
- float cone_len = length(cone_dir);
- cone_dir = normalize(cone_dir); //will be used normalized from now on
- float max_mipmap = filter_mipmap_levels - 1.0;
- float gloss_mult = gloss;
-
- float rem_alpha = 1.0;
- final_color = vec4(0.0);
-
- for (int i = 0; i < 7; i++) {
- float op_len = 2.0 * tan(cone_angle) * cone_len; //opposite side of iso triangle
- float radius;
- {
- //fit to sphere inside cone (sphere ends at end of cone), something like this:
- // ___
- // \O/
- // V
- //
- // as it avoids bleeding from beyond the reflection as much as possible. As a plus
- // it also makes the rough reflection more elongated.
- float a = op_len;
- float h = cone_len;
- float a2 = a * a;
- float fh2 = 4.0f * h * h;
- radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
- }
-
- //find the place where screen must be sampled
- vec2 sample_pos = (line_begin + cone_dir * (cone_len - radius)) * pixel_size;
- //radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
- float mipmap = clamp(log2(radius), 0.0, max_mipmap);
-
- //mipmap = max(mipmap-1.0,0.0);
- //do sampling
-
- vec4 sample_color;
- {
- sample_color = textureLod(source_diffuse, sample_pos, mipmap);
- }
-
- //multiply by gloss
- sample_color.rgb *= gloss_mult;
- sample_color.a = gloss_mult;
-
- rem_alpha -= sample_color.a;
- if (rem_alpha < 0.0) {
- sample_color.rgb *= (1.0 - abs(rem_alpha));
- }
-
- final_color += sample_color;
-
- if (final_color.a >= 0.95) {
- // This code of accumulating gloss and aborting on near one
- // makes sense when you think of cone tracing.
- // Think of it as if roughness was 0, then we could abort on the first
- // iteration. For lesser roughness values, we need more iterations, but
- // each needs to have less influence given the sphere is smaller
- break;
- }
-
- cone_len -= radius * 2.0; //go to next (smaller) circle.
-
- gloss_mult *= gloss;
- }
- } else {
- final_color = textureLod(source_diffuse, final_pos * pixel_size, 0.0);
- }
-
- frag_color = vec4(final_color.rgb, fade * margin_blend);
-
-#else
- frag_color = vec4(textureLod(source_diffuse, final_pos * pixel_size, 0.0).rgb, fade * margin_blend);
-#endif
-
- } else {
- frag_color = vec4(0.0, 0.0, 0.0, 0.0);
- }
-}
diff --git a/drivers/gles2/shaders/ssao.glsl b/drivers/gles2/shaders/ssao.glsl
deleted file mode 100644
index 0fd29e8dcc..0000000000
--- a/drivers/gles2/shaders/ssao.glsl
+++ /dev/null
@@ -1,283 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
- gl_Position = vertex_attrib;
- gl_Position.z = 1.0;
-}
-
-/* clang-format off */
-[fragment]
-
-#define TWO_PI 6.283185307179586476925286766559
-
-#ifdef SSAO_QUALITY_HIGH
-
-#define NUM_SAMPLES (80)
-
-#endif
-
-#ifdef SSAO_QUALITY_LOW
-
-#define NUM_SAMPLES (15)
-
-#endif
-
-#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH)
-
-#define NUM_SAMPLES (40)
-
-#endif
-
-// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower
-// miplevel to maintain reasonable spatial locality in the cache
-// If this number is too small (< 3), too many taps will land in the same pixel, and we'll get bad variance that manifests as flashing.
-// If it is too high (> 5), we'll get bad performance because we're not using the MIP levels effectively
-#define LOG_MAX_OFFSET (3)
-
-// This must be less than or equal to the MAX_MIP_LEVEL defined in SSAO.cpp
-#define MAX_MIP_LEVEL (4)
-
-// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent
-// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9
-
-const int ROTATIONS[] = int[](
- 1, 1, 2, 3, 2, 5, 2, 3, 2,
- 3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
- 9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
- 11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
- 11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
- 19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
- 13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
- 29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
- 31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
- 19, 27, 21, 25, 39, 29, 17, 21, 27);
-/* clang-format on */
-
-//#define NUM_SPIRAL_TURNS (7)
-const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1];
-
-uniform sampler2D source_depth; //texunit:0
-uniform highp usampler2D source_depth_mipmaps; //texunit:1
-uniform sampler2D source_normal; //texunit:2
-
-uniform ivec2 screen_size;
-uniform float camera_z_far;
-uniform float camera_z_near;
-
-uniform float intensity_div_r6;
-uniform float radius;
-
-#ifdef ENABLE_RADIUS2
-uniform float intensity_div_r62;
-uniform float radius2;
-#endif
-
-uniform float bias;
-uniform float proj_scale;
-
-layout(location = 0) out float visibility;
-
-uniform vec4 proj_info;
-
-vec3 reconstructCSPosition(vec2 S, float z) {
-#ifdef USE_ORTHOGONAL_PROJECTION
- return vec3((S.xy * proj_info.xy + proj_info.zw), z);
-#else
- return vec3((S.xy * proj_info.xy + proj_info.zw) * z, z);
-
-#endif
-}
-
-vec3 getPosition(ivec2 ssP) {
- vec3 P;
- P.z = texelFetch(source_depth, ssP, 0).r;
-
- P.z = P.z * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
-#endif
- P.z = -P.z;
-
- // Offset to pixel center
- P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
- return P;
-}
-
-/** Reconstructs screen-space unit normal from screen-space position */
-vec3 reconstructCSFaceNormal(vec3 C) {
- return normalize(cross(dFdy(C), dFdx(C)));
-}
-
-/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
-vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) {
- // Radius relative to ssR
- float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
- float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
-
- ssR = alpha;
- return vec2(cos(angle), sin(angle));
-}
-
-/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */
-vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
- // Derivation:
- // mipLevel = floor(log(ssR / MAX_OFFSET));
- int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);
-
- ivec2 ssP = ivec2(ssR * unitOffset) + ssC;
-
- vec3 P;
-
- // We need to divide by 2^mipLevel to read the appropriately scaled coordinate from a MIP-map.
- // Manually clamp to the texture size because texelFetch bypasses the texture unit
- ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));
-
- if (mipLevel < 1) {
- //read from depth buffer
- P.z = texelFetch(source_depth, mipP, 0).r;
- P.z = P.z * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
-
-#endif
- P.z = -P.z;
-
- } else {
- //read from mipmaps
- uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r;
- P.z = -(float(d) / 65535.0) * camera_z_far;
- }
-
- // Offset to pixel center
- P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
-
- return P;
-}
-
-/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
- to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
-
- Note that units of H() in the HPG12 paper are meters, not
- unitless. The whole falloff/sampling function is therefore
- unitless. In this implementation, we factor out (9 / radius).
-
- Four versions of the falloff function are implemented below
-*/
-float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
- // Offset on the unit disk, spun for this pixel
- float ssR;
- vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
- ssR *= ssDiskRadius;
-
- // The occluding point in camera space
- vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
-
- vec3 v = Q - C;
-
- float vv = dot(v, v);
- float vn = dot(v, n_C);
-
- const float epsilon = 0.01;
- float radius2 = p_radius * p_radius;
-
- // A: From the HPG12 paper
- // Note large epsilon to avoid overdarkening within cracks
- //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
-
- // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
- float f = max(radius2 - vv, 0.0);
- return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
-
- // C: Medium contrast (which looks better at high radii), no division. Note that the
- // contribution still falls off with radius^2, but we've adjusted the rate in a way that is
- // more computationally efficient and happens to be aesthetically pleasing.
- // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
-
- // D: Low contrast, no division operation
- // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
-}
-
-void main() {
- // Pixel being shaded
- ivec2 ssC = ivec2(gl_FragCoord.xy);
-
- // World space point being shaded
- vec3 C = getPosition(ssC);
-
- /*
- if (C.z <= -camera_z_far*0.999) {
- // We're on the skybox
- visibility=1.0;
- return;
- }
- */
-
- //visibility=-C.z/camera_z_far;
- //return;
-#if 0
- vec3 n_C = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
-#else
- vec3 n_C = reconstructCSFaceNormal(C);
- n_C = -n_C;
-#endif
-
- // Hash function used in the HPG12 AlchemyAO paper
- float randomPatternRotationAngle = mod(float((3 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 10), TWO_PI);
-
- // Reconstruct normals from positions. These will lead to 1-pixel black lines
- // at depth discontinuities, however the blur will wipe those out so they are not visible
- // in the final image.
-
- // Choose the screen-space sample radius
- // proportional to the projected area of the sphere
-#ifdef USE_ORTHOGONAL_PROJECTION
- float ssDiskRadius = -proj_scale * radius;
-#else
- float ssDiskRadius = -proj_scale * radius / C.z;
-#endif
- float sum = 0.0;
- for (int i = 0; i < NUM_SAMPLES; ++i) {
- sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle);
- }
-
- float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));
-
-#ifdef ENABLE_RADIUS2
-
- //go again for radius2
- randomPatternRotationAngle = mod(float((5 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 11), TWO_PI);
-
- // Reconstruct normals from positions. These will lead to 1-pixel black lines
- // at depth discontinuities, however the blur will wipe those out so they are not visible
- // in the final image.
-
- // Choose the screen-space sample radius
- // proportional to the projected area of the sphere
- ssDiskRadius = -proj_scale * radius2 / C.z;
-
- sum = 0.0;
- for (int i = 0; i < NUM_SAMPLES; ++i) {
- sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle);
- }
-
- A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
-#endif
- // Bilateral box-filter over a quad for free, respecting depth edges
- // (the difference that this makes is subtle)
- if (abs(dFdx(C.z)) < 0.02) {
- A -= dFdx(A) * (float(ssC.x & 1) - 0.5);
- }
- if (abs(dFdy(C.z)) < 0.02) {
- A -= dFdy(A) * (float(ssC.y & 1) - 0.5);
- }
-
- visibility = A;
-}
diff --git a/drivers/gles2/shaders/ssao_blur.glsl b/drivers/gles2/shaders/ssao_blur.glsl
deleted file mode 100644
index f065cd74eb..0000000000
--- a/drivers/gles2/shaders/ssao_blur.glsl
+++ /dev/null
@@ -1,116 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
- gl_Position = vertex_attrib;
- gl_Position.z = 1.0;
-}
-
-/* clang-format off */
-[fragment]
-
-uniform sampler2D source_ssao; //texunit:0
-/* clang-format on */
-uniform sampler2D source_depth; //texunit:1
-uniform sampler2D source_normal; //texunit:3
-
-layout(location = 0) out float visibility;
-
-//////////////////////////////////////////////////////////////////////////////////////////////
-// Tunable Parameters:
-
-/** Increase to make depth edges crisper. Decrease to reduce flicker. */
-uniform float edge_sharpness;
-
-/** Step in 2-pixel intervals since we already blurred against neighbors in the
- first AO pass. This constant can be increased while R decreases to improve
- performance at the expense of some dithering artifacts.
-
- Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
- unobjectionable after shading was applied but eliminated most temporal incoherence
- from using small numbers of sample taps.
- */
-
-uniform int filter_scale;
-
-/** Filter radius in pixels. This will be multiplied by SCALE. */
-#define R (4)
-
-//////////////////////////////////////////////////////////////////////////////////////////////
-
-// Gaussian coefficients
-const float gaussian[R + 1] =
- //float[](0.356642, 0.239400, 0.072410, 0.009869);
- //float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
- float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
-//float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
-
-/** (1, 0) or (0, 1)*/
-uniform ivec2 axis;
-
-uniform float camera_z_far;
-uniform float camera_z_near;
-
-uniform ivec2 screen_size;
-
-void main() {
- ivec2 ssC = ivec2(gl_FragCoord.xy);
-
- float depth = texelFetch(source_depth, ssC, 0).r;
- //vec3 normal = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
-
- depth = depth * 2.0 - 1.0;
- depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
-
- float depth_divide = 1.0 / camera_z_far;
-
- //depth *= depth_divide;
-
- /*
- if (depth > camera_z_far * 0.999) {
- discard; //skybox
- }
- */
-
- float sum = texelFetch(source_ssao, ssC, 0).r;
-
- // Base weight for depth falloff. Increase this for more blurriness,
- // decrease it for better edge discrimination
- float BASE = gaussian[0];
- float totalWeight = BASE;
- sum *= totalWeight;
-
- ivec2 clamp_limit = screen_size - ivec2(1);
-
- for (int r = -R; r <= R; ++r) {
- // We already handled the zero case above. This loop should be unrolled and the static branch optimized out,
- // so the IF statement has no runtime cost
- if (r != 0) {
- ivec2 ppos = ssC + axis * (r * filter_scale);
- float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r;
- ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit);
- float temp_depth = texelFetch(source_depth, rpos, 0).r;
- //vec3 temp_normal = texelFetch(source_normal, rpos, 0).rgb * 2.0 - 1.0;
-
- temp_depth = temp_depth * 2.0 - 1.0;
- temp_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - temp_depth * (camera_z_far - camera_z_near));
- // temp_depth *= depth_divide;
-
- // spatial domain: offset gaussian tap
- float weight = 0.3 + gaussian[abs(r)];
- //weight *= max(0.0,dot(temp_normal,normal));
-
- // range domain (the "bilateral" weight). As depth difference increases, decrease weight.
- weight *= max(0.0, 1.0 - edge_sharpness * abs(temp_depth - depth));
-
- sum += value * weight;
- totalWeight += weight;
- }
- }
-
- const float epsilon = 0.0001;
- visibility = sum / (totalWeight + epsilon);
-}
diff --git a/drivers/gles2/shaders/ssao_minify.glsl b/drivers/gles2/shaders/ssao_minify.glsl
deleted file mode 100644
index f654e00a4f..0000000000
--- a/drivers/gles2/shaders/ssao_minify.glsl
+++ /dev/null
@@ -1,54 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-#ifdef MINIFY_START
-
-#define SDEPTH_TYPE highp sampler2D
-uniform float camera_z_far;
-uniform float camera_z_near;
-/* clang-format on */
-
-#else
-
-#define SDEPTH_TYPE mediump usampler2D
-
-#endif
-
-uniform SDEPTH_TYPE source_depth; //texunit:0
-
-uniform ivec2 from_size;
-uniform int source_mipmap;
-
-layout(location = 0) out mediump uint depth;
-
-void main() {
- ivec2 ssP = ivec2(gl_FragCoord.xy);
-
- // Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
- // On DX9, the bit-and can be implemented with floating-point modulo
-
-#ifdef MINIFY_START
- float fdepth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
- fdepth = fdepth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- fdepth = ((fdepth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- fdepth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - fdepth * (camera_z_far - camera_z_near));
-#endif
- fdepth /= camera_z_far;
- depth = uint(clamp(fdepth * 65535.0, 0.0, 65535.0));
-
-#else
- depth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
-#endif
-}
diff --git a/drivers/gles2/shaders/stdlib.glsl b/drivers/gles2/shaders/stdlib.glsl
deleted file mode 100644
index 807036dda6..0000000000
--- a/drivers/gles2/shaders/stdlib.glsl
+++ /dev/null
@@ -1,440 +0,0 @@
-
-vec2 select2(vec2 a, vec2 b, bvec2 c) {
- vec2 ret;
-
- ret.x = c.x ? b.x : a.x;
- ret.y = c.y ? b.y : a.y;
-
- return ret;
-}
-
-vec3 select3(vec3 a, vec3 b, bvec3 c) {
- vec3 ret;
-
- ret.x = c.x ? b.x : a.x;
- ret.y = c.y ? b.y : a.y;
- ret.z = c.z ? b.z : a.z;
-
- return ret;
-}
-
-vec4 select4(vec4 a, vec4 b, bvec4 c) {
- vec4 ret;
-
- ret.x = c.x ? b.x : a.x;
- ret.y = c.y ? b.y : a.y;
- ret.z = c.z ? b.z : a.z;
- ret.w = c.w ? b.w : a.w;
-
- return ret;
-}
-
-highp vec4 texel2DFetch(highp sampler2D tex, ivec2 size, ivec2 coord) {
- float x_coord = float(2 * coord.x + 1) / float(size.x * 2);
- float y_coord = float(2 * coord.y + 1) / float(size.y * 2);
-
- return texture2DLod(tex, vec2(x_coord, y_coord), 0.0);
-}
-
-#if defined(SINH_USED)
-
-highp float sinh(highp float x) {
- return 0.5 * (exp(x) - exp(-x));
-}
-
-highp vec2 sinh(highp vec2 x) {
- return 0.5 * vec2(exp(x.x) - exp(-x.x), exp(x.y) - exp(-x.y));
-}
-
-highp vec3 sinh(highp vec3 x) {
- return 0.5 * vec3(exp(x.x) - exp(-x.x), exp(x.y) - exp(-x.y), exp(x.z) - exp(-x.z));
-}
-
-highp vec4 sinh(highp vec4 x) {
- return 0.5 * vec4(exp(x.x) - exp(-x.x), exp(x.y) - exp(-x.y), exp(x.z) - exp(-x.z), exp(x.w) - exp(-x.w));
-}
-
-#endif
-
-#if defined(COSH_USED)
-
-highp float cosh(highp float x) {
- return 0.5 * (exp(x) + exp(-x));
-}
-
-highp vec2 cosh(highp vec2 x) {
- return 0.5 * vec2(exp(x.x) + exp(-x.x), exp(x.y) + exp(-x.y));
-}
-
-highp vec3 cosh(highp vec3 x) {
- return 0.5 * vec3(exp(x.x) + exp(-x.x), exp(x.y) + exp(-x.y), exp(x.z) + exp(-x.z));
-}
-
-highp vec4 cosh(highp vec4 x) {
- return 0.5 * vec4(exp(x.x) + exp(-x.x), exp(x.y) + exp(-x.y), exp(x.z) + exp(-x.z), exp(x.w) + exp(-x.w));
-}
-
-#endif
-
-#if defined(TANH_USED)
-
-highp float tanh(highp float x) {
- highp float exp2x = exp(2.0 * x);
- return (exp2x - 1.0) / (exp2x + 1.0);
-}
-
-highp vec2 tanh(highp vec2 x) {
- highp float exp2x = exp(2.0 * x.x);
- highp float exp2y = exp(2.0 * x.y);
- return vec2((exp2x - 1.0) / (exp2x + 1.0), (exp2y - 1.0) / (exp2y + 1.0));
-}
-
-highp vec3 tanh(highp vec3 x) {
- highp float exp2x = exp(2.0 * x.x);
- highp float exp2y = exp(2.0 * x.y);
- highp float exp2z = exp(2.0 * x.z);
- return vec3((exp2x - 1.0) / (exp2x + 1.0), (exp2y - 1.0) / (exp2y + 1.0), (exp2z - 1.0) / (exp2z + 1.0));
-}
-
-highp vec4 tanh(highp vec4 x) {
- highp float exp2x = exp(2.0 * x.x);
- highp float exp2y = exp(2.0 * x.y);
- highp float exp2z = exp(2.0 * x.z);
- highp float exp2w = exp(2.0 * x.w);
- return vec4((exp2x - 1.0) / (exp2x + 1.0), (exp2y - 1.0) / (exp2y + 1.0), (exp2z - 1.0) / (exp2z + 1.0), (exp2w - 1.0) / (exp2w + 1.0));
-}
-
-#endif
-
-#if defined(ASINH_USED)
-
-highp float asinh(highp float x) {
- return sign(x) * log(abs(x) + sqrt(1.0 + x * x));
-}
-
-highp vec2 asinh(highp vec2 x) {
- return vec2(sign(x.x) * log(abs(x.x) + sqrt(1.0 + x.x * x.x)), sign(x.y) * log(abs(x.y) + sqrt(1.0 + x.y * x.y)));
-}
-
-highp vec3 asinh(highp vec3 x) {
- return vec3(sign(x.x) * log(abs(x.x) + sqrt(1.0 + x.x * x.x)), sign(x.y) * log(abs(x.y) + sqrt(1.0 + x.y * x.y)), sign(x.z) * log(abs(x.z) + sqrt(1.0 + x.z * x.z)));
-}
-
-highp vec4 asinh(highp vec4 x) {
- return vec4(sign(x.x) * log(abs(x.x) + sqrt(1.0 + x.x * x.x)), sign(x.y) * log(abs(x.y) + sqrt(1.0 + x.y * x.y)), sign(x.z) * log(abs(x.z) + sqrt(1.0 + x.z * x.z)), sign(x.w) * log(abs(x.w) + sqrt(1.0 + x.w * x.w)));
-}
-
-#endif
-
-#if defined(ACOSH_USED)
-
-highp float acosh(highp float x) {
- return log(x + sqrt(x * x - 1.0));
-}
-
-highp vec2 acosh(highp vec2 x) {
- return vec2(log(x.x + sqrt(x.x * x.x - 1.0)), log(x.y + sqrt(x.y * x.y - 1.0)));
-}
-
-highp vec3 acosh(highp vec3 x) {
- return vec3(log(x.x + sqrt(x.x * x.x - 1.0)), log(x.y + sqrt(x.y * x.y - 1.0)), log(x.z + sqrt(x.z * x.z - 1.0)));
-}
-
-highp vec4 acosh(highp vec4 x) {
- return vec4(log(x.x + sqrt(x.x * x.x - 1.0)), log(x.y + sqrt(x.y * x.y - 1.0)), log(x.z + sqrt(x.z * x.z - 1.0)), log(x.w + sqrt(x.w * x.w - 1.0)));
-}
-
-#endif
-
-#if defined(ATANH_USED)
-
-highp float atanh(highp float x) {
- return 0.5 * log((1.0 + x) / (1.0 - x));
-}
-
-highp vec2 atanh(highp vec2 x) {
- return 0.5 * vec2(log((1.0 + x.x) / (1.0 - x.x)), log((1.0 + x.y) / (1.0 - x.y)));
-}
-
-highp vec3 atanh(highp vec3 x) {
- return 0.5 * vec3(log((1.0 + x.x) / (1.0 - x.x)), log((1.0 + x.y) / (1.0 - x.y)), log((1.0 + x.z) / (1.0 - x.z)));
-}
-
-highp vec4 atanh(highp vec4 x) {
- return 0.5 * vec4(log((1.0 + x.x) / (1.0 - x.x)), log((1.0 + x.y) / (1.0 - x.y)), log((1.0 + x.z) / (1.0 - x.z)), log((1.0 + x.w) / (1.0 - x.w)));
-}
-
-#endif
-
-#if defined(ROUND_USED)
-
-highp float round(highp float x) {
- return floor(x + 0.5);
-}
-
-highp vec2 round(highp vec2 x) {
- return floor(x + vec2(0.5));
-}
-
-highp vec3 round(highp vec3 x) {
- return floor(x + vec3(0.5));
-}
-
-highp vec4 round(highp vec4 x) {
- return floor(x + vec4(0.5));
-}
-
-#endif
-
-#if defined(ROUND_EVEN_USED)
-
-highp float roundEven(highp float x) {
- highp float t = x + 0.5;
- highp float f = floor(t);
- highp float r;
- if (t == f) {
- if (x > 0)
- r = f - mod(f, 2);
- else
- r = f + mod(f, 2);
- } else
- r = f;
- return r;
-}
-
-highp vec2 roundEven(highp vec2 x) {
- return vec2(roundEven(x.x), roundEven(x.y));
-}
-
-highp vec3 roundEven(highp vec3 x) {
- return vec3(roundEven(x.x), roundEven(x.y), roundEven(x.z));
-}
-
-highp vec4 roundEven(highp vec4 x) {
- return vec4(roundEven(x.x), roundEven(x.y), roundEven(x.z), roundEven(x.w));
-}
-
-#endif
-
-#if defined(IS_INF_USED)
-
-bool isinf(highp float x) {
- return (2 * x == x) && (x != 0);
-}
-
-bvec2 isinf(highp vec2 x) {
- return bvec2((2 * x.x == x.x) && (x.x != 0), (2 * x.y == x.y) && (x.y != 0));
-}
-
-bvec3 isinf(highp vec3 x) {
- return bvec3((2 * x.x == x.x) && (x.x != 0), (2 * x.y == x.y) && (x.y != 0), (2 * x.z == x.z) && (x.z != 0));
-}
-
-bvec4 isinf(highp vec4 x) {
- return bvec4((2 * x.x == x.x) && (x.x != 0), (2 * x.y == x.y) && (x.y != 0), (2 * x.z == x.z) && (x.z != 0), (2 * x.w == x.w) && (x.w != 0));
-}
-
-#endif
-
-#if defined(IS_NAN_USED)
-
-bool isnan(highp float x) {
- return x != x;
-}
-
-bvec2 isnan(highp vec2 x) {
- return bvec2(x.x != x.x, x.y != x.y);
-}
-
-bvec3 isnan(highp vec3 x) {
- return bvec3(x.x != x.x, x.y != x.y, x.z != x.z);
-}
-
-bvec4 isnan(highp vec4 x) {
- return bvec4(x.x != x.x, x.y != x.y, x.z != x.z, x.w != x.w);
-}
-
-#endif
-
-#if defined(TRUNC_USED)
-
-highp float trunc(highp float x) {
- return x < 0 ? -floor(-x) : floor(x);
-}
-
-highp vec2 trunc(highp vec2 x) {
- return vec2(x.x < 0 ? -floor(-x.x) : floor(x.x), x.y < 0 ? -floor(-x.y) : floor(x.y));
-}
-
-highp vec3 trunc(highp vec3 x) {
- return vec3(x.x < 0 ? -floor(-x.x) : floor(x.x), x.y < 0 ? -floor(-x.y) : floor(x.y), x.z < 0 ? -floor(-x.z) : floor(x.z));
-}
-
-highp vec4 trunc(highp vec4 x) {
- return vec4(x.x < 0 ? -floor(-x.x) : floor(x.x), x.y < 0 ? -floor(-x.y) : floor(x.y), x.z < 0 ? -floor(-x.z) : floor(x.z), x.w < 0 ? -floor(-x.w) : floor(x.w));
-}
-
-#endif
-
-#if defined(DETERMINANT_USED)
-
-highp float determinant(highp mat2 m) {
- return m[0].x * m[1].y - m[1].x * m[0].y;
-}
-
-highp float determinant(highp mat3 m) {
- return m[0].x * (m[1].y * m[2].z - m[2].y * m[1].z) - m[1].x * (m[0].y * m[2].z - m[2].y * m[0].z) + m[2].x * (m[0].y * m[1].z - m[1].y * m[0].z);
-}
-
-highp float determinant(highp mat4 m) {
- highp float s00 = m[2].z * m[3].w - m[3].z * m[2].w;
- highp float s01 = m[2].y * m[3].w - m[3].y * m[2].w;
- highp float s02 = m[2].y * m[3].z - m[3].y * m[2].z;
- highp float s03 = m[2].x * m[3].w - m[3].x * m[2].w;
- highp float s04 = m[2].x * m[3].z - m[3].x * m[2].z;
- highp float s05 = m[2].x * m[3].y - m[3].x * m[2].y;
- highp vec4 c = vec4((m[1].y * s00 - m[1].z * s01 + m[1].w * s02), -(m[1].x * s00 - m[1].z * s03 + m[1].w * s04), (m[1].x * s01 - m[1].y * s03 + m[1].w * s05), -(m[1].x * s02 - m[1].y * s04 + m[1].z * s05));
- return m[0].x * c.x + m[0].y * c.y + m[0].z * c.z + m[0].w * c.w;
-}
-
-#endif
-
-#if defined(INVERSE_USED)
-
-highp mat2 inverse(highp mat2 m) {
- highp float d = 1.0 / (m[0].x * m[1].y - m[1].x * m[0].y);
- return mat2(
- vec2(m[1].y * d, -m[0].y * d),
- vec2(-m[1].x * d, m[0].x * d));
-}
-
-highp mat3 inverse(highp mat3 m) {
- highp float d = 1.0 / (m[0].x * (m[1].y * m[2].z - m[2].y * m[1].z) - m[1].x * (m[0].y * m[2].z - m[2].y * m[0].z) + m[2].x * (m[0].y * m[1].z - m[1].y * m[0].z));
- return mat3(
- vec3((m[1].y * m[2].z - m[2].y * m[1].z), -(m[1].x * m[2].z - m[2].x * m[1].z), (m[1].x * m[2].y - m[2].x * m[1].y)) * d,
- vec3(-(m[0].y * m[2].z - m[2].y * m[0].z), (m[0].x * m[2].z - m[2].x * m[0].z), -(m[0].x * m[2].y - m[2].x * m[0].y)) * d,
- vec3((m[0].y * m[1].z - m[1].y * m[0].z), -(m[0].x * m[1].z - m[1].x * m[0].z), (m[0].x * m[1].y - m[1].x * m[0].y)) * d);
-}
-
-highp mat4 inverse(highp mat4 m) {
- highp float c00 = m[2].z * m[3].w - m[3].z * m[2].w;
- highp float c02 = m[1].z * m[3].w - m[3].z * m[1].w;
- highp float c03 = m[1].z * m[2].w - m[2].z * m[1].w;
-
- highp float c04 = m[2].y * m[3].w - m[3].y * m[2].w;
- highp float c06 = m[1].y * m[3].w - m[3].y * m[1].w;
- highp float c07 = m[1].y * m[2].w - m[2].y * m[1].w;
-
- highp float c08 = m[2].y * m[3].z - m[3].y * m[2].z;
- highp float c10 = m[1].y * m[3].z - m[3].y * m[1].z;
- highp float c11 = m[1].y * m[2].z - m[2].y * m[1].z;
-
- highp float c12 = m[2].x * m[3].w - m[3].x * m[2].w;
- highp float c14 = m[1].x * m[3].w - m[3].x * m[1].w;
- highp float c15 = m[1].x * m[2].w - m[2].x * m[1].w;
-
- highp float c16 = m[2].x * m[3].z - m[3].x * m[2].z;
- highp float c18 = m[1].x * m[3].z - m[3].x * m[1].z;
- highp float c19 = m[1].x * m[2].z - m[2].x * m[1].z;
-
- highp float c20 = m[2].x * m[3].y - m[3].x * m[2].y;
- highp float c22 = m[1].x * m[3].y - m[3].x * m[1].y;
- highp float c23 = m[1].x * m[2].y - m[2].x * m[1].y;
-
- vec4 f0 = vec4(c00, c00, c02, c03);
- vec4 f1 = vec4(c04, c04, c06, c07);
- vec4 f2 = vec4(c08, c08, c10, c11);
- vec4 f3 = vec4(c12, c12, c14, c15);
- vec4 f4 = vec4(c16, c16, c18, c19);
- vec4 f5 = vec4(c20, c20, c22, c23);
-
- vec4 v0 = vec4(m[1].x, m[0].x, m[0].x, m[0].x);
- vec4 v1 = vec4(m[1].y, m[0].y, m[0].y, m[0].y);
- vec4 v2 = vec4(m[1].z, m[0].z, m[0].z, m[0].z);
- vec4 v3 = vec4(m[1].w, m[0].w, m[0].w, m[0].w);
-
- vec4 inv0 = vec4(v1 * f0 - v2 * f1 + v3 * f2);
- vec4 inv1 = vec4(v0 * f0 - v2 * f3 + v3 * f4);
- vec4 inv2 = vec4(v0 * f1 - v1 * f3 + v3 * f5);
- vec4 inv3 = vec4(v0 * f2 - v1 * f4 + v2 * f5);
-
- vec4 sa = vec4(+1, -1, +1, -1);
- vec4 sb = vec4(-1, +1, -1, +1);
-
- mat4 inv = mat4(inv0 * sa, inv1 * sb, inv2 * sa, inv3 * sb);
-
- vec4 r0 = vec4(inv[0].x, inv[1].x, inv[2].x, inv[3].x);
- vec4 d0 = vec4(m[0] * r0);
-
- highp float d1 = (d0.x + d0.y) + (d0.z + d0.w);
- highp float d = 1.0 / d1;
-
- return inv * d;
-}
-
-#endif
-
-#ifndef USE_GLES_OVER_GL
-
-#if defined(TRANSPOSE_USED)
-
-highp mat2 transpose(highp mat2 m) {
- return mat2(
- vec2(m[0].x, m[1].x),
- vec2(m[0].y, m[1].y));
-}
-
-highp mat3 transpose(highp mat3 m) {
- return mat3(
- vec3(m[0].x, m[1].x, m[2].x),
- vec3(m[0].y, m[1].y, m[2].y),
- vec3(m[0].z, m[1].z, m[2].z));
-}
-
-#endif
-
-highp mat4 transpose(highp mat4 m) {
- return mat4(
- vec4(m[0].x, m[1].x, m[2].x, m[3].x),
- vec4(m[0].y, m[1].y, m[2].y, m[3].y),
- vec4(m[0].z, m[1].z, m[2].z, m[3].z),
- vec4(m[0].w, m[1].w, m[2].w, m[3].w));
-}
-
-#if defined(OUTER_PRODUCT_USED)
-
-highp mat2 outerProduct(highp vec2 c, highp vec2 r) {
- return mat2(c * r.x, c * r.y);
-}
-
-highp mat3 outerProduct(highp vec3 c, highp vec3 r) {
- return mat3(c * r.x, c * r.y, c * r.z);
-}
-
-highp mat4 outerProduct(highp vec4 c, highp vec4 r) {
- return mat4(c * r.x, c * r.y, c * r.z, c * r.w);
-}
-
-#endif
-
-#if defined(FMA_USED)
-
-highp float fma(highp float a, highp float b, highp float c) {
- return a * b + c;
-}
-
-highp vec2 fma(highp vec2 a, highp vec2 b, highp vec2 c) {
- return a * b + c;
-}
-
-highp vec3 fma(highp vec3 a, highp vec3 b, highp vec3 c) {
- return a * b + c;
-}
-
-highp vec4 fma(highp vec4 a, highp vec4 b, highp vec4 c) {
- return a * b + c;
-}
-
-#endif
-
-#endif
diff --git a/drivers/gles2/shaders/subsurf_scattering.glsl b/drivers/gles2/shaders/subsurf_scattering.glsl
deleted file mode 100644
index d0c34cf1b0..0000000000
--- a/drivers/gles2/shaders/subsurf_scattering.glsl
+++ /dev/null
@@ -1,171 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-
-void main() {
- uv_interp = uv_in;
- gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-//#define QUALIFIER uniform // some guy on the interweb says it may be faster with this
-#define QUALIFIER const
-
-#ifdef USE_25_SAMPLES
-const int kernel_size = 25;
-/* clang-format on */
-QUALIFIER vec2 kernel[25] = vec2[](
- vec2(0.530605, 0.0),
- vec2(0.000973794, -3.0),
- vec2(0.00333804, -2.52083),
- vec2(0.00500364, -2.08333),
- vec2(0.00700976, -1.6875),
- vec2(0.0094389, -1.33333),
- vec2(0.0128496, -1.02083),
- vec2(0.017924, -0.75),
- vec2(0.0263642, -0.520833),
- vec2(0.0410172, -0.333333),
- vec2(0.0493588, -0.1875),
- vec2(0.0402784, -0.0833333),
- vec2(0.0211412, -0.0208333),
- vec2(0.0211412, 0.0208333),
- vec2(0.0402784, 0.0833333),
- vec2(0.0493588, 0.1875),
- vec2(0.0410172, 0.333333),
- vec2(0.0263642, 0.520833),
- vec2(0.017924, 0.75),
- vec2(0.0128496, 1.02083),
- vec2(0.0094389, 1.33333),
- vec2(0.00700976, 1.6875),
- vec2(0.00500364, 2.08333),
- vec2(0.00333804, 2.52083),
- vec2(0.000973794, 3.0));
-#endif //USE_25_SAMPLES
-
-#ifdef USE_17_SAMPLES
-const int kernel_size = 17;
-QUALIFIER vec2 kernel[17] = vec2[](
- vec2(0.536343, 0.0),
- vec2(0.00317394, -2.0),
- vec2(0.0100386, -1.53125),
- vec2(0.0144609, -1.125),
- vec2(0.0216301, -0.78125),
- vec2(0.0347317, -0.5),
- vec2(0.0571056, -0.28125),
- vec2(0.0582416, -0.125),
- vec2(0.0324462, -0.03125),
- vec2(0.0324462, 0.03125),
- vec2(0.0582416, 0.125),
- vec2(0.0571056, 0.28125),
- vec2(0.0347317, 0.5),
- vec2(0.0216301, 0.78125),
- vec2(0.0144609, 1.125),
- vec2(0.0100386, 1.53125),
- vec2(0.00317394, 2.0));
-#endif //USE_17_SAMPLES
-
-#ifdef USE_11_SAMPLES
-const int kernel_size = 11;
-QUALIFIER vec2 kernel[11] = vec2[](
- vec2(0.560479, 0.0),
- vec2(0.00471691, -2.0),
- vec2(0.0192831, -1.28),
- vec2(0.03639, -0.72),
- vec2(0.0821904, -0.32),
- vec2(0.0771802, -0.08),
- vec2(0.0771802, 0.08),
- vec2(0.0821904, 0.32),
- vec2(0.03639, 0.72),
- vec2(0.0192831, 1.28),
- vec2(0.00471691, 2.0));
-#endif //USE_11_SAMPLES
-
-uniform float max_radius;
-uniform float camera_z_far;
-uniform float camera_z_near;
-uniform float unit_size;
-uniform vec2 dir;
-in vec2 uv_interp;
-
-uniform sampler2D source_diffuse; //texunit:0
-uniform sampler2D source_sss; //texunit:1
-uniform sampler2D source_depth; //texunit:2
-
-layout(location = 0) out vec4 frag_color;
-
-void main() {
- float strength = texture(source_sss, uv_interp).r;
- strength *= strength; //stored as sqrt
-
- // Fetch color of current pixel:
- vec4 base_color = texture(source_diffuse, uv_interp);
-
- if (strength > 0.0) {
- // Fetch linear depth of current pixel:
- float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
- float scale = unit_size; //remember depth is negative by default in OpenGL
-#else
- depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
- float scale = unit_size / depth; //remember depth is negative by default in OpenGL
-#endif
-
- // Calculate the final step to fetch the surrounding pixels:
- vec2 step = max_radius * scale * dir;
- step *= strength; // Modulate it using the alpha channel.
- step *= 1.0 / 3.0; // Divide by 3 as the kernels range from -3 to 3.
-
- // Accumulate the center sample:
- vec3 color_accum = base_color.rgb;
- color_accum *= kernel[0].x;
-#ifdef ENABLE_STRENGTH_WEIGHTING
- float color_weight = kernel[0].x;
-#endif
-
- // Accumulate the other samples:
- for (int i = 1; i < kernel_size; i++) {
- // Fetch color and depth for current sample:
- vec2 offset = uv_interp + kernel[i].y * step;
- vec3 color = texture(source_diffuse, offset).rgb;
-
-#ifdef ENABLE_FOLLOW_SURFACE
- // If the difference in depth is huge, we lerp color back to "colorM":
- float depth_cmp = texture(source_depth, offset).r * 2.0 - 1.0;
-
-#ifdef USE_ORTHOGONAL_PROJECTION
- depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
- depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near));
-#endif
-
- float s = clamp(300.0f * scale * max_radius * abs(depth - depth_cmp), 0.0, 1.0);
- color = mix(color, base_color.rgb, s);
-#endif
-
- // Accumulate:
- color *= kernel[i].x;
-
-#ifdef ENABLE_STRENGTH_WEIGHTING
- float color_s = texture(source_sss, offset).r;
- color_weight += color_s * kernel[i].x;
- color *= color_s;
-#endif
- color_accum += color;
- }
-
-#ifdef ENABLE_STRENGTH_WEIGHTING
- color_accum /= color_weight;
-#endif
- frag_color = vec4(color_accum, base_color.a); //keep alpha (used for SSAO)
- } else {
- frag_color = base_color;
- }
-}
diff --git a/drivers/gles2/shaders/tonemap.glsl b/drivers/gles2/shaders/tonemap.glsl
deleted file mode 100644
index 585d821626..0000000000
--- a/drivers/gles2/shaders/tonemap.glsl
+++ /dev/null
@@ -1,289 +0,0 @@
-/* clang-format off */
-[vertex]
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-precision highp float;
-precision highp int;
-#endif
-
-attribute vec2 vertex_attrib; // attrib:0
-/* clang-format on */
-attribute vec2 uv_in; // attrib:4
-
-varying vec2 uv_interp;
-
-void main() {
- gl_Position = vec4(vertex_attrib, 0.0, 1.0);
-
- uv_interp = uv_in;
-}
-
-/* clang-format off */
-[fragment]
-
-
-// texture2DLodEXT and textureCubeLodEXT are fragment shader specific.
-// Do not copy these defines in the vertex section.
-#ifndef USE_GLES_OVER_GL
-#ifdef GL_EXT_shader_texture_lod
-#extension GL_EXT_shader_texture_lod : enable
-#define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod)
-#endif
-#endif // !USE_GLES_OVER_GL
-
-#ifdef GL_ARB_shader_texture_lod
-#extension GL_ARB_shader_texture_lod : enable
-#endif
-
-#if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod)
-#define texture2DLod(img, coord, lod) texture2D(img, coord, lod)
-#define textureCubeLod(img, coord, lod) textureCube(img, coord, lod)
-#endif
-
-// Allows the use of bitshift operators for bicubic upscale
-#ifdef GL_EXT_gpu_shader4
-#extension GL_EXT_gpu_shader4 : enable
-#endif
-
-#ifdef USE_GLES_OVER_GL
-#define lowp
-#define mediump
-#define highp
-#else
-#if defined(USE_HIGHP_PRECISION)
-precision highp float;
-precision highp int;
-#else
-precision mediump float;
-precision mediump int;
-#endif
-#endif
-
-#include "stdlib.glsl"
-
-varying vec2 uv_interp;
-/* clang-format on */
-
-uniform highp sampler2D source; //texunit:0
-
-#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
-#define USING_GLOW // only use glow when at least one glow level is selected
-
-#ifdef USE_MULTI_TEXTURE_GLOW
-uniform highp sampler2D source_glow1; //texunit:1
-uniform highp sampler2D source_glow2; //texunit:2
-uniform highp sampler2D source_glow3; //texunit:3
-uniform highp sampler2D source_glow4; //texunit:4
-uniform highp sampler2D source_glow5; //texunit:5
-uniform highp sampler2D source_glow6; //texunit:6
-uniform highp sampler2D source_glow7; //texunit:7
-#else
-uniform highp sampler2D source_glow; //texunit:1
-#endif
-uniform highp float glow_intensity;
-#endif
-
-#ifdef USE_BCS
-uniform vec3 bcs;
-#endif
-
-#ifdef USE_COLOR_CORRECTION
-uniform sampler2D color_correction; //texunit:2
-#endif
-
-#ifdef GL_EXT_gpu_shader4
-#ifdef USE_GLOW_FILTER_BICUBIC
-// w0, w1, w2, and w3 are the four cubic B-spline basis functions
-float w0(float a) {
- return (1.0 / 6.0) * (a * (a * (-a + 3.0) - 3.0) + 1.0);
-}
-
-float w1(float a) {
- return (1.0 / 6.0) * (a * a * (3.0 * a - 6.0) + 4.0);
-}
-
-float w2(float a) {
- return (1.0 / 6.0) * (a * (a * (-3.0 * a + 3.0) + 3.0) + 1.0);
-}
-
-float w3(float a) {
- return (1.0 / 6.0) * (a * a * a);
-}
-
-// g0 and g1 are the two amplitude functions
-float g0(float a) {
- return w0(a) + w1(a);
-}
-
-float g1(float a) {
- return w2(a) + w3(a);
-}
-
-// h0 and h1 are the two offset functions
-float h0(float a) {
- return -1.0 + w1(a) / (w0(a) + w1(a));
-}
-
-float h1(float a) {
- return 1.0 + w3(a) / (w2(a) + w3(a));
-}
-
-uniform ivec2 glow_texture_size;
-
-vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
- float lod = float(p_lod);
- vec2 tex_size = vec2(glow_texture_size >> p_lod);
- vec2 pixel_size = vec2(1.0) / tex_size;
-
- uv = uv * tex_size + vec2(0.5);
-
- vec2 iuv = floor(uv);
- vec2 fuv = fract(uv);
-
- float g0x = g0(fuv.x);
- float g1x = g1(fuv.x);
- float h0x = h0(fuv.x);
- float h1x = h1(fuv.x);
- float h0y = h0(fuv.y);
- float h1y = h1(fuv.y);
-
- vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5)) * pixel_size;
- vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5)) * pixel_size;
- vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5)) * pixel_size;
- vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5)) * pixel_size;
-
- return (g0(fuv.y) * (g0x * texture2DLod(tex, p0, lod) + g1x * texture2DLod(tex, p1, lod))) +
- (g1(fuv.y) * (g0x * texture2DLod(tex, p2, lod) + g1x * texture2DLod(tex, p3, lod)));
-}
-
-#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
-#else //!USE_GLOW_FILTER_BICUBIC
-#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2DLod(m_tex, m_uv, float(m_lod))
-#endif //USE_GLOW_FILTER_BICUBIC
-
-#else //!GL_EXT_gpu_shader4
-#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2DLod(m_tex, m_uv, float(m_lod))
-#endif //GL_EXT_gpu_shader4
-
-vec3 apply_glow(vec3 color, vec3 glow) { // apply glow using the selected blending mode
-#ifdef USE_GLOW_REPLACE
- color = glow;
-#endif
-
-#ifdef USE_GLOW_SCREEN
- color = max((color + glow) - (color * glow), vec3(0.0));
-#endif
-
-#ifdef USE_GLOW_SOFTLIGHT
- glow = glow * vec3(0.5) + vec3(0.5);
-
- color.r = (glow.r <= 0.5) ? (color.r - (1.0 - 2.0 * glow.r) * color.r * (1.0 - color.r)) : (((glow.r > 0.5) && (color.r <= 0.25)) ? (color.r + (2.0 * glow.r - 1.0) * (4.0 * color.r * (4.0 * color.r + 1.0) * (color.r - 1.0) + 7.0 * color.r)) : (color.r + (2.0 * glow.r - 1.0) * (sqrt(color.r) - color.r)));
- color.g = (glow.g <= 0.5) ? (color.g - (1.0 - 2.0 * glow.g) * color.g * (1.0 - color.g)) : (((glow.g > 0.5) && (color.g <= 0.25)) ? (color.g + (2.0 * glow.g - 1.0) * (4.0 * color.g * (4.0 * color.g + 1.0) * (color.g - 1.0) + 7.0 * color.g)) : (color.g + (2.0 * glow.g - 1.0) * (sqrt(color.g) - color.g)));
- color.b = (glow.b <= 0.5) ? (color.b - (1.0 - 2.0 * glow.b) * color.b * (1.0 - color.b)) : (((glow.b > 0.5) && (color.b <= 0.25)) ? (color.b + (2.0 * glow.b - 1.0) * (4.0 * color.b * (4.0 * color.b + 1.0) * (color.b - 1.0) + 7.0 * color.b)) : (color.b + (2.0 * glow.b - 1.0) * (sqrt(color.b) - color.b)));
-#endif
-
-#if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive
- color += glow;
-#endif
-
- return color;
-}
-
-vec3 apply_bcs(vec3 color, vec3 bcs) {
- color = mix(vec3(0.0), color, bcs.x);
- color = mix(vec3(0.5), color, bcs.y);
- color = mix(vec3(dot(vec3(1.0), color) * 0.33333), color, bcs.z);
-
- return color;
-}
-
-vec3 apply_color_correction(vec3 color, sampler2D correction_tex) {
- color.r = texture2D(correction_tex, vec2(color.r, 0.0)).r;
- color.g = texture2D(correction_tex, vec2(color.g, 0.0)).g;
- color.b = texture2D(correction_tex, vec2(color.b, 0.0)).b;
-
- return color;
-}
-
-void main() {
- vec3 color = texture2DLod(source, uv_interp, 0.0).rgb;
-
- // Glow
-
-#ifdef USING_GLOW
- vec3 glow = vec3(0.0);
-#ifdef USE_MULTI_TEXTURE_GLOW
-#ifdef USE_GLOW_LEVEL1
- glow += GLOW_TEXTURE_SAMPLE(source_glow1, uv_interp, 0).rgb;
-#ifdef USE_GLOW_LEVEL2
- glow += GLOW_TEXTURE_SAMPLE(source_glow2, uv_interp, 0).rgb;
-#ifdef USE_GLOW_LEVEL3
- glow += GLOW_TEXTURE_SAMPLE(source_glow3, uv_interp, 0).rgb;
-#ifdef USE_GLOW_LEVEL4
- glow += GLOW_TEXTURE_SAMPLE(source_glow4, uv_interp, 0).rgb;
-#ifdef USE_GLOW_LEVEL5
- glow += GLOW_TEXTURE_SAMPLE(source_glow5, uv_interp, 0).rgb;
-#ifdef USE_GLOW_LEVEL6
- glow += GLOW_TEXTURE_SAMPLE(source_glow6, uv_interp, 0).rgb;
-#ifdef USE_GLOW_LEVEL7
- glow += GLOW_TEXTURE_SAMPLE(source_glow7, uv_interp, 0).rgb;
-#endif
-#endif
-#endif
-#endif
-#endif
-#endif
-#endif
-
-#else
-
-#ifdef USE_GLOW_LEVEL1
- glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 1).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL2
- glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 2).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL3
- glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 3).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL4
- glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 4).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL5
- glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 5).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL6
- glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 6).rgb;
-#endif
-
-#ifdef USE_GLOW_LEVEL7
- glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 7).rgb;
-#endif
-#endif //USE_MULTI_TEXTURE_GLOW
-
- glow *= glow_intensity;
- color = apply_glow(color, glow);
-#endif
-
- // Additional effects
-
-#ifdef USE_BCS
- color = apply_bcs(color, bcs);
-#endif
-
-#ifdef USE_COLOR_CORRECTION
- color = apply_color_correction(color, color_correction);
-#endif
-
- gl_FragColor = vec4(color, 1.0);
-}