diff options
Diffstat (limited to 'drivers/gles2/shaders')
-rw-r--r-- | drivers/gles2/shaders/SCsub | 4 | ||||
-rw-r--r-- | drivers/gles2/shaders/canvas.glsl | 8 | ||||
-rw-r--r-- | drivers/gles2/shaders/copy.glsl | 63 | ||||
-rw-r--r-- | drivers/gles2/shaders/cube_to_dp.glsl | 24 | ||||
-rw-r--r-- | drivers/gles2/shaders/cubemap_filter.glsl | 321 | ||||
-rw-r--r-- | drivers/gles2/shaders/scene.glsl | 2319 | ||||
-rw-r--r-- | drivers/gles2/shaders/stdlib.glsl | 45 |
7 files changed, 784 insertions, 2000 deletions
diff --git a/drivers/gles2/shaders/SCsub b/drivers/gles2/shaders/SCsub index 5de3e1ac90..acb93fff8f 100644 --- a/drivers/gles2/shaders/SCsub +++ b/drivers/gles2/shaders/SCsub @@ -8,8 +8,8 @@ if 'GLES2_GLSL' in env['BUILDERS']: env.GLES2_GLSL('canvas.glsl'); # env.GLES2_GLSL('canvas_shadow.glsl'); env.GLES2_GLSL('scene.glsl'); -# env.GLES2_GLSL('cubemap_filter.glsl'); -# env.GLES2_GLSL('cube_to_dp.glsl'); + env.GLES2_GLSL('cubemap_filter.glsl'); + env.GLES2_GLSL('cube_to_dp.glsl'); # env.GLES2_GLSL('blend_shape.glsl'); # env.GLES2_GLSL('screen_space_reflection.glsl'); # env.GLES2_GLSL('effect_blur.glsl'); diff --git a/drivers/gles2/shaders/canvas.glsl b/drivers/gles2/shaders/canvas.glsl index 11c6ab9b76..29d81bb2c4 100644 --- a/drivers/gles2/shaders/canvas.glsl +++ b/drivers/gles2/shaders/canvas.glsl @@ -27,7 +27,7 @@ uniform vec4 src_rect; #endif -uniform bool blit_pass; +uniform highp float time; VERTEX_SHADER_GLOBALS @@ -103,7 +103,7 @@ uniform mediump sampler2D normal_texture; // texunit:1 varying mediump vec2 uv_interp; varying mediump vec4 color_interp; -uniform bool blit_pass; +uniform highp float time; uniform vec4 final_modulate; @@ -127,6 +127,10 @@ void main() { vec4 color = color_interp; color *= texture2D(color_texture, uv_interp); + +#ifdef SCREEN_UV_USED + vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; +#endif { FRAGMENT_SHADER_CODE diff --git a/drivers/gles2/shaders/copy.glsl b/drivers/gles2/shaders/copy.glsl index a21da68525..feaeb2152b 100644 --- a/drivers/gles2/shaders/copy.glsl +++ b/drivers/gles2/shaders/copy.glsl @@ -9,11 +9,20 @@ precision mediump int; #endif attribute highp vec4 vertex_attrib; // attrib:0 + +#if defined(USE_CUBEMAP) || defined(USE_PANORAMA) +attribute vec3 cube_in; // attrib:4 +#else attribute vec2 uv_in; // attrib:4 +#endif + attribute vec2 uv2_in; // attrib:5 +#if defined(USE_CUBEMAP) || defined(USE_PANORAMA) +varying vec3 cube_interp; +#else varying vec2 uv_interp; - +#endif varying vec2 uv2_interp; #ifdef USE_COPY_SECTION @@ -22,7 +31,12 @@ uniform vec4 copy_section; void main() { +#if defined(USE_CUBEMAP) || defined(USE_PANORAMA) + cube_interp = cube_in; +#else uv_interp = uv_in; +#endif + uv2_interp = uv2_in; gl_Position = vertex_attrib; @@ -34,6 +48,8 @@ void main() { [fragment] +#define M_PI 3.14159265359 + #ifdef USE_GLES_OVER_GL #define mediump #define highp @@ -42,21 +58,59 @@ precision mediump float; precision mediump int; #endif - +#if defined(USE_CUBEMAP) || defined(USE_PANORAMA) +varying vec3 cube_interp; +#else varying vec2 uv_interp; +#endif + +#ifdef USE_CUBEMAP +uniform samplerCube source_cube; // texunit:0 +#else uniform sampler2D source; // texunit:0 +#endif varying vec2 uv2_interp; +#ifdef USE_MULTIPLIER +uniform float multiplier; +#endif + #ifdef USE_CUSTOM_ALPHA uniform float custom_alpha; #endif +#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO) + +vec4 texturePanorama(sampler2D pano, vec3 normal) { + + vec2 st = vec2( + atan(normal.x, normal.z), + acos(normal.y) + ); + + if(st.x < 0.0) + st.x += M_PI*2.0; + + st/=vec2(M_PI*2.0,M_PI); + + return texture2D(pano,st); + +} + +#endif void main() { - //vec4 color = color_interp; +#ifdef USE_PANORAMA + + vec4 color = texturePanorama(source, normalize(cube_interp)); + +#elif defined(USE_CUBEMAP) + vec4 color = textureCube(source_cube, normalize(cube_interp)); +#else vec4 color = texture2D( source, uv_interp ); +#endif #ifdef USE_NO_ALPHA @@ -67,6 +121,9 @@ void main() { color.a=custom_alpha; #endif +#ifdef USE_MULTIPLIER + color.rgb *= multiplier; +#endif gl_FragColor = color; } diff --git a/drivers/gles2/shaders/cube_to_dp.glsl b/drivers/gles2/shaders/cube_to_dp.glsl index 5ffc78c0b9..0b3f53a870 100644 --- a/drivers/gles2/shaders/cube_to_dp.glsl +++ b/drivers/gles2/shaders/cube_to_dp.glsl @@ -1,10 +1,17 @@ [vertex] +#ifdef USE_GLES_OVER_GL +#define mediump +#define highp +#else +precision mediump float; +precision mediump int; +#endif -layout(location=0) in highp vec4 vertex_attrib; -layout(location=4) in vec2 uv_in; +attribute highp vec4 vertex_attrib; // attrib:0 +attribute vec2 uv_in; // attrib:4 -out vec2 uv_interp; +varying vec2 uv_interp; void main() { @@ -14,9 +21,16 @@ void main() { [fragment] +#ifdef USE_GLES_OVER_GL +#define mediump +#define highp +#else +precision mediump float; +precision mediump int; +#endif uniform highp samplerCube source_cube; //texunit:0 -in vec2 uv_interp; +varying vec2 uv_interp; uniform bool z_flip; uniform highp float z_far; @@ -49,7 +63,7 @@ void main() { } //normal = normalize(vec3( uv_interp * 2.0 - 1.0, 1.0 )); - float depth = texture(source_cube,normal).r; + float depth = textureCube(source_cube,normal).r; // absolute values for direction cosines, bigger value equals closer to basis axis vec3 unorm = abs(normal); diff --git a/drivers/gles2/shaders/cubemap_filter.glsl b/drivers/gles2/shaders/cubemap_filter.glsl index 485fbb6ee0..62ecd9471b 100644 --- a/drivers/gles2/shaders/cubemap_filter.glsl +++ b/drivers/gles2/shaders/cubemap_filter.glsl @@ -1,11 +1,17 @@ [vertex] +#ifdef USE_GLES_OVER_GL +#define mediump +#define highp +#else +precision mediump float; +precision mediump int; +#endif -layout(location=0) in highp vec2 vertex; - -layout(location=4) in highp vec2 uv; +attribute highp vec2 vertex; // attrib:0 +attribute highp vec2 uv; // attrib:4 -out highp vec2 uv_interp; +varying highp vec2 uv_interp; void main() { @@ -15,174 +21,47 @@ void main() { [fragment] +#extension GL_ARB_shader_texture_lod : require -precision highp float; -precision highp int; +#ifdef USE_GLES_OVER_GL +#define mediump +#define highp +#else +precision mediump float; +precision mediump int; +#endif #ifdef USE_SOURCE_PANORAMA uniform sampler2D source_panorama; //texunit:0 -#endif - -#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY -uniform sampler2DArray source_dual_paraboloid_array; //texunit:0 -uniform int source_array_index; -#endif - -#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA) +#else uniform samplerCube source_cube; //texunit:0 #endif uniform int face_id; uniform float roughness; -in highp vec2 uv_interp; - - -layout(location = 0) out vec4 frag_color; +varying highp vec2 uv_interp; +uniform sampler2D radical_inverse_vdc_cache; // texunit:1 #define M_PI 3.14159265359 - -vec3 texelCoordToVec(vec2 uv, int faceID) -{ - mat3 faceUvVectors[6]; -/* - // -x - faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z - faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y - faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face - - // +x - faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z - faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y - faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face - - // -y - faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x - faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z - faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face - - // +y - faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x - faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z - faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face - - // -z - faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x - faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y - faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face - - // +z - faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x - faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y - faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face -*/ - - // -x - faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z - faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y - faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face - - // +x - faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z - faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y - faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face - - // -y - faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x - faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z - faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face - - // +y - faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x - faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z - faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face - - // -z - faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x - faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y - faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face - - // +z - faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x - faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y - faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face - - // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2]. - vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2]; - return normalize(result); -} - -vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) -{ - float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph] - - // Compute distribution direction - float Phi = 2.0 * M_PI * Xi.x; - float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y)); - float SinTheta = sqrt(1.0 - CosTheta * CosTheta); - - // Convert to spherical direction - vec3 H; - H.x = SinTheta * cos(Phi); - H.y = SinTheta * sin(Phi); - H.z = CosTheta; - - vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); - vec3 TangentX = normalize(cross(UpVector, N)); - vec3 TangentY = cross(N, TangentX); - - // Tangent to world space - return TangentX * H.x + TangentY * H.y + N * H.z; -} - -// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html -float GGX(float NdotV, float a) -{ - float k = a / 2.0; - return NdotV / (NdotV * (1.0 - k) + k); -} - -// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html -float G_Smith(float a, float nDotV, float nDotL) -{ - return GGX(nDotL, a * a) * GGX(nDotV, a * a); -} - -float radicalInverse_VdC(uint bits) { - bits = (bits << 16u) | (bits >> 16u); - bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); - bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); - bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); - bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); - return float(bits) * 2.3283064365386963e-10; // / 0x100000000 -} - -vec2 Hammersley(uint i, uint N) { - return vec2(float(i)/float(N), radicalInverse_VdC(i)); -} - - - #ifdef LOW_QUALITY -#define SAMPLE_COUNT 64u +#define SAMPLE_COUNT 64 #else -#define SAMPLE_COUNT 512u +#define SAMPLE_COUNT 512 #endif -uniform bool z_flip; - #ifdef USE_SOURCE_PANORAMA -vec4 texturePanorama(vec3 normal,sampler2D pano ) { +vec4 texturePanorama(sampler2D pano, vec3 normal) { vec2 st = vec2( - atan(normal.x, normal.z), - acos(normal.y) + atan(normal.x, normal.z), + acos(normal.y) ); if(st.x < 0.0) @@ -190,105 +69,119 @@ vec4 texturePanorama(vec3 normal,sampler2D pano ) { st/=vec2(M_PI*2.0,M_PI); - return textureLod(pano,st,0.0); + return texture2DLod(pano,st,0.0); } #endif -#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY - - -vec4 textureDualParaboloidArray(vec3 normal) { - - vec3 norm = normalize(normal); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); - if (norm.z<0.0) { - norm.y=0.5-norm.y+0.5; - } - return textureLod(source_dual_paraboloid_array, vec3(norm.xy, float(source_array_index) ), 0.0); - +vec3 texelCoordToVec(vec2 uv, int faceID) { + mat3 faceUvVectors[6]; + + // -x + faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z + faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y + faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face + + // +x + faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z + faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y + faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face + + // -y + faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x + faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z + faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face + + // +y + faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x + faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z + faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face + + // -z + faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x + faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y + faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face + + // +z + faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x + faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y + faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face + + // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2]. + vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2]; + return normalize(result); } -#endif - -void main() { - -#ifdef USE_DUAL_PARABOLOID - - vec3 N = vec3( uv_interp * 2.0 - 1.0, 0.0 ); - N.z = 0.5 - 0.5*((N.x * N.x) + (N.y * N.y)); - N = normalize(N); - - if (z_flip) { - N.y=-N.y; //y is flipped to improve blending between both sides - N.z=-N.z; - } - +vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) { + float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph] -#else - vec2 uv = (uv_interp * 2.0) - 1.0; - vec3 N = texelCoordToVec(uv, face_id); -#endif - //vec4 color = color_interp; + // Compute distribution direction + float Phi = 2.0 * M_PI * Xi.x; + float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y)); + float SinTheta = sqrt(1.0 - CosTheta * CosTheta); -#ifdef USE_DIRECT_WRITE + // Convert to spherical direction + vec3 H; + H.x = SinTheta * cos(Phi); + H.y = SinTheta * sin(Phi); + H.z = CosTheta; -#ifdef USE_SOURCE_PANORAMA + vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); + vec3 TangentX = normalize(cross(UpVector, N)); + vec3 TangentY = cross(N, TangentX); - frag_color=vec4(texturePanorama(N,source_panorama).rgb,1.0); -#endif + // Tangent to world space + return TangentX * H.x + TangentY * H.y + N * H.z; +} -#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY +float radical_inverse_VdC(int i) { + return texture2D(radical_inverse_vdc_cache, vec2(float(i) / 512.0, 0.0)).x; +} - frag_color=vec4(textureDualParaboloidArray(N).rgb,1.0); -#endif +vec2 Hammersley(int i, int N) { + return vec2(float(i) / float(N), radical_inverse_VdC(i)); +} -#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA) +uniform bool z_flip; - N.y=-N.y; - frag_color=vec4(texture(N,source_cube).rgb,1.0); -#endif +void main() { + vec3 color = vec3(0.0); + vec2 uv = (uv_interp * 2.0) - 1.0; + vec3 N = texelCoordToVec(uv, face_id); + vec4 sum = vec4(0.0); -#else + for (int sample_num = 0; sample_num < SAMPLE_COUNT; sample_num++) { - vec4 sum = vec4(0.0, 0.0, 0.0, 0.0); + vec2 xi = Hammersley(sample_num, SAMPLE_COUNT); - for(uint sampleNum = 0u; sampleNum < SAMPLE_COUNT; sampleNum++) { - vec2 xi = Hammersley(sampleNum, SAMPLE_COUNT); + vec3 H = ImportanceSampleGGX(xi, roughness, N); + vec3 V = N; + vec3 L = normalize(2.0 * dot(V, H) * H - V); - vec3 H = ImportanceSampleGGX( xi, roughness, N ); - vec3 V = N; - vec3 L = normalize(2.0 * dot( V, H ) * H - V); + float NdotL = clamp(dot(N, L), 0.0, 1.0); - float ndotl = clamp(dot(N, L),0.0,1.0); + if (NdotL > 0.0) { - if (ndotl>0.0) { #ifdef USE_SOURCE_PANORAMA - sum.rgb += texturePanorama(H,source_panorama).rgb *ndotl; + sum.rgb += texturePanorama(source_panorama, H).rgb * NdotL; +#else + H.y = -H.y; + sum.rgb += textureCubeLod(source_cube, H, 0.0).rgb * NdotL; #endif -#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY - - sum.rgb += textureDualParaboloidArray(H).rgb *ndotl; -#endif + sum.a += NdotL; -#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA) - H.y=-H.y; - sum.rgb += textureLod(source_cube, H, 0.0).rgb *ndotl; -#endif - sum.a += ndotl; } + } - sum /= sum.a; - frag_color = vec4(sum.rgb, 1.0); + sum /= sum.a; -#endif + gl_FragColor = vec4(sum.rgb, 1.0); } diff --git a/drivers/gles2/shaders/scene.glsl b/drivers/gles2/shaders/scene.glsl index 79b989be4a..e08e9d1117 100644 --- a/drivers/gles2/shaders/scene.glsl +++ b/drivers/gles2/shaders/scene.glsl @@ -1,940 +1,393 @@ [vertex] -#define M_PI 3.14159265359 +#ifdef USE_GLES_OVER_GL +#define mediump +#define highp +#else +precision mediump float; +precision mediump int; +#endif -/* -from VisualServer: +#include "stdlib.glsl" -ARRAY_VERTEX=0, -ARRAY_NORMAL=1, -ARRAY_TANGENT=2, -ARRAY_COLOR=3, -ARRAY_TEX_UV=4, -ARRAY_TEX_UV2=5, -ARRAY_BONES=6, -ARRAY_WEIGHTS=7, -ARRAY_INDEX=8, -*/ -//hack to use uv if no uv present so it works with lightmap +// +// attributes +// -/* INPUT ATTRIBS */ +attribute highp vec4 vertex_attrib; // attrib:0 +attribute vec3 normal_attrib; // attrib:1 -layout(location=0) in highp vec4 vertex_attrib; -layout(location=1) in vec3 normal_attrib; -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) -layout(location=2) in vec4 tangent_attrib; +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) +attribute vec4 tangent_attrib; // attrib:2 #endif -#if defined(ENABLE_COLOR_INTERP) -layout(location=3) in vec4 color_attrib; +#ifdef ENABLE_COLOR_INTERP +attribute vec4 color_attrib; // attrib:3 #endif -#if defined(ENABLE_UV_INTERP) -layout(location=4) in vec2 uv_attrib; +#ifdef ENABLE_UV_INTERP +attribute vec2 uv_attrib; // attrib:4 #endif -#if defined(ENABLE_UV2_INTERP) -layout(location=5) in vec2 uv2_attrib; +#ifdef ENABLE_UV2_INTERP +attribute vec2 uv2_attrib; // attrib:5 #endif -uniform float normal_mult; - #ifdef USE_SKELETON -layout(location=6) in ivec4 bone_indices; // attrib:6 -layout(location=7) in vec4 bone_weights; // attrib:7 -#endif - -#ifdef USE_INSTANCING - -layout(location=8) in highp vec4 instance_xform0; -layout(location=9) in highp vec4 instance_xform1; -layout(location=10) in highp vec4 instance_xform2; -layout(location=11) in lowp vec4 instance_color; - -#if defined(ENABLE_INSTANCE_CUSTOM) -layout(location=12) in highp vec4 instance_custom_data; -#endif - -#endif - -layout(std140) uniform SceneData { //ubo:0 - - highp mat4 projection_matrix; - highp mat4 inv_projection_matrix; - highp mat4 camera_inverse_matrix; - highp mat4 camera_matrix; - - mediump vec4 ambient_light_color; - mediump vec4 bg_color; - - mediump vec4 fog_color_enabled; - mediump vec4 fog_sun_color_amount; - - mediump float ambient_energy; - mediump float bg_energy; - - mediump float z_offset; - mediump float z_slope_scale; - highp float shadow_dual_paraboloid_render_zfar; - highp float shadow_dual_paraboloid_render_side; - - highp vec2 viewport_size; - highp vec2 screen_pixel_size; - highp vec2 shadow_atlas_pixel_size; - highp vec2 directional_shadow_pixel_size; - highp float time; - highp float z_far; - mediump float reflection_multiplier; - mediump float subsurface_scatter_width; - mediump float ambient_occlusion_affect_light; +#ifdef USE_SKELETON_SOFTWARE - bool fog_depth_enabled; - highp float fog_depth_begin; - highp float fog_depth_curve; - bool fog_transmit_enabled; - highp float fog_transmit_curve; - bool fog_height_enabled; - highp float fog_height_min; - highp float fog_height_max; - highp float fog_height_curve; +attribute highp vec4 bone_transform_row_0; // attrib:9 +attribute highp vec4 bone_transform_row_1; // attrib:10 +attribute highp vec4 bone_transform_row_2; // attrib:11 -}; - -uniform highp mat4 world_transform; - - -#ifdef USE_LIGHT_DIRECTIONAL +#else -layout(std140) uniform DirectionalLightData { //ubo:3 +attribute vec4 bone_ids; // attrib:6 +attribute highp vec4 bone_weights; // attrib:7 - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix1; - highp mat4 shadow_matrix2; - highp mat4 shadow_matrix3; - highp mat4 shadow_matrix4; - mediump vec4 shadow_split_offsets; -}; +uniform highp sampler2D bone_transforms; // texunit:4 +uniform ivec2 skeleton_texture_size; #endif -#ifdef USE_VERTEX_LIGHTING -//omni and spot - -struct LightData { - - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix; - -}; - - -layout(std140) uniform OmniLightData { //ubo:4 - - LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; -}; - -layout(std140) uniform SpotLightData { //ubo:5 - - LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; -}; - -#ifdef USE_FORWARD_LIGHTING - - -uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; -uniform int omni_light_count; - -uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; -uniform int spot_light_count; - #endif -out vec4 diffuse_light_interp; -out vec4 specular_light_interp; - -void light_compute(vec3 N, vec3 L,vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) { - - float dotNL = max(dot(N,L), 0.0 ); - diffuse += dotNL * light_color / M_PI; - - if (roughness > 0.0) { - - vec3 H = normalize(V + L); - float dotNH = max(dot(N,H), 0.0 ); - float intensity = pow( dotNH, (1.0-roughness) * 256.0); - specular += light_color * intensity; - - } -} - -void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal, float roughness,inout vec3 diffuse, inout vec3 specular) { - - vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w )); +#ifdef USE_INSTANCING - light_compute(normal,normalize(light_rel_vec),eye_vec,omni_lights[idx].light_color_energy.rgb * light_attenuation,roughness,diffuse,specular); +attribute highp vec4 instance_xform_row_0; // attrib:12 +attribute highp vec4 instance_xform_row_1; // attrib:13 +attribute highp vec4 instance_xform_row_2; // attrib:14 -} +attribute highp vec4 instance_color; // attrib:15 +attribute highp vec4 instance_custom_data; // attrib:8 -void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { +#endif - vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w )); - vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; - float spot_cutoff=spot_lights[idx].light_params.y; - float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff); - float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); - light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x); - light_compute(normal,normalize(light_rel_vec),eye_vec,spot_lights[idx].light_color_energy.rgb*light_attenuation,roughness,diffuse,specular); -} +// +// uniforms +// +uniform mat4 camera_matrix; +uniform mat4 camera_inverse_matrix; +uniform mat4 projection_matrix; +uniform mat4 projection_inverse_matrix; -#endif +uniform mat4 world_transform; -/* Varyings */ +uniform highp float time; -out highp vec3 vertex_interp; -out vec3 normal_interp; +uniform float normal_mult; -#if defined(ENABLE_COLOR_INTERP) -out vec4 color_interp; +#ifdef RENDER_DEPTH +uniform float light_bias; +uniform float light_normal_bias; #endif -#if defined(ENABLE_UV_INTERP) -out vec2 uv_interp; -#endif -#if defined(ENABLE_UV2_INTERP) -out vec2 uv2_interp; -#endif +// +// varyings +// +varying highp vec3 vertex_interp; +varying vec3 normal_interp; -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) -out vec3 tangent_interp; -out vec3 binormal_interp; +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) +varying vec3 tangent_interp; +varying vec3 binormal_interp; #endif - - - - -#if defined(USE_MATERIAL) - -layout(std140) uniform UniformData { //ubo:1 - -MATERIAL_UNIFORMS - -}; - +#ifdef ENABLE_COLOR_INTERP +varying vec4 color_interp; #endif -VERTEX_SHADER_GLOBALS - -#ifdef RENDER_DEPTH_DUAL_PARABOLOID - -out highp float dp_clip; - +#ifdef ENABLE_UV_INTERP +varying vec2 uv_interp; #endif -#define SKELETON_TEXTURE_WIDTH 256 - -#ifdef USE_SKELETON -uniform highp sampler2D skeleton_texture; //texunit:-1 +#ifdef ENABLE_UV2_INTERP +varying vec2 uv2_interp; #endif -out highp vec4 position_interp; -// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now. -// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316 -//invariant gl_Position; +VERTEX_SHADER_GLOBALS void main() { - highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0); + highp vec4 vertex = vertex_attrib; mat4 world_matrix = world_transform; - #ifdef USE_INSTANCING - { - highp mat4 m=mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0)); + highp mat4 m = mat4(instance_xform_row_0, + instance_xform_row_1, + instance_xform_row_2, + vec4(0.0, 0.0, 0.0, 1.0)); world_matrix = world_matrix * transpose(m); } #endif vec3 normal = normal_attrib * normal_mult; - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) vec3 tangent = tangent_attrib.xyz; - tangent*=normal_mult; + tangent *= normal_mult; float binormalf = tangent_attrib.a; + vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif -#if defined(ENABLE_COLOR_INTERP) +#ifdef ENABLE_COLOR_INTERP color_interp = color_attrib; -#if defined(USE_INSTANCING) +#ifdef USE_INSTANCING color_interp *= instance_color; #endif - #endif -#ifdef USE_SKELETON - { - //skeleton transform - ivec2 tex_ofs = ivec2( bone_indices.x%256, (bone_indices.x/256)*3 ); - highp mat3x4 m = mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.x; +#ifdef ENABLE_UV_INTERP + uv_interp = uv_attrib; +#endif - tex_ofs = ivec2( bone_indices.y%256, (bone_indices.y/256)*3 ); +#ifdef ENABLE_UV2_INTERP + uv2_interp = uv2_attrib; +#endif - m+= mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.y; +#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) + vertex = world_matrix * vertex; + normal = normalize((world_matrix * vec4(normal, 0.0)).xyz); +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) - tex_ofs = ivec2( bone_indices.z%256, (bone_indices.z/256)*3 ); + tangent = normalize((world_matrix * vec4(tangent, 0.0)),xyz); + binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz); +#endif +#endif - m+= mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.z; +#ifdef USE_SKELETON + highp mat4 bone_transform = mat4(1.0); - tex_ofs = ivec2( bone_indices.w%256, (bone_indices.w/256)*3 ); +#ifdef USE_SKELETON_SOFTWARE + // passing the transform as attributes - m+= mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.w; + bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0); + bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0); + bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0); + bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0); +#else + // look up transform from the "pose texture" + { + + for (int i = 0; i < 4; i++) { + ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0); - vertex.xyz = vertex * m; + highp mat4 b = mat4(texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)), + texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)), + texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)), + vec4(0.0, 0.0, 0.0, 1.0)); - normal = vec4(normal,0.0) * m; -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent.xyz = vec4(tangent.xyz,0.0) * m; -#endif + bone_transform += transpose(b) * bone_weights[i]; + } } -#endif - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - - vec3 binormal = normalize( cross(normal,tangent) * binormalf ); #endif -#if defined(ENABLE_UV_INTERP) - uv_interp = uv_attrib; + world_matrix = bone_transform * world_matrix; #endif -#if defined(ENABLE_UV2_INTERP) - uv2_interp = uv2_attrib; -#endif -#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM) +#ifdef USE_INSTANCING vec4 instance_custom = instance_custom_data; #else vec4 instance_custom = vec4(0.0); -#endif - - highp mat4 modelview = camera_inverse_matrix * world_matrix; - highp mat4 local_projection = projection_matrix; - -//using world coordinates -#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) - - vertex = world_matrix * vertex; - normal = normalize((world_matrix * vec4(normal,0.0)).xyz); -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - - tangent = normalize((world_matrix * vec4(tangent,0.0)).xyz); - binormal = normalize((world_matrix * vec4(binormal,0.0)).xyz); -#endif #endif - float roughness=0.0; -//defines that make writing custom shaders easier -#define projection_matrix local_projection + mat4 modelview = camera_matrix * world_matrix; + #define world_transform world_matrix + { VERTEX_SHADER_CODE } + vec4 outvec = vertex; - -//using local coordinates (default) + // use local coordinates #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) - vertex = modelview * vertex; - normal = normalize((modelview * vec4(normal,0.0)).xyz); + normal = normalize((modelview * vec4(normal, 0.0)).xyz); -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - - tangent = normalize((modelview * vec4(tangent,0.0)).xyz); - binormal = normalize((modelview * vec4(binormal,0.0)).xyz); +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) + tangent = normalize((modelview * vec4(tangent, 0.0)).xyz); + binormal = normalize((modelview * vec4(binormal, 0.0)).xyz); #endif #endif -//using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) - - vertex = camera_inverse_matrix * vertex; - normal = normalize((camera_inverse_matrix * vec4(normal,0.0)).xyz); - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - - tangent = normalize((camera_inverse_matrix * vec4(tangent,0.0)).xyz); - binormal = normalize((camera_inverse_matrix * vec4(binormal,0.0)).xyz); + vertex = camera_matrix * vertex; + normal = normalize((camera_matrix * vec4(normal, 0.0)).xyz); +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) + tangent = normalize((camera_matrix * vec4(tangent, 0.0)).xyz); + binormal = normalize((camera_matrix * vec4(binormal, 0.0)).xyz); #endif #endif vertex_interp = vertex.xyz; normal_interp = normal; - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent_interp = tangent; binormal_interp = binormal; #endif - #ifdef RENDER_DEPTH + float z_ofs = light_bias; + z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias; + + vertex_interp.z -= z_ofs; -#ifdef RENDER_DEPTH_DUAL_PARABOLOID - - vertex_interp.z*= shadow_dual_paraboloid_render_side; - normal_interp.z*= shadow_dual_paraboloid_render_side; - - dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias - - //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges - - highp vec3 vtx = vertex_interp+normalize(vertex_interp)*z_offset; - highp float distance = length(vtx); - vtx = normalize(vtx); - vtx.xy/=1.0-vtx.z; - vtx.z=(distance/shadow_dual_paraboloid_render_zfar); - vtx.z=vtx.z * 2.0 - 1.0; - - vertex.xyz=vtx; - vertex.w=1.0; - - -#else - - float z_ofs = z_offset; - z_ofs += (1.0-abs(normal_interp.z))*z_slope_scale; - vertex_interp.z-=z_ofs; - -#endif //RENDER_DEPTH_DUAL_PARABOLOID - -#endif //RENDER_DEPTH - - gl_Position = projection_matrix * vec4(vertex_interp,1.0); - - position_interp=gl_Position; - -#ifdef USE_VERTEX_LIGHTING - - diffuse_light_interp=vec4(0.0); - specular_light_interp=vec4(0.0); - -#ifdef USE_FORWARD_LIGHTING - - for(int i=0;i<omni_light_count;i++) { - light_process_omni(omni_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb); - } - - for(int i=0;i<spot_light_count;i++) { - light_process_spot(spot_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb); - } #endif -#ifdef USE_LIGHT_DIRECTIONAL - - vec3 directional_diffuse = vec3(0.0); - vec3 directional_specular = vec3(0.0); - light_compute(normal_interp,-light_direction_attenuation.xyz,-normalize( vertex_interp ),light_color_energy.rgb,roughness,directional_diffuse,directional_specular); - - float diff_avg = dot(diffuse_light_interp.rgb,vec3(0.33333)); - float diff_dir_avg = dot(directional_diffuse,vec3(0.33333)); - if (diff_avg>0.0) { - diffuse_light_interp.a=diff_dir_avg/(diff_avg+diff_dir_avg); - } else { - diffuse_light_interp.a=1.0; - } - - diffuse_light_interp.rgb+=directional_diffuse; - - float spec_avg = dot(specular_light_interp.rgb,vec3(0.33333)); - float spec_dir_avg = dot(directional_specular,vec3(0.33333)); - if (spec_avg>0.0) { - specular_light_interp.a=spec_dir_avg/(spec_avg+spec_dir_avg); - } else { - specular_light_interp.a=1.0; - } - - specular_light_interp.rgb+=directional_specular; - -#endif //USE_LIGHT_DIRECTIONAL - - -#endif // USE_VERTEX_LIGHTING + gl_Position = projection_matrix * vec4(vertex_interp, 1.0); } - [fragment] +#extension GL_ARB_shader_texture_lod : require -/* texture unit usage, N is max_texture_unity-N - -1-skeleton -2-radiance -3-reflection_atlas -4-directional_shadow -5-shadow_atlas -6-decal_atlas -7-screen -8-depth -9-probe1 -10-probe2 - -*/ - -uniform highp mat4 world_transform; - -#define M_PI 3.14159265359 - -/* Varyings */ - -#if defined(ENABLE_COLOR_INTERP) -in vec4 color_interp; -#endif - -#if defined(ENABLE_UV_INTERP) -in vec2 uv_interp; -#endif - -#if defined(ENABLE_UV2_INTERP) -in vec2 uv2_interp; -#endif - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) -in vec3 tangent_interp; -in vec3 binormal_interp; -#endif - -in highp vec3 vertex_interp; -in vec3 normal_interp; - - -/* PBR CHANNELS */ - -//used on forward mainly -uniform bool no_ambient_light; - - - -#ifdef USE_RADIANCE_MAP - - - -layout(std140) uniform Radiance { //ubo:2 - - mat4 radiance_inverse_xform; - float radiance_ambient_contribution; - -}; - -#define RADIANCE_MAX_LOD 5.0 - -#ifdef USE_RADIANCE_MAP_ARRAY - -uniform sampler2DArray radiance_map; //texunit:-2 - -vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec,float p_roughness) { - - vec3 norm = normalize(p_vec); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); - - // we need to lie the derivatives (normg) and assume that DP side is always the same - // to get proper texture filtering - vec2 normg=norm.xy; - if (norm.z>0.0) { - norm.y=0.5-norm.y+0.5; - } - - // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays, - // it's easy to have precision errors using fract() to interpolate layers - // as such, using fixed point to ensure it works. - - float index = p_roughness * RADIANCE_MAX_LOD; - int indexi = int(index * 256.0); - vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi/256)),dFdx(normg),dFdy(normg)).xyz; - vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi/256+1)),dFdx(normg),dFdy(normg)).xyz; - return mix(base,next,float(indexi%256)/256.0); -} - +#ifdef USE_GLES_OVER_GL +#define mediump +#define highp #else - -uniform sampler2D radiance_map; //texunit:-2 - -vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec,float p_roughness) { - - vec3 norm = normalize(p_vec); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); - if (norm.z>0.0) { - norm.y=0.5-norm.y+0.5; - } - return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz; -} - +precision mediump float; +precision mediump int; #endif -#endif - -/* Material Uniforms */ - - - -#if defined(USE_MATERIAL) - -layout(std140) uniform UniformData { - -MATERIAL_UNIFORMS - -}; - -#endif - -FRAGMENT_SHADER_GLOBALS - -layout(std140) uniform SceneData { - - highp mat4 projection_matrix; - highp mat4 inv_projection_matrix; - highp mat4 camera_inverse_matrix; - highp mat4 camera_matrix; - - mediump vec4 ambient_light_color; - mediump vec4 bg_color; - - mediump vec4 fog_color_enabled; - mediump vec4 fog_sun_color_amount; - - mediump float ambient_energy; - mediump float bg_energy; - - mediump float z_offset; - mediump float z_slope_scale; - highp float shadow_dual_paraboloid_render_zfar; - highp float shadow_dual_paraboloid_render_side; - - highp vec2 viewport_size; - highp vec2 screen_pixel_size; - highp vec2 shadow_atlas_pixel_size; - highp vec2 directional_shadow_pixel_size; - - highp float time; - highp float z_far; - mediump float reflection_multiplier; - mediump float subsurface_scatter_width; - mediump float ambient_occlusion_affect_light; - - bool fog_depth_enabled; - highp float fog_depth_begin; - highp float fog_depth_curve; - bool fog_transmit_enabled; - highp float fog_transmit_curve; - bool fog_height_enabled; - highp float fog_height_min; - highp float fog_height_max; - highp float fog_height_curve; -}; - -//directional light data +#include "stdlib.glsl" -#ifdef USE_LIGHT_DIRECTIONAL - -layout(std140) uniform DirectionalLightData { - - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix1; - highp mat4 shadow_matrix2; - highp mat4 shadow_matrix3; - highp mat4 shadow_matrix4; - mediump vec4 shadow_split_offsets; -}; - - -uniform highp sampler2DShadow directional_shadow; //texunit:-4 - -#endif - -#ifdef USE_VERTEX_LIGHTING -in vec4 diffuse_light_interp; -in vec4 specular_light_interp; -#endif -//omni and spot - -struct LightData { - - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix; - -}; - - -layout(std140) uniform OmniLightData { //ubo:4 - - LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; -}; - -layout(std140) uniform SpotLightData { //ubo:5 - - LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; -}; - - -uniform highp sampler2DShadow shadow_atlas; //texunit:-5 - - -struct ReflectionData { - - mediump vec4 box_extents; - mediump vec4 box_offset; - mediump vec4 params; // intensity, 0, interior , boxproject - mediump vec4 ambient; //ambient color, energy - mediump vec4 atlas_clamp; - highp mat4 local_matrix; //up to here for spot and omni, rest is for directional - //notes: for ambientblend, use distance to edge to blend between already existing global environment -}; - -layout(std140) uniform ReflectionProbeData { //ubo:6 - - ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS]; -}; -uniform mediump sampler2D reflection_atlas; //texunit:-3 +#define M_PI 3.14159265359 +// +// uniforms +// -#ifdef USE_FORWARD_LIGHTING +uniform mat4 camera_matrix; +uniform mat4 camera_inverse_matrix; +uniform mat4 projection_matrix; +uniform mat4 projection_inverse_matrix; -uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; -uniform int omni_light_count; +uniform mat4 world_transform; -uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; -uniform int spot_light_count; +uniform highp float time; -uniform int reflection_indices[MAX_FORWARD_LIGHTS]; -uniform int reflection_count; +#ifdef SCREEN_UV_USED +uniform vec2 screen_pixel_size; #endif +uniform highp sampler2D depth_buffer; //texunit:1 #if defined(SCREEN_TEXTURE_USED) - -uniform highp sampler2D screen_texture; //texunit:-7 - +uniform highp sampler2D screen_texture; //texunit:2 #endif -#ifdef USE_MULTIPLE_RENDER_TARGETS +#ifdef USE_RADIANCE_MAP -layout(location=0) out vec4 diffuse_buffer; -layout(location=1) out vec4 specular_buffer; -layout(location=2) out vec4 normal_mr_buffer; -#if defined(ENABLE_SSS) -layout(location=3) out float sss_buffer; -#endif +#define RADIANCE_MAX_LOD 6.0 -#else +uniform samplerCube radiance_map; // texunit:0 -layout(location=0) out vec4 frag_color; +uniform mat4 radiance_inverse_xform; #endif -in highp vec4 position_interp; -uniform highp sampler2D depth_buffer; //texunit:-8 - -#ifdef USE_CONTACT_SHADOWS - -float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) { +uniform float bg_energy; - if (abs(dir.z)>0.99) - return 1.0; +uniform float ambient_sky_contribution; +uniform vec4 ambient_color; +uniform float ambient_energy; - vec3 endpoint = pos+dir*max_distance; - vec4 source = position_interp; - vec4 dest = projection_matrix * vec4(endpoint, 1.0); +#ifdef LIGHT_PASS - vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5; - vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5; +#define LIGHT_TYPE_DIRECTIONAL 0 +#define LIGHT_TYPE_OMNI 1 +#define LIGHT_TYPE_SPOT 2 - vec2 screen_rel = to_screen - from_screen; +// general for all lights +uniform int light_type; - if (length(screen_rel)<0.00001) - return 1.0; //too small, don't do anything +uniform float light_energy; +uniform vec4 light_color; +uniform float light_specular; - /*float pixel_size; //approximate pixel size +// directional +uniform vec3 light_direction; - if (screen_rel.x > screen_rel.y) { +// omni +uniform vec3 light_position; - pixel_size = abs((pos.x-endpoint.x)/(screen_rel.x/screen_pixel_size.x)); - } else { - pixel_size = abs((pos.y-endpoint.y)/(screen_rel.y/screen_pixel_size.y)); +uniform float light_range; +uniform vec4 light_attenuation; - }*/ - vec4 bias = projection_matrix * vec4(pos+vec3(0.0,0.0,0.04), 1.0); //todo un-harcode the 0.04 +// spot +uniform float light_spot_attenuation; +uniform float light_spot_range; +uniform float light_spot_angle; +// shadows +uniform highp sampler2D light_shadow_atlas; //texunit:3 +uniform float light_has_shadow; - vec2 pixel_incr = normalize(screen_rel)*screen_pixel_size; - - - float steps = length(screen_rel) / length(pixel_incr); - steps = min(2000.0,steps); //put a limit to avoid freezing in some strange situation - //steps=10.0; - - vec4 incr = (dest - source)/steps; - float ratio=0.0; - float ratio_incr = 1.0/steps; - - while(steps>0.0) { - source += incr*2.0; - bias+=incr*2.0; - - vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5; - float depth = texture(depth_buffer,uv_depth.xy).r; - - if (depth < uv_depth.z) { - if (depth > (bias.z/bias.w) * 0.5 + 0.5) { - return min(pow(ratio,4.0),1.0); - } else { - return 1.0; - } - } - +uniform mat4 light_shadow_matrix; +uniform vec4 light_clamp; - ratio+=ratio_incr; - steps-=1.0; - } +// directional shadow - return 1.0; -} +uniform highp sampler2D light_directional_shadow; // texunit:3 +uniform vec4 light_split_offsets; +uniform mat4 light_shadow_matrix1; +uniform mat4 light_shadow_matrix2; +uniform mat4 light_shadow_matrix3; +uniform mat4 light_shadow_matrix4; #endif -// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. -// We're dividing this factor off because the overall term we'll end up looks like -// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): -// -// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) // -// We're basically regouping this as +// varyings // -// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] -// -// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. -// -// The contents of the D and G (G1) functions (GGX) are taken from -// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). -// Eqns 71-72 and 85-86 (see also Eqns 43 and 80). - -float G_GGX_2cos(float cos_theta_m, float alpha) { - // Schlick's approximation - // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) - // Eq. (19), although see Heitz (2014) the about the problems with his derivation. - // It nevertheless approximates GGX well with k = alpha/2. - float k = 0.5*alpha; - return 0.5 / (cos_theta_m * (1.0 - k) + k); - - // float cos2 = cos_theta_m*cos_theta_m; - // float sin2 = (1.0-cos2); - // return 1.0 /( cos_theta_m + sqrt(cos2 + alpha*alpha*sin2) ); -} -float D_GGX(float cos_theta_m, float alpha) { - float alpha2 = alpha*alpha; - float d = 1.0 + (alpha2-1.0)*cos_theta_m*cos_theta_m; - return alpha2/(M_PI * d * d); -} +varying highp vec3 vertex_interp; +varying vec3 normal_interp; -float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { - float cos2 = cos_theta_m * cos_theta_m; - float sin2 = (1.0-cos2); - float s_x = alpha_x * cos_phi; - float s_y = alpha_y * sin_phi; - return 1.0 / (cos_theta_m + sqrt(cos2 + (s_x*s_x + s_y*s_y)*sin2 )); -} +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) +varying vec3 tangent_interp; +varying vec3 binormal_interp; +#endif -float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { - float cos2 = cos_theta_m * cos_theta_m; - float sin2 = (1.0-cos2); - float r_x = cos_phi/alpha_x; - float r_y = sin_phi/alpha_y; - float d = cos2 + sin2*(r_x * r_x + r_y * r_y); - return 1.0 / (M_PI * alpha_x * alpha_y * d * d ); -} +#ifdef ENABLE_COLOR_INTERP +varying vec4 color_interp; +#endif +#ifdef ENABLE_UV_INTERP +varying vec2 uv_interp; +#endif -float SchlickFresnel(float u) -{ - float m = 1.0-u; - float m2 = m*m; - return m2*m2*m; // pow(m,5) -} +#ifdef ENABLE_UV2_INTERP +varying vec2 uv2_interp; +#endif -float GTR1(float NdotH, float a) -{ - if (a >= 1.0) return 1.0/M_PI; - float a2 = a*a; - float t = 1.0 + (a2-1.0)*NdotH*NdotH; - return (a2-1.0) / (M_PI*log(a2)*t); -} +varying vec3 view_interp; vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) { float dielectric = (0.034 * 2.0) * specular; @@ -942,1172 +395,490 @@ vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) { return mix(vec3(dielectric), albedo, metallic); // TODO: reference? } -void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) { - -#if defined(USE_LIGHT_SHADER_CODE) -//light is written by the light shader - - vec3 normal = N; - vec3 albedo = diffuse_color; - vec3 light = L; - vec3 view = V; - -LIGHT_SHADER_CODE +FRAGMENT_SHADER_GLOBALS -#else - float NdotL = dot(N,L); - float cNdotL = max(NdotL, 0.0); // clamped NdotL +#ifdef LIGHT_PASS +void light_compute(vec3 N, + vec3 L, + vec3 V, + vec3 B, + vec3 T, + vec3 light_color, + vec3 attenuation, + vec3 diffuse_color, + vec3 transmission, + float specular_blob_intensity, + float roughness, + float metallic, + float rim, + float rim_tint, + float clearcoat, + float clearcoat_gloss, + float anisotropy, + inout vec3 diffuse_light, + inout vec3 specular_light) { + + float NdotL = dot(N, L); + float cNdotL = max(NdotL, 0.0); float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); - if (metallic < 1.0) { -#if defined(DIFFUSE_OREN_NAYAR) - vec3 diffuse_brdf_NL; -#else - float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance -#endif + { + // calculate diffuse reflection + // TODO hardcode Oren Nayar for now + float diffuse_brdf_NL; -#if defined(DIFFUSE_LAMBERT_WRAP) - //energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0,(NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); + // diffuse_brdf_NL = cNdotL * (1.0 / M_PI); -#elif defined(DIFFUSE_OREN_NAYAR) - - { - // see http://mimosa-pudica.net/improved-oren-nayar.html - float LdotV = dot(L, V); - - - float s = LdotV - NdotL * NdotV; - float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); - - float sigma2 = roughness * roughness; // TODO: this needs checking - vec3 A = 1.0 + sigma2 * (- 0.5 / (sigma2 + 0.33) + 0.17*diffuse_color / (sigma2 + 0.13) ); - float B = 0.45 * sigma2 / (sigma2 + 0.09); - - diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); - } - -#elif defined(DIFFUSE_TOON) - - diffuse_brdf_NL = smoothstep(-roughness,max(roughness,0.01),NdotL); - -#elif defined(DIFFUSE_BURLEY) - - { - - - vec3 H = normalize(V + L); - float cLdotH = max(0.0,dot(L, H)); - - float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness; - float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV); - float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL); - diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; - /* - float energyBias = mix(roughness, 0.0, 0.5); - float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); - float fd90 = energyBias + 2.0 * VoH * VoH * roughness; - float f0 = 1.0; - float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); - float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); - - diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;*/ - } -#else - //lambert - diffuse_brdf_NL = cNdotL * (1.0 / M_PI); -#endif - -#if defined(TRANSMISSION_USED) - diffuse_light += light_color * diffuse_color * mix(vec3(diffuse_brdf_NL), vec3(M_PI), transmission) * attenuation; -#else diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; -#endif - - - -#if defined(LIGHT_USE_RIM) - float rim_light = pow(1.0-cNdotV, (1.0-roughness)*16.0); - diffuse_light += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color; -#endif } - - if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely - - - // D - -#if defined(SPECULAR_BLINN) - - vec3 H = normalize(V + L); - float cNdotH = max(dot(N,H), 0.0 ); - float intensity = pow( cNdotH, (1.0-roughness) * 256.0); - specular_light += light_color * intensity * specular_blob_intensity * attenuation; - -#elif defined(SPECULAR_PHONG) + { + // calculate specular reflection vec3 R = normalize(-reflect(L,N)); - float cRdotV = max(0.0,dot(R,V)); - float intensity = pow( cRdotV, (1.0-roughness) * 256.0); - specular_light += light_color * intensity * specular_blob_intensity * attenuation; - -#elif defined(SPECULAR_TOON) - - vec3 R = normalize(-reflect(L,N)); - float RdotV = dot(R,V); - float mid = 1.0-roughness; - mid*=mid; - float intensity = smoothstep(mid-roughness*0.5, mid+roughness*0.5, RdotV) * mid; - diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection - -#elif defined(SPECULAR_DISABLED) - //none.. - -#elif defined(SPECULAR_SCHLICK_GGX) - // shlick+ggx as default - - vec3 H = normalize(V + L); - - float cNdotH = max(dot(N,H), 0.0); - float cLdotH = max(dot(L,H), 0.0); - -# if defined(LIGHT_USE_ANISOTROPY) - - float aspect = sqrt(1.0-anisotropy*0.9); - float rx = roughness/aspect; - float ry = roughness*aspect; - float ax = rx*rx; - float ay = ry*ry; - float XdotH = dot( T, H ); - float YdotH = dot( B, H ); - float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); - float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); - -# else - float alpha = roughness * roughness; - float D = D_GGX(cNdotH, alpha); - float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha); -# endif - // F - float F0 = 1.0; // FIXME - float cLdotH5 = SchlickFresnel(cLdotH); - float F = mix(cLdotH5, 1.0, F0); - - float specular_brdf_NL = cNdotL * D * F * G; - - specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; -#endif - -#if defined(LIGHT_USE_CLEARCOAT) - if (clearcoat_gloss > 0.0) { -# if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) - vec3 H = normalize(V + L); -# endif -# if !defined(SPECULAR_SCHLICK_GGX) - float cNdotH = max(dot(N,H), 0.0); - float cLdotH = max(dot(L,H), 0.0); - float cLdotH5 = SchlickFresnel(cLdotH); -#endif - float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); - float Fr = mix(.04, 1.0, cLdotH5); - float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); - + float cRdotV = max(dot(R, V), 0.0); + float blob_intensity = pow(cRdotV, (1.0 - roughness) * 256.0); + specular_light += light_color * attenuation * blob_intensity * specular_blob_intensity; - float specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; - specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; - } -#endif } - - -#endif //defined(USE_LIGHT_SHADER_CODE) } -float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) { - -#ifdef SHADOW_MODE_PCF_13 - - float avg=textureProj(shadow,vec4(pos,depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0)); - return avg*(1.0/13.0); -#elif defined(SHADOW_MODE_PCF_5) - - float avg=textureProj(shadow,vec4(pos,depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); - return avg*(1.0/5.0); - -#else - - return textureProj(shadow,vec4(pos,depth,1.0)); - -#endif - -} - -#ifdef RENDER_DEPTH_DUAL_PARABOLOID - -in highp float dp_clip; - -#endif - - - -#if 0 -//need to save texture depth for this - -vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) { - - float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width; - float d = scale * distance; - - /** - * Armed with the thickness, we can now calculate the color by means of the - * precalculated transmittance profile. - * (It can be precomputed into a texture, for maximum performance): - */ - float dd = -d * d; - vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + - vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + - vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + - vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + - vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + - vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); - - /** - * Using the profile, we finally approximate the transmitted lighting from - * the back of the object: - */ - return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0); -} -#endif -void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) { - - vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w )); - - if (omni_lights[idx].light_params.w>0.5) { - //there is a shadowmap - - highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz; - float shadow_len=length(splane); - splane=normalize(splane); - vec4 clamp_rect=omni_lights[idx].light_clamp; - - if (splane.z>=0.0) { - - splane.z+=1.0; - - clamp_rect.y+=clamp_rect.w; - - } else { - - splane.z=1.0 - splane.z; - - /* - if (clamp_rect.z<clamp_rect.w) { - clamp_rect.x+=clamp_rect.z; - } else { - clamp_rect.y+=clamp_rect.w; - } - */ - - } - - splane.xy/=splane.z; - splane.xy=splane.xy * 0.5 + 0.5; - splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w; - - splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw; - float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect); - -#ifdef USE_CONTACT_SHADOWS - - if (shadow>0.01 && omni_lights[idx].shadow_color_contact.a>0.0) { - - float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,omni_lights[idx].shadow_color_contact.a)); - shadow=min(shadow,contact_shadow); - - } -#endif - light_attenuation*=mix(omni_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow); - } - - light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,omni_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); - -} - -void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent,vec3 albedo, vec3 transmission,float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) { - - vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w )); - vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; - float spot_cutoff=spot_lights[idx].light_params.y; - float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff); - float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); - light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x); - - if (spot_lights[idx].light_params.w>0.5) { - //there is a shadowmap - highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0)); - splane.xyz/=splane.w; - - float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp); - -#ifdef USE_CONTACT_SHADOWS - if (shadow>0.01 && spot_lights[idx].shadow_color_contact.a>0.0) { - - float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,spot_lights[idx].shadow_color_contact.a)); - shadow=min(shadow,contact_shadow); - - } -#endif - light_attenuation*=mix(spot_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow); - } - - light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,spot_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); - -} - -void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) { - - vec3 ref_vec = normalize(reflect(vertex,normal)); - vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz; - vec3 box_extents = reflections[idx].box_extents.xyz; - - if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box - return; - } - - vec3 inner_pos = abs(local_pos / box_extents); - float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z)); - //make blend more rounded - blend=mix(length(inner_pos),blend,blend); - blend*=blend; - blend=1.001-blend; - - if (reflections[idx].params.x>0.0){// compute reflection - - vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz; - - if (reflections[idx].params.w > 0.5) { //box project - - vec3 nrdir = normalize(local_ref_vec); - vec3 rbmax = (box_extents - local_pos)/nrdir; - vec3 rbmin = (-box_extents - local_pos)/nrdir; - - - vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0))); - - float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); - vec3 posonbox = local_pos + nrdir * fa; - local_ref_vec = posonbox - reflections[idx].box_offset.xyz; - } - - - vec4 clamp_rect=reflections[idx].atlas_clamp; - vec3 norm = normalize(local_ref_vec); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); - if (norm.z>0.0) { - norm.y=0.5-norm.y+0.5; - } - - vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy; - atlas_uv = clamp(atlas_uv,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); - - highp vec4 reflection; - reflection.rgb = textureLod(reflection_atlas,atlas_uv,roughness*5.0).rgb; - - if (reflections[idx].params.z < 0.5) { - reflection.rgb = mix(skybox,reflection.rgb,blend); - } - reflection.rgb*=reflections[idx].params.x; - reflection.a = blend; - reflection.rgb*=reflection.a; - - reflection_accum+=reflection; - } - - if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox - - - vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz; - - vec3 splane=normalize(local_amb_vec); - vec4 clamp_rect=reflections[idx].atlas_clamp; - - splane.z*=-1.0; - if (splane.z>=0.0) { - splane.z+=1.0; - clamp_rect.y+=clamp_rect.w; - } else { - splane.z=1.0 - splane.z; - splane.y=-splane.y; - } - - splane.xy/=splane.z; - splane.xy=splane.xy * 0.5 + 0.5; - - splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy; - splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); - - highp vec4 ambient_out; - ambient_out.a=blend; - ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb; - ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a); - if (reflections[idx].params.z < 0.5) { - ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); - } - - ambient_out.rgb *= ambient_out.a; - ambient_accum+=ambient_out; - } else { - - highp vec4 ambient_out; - ambient_out.a=blend; - ambient_out.rgb=reflections[idx].ambient.rgb; - if (reflections[idx].params.z < 0.5) { - ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); - } - ambient_out.rgb *= ambient_out.a; - ambient_accum+=ambient_out; - - } -} - -#ifdef USE_GI_PROBES - -uniform mediump sampler3D gi_probe1; //texunit:-9 -uniform highp mat4 gi_probe_xform1; -uniform highp vec3 gi_probe_bounds1; -uniform highp vec3 gi_probe_cell_size1; -uniform highp float gi_probe_multiplier1; -uniform highp float gi_probe_bias1; -uniform highp float gi_probe_normal_bias1; -uniform bool gi_probe_blend_ambient1; - -uniform mediump sampler3D gi_probe2; //texunit:-10 -uniform highp mat4 gi_probe_xform2; -uniform highp vec3 gi_probe_bounds2; -uniform highp vec3 gi_probe_cell_size2; -uniform highp float gi_probe_multiplier2; -uniform highp float gi_probe_bias2; -uniform highp float gi_probe_normal_bias2; -uniform bool gi_probe2_enabled; -uniform bool gi_probe_blend_ambient2; - -vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { - - float dist = p_bias;//1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0; - float alpha=0.0; - vec3 color = vec3(0.0); - - while(dist < max_distance && alpha < 0.95) { - float diameter = max(1.0, 2.0 * tan_half_angle * dist); - vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) ); - float a = (1.0 - alpha); - color += scolor.rgb * a; - alpha += a * scolor.a; - dist += diameter * 0.5; - } - - if (blend_ambient) { - color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95)); - } - - return color; -} - -void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds,vec3 cell_size,vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient,float multiplier, mat3 normal_mtx,vec3 ref_vec, float roughness,float p_bias,float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) { - - - - vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz; - vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz; - ref_vec = normalize(ref_pos - probe_pos); - - probe_pos+=(probe_xform * vec4(normal_mtx[2],0.0)).xyz*p_normal_bias; - -/* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0); - out_diff.a = 1.0; - return;*/ - //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0); - //return; - - //this causes corrupted pixels, i have no idea why.. - if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) { - return; - } - - //vec3 blendv = probe_pos/bounds * 2.0 - 1.0; - //float blend = 1.001-max(blendv.x,max(blendv.y,blendv.z)); - float blend=1.0; - - float max_distance = length(bounds); - - //radiance -#ifdef VCT_QUALITY_HIGH - -#define MAX_CONE_DIRS 6 - vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( - vec3(0, 0, 1), - vec3(0.866025, 0, 0.5), - vec3(0.267617, 0.823639, 0.5), - vec3(-0.700629, 0.509037, 0.5), - vec3(-0.700629, -0.509037, 0.5), - vec3(0.267617, -0.823639, 0.5) - ); - - float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); - float cone_angle_tan = 0.577; - float min_ref_tan = 0.0; -#else - -#define MAX_CONE_DIRS 4 - - vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( - vec3(0.707107, 0, 0.707107), - vec3(0, 0.707107, 0.707107), - vec3(-0.707107, 0, 0.707107), - vec3(0, -0.707107, 0.707107) - ); - - float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); - float cone_angle_tan = 0.98269; - max_distance*=0.5; - float min_ref_tan = 0.2; - -#endif - vec3 light=vec3(0.0); - for(int i=0;i<MAX_CONE_DIRS;i++) { - - vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos); - light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance,p_bias); - - } - - light*=multiplier; - - out_diff += vec4(light*blend,blend); - - //irradiance - - vec3 irr_light = voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance,p_bias); - - irr_light *= multiplier; - //irr_light=vec3(0.0); - - out_spec += vec4(irr_light*blend,blend); +// shadows +float sample_shadow(highp sampler2D shadow, + vec2 shadow_pixel_size, + vec2 pos, + float depth, + vec4 clamp_rect) +{ + // vec4 depth_value = texture2D(shadow, pos); + + // return depth_value.z; + return texture2DProj(shadow, vec4(pos, depth, 1.0)).r; + // return (depth_value.x + depth_value.y + depth_value.z + depth_value.w) / 4.0; } -void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) { - - roughness = roughness * roughness; - - vec3 ref_vec = normalize(reflect(normalize(pos),normal)); - - //find arbitrary tangent and bitangent, then build a matrix - vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0); - vec3 tangent = normalize(cross(v0, normal)); - vec3 bitangent = normalize(cross(tangent, normal)); - mat3 normal_mat = mat3(tangent,bitangent,normal); - - vec4 diff_accum = vec4(0.0); - vec4 spec_accum = vec4(0.0); - - vec3 ambient = out_ambient; - out_ambient = vec3(0.0); - - vec3 environment = out_specular; - - out_specular = vec3(0.0); - - gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,gi_probe_bias1,gi_probe_normal_bias1,spec_accum,diff_accum); - - if (gi_probe2_enabled) { - - gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,gi_probe_bias2,gi_probe_normal_bias2,spec_accum,diff_accum); - } - - if (diff_accum.a>0.0) { - diff_accum.rgb/=diff_accum.a; - } - - if (spec_accum.a>0.0) { - spec_accum.rgb/=spec_accum.a; - } - - out_specular+=spec_accum.rgb; - out_ambient+=diff_accum.rgb; - -} - #endif +void main() +{ - -void main() { - -#ifdef RENDER_DEPTH_DUAL_PARABOLOID - - if (dp_clip>0.0) - discard; -#endif - - //lay out everything, whathever is unused is optimized away anyway highp vec3 vertex = vertex_interp; - vec3 albedo = vec3(0.8,0.8,0.8); + vec3 albedo = vec3(0.8, 0.8, 0.8); vec3 transmission = vec3(0.0); float metallic = 0.0; float specular = 0.5; - vec3 emission = vec3(0.0,0.0,0.0); + vec3 emission = vec3(0.0, 0.0, 0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; - float clearcoat=0.0; - float clearcoat_gloss=0.0; + float clearcoat = 0.0; + float clearcoat_gloss = 0.0; float anisotropy = 1.0; vec2 anisotropy_flow = vec2(1.0,0.0); -#if defined(ENABLE_AO) - float ao=1.0; - float ao_light_affect=0.0; -#endif - float alpha = 1.0; + float side = 1.0; -#ifdef METERIAL_DOUBLESIDED - float side=float(gl_FrontFacing)*2.0-1.0; -#else - float side=1.0; +#if defined(ENABLE_AO) + float ao = 1.0; + float ao_light_affect = 0.0; #endif -#if defined(ALPHA_SCISSOR_USED) - float alpha_scissor = 0.5; -#endif - -#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - vec3 binormal = normalize(binormal_interp)*side; - vec3 tangent = normalize(tangent_interp)*side; +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) + vec3 binormal = normalize(binormal_interp) * side; + vec3 tangent = normalize(tangent_interp) * side; #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif - vec3 normal = normalize(normal_interp)*side; - -#if defined(ENABLE_UV_INTERP) - vec2 uv = uv_interp; -#endif - -#if defined(ENABLE_UV2_INTERP) - vec2 uv2 = uv2_interp; -#endif - -#if defined(ENABLE_COLOR_INTERP) - vec4 color = color_interp; -#endif + vec3 normal = normalize(normal_interp) * side; #if defined(ENABLE_NORMALMAP) - - vec3 normalmap = vec3(0.0); + vec3 normalmap = vec3(0.5); #endif + float normaldepth = 1.0; - float normaldepth=1.0; -#if defined(SCREEN_UV_USED) - vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size; +#ifdef ALPHA_SCISSOR_USED + float alpha_scissor = 0.5; #endif -#if defined (ENABLE_SSS) - float sss_strength=0.0; +#ifdef SCREEN_UV_USED + vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #endif { - FRAGMENT_SHADER_CODE -} - -#if defined(ALPHA_SCISSOR_USED) - if (alpha<alpha_scissor) { - discard; - } -#endif - -#ifdef USE_OPAQUE_PREPASS - - if (alpha<0.99) { - discard; - } -#endif +} #if defined(ENABLE_NORMALMAP) + normalmap.xy = normalmap.xy * 2.0 - 1.0; + normalmap.z = sqrt(1.0 - dot(normalmap.xy, normalmap.xy)); - normalmap.xy=normalmap.xy*2.0-1.0; - normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. + // normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side; + normal = normalmap; +#endif - normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side; + normal = normalize(normal); -#endif + vec3 N = normal; + + vec3 specular_light = vec3(0.0, 0.0, 0.0); + vec3 diffuse_light = vec3(0.0, 0.0, 0.0); -#if defined(LIGHT_USE_ANISOTROPY) + vec3 ambient_light = vec3(0.0, 0.0, 0.0); - if (anisotropy>0.01) { - //rotation matrix - mat3 rot = mat3( tangent, binormal, normal ); - //make local to space - tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0)); - binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0)); - } + vec3 env_reflection_light = vec3(0.0, 0.0, 0.0); -#endif + vec3 eye_position = -normalize(vertex_interp); -#ifdef ENABLE_CLIP_ALPHA - if (albedo.a<0.99) { - //used for doublepass and shadowmapping +#ifdef ALPHA_SCISSOR_USED + if (alpha < alpha_scissor) { discard; } #endif + +// +// Lighting +// +#ifdef LIGHT_PASS -/////////////////////// LIGHTING ////////////////////////////// - - //apply energy conservation - -#ifdef USE_VERTEX_LIGHTING - - vec3 specular_light = specular_light_interp.rgb; - vec3 diffuse_light = diffuse_light_interp.rgb; -#else - - vec3 specular_light = vec3(0.0,0.0,0.0); - vec3 diffuse_light = vec3(0.0,0.0,0.0); - -#endif + if (light_type == LIGHT_TYPE_OMNI) { + vec3 light_vec = light_position - vertex; + float light_length = length(light_vec); - vec3 ambient_light; - vec3 env_reflection_light = vec3(0.0,0.0,0.0); + float normalized_distance = light_length / light_range; - vec3 eye_vec = -normalize( vertex_interp ); + float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); + vec3 attenuation = vec3(omni_attenuation); + if (light_has_shadow > 0.5) { + highp vec3 splane = (light_shadow_matrix * vec4(vertex, 1.0)).xyz; + float shadow_len = length(splane); -#ifdef USE_RADIANCE_MAP + splane = normalize(splane); - if (no_ambient_light) { - ambient_light=vec3(0.0,0.0,0.0); - } else { - { + vec4 clamp_rect = light_clamp; - { //read radiance from dual paraboloid - - vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n); - ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz); - vec3 radiance = textureDualParaboloid(radiance_map,ref_vec,roughness) * bg_energy; - env_reflection_light = radiance; + if (splane.z >= 0.0) { + splane.z += 1.0; + clamp_rect.y += clamp_rect.w; + } else { + splane.z = 1.0 - splane.z; } - //no longer a cubemap - //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y); - } + splane.xy /= splane.z; + splane.xy = splane.xy * 0.5 + 0.5; + splane.z = shadow_len / light_range; - { + splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; - vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz); - vec3 env_ambient=textureDualParaboloid(radiance_map,ambient_dir,1.0) * bg_energy; + float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, clamp_rect); - ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution); - //ambient_light=vec3(0.0,0.0,0.0); + if (shadow > splane.z) { + } else { + attenuation = vec3(0.0); + } } - } - -#else - - if (no_ambient_light){ - ambient_light=vec3(0.0,0.0,0.0); - } else { - ambient_light=ambient_light_color.rgb; - } -#endif - - ambient_light*=ambient_energy; - - float specular_blob_intensity=1.0; -#if defined(SPECULAR_TOON) - specular_blob_intensity*=specular * 2.0; -#endif - -#if defined(USE_LIGHT_DIRECTIONAL) - - vec3 light_attenuation=vec3(1.0); - - float depth_z = -vertex.z; -#ifdef LIGHT_DIRECTIONAL_SHADOW + light_compute(normal, + normalize(light_vec), + eye_position, + binormal, + tangent, + light_color.xyz * light_energy, + attenuation, + albedo, + transmission, + specular * light_specular, + roughness, + metallic, + rim, + rim_tint, + clearcoat, + clearcoat_gloss, + anisotropy, + diffuse_light, + specular_light); + + } else if (light_type == LIGHT_TYPE_DIRECTIONAL) { + + vec3 light_vec = -light_direction; + vec3 attenuation = vec3(1.0, 1.0, 1.0); + + float depth_z = -vertex.z; + + if (light_has_shadow > 0.5) { + #ifdef LIGHT_USE_PSSM4 - if (depth_z < shadow_split_offsets.w) { + if (depth_z < light_split_offsets.w) { #elif defined(LIGHT_USE_PSSM2) - if (depth_z < shadow_split_offsets.y) { + if (depth_z < light_split_offsets.y) { #else - if (depth_z < shadow_split_offsets.x) { -#endif //LIGHT_USE_PSSM4 - - vec3 pssm_coord; - float pssm_fade=0.0; - + if (depth_z < light_split_offsets.x) { +#endif + + vec3 pssm_coord; + float pssm_fade = 0.0; + #ifdef LIGHT_USE_PSSM_BLEND - float pssm_blend; - vec3 pssm_coord2; - bool use_blend=true; + float pssm_blend; + vec3 pssm_coord2; + bool use_blend = true; #endif - - + #ifdef LIGHT_USE_PSSM4 - - - if (depth_z < shadow_split_offsets.y) { - - if (depth_z < shadow_split_offsets.x) { - - highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - - -#if defined(LIGHT_USE_PSSM_BLEND) - - splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z); -#endif - - } else { - - highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - -#if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix3 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z); + if (depth_z < light_split_offsets.y) { + if (depth_z < light_split_offsets.x) { + highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + +#ifdef LIGHT_USE_PSSM_BLEND + splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); +#endif + } else { + highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + +#ifdef LIGHT_USE_PSSM_BLEND + splane = (light_shadow_matrix3 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + + pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #endif + } + } else { + if (depth_z < light_split_offsets.z) { - } - } else { - - - if (depth_z < shadow_split_offsets.z) { - - highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; + highp vec4 splane = (light_shadow_matrix3 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix4 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(shadow_split_offsets.y,shadow_split_offsets.z,depth_z); + splane = (light_shadow_matrix4 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); #endif - } else { + } else { - highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - pssm_fade = smoothstep(shadow_split_offsets.z,shadow_split_offsets.w,depth_z); + highp vec4 splane = (light_shadow_matrix4 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) - use_blend=false; - + use_blend = false; #endif - - } - } - - - -#endif //LIGHT_USE_PSSM4 - + } + } + +#endif // LIGHT_USE_PSSM4 + #ifdef LIGHT_USE_PSSM2 - - if (depth_z < shadow_split_offsets.x) { - - highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - - -#if defined(LIGHT_USE_PSSM_BLEND) - - splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z); + if (depth_z < light_split_offsets.x) { + + highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + +#ifdef LIGHT_USE_PSSM_BLEND + splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord2 = splane.xyz / splane.w; + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif - - } else { - highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - pssm_fade = smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z); -#if defined(LIGHT_USE_PSSM_BLEND) - use_blend=false; - + } else { + highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); +#ifdef LIGHT_USE_PSSM_BLEND + use_blend = false; #endif - - } - -#endif //LIGHT_USE_PSSM2 - + } + +#endif // LIGHT_USE_PSSM2 + #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) - { //regular orthogonal - highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - } -#endif - - - //one one sample - - float shadow = sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp); - -#if defined(LIGHT_USE_PSSM_BLEND) - - if (use_blend) { - shadow=mix(shadow, sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp),pssm_blend); - } + { + highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0)); + pssm_coord = splane.xyz / splane.w; + } #endif - -#ifdef USE_CONTACT_SHADOWS - if (shadow>0.01 && shadow_color_contact.a>0.0) { - - float contact_shadow = contact_shadow_compute(vertex,-light_direction_attenuation.xyz,shadow_color_contact.a); - shadow=min(shadow,contact_shadow); - - } + + float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord.xy, pssm_coord.z, light_clamp); + +#ifdef LIGHT_USE_PSSM_BLEND + if (use_blend) { + shadow = mix(shadow, sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend); + } #endif - light_attenuation=mix(mix(shadow_color_contact.rgb,vec3(1.0),shadow),vec3(1.0),pssm_fade); - - - } - - -#endif //LIGHT_DIRECTIONAL_SHADOW + + attenuation *= shadow; + + + } + + } -#ifdef USE_VERTEX_LIGHTING - diffuse_light*=mix(vec3(1.0),light_attenuation,diffuse_light_interp.a); - specular_light*=mix(vec3(1.0),light_attenuation,specular_light_interp.a); + light_compute(normal, + normalize(light_vec), + eye_position, + binormal, + tangent, + light_color.xyz * light_energy, + attenuation, + albedo, + transmission, + specular * light_specular, + roughness, + metallic, + rim, + rim_tint, + clearcoat, + clearcoat_gloss, + anisotropy, + diffuse_light, + specular_light); + } else if (light_type == LIGHT_TYPE_SPOT) { + + vec3 light_att = vec3(1.0); + + if (light_has_shadow > 0.5) { + highp vec4 splane = (light_shadow_matrix * vec4(vertex, 1.0)); + splane.xyz /= splane.w; + + float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, light_clamp); + + if (shadow > splane.z) { + } else { + light_att = vec3(0.0); + } + + + } + vec3 light_rel_vec = light_position - vertex; + float light_length = length(light_rel_vec); + float normalized_distance = light_length / light_range; + + float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); + vec3 spot_dir = light_direction; + + float spot_cutoff = light_spot_angle; + + float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); + + spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); + + light_att *= vec3(spot_attenuation); + + light_compute(normal, + normalize(light_rel_vec), + eye_position, + binormal, + tangent, + light_color.xyz * light_energy, + light_att, + albedo, + transmission, + specular * light_specular, + roughness, + metallic, + rim, + rim_tint, + clearcoat, + clearcoat_gloss, + anisotropy, + diffuse_light, + specular_light); + + } + + gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha); #else - light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb,light_attenuation,albedo,transmission,light_params.z*specular_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); -#endif - - -#endif //#USE_LIGHT_DIRECTIONAL - -#ifdef USE_GI_PROBES - gi_probes_compute(vertex,normal,roughness,env_reflection_light,ambient_light); -#endif - -#ifdef USE_FORWARD_LIGHTING - - - highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0); - highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0); - for(int i=0;i<reflection_count;i++) { - reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,env_reflection_light,reflection_accum,ambient_accum); - } - - if (reflection_accum.a>0.0) { - specular_light+=reflection_accum.rgb/reflection_accum.a; - } else { - specular_light+=env_reflection_light; - } - - if (ambient_accum.a>0.0) { - ambient_light+=ambient_accum.rgb/ambient_accum.a; - } - - - -#ifdef USE_VERTEX_LIGHTING +#ifdef RENDER_DEPTH - diffuse_light*=albedo; #else - for(int i=0;i<omni_light_count;i++) { - light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light); - } +#ifdef USE_RADIANCE_MAP - for(int i=0;i<spot_light_count;i++) { - light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light); - } -#endif //USE_VERTEX_LIGHTING + vec3 ref_vec = reflect(-eye_position, N); + ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); -#endif + ref_vec.z *= -1.0; + env_reflection_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy; + { + vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz); + vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy; + ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution); -#ifdef RENDER_DEPTH -//nothing happens, so a tree-ssa optimizer will result in no fragment shader :) -#else + } - specular_light*=reflection_multiplier; - ambient_light*=albedo; //ambient must be multiplied by albedo at the end + ambient_light *= ambient_energy; + + specular_light += env_reflection_light; + + ambient_light *= albedo; #if defined(ENABLE_AO) - ambient_light*=ao; - ao_light_affect = mix(1.0,ao,ao_light_affect); - specular_light*=ao_light_affect; - diffuse_light*=ao_light_affect; -#endif - - - - //energy conservation - diffuse_light *= 1.0-metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point - ambient_light *= 1.0-metallic; - - + ambient_light *= ao; + ao_light_affect = mix(1.0, ao, ao_light_affect); + specular_light *= ao_light_affect; + diffuse_light *= ao_light_affect; +#endif + + diffuse_light *= 1.0 - metallic; + ambient_light *= 1.0 - metallic; + + // environment BRDF approximation + + // TODO shadeless { - -#if defined(DIFFUSE_TOON) - //simplify for toon, as - specular_light *= specular * metallic * albedo * 2.0; -#else - // Environment brdf approximation (Lazarov 2013) - // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; - float ndotv = clamp(dot(normal,eye_vec),0.0,1.0); + float ndotv = clamp(dot(normal,eye_position),0.0,1.0); float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y; vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw; vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo); specular_light *= AB.x * specular_color + AB.y; -#endif - } - if (fog_color_enabled.a > 0.5) { - - float fog_amount=0.0; + gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha); + // gl_FragColor = vec4(normal, 1.0); -#ifdef USE_LIGHT_DIRECTIONAL - - vec3 fog_color = mix( fog_color_enabled.rgb, fog_sun_color_amount.rgb,fog_sun_color_amount.a * pow(max( dot(normalize(vertex),-light_direction_attenuation.xyz), 0.0),8.0) ); #else - - vec3 fog_color = fog_color_enabled.rgb; + gl_FragColor = vec4(albedo, alpha); #endif - - //apply fog - - if (fog_depth_enabled) { - - float fog_z = smoothstep(fog_depth_begin,z_far,length(vertex)); - - fog_amount = pow(fog_z,fog_depth_curve); - if (fog_transmit_enabled) { - vec3 total_light = emission + ambient_light + specular_light + diffuse_light; - float transmit = pow(fog_z,fog_transmit_curve); - fog_color = mix(max(total_light,fog_color),fog_color,transmit); - } - } - - if (fog_height_enabled) { - float y = (camera_matrix * vec4(vertex,1.0)).y; - fog_amount = max(fog_amount,pow(smoothstep(fog_height_min,fog_height_max,y),fog_height_curve)); - } - - float rev_amount = 1.0 - fog_amount; - - - emission = emission * rev_amount + fog_color * fog_amount; - ambient_light*=rev_amount; - specular_light*rev_amount; - diffuse_light*=rev_amount; - - } - -#ifdef USE_MULTIPLE_RENDER_TARGETS - - -#ifdef SHADELESS - diffuse_buffer=vec4(albedo.rgb,0.0); - specular_buffer=vec4(0.0); - -#else - -#if defined(ENABLE_AO) - - float ambient_scale=0.0; // AO is supplied by material -#else - //approximate ambient scale for SSAO, since we will lack full ambient - float max_emission=max(emission.r,max(emission.g,emission.b)); - float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b)); - float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b)); - float total_ambient = max_ambient+max_diffuse+max_emission; - float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0; -#endif //ENABLE_AO - - diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale); - specular_buffer=vec4(specular_light,metallic); - -#endif //SHADELESS - - normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness); - -#if defined (ENABLE_SSS) - sss_buffer = sss_strength; -#endif - - -#else //USE_MULTIPLE_RENDER_TARGETS - - -#ifdef SHADELESS - frag_color=vec4(albedo,alpha); -#else - frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha); -#endif //SHADELESS - - -#endif //USE_MULTIPLE_RENDER_TARGETS - +#endif // RENDER_DEPTH -#endif //RENDER_DEPTH +#endif // lighting } diff --git a/drivers/gles2/shaders/stdlib.glsl b/drivers/gles2/shaders/stdlib.glsl new file mode 100644 index 0000000000..ebbdb96311 --- /dev/null +++ b/drivers/gles2/shaders/stdlib.glsl @@ -0,0 +1,45 @@ + +vec2 select2(vec2 a, vec2 b, bvec2 c) +{ + vec2 ret; + + ret.x = c.x ? b.x : a.x; + ret.y = c.y ? b.y : a.y; + + return ret; +} + +vec3 select3(vec3 a, vec3 b, bvec3 c) +{ + vec3 ret; + + ret.x = c.x ? b.x : a.x; + ret.y = c.y ? b.y : a.y; + ret.z = c.z ? b.z : a.z; + + return ret; +} + +vec4 select4(vec4 a, vec4 b, bvec4 c) +{ + vec4 ret; + + ret.x = c.x ? b.x : a.x; + ret.y = c.y ? b.y : a.y; + ret.z = c.z ? b.z : a.z; + ret.w = c.w ? b.w : a.w; + + return ret; +} + + +highp vec4 texel2DFetch(highp sampler2D tex, ivec2 size, ivec2 coord) +{ + float x_coord = float(2 * coord.x + 1) / float(size.x * 2); + float y_coord = float(2 * coord.y + 1) / float(size.y * 2); + + x_coord = float(coord.x) / float(size.x); + y_coord = float(coord.y) / float(size.y); + + return texture2DLod(tex, vec2(x_coord, y_coord), 0.0); +} |