summaryrefslogtreecommitdiff
path: root/drivers/gles2/shaders
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gles2/shaders')
-rw-r--r--drivers/gles2/shaders/SCsub4
-rw-r--r--drivers/gles2/shaders/canvas.glsl8
-rw-r--r--drivers/gles2/shaders/copy.glsl63
-rw-r--r--drivers/gles2/shaders/cube_to_dp.glsl24
-rw-r--r--drivers/gles2/shaders/cubemap_filter.glsl321
-rw-r--r--drivers/gles2/shaders/scene.glsl2319
-rw-r--r--drivers/gles2/shaders/stdlib.glsl45
7 files changed, 784 insertions, 2000 deletions
diff --git a/drivers/gles2/shaders/SCsub b/drivers/gles2/shaders/SCsub
index 5de3e1ac90..acb93fff8f 100644
--- a/drivers/gles2/shaders/SCsub
+++ b/drivers/gles2/shaders/SCsub
@@ -8,8 +8,8 @@ if 'GLES2_GLSL' in env['BUILDERS']:
env.GLES2_GLSL('canvas.glsl');
# env.GLES2_GLSL('canvas_shadow.glsl');
env.GLES2_GLSL('scene.glsl');
-# env.GLES2_GLSL('cubemap_filter.glsl');
-# env.GLES2_GLSL('cube_to_dp.glsl');
+ env.GLES2_GLSL('cubemap_filter.glsl');
+ env.GLES2_GLSL('cube_to_dp.glsl');
# env.GLES2_GLSL('blend_shape.glsl');
# env.GLES2_GLSL('screen_space_reflection.glsl');
# env.GLES2_GLSL('effect_blur.glsl');
diff --git a/drivers/gles2/shaders/canvas.glsl b/drivers/gles2/shaders/canvas.glsl
index 11c6ab9b76..29d81bb2c4 100644
--- a/drivers/gles2/shaders/canvas.glsl
+++ b/drivers/gles2/shaders/canvas.glsl
@@ -27,7 +27,7 @@ uniform vec4 src_rect;
#endif
-uniform bool blit_pass;
+uniform highp float time;
VERTEX_SHADER_GLOBALS
@@ -103,7 +103,7 @@ uniform mediump sampler2D normal_texture; // texunit:1
varying mediump vec2 uv_interp;
varying mediump vec4 color_interp;
-uniform bool blit_pass;
+uniform highp float time;
uniform vec4 final_modulate;
@@ -127,6 +127,10 @@ void main() {
vec4 color = color_interp;
color *= texture2D(color_texture, uv_interp);
+
+#ifdef SCREEN_UV_USED
+ vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
+#endif
{
FRAGMENT_SHADER_CODE
diff --git a/drivers/gles2/shaders/copy.glsl b/drivers/gles2/shaders/copy.glsl
index a21da68525..feaeb2152b 100644
--- a/drivers/gles2/shaders/copy.glsl
+++ b/drivers/gles2/shaders/copy.glsl
@@ -9,11 +9,20 @@ precision mediump int;
#endif
attribute highp vec4 vertex_attrib; // attrib:0
+
+#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
+attribute vec3 cube_in; // attrib:4
+#else
attribute vec2 uv_in; // attrib:4
+#endif
+
attribute vec2 uv2_in; // attrib:5
+#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
+varying vec3 cube_interp;
+#else
varying vec2 uv_interp;
-
+#endif
varying vec2 uv2_interp;
#ifdef USE_COPY_SECTION
@@ -22,7 +31,12 @@ uniform vec4 copy_section;
void main() {
+#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
+ cube_interp = cube_in;
+#else
uv_interp = uv_in;
+#endif
+
uv2_interp = uv2_in;
gl_Position = vertex_attrib;
@@ -34,6 +48,8 @@ void main() {
[fragment]
+#define M_PI 3.14159265359
+
#ifdef USE_GLES_OVER_GL
#define mediump
#define highp
@@ -42,21 +58,59 @@ precision mediump float;
precision mediump int;
#endif
-
+#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
+varying vec3 cube_interp;
+#else
varying vec2 uv_interp;
+#endif
+
+#ifdef USE_CUBEMAP
+uniform samplerCube source_cube; // texunit:0
+#else
uniform sampler2D source; // texunit:0
+#endif
varying vec2 uv2_interp;
+#ifdef USE_MULTIPLIER
+uniform float multiplier;
+#endif
+
#ifdef USE_CUSTOM_ALPHA
uniform float custom_alpha;
#endif
+#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
+
+vec4 texturePanorama(sampler2D pano, vec3 normal) {
+
+ vec2 st = vec2(
+ atan(normal.x, normal.z),
+ acos(normal.y)
+ );
+
+ if(st.x < 0.0)
+ st.x += M_PI*2.0;
+
+ st/=vec2(M_PI*2.0,M_PI);
+
+ return texture2D(pano,st);
+
+}
+
+#endif
void main() {
- //vec4 color = color_interp;
+#ifdef USE_PANORAMA
+
+ vec4 color = texturePanorama(source, normalize(cube_interp));
+
+#elif defined(USE_CUBEMAP)
+ vec4 color = textureCube(source_cube, normalize(cube_interp));
+#else
vec4 color = texture2D( source, uv_interp );
+#endif
#ifdef USE_NO_ALPHA
@@ -67,6 +121,9 @@ void main() {
color.a=custom_alpha;
#endif
+#ifdef USE_MULTIPLIER
+ color.rgb *= multiplier;
+#endif
gl_FragColor = color;
}
diff --git a/drivers/gles2/shaders/cube_to_dp.glsl b/drivers/gles2/shaders/cube_to_dp.glsl
index 5ffc78c0b9..0b3f53a870 100644
--- a/drivers/gles2/shaders/cube_to_dp.glsl
+++ b/drivers/gles2/shaders/cube_to_dp.glsl
@@ -1,10 +1,17 @@
[vertex]
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
+#else
+precision mediump float;
+precision mediump int;
+#endif
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+attribute highp vec4 vertex_attrib; // attrib:0
+attribute vec2 uv_in; // attrib:4
-out vec2 uv_interp;
+varying vec2 uv_interp;
void main() {
@@ -14,9 +21,16 @@ void main() {
[fragment]
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
+#else
+precision mediump float;
+precision mediump int;
+#endif
uniform highp samplerCube source_cube; //texunit:0
-in vec2 uv_interp;
+varying vec2 uv_interp;
uniform bool z_flip;
uniform highp float z_far;
@@ -49,7 +63,7 @@ void main() {
}
//normal = normalize(vec3( uv_interp * 2.0 - 1.0, 1.0 ));
- float depth = texture(source_cube,normal).r;
+ float depth = textureCube(source_cube,normal).r;
// absolute values for direction cosines, bigger value equals closer to basis axis
vec3 unorm = abs(normal);
diff --git a/drivers/gles2/shaders/cubemap_filter.glsl b/drivers/gles2/shaders/cubemap_filter.glsl
index 485fbb6ee0..62ecd9471b 100644
--- a/drivers/gles2/shaders/cubemap_filter.glsl
+++ b/drivers/gles2/shaders/cubemap_filter.glsl
@@ -1,11 +1,17 @@
[vertex]
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
+#else
+precision mediump float;
+precision mediump int;
+#endif
-layout(location=0) in highp vec2 vertex;
-
-layout(location=4) in highp vec2 uv;
+attribute highp vec2 vertex; // attrib:0
+attribute highp vec2 uv; // attrib:4
-out highp vec2 uv_interp;
+varying highp vec2 uv_interp;
void main() {
@@ -15,174 +21,47 @@ void main() {
[fragment]
+#extension GL_ARB_shader_texture_lod : require
-precision highp float;
-precision highp int;
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
+#else
+precision mediump float;
+precision mediump int;
+#endif
#ifdef USE_SOURCE_PANORAMA
uniform sampler2D source_panorama; //texunit:0
-#endif
-
-#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
-uniform sampler2DArray source_dual_paraboloid_array; //texunit:0
-uniform int source_array_index;
-#endif
-
-#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
+#else
uniform samplerCube source_cube; //texunit:0
#endif
uniform int face_id;
uniform float roughness;
-in highp vec2 uv_interp;
-
-
-layout(location = 0) out vec4 frag_color;
+varying highp vec2 uv_interp;
+uniform sampler2D radical_inverse_vdc_cache; // texunit:1
#define M_PI 3.14159265359
-
-vec3 texelCoordToVec(vec2 uv, int faceID)
-{
- mat3 faceUvVectors[6];
-/*
- // -x
- faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
- faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
-
- // +x
- faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
- faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
-
- // -y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
- faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
-
- // +y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
-
- // -z
- faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
- faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
-
- // +z
- faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
-*/
-
- // -x
- faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
- faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
-
- // +x
- faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
- faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
-
- // -y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
- faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
-
- // +y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
-
- // -z
- faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
- faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
-
- // +z
- faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
-
- // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
- vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
- return normalize(result);
-}
-
-vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N)
-{
- float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
-
- // Compute distribution direction
- float Phi = 2.0 * M_PI * Xi.x;
- float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
- float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
-
- // Convert to spherical direction
- vec3 H;
- H.x = SinTheta * cos(Phi);
- H.y = SinTheta * sin(Phi);
- H.z = CosTheta;
-
- vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
- vec3 TangentX = normalize(cross(UpVector, N));
- vec3 TangentY = cross(N, TangentX);
-
- // Tangent to world space
- return TangentX * H.x + TangentY * H.y + N * H.z;
-}
-
-// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
-float GGX(float NdotV, float a)
-{
- float k = a / 2.0;
- return NdotV / (NdotV * (1.0 - k) + k);
-}
-
-// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
-float G_Smith(float a, float nDotV, float nDotL)
-{
- return GGX(nDotL, a * a) * GGX(nDotV, a * a);
-}
-
-float radicalInverse_VdC(uint bits) {
- bits = (bits << 16u) | (bits >> 16u);
- bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
- bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
- bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
- bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
- return float(bits) * 2.3283064365386963e-10; // / 0x100000000
-}
-
-vec2 Hammersley(uint i, uint N) {
- return vec2(float(i)/float(N), radicalInverse_VdC(i));
-}
-
-
-
#ifdef LOW_QUALITY
-#define SAMPLE_COUNT 64u
+#define SAMPLE_COUNT 64
#else
-#define SAMPLE_COUNT 512u
+#define SAMPLE_COUNT 512
#endif
-uniform bool z_flip;
-
#ifdef USE_SOURCE_PANORAMA
-vec4 texturePanorama(vec3 normal,sampler2D pano ) {
+vec4 texturePanorama(sampler2D pano, vec3 normal) {
vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y)
+ atan(normal.x, normal.z),
+ acos(normal.y)
);
if(st.x < 0.0)
@@ -190,105 +69,119 @@ vec4 texturePanorama(vec3 normal,sampler2D pano ) {
st/=vec2(M_PI*2.0,M_PI);
- return textureLod(pano,st,0.0);
+ return texture2DLod(pano,st,0.0);
}
#endif
-#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
-
-
-vec4 textureDualParaboloidArray(vec3 normal) {
-
- vec3 norm = normalize(normal);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
- if (norm.z<0.0) {
- norm.y=0.5-norm.y+0.5;
- }
- return textureLod(source_dual_paraboloid_array, vec3(norm.xy, float(source_array_index) ), 0.0);
-
+vec3 texelCoordToVec(vec2 uv, int faceID) {
+ mat3 faceUvVectors[6];
+
+ // -x
+ faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
+ faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
+
+ // +x
+ faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
+ faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
+
+ // -y
+ faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
+ faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
+
+ // +y
+ faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
+ faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
+
+ // -z
+ faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
+ faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
+
+ // +z
+ faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
+
+ // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
+ vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
+ return normalize(result);
}
-#endif
-
-void main() {
-
-#ifdef USE_DUAL_PARABOLOID
-
- vec3 N = vec3( uv_interp * 2.0 - 1.0, 0.0 );
- N.z = 0.5 - 0.5*((N.x * N.x) + (N.y * N.y));
- N = normalize(N);
-
- if (z_flip) {
- N.y=-N.y; //y is flipped to improve blending between both sides
- N.z=-N.z;
- }
-
+vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
+ float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
-#else
- vec2 uv = (uv_interp * 2.0) - 1.0;
- vec3 N = texelCoordToVec(uv, face_id);
-#endif
- //vec4 color = color_interp;
+ // Compute distribution direction
+ float Phi = 2.0 * M_PI * Xi.x;
+ float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
+ float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
-#ifdef USE_DIRECT_WRITE
+ // Convert to spherical direction
+ vec3 H;
+ H.x = SinTheta * cos(Phi);
+ H.y = SinTheta * sin(Phi);
+ H.z = CosTheta;
-#ifdef USE_SOURCE_PANORAMA
+ vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
+ vec3 TangentX = normalize(cross(UpVector, N));
+ vec3 TangentY = cross(N, TangentX);
- frag_color=vec4(texturePanorama(N,source_panorama).rgb,1.0);
-#endif
+ // Tangent to world space
+ return TangentX * H.x + TangentY * H.y + N * H.z;
+}
-#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
+float radical_inverse_VdC(int i) {
+ return texture2D(radical_inverse_vdc_cache, vec2(float(i) / 512.0, 0.0)).x;
+}
- frag_color=vec4(textureDualParaboloidArray(N).rgb,1.0);
-#endif
+vec2 Hammersley(int i, int N) {
+ return vec2(float(i) / float(N), radical_inverse_VdC(i));
+}
-#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
+uniform bool z_flip;
- N.y=-N.y;
- frag_color=vec4(texture(N,source_cube).rgb,1.0);
-#endif
+void main() {
+ vec3 color = vec3(0.0);
+ vec2 uv = (uv_interp * 2.0) - 1.0;
+ vec3 N = texelCoordToVec(uv, face_id);
+ vec4 sum = vec4(0.0);
-#else
+ for (int sample_num = 0; sample_num < SAMPLE_COUNT; sample_num++) {
- vec4 sum = vec4(0.0, 0.0, 0.0, 0.0);
+ vec2 xi = Hammersley(sample_num, SAMPLE_COUNT);
- for(uint sampleNum = 0u; sampleNum < SAMPLE_COUNT; sampleNum++) {
- vec2 xi = Hammersley(sampleNum, SAMPLE_COUNT);
+ vec3 H = ImportanceSampleGGX(xi, roughness, N);
+ vec3 V = N;
+ vec3 L = normalize(2.0 * dot(V, H) * H - V);
- vec3 H = ImportanceSampleGGX( xi, roughness, N );
- vec3 V = N;
- vec3 L = normalize(2.0 * dot( V, H ) * H - V);
+ float NdotL = clamp(dot(N, L), 0.0, 1.0);
- float ndotl = clamp(dot(N, L),0.0,1.0);
+ if (NdotL > 0.0) {
- if (ndotl>0.0) {
#ifdef USE_SOURCE_PANORAMA
- sum.rgb += texturePanorama(H,source_panorama).rgb *ndotl;
+ sum.rgb += texturePanorama(source_panorama, H).rgb * NdotL;
+#else
+ H.y = -H.y;
+ sum.rgb += textureCubeLod(source_cube, H, 0.0).rgb * NdotL;
#endif
-#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
-
- sum.rgb += textureDualParaboloidArray(H).rgb *ndotl;
-#endif
+ sum.a += NdotL;
-#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
- H.y=-H.y;
- sum.rgb += textureLod(source_cube, H, 0.0).rgb *ndotl;
-#endif
- sum.a += ndotl;
}
+
}
- sum /= sum.a;
- frag_color = vec4(sum.rgb, 1.0);
+ sum /= sum.a;
-#endif
+ gl_FragColor = vec4(sum.rgb, 1.0);
}
diff --git a/drivers/gles2/shaders/scene.glsl b/drivers/gles2/shaders/scene.glsl
index 79b989be4a..e08e9d1117 100644
--- a/drivers/gles2/shaders/scene.glsl
+++ b/drivers/gles2/shaders/scene.glsl
@@ -1,940 +1,393 @@
[vertex]
-#define M_PI 3.14159265359
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
+#else
+precision mediump float;
+precision mediump int;
+#endif
-/*
-from VisualServer:
+#include "stdlib.glsl"
-ARRAY_VERTEX=0,
-ARRAY_NORMAL=1,
-ARRAY_TANGENT=2,
-ARRAY_COLOR=3,
-ARRAY_TEX_UV=4,
-ARRAY_TEX_UV2=5,
-ARRAY_BONES=6,
-ARRAY_WEIGHTS=7,
-ARRAY_INDEX=8,
-*/
-//hack to use uv if no uv present so it works with lightmap
+//
+// attributes
+//
-/* INPUT ATTRIBS */
+attribute highp vec4 vertex_attrib; // attrib:0
+attribute vec3 normal_attrib; // attrib:1
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=1) in vec3 normal_attrib;
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-layout(location=2) in vec4 tangent_attrib;
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
+attribute vec4 tangent_attrib; // attrib:2
#endif
-#if defined(ENABLE_COLOR_INTERP)
-layout(location=3) in vec4 color_attrib;
+#ifdef ENABLE_COLOR_INTERP
+attribute vec4 color_attrib; // attrib:3
#endif
-#if defined(ENABLE_UV_INTERP)
-layout(location=4) in vec2 uv_attrib;
+#ifdef ENABLE_UV_INTERP
+attribute vec2 uv_attrib; // attrib:4
#endif
-#if defined(ENABLE_UV2_INTERP)
-layout(location=5) in vec2 uv2_attrib;
+#ifdef ENABLE_UV2_INTERP
+attribute vec2 uv2_attrib; // attrib:5
#endif
-uniform float normal_mult;
-
#ifdef USE_SKELETON
-layout(location=6) in ivec4 bone_indices; // attrib:6
-layout(location=7) in vec4 bone_weights; // attrib:7
-#endif
-
-#ifdef USE_INSTANCING
-
-layout(location=8) in highp vec4 instance_xform0;
-layout(location=9) in highp vec4 instance_xform1;
-layout(location=10) in highp vec4 instance_xform2;
-layout(location=11) in lowp vec4 instance_color;
-
-#if defined(ENABLE_INSTANCE_CUSTOM)
-layout(location=12) in highp vec4 instance_custom_data;
-#endif
-
-#endif
-
-layout(std140) uniform SceneData { //ubo:0
-
- highp mat4 projection_matrix;
- highp mat4 inv_projection_matrix;
- highp mat4 camera_inverse_matrix;
- highp mat4 camera_matrix;
-
- mediump vec4 ambient_light_color;
- mediump vec4 bg_color;
-
- mediump vec4 fog_color_enabled;
- mediump vec4 fog_sun_color_amount;
-
- mediump float ambient_energy;
- mediump float bg_energy;
-
- mediump float z_offset;
- mediump float z_slope_scale;
- highp float shadow_dual_paraboloid_render_zfar;
- highp float shadow_dual_paraboloid_render_side;
-
- highp vec2 viewport_size;
- highp vec2 screen_pixel_size;
- highp vec2 shadow_atlas_pixel_size;
- highp vec2 directional_shadow_pixel_size;
- highp float time;
- highp float z_far;
- mediump float reflection_multiplier;
- mediump float subsurface_scatter_width;
- mediump float ambient_occlusion_affect_light;
+#ifdef USE_SKELETON_SOFTWARE
- bool fog_depth_enabled;
- highp float fog_depth_begin;
- highp float fog_depth_curve;
- bool fog_transmit_enabled;
- highp float fog_transmit_curve;
- bool fog_height_enabled;
- highp float fog_height_min;
- highp float fog_height_max;
- highp float fog_height_curve;
+attribute highp vec4 bone_transform_row_0; // attrib:9
+attribute highp vec4 bone_transform_row_1; // attrib:10
+attribute highp vec4 bone_transform_row_2; // attrib:11
-};
-
-uniform highp mat4 world_transform;
-
-
-#ifdef USE_LIGHT_DIRECTIONAL
+#else
-layout(std140) uniform DirectionalLightData { //ubo:3
+attribute vec4 bone_ids; // attrib:6
+attribute highp vec4 bone_weights; // attrib:7
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix1;
- highp mat4 shadow_matrix2;
- highp mat4 shadow_matrix3;
- highp mat4 shadow_matrix4;
- mediump vec4 shadow_split_offsets;
-};
+uniform highp sampler2D bone_transforms; // texunit:4
+uniform ivec2 skeleton_texture_size;
#endif
-#ifdef USE_VERTEX_LIGHTING
-//omni and spot
-
-struct LightData {
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix;
-
-};
-
-
-layout(std140) uniform OmniLightData { //ubo:4
-
- LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-layout(std140) uniform SpotLightData { //ubo:5
-
- LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-#ifdef USE_FORWARD_LIGHTING
-
-
-uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
-uniform int omni_light_count;
-
-uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
-uniform int spot_light_count;
-
#endif
-out vec4 diffuse_light_interp;
-out vec4 specular_light_interp;
-
-void light_compute(vec3 N, vec3 L,vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) {
-
- float dotNL = max(dot(N,L), 0.0 );
- diffuse += dotNL * light_color / M_PI;
-
- if (roughness > 0.0) {
-
- vec3 H = normalize(V + L);
- float dotNH = max(dot(N,H), 0.0 );
- float intensity = pow( dotNH, (1.0-roughness) * 256.0);
- specular += light_color * intensity;
-
- }
-}
-
-void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal, float roughness,inout vec3 diffuse, inout vec3 specular) {
-
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
+#ifdef USE_INSTANCING
- light_compute(normal,normalize(light_rel_vec),eye_vec,omni_lights[idx].light_color_energy.rgb * light_attenuation,roughness,diffuse,specular);
+attribute highp vec4 instance_xform_row_0; // attrib:12
+attribute highp vec4 instance_xform_row_1; // attrib:13
+attribute highp vec4 instance_xform_row_2; // attrib:14
-}
+attribute highp vec4 instance_color; // attrib:15
+attribute highp vec4 instance_custom_data; // attrib:8
-void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
+#endif
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ));
- vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff=spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
- float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
- light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x);
- light_compute(normal,normalize(light_rel_vec),eye_vec,spot_lights[idx].light_color_energy.rgb*light_attenuation,roughness,diffuse,specular);
-}
+//
+// uniforms
+//
+uniform mat4 camera_matrix;
+uniform mat4 camera_inverse_matrix;
+uniform mat4 projection_matrix;
+uniform mat4 projection_inverse_matrix;
-#endif
+uniform mat4 world_transform;
-/* Varyings */
+uniform highp float time;
-out highp vec3 vertex_interp;
-out vec3 normal_interp;
+uniform float normal_mult;
-#if defined(ENABLE_COLOR_INTERP)
-out vec4 color_interp;
+#ifdef RENDER_DEPTH
+uniform float light_bias;
+uniform float light_normal_bias;
#endif
-#if defined(ENABLE_UV_INTERP)
-out vec2 uv_interp;
-#endif
-#if defined(ENABLE_UV2_INTERP)
-out vec2 uv2_interp;
-#endif
+//
+// varyings
+//
+varying highp vec3 vertex_interp;
+varying vec3 normal_interp;
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-out vec3 tangent_interp;
-out vec3 binormal_interp;
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
+varying vec3 tangent_interp;
+varying vec3 binormal_interp;
#endif
-
-
-
-
-#if defined(USE_MATERIAL)
-
-layout(std140) uniform UniformData { //ubo:1
-
-MATERIAL_UNIFORMS
-
-};
-
+#ifdef ENABLE_COLOR_INTERP
+varying vec4 color_interp;
#endif
-VERTEX_SHADER_GLOBALS
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-out highp float dp_clip;
-
+#ifdef ENABLE_UV_INTERP
+varying vec2 uv_interp;
#endif
-#define SKELETON_TEXTURE_WIDTH 256
-
-#ifdef USE_SKELETON
-uniform highp sampler2D skeleton_texture; //texunit:-1
+#ifdef ENABLE_UV2_INTERP
+varying vec2 uv2_interp;
#endif
-out highp vec4 position_interp;
-// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now.
-// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316
-//invariant gl_Position;
+VERTEX_SHADER_GLOBALS
void main() {
- highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
+ highp vec4 vertex = vertex_attrib;
mat4 world_matrix = world_transform;
-
#ifdef USE_INSTANCING
-
{
- highp mat4 m=mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0));
+ highp mat4 m = mat4(instance_xform_row_0,
+ instance_xform_row_1,
+ instance_xform_row_2,
+ vec4(0.0, 0.0, 0.0, 1.0));
world_matrix = world_matrix * transpose(m);
}
#endif
vec3 normal = normal_attrib * normal_mult;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
vec3 tangent = tangent_attrib.xyz;
- tangent*=normal_mult;
+ tangent *= normal_mult;
float binormalf = tangent_attrib.a;
+ vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
-#if defined(ENABLE_COLOR_INTERP)
+#ifdef ENABLE_COLOR_INTERP
color_interp = color_attrib;
-#if defined(USE_INSTANCING)
+#ifdef USE_INSTANCING
color_interp *= instance_color;
#endif
-
#endif
-#ifdef USE_SKELETON
- {
- //skeleton transform
- ivec2 tex_ofs = ivec2( bone_indices.x%256, (bone_indices.x/256)*3 );
- highp mat3x4 m = mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.x;
+#ifdef ENABLE_UV_INTERP
+ uv_interp = uv_attrib;
+#endif
- tex_ofs = ivec2( bone_indices.y%256, (bone_indices.y/256)*3 );
+#ifdef ENABLE_UV2_INTERP
+ uv2_interp = uv2_attrib;
+#endif
- m+= mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.y;
+#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
+ vertex = world_matrix * vertex;
+ normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tex_ofs = ivec2( bone_indices.z%256, (bone_indices.z/256)*3 );
+ tangent = normalize((world_matrix * vec4(tangent, 0.0)),xyz);
+ binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
+#endif
+#endif
- m+= mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.z;
+#ifdef USE_SKELETON
+ highp mat4 bone_transform = mat4(1.0);
- tex_ofs = ivec2( bone_indices.w%256, (bone_indices.w/256)*3 );
+#ifdef USE_SKELETON_SOFTWARE
+ // passing the transform as attributes
- m+= mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.w;
+ bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
+ bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
+ bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
+ bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
+#else
+ // look up transform from the "pose texture"
+ {
+
+ for (int i = 0; i < 4; i++) {
+ ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
- vertex.xyz = vertex * m;
+ highp mat4 b = mat4(texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
+ texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
+ texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
+ vec4(0.0, 0.0, 0.0, 1.0));
- normal = vec4(normal,0.0) * m;
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent.xyz = vec4(tangent.xyz,0.0) * m;
-#endif
+ bone_transform += transpose(b) * bone_weights[i];
+ }
}
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- vec3 binormal = normalize( cross(normal,tangent) * binormalf );
#endif
-#if defined(ENABLE_UV_INTERP)
- uv_interp = uv_attrib;
+ world_matrix = bone_transform * world_matrix;
#endif
-#if defined(ENABLE_UV2_INTERP)
- uv2_interp = uv2_attrib;
-#endif
-#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM)
+#ifdef USE_INSTANCING
vec4 instance_custom = instance_custom_data;
#else
vec4 instance_custom = vec4(0.0);
-#endif
-
- highp mat4 modelview = camera_inverse_matrix * world_matrix;
- highp mat4 local_projection = projection_matrix;
-
-//using world coordinates
-#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
-
- vertex = world_matrix * vertex;
- normal = normalize((world_matrix * vec4(normal,0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- tangent = normalize((world_matrix * vec4(tangent,0.0)).xyz);
- binormal = normalize((world_matrix * vec4(binormal,0.0)).xyz);
-#endif
#endif
- float roughness=0.0;
-//defines that make writing custom shaders easier
-#define projection_matrix local_projection
+ mat4 modelview = camera_matrix * world_matrix;
+
#define world_transform world_matrix
+
{
VERTEX_SHADER_CODE
}
+ vec4 outvec = vertex;
-
-//using local coordinates (default)
+ // use local coordinates
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
-
vertex = modelview * vertex;
- normal = normalize((modelview * vec4(normal,0.0)).xyz);
+ normal = normalize((modelview * vec4(normal, 0.0)).xyz);
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- tangent = normalize((modelview * vec4(tangent,0.0)).xyz);
- binormal = normalize((modelview * vec4(binormal,0.0)).xyz);
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
+ tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
+ binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
#endif
#endif
-//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
-
- vertex = camera_inverse_matrix * vertex;
- normal = normalize((camera_inverse_matrix * vec4(normal,0.0)).xyz);
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-
- tangent = normalize((camera_inverse_matrix * vec4(tangent,0.0)).xyz);
- binormal = normalize((camera_inverse_matrix * vec4(binormal,0.0)).xyz);
+ vertex = camera_matrix * vertex;
+ normal = normalize((camera_matrix * vec4(normal, 0.0)).xyz);
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
+ tangent = normalize((camera_matrix * vec4(tangent, 0.0)).xyz);
+ binormal = normalize((camera_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
vertex_interp = vertex.xyz;
normal_interp = normal;
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
-
#ifdef RENDER_DEPTH
+ float z_ofs = light_bias;
+ z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
+
+ vertex_interp.z -= z_ofs;
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- vertex_interp.z*= shadow_dual_paraboloid_render_side;
- normal_interp.z*= shadow_dual_paraboloid_render_side;
-
- dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
-
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
-
- highp vec3 vtx = vertex_interp+normalize(vertex_interp)*z_offset;
- highp float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy/=1.0-vtx.z;
- vtx.z=(distance/shadow_dual_paraboloid_render_zfar);
- vtx.z=vtx.z * 2.0 - 1.0;
-
- vertex.xyz=vtx;
- vertex.w=1.0;
-
-
-#else
-
- float z_ofs = z_offset;
- z_ofs += (1.0-abs(normal_interp.z))*z_slope_scale;
- vertex_interp.z-=z_ofs;
-
-#endif //RENDER_DEPTH_DUAL_PARABOLOID
-
-#endif //RENDER_DEPTH
-
- gl_Position = projection_matrix * vec4(vertex_interp,1.0);
-
- position_interp=gl_Position;
-
-#ifdef USE_VERTEX_LIGHTING
-
- diffuse_light_interp=vec4(0.0);
- specular_light_interp=vec4(0.0);
-
-#ifdef USE_FORWARD_LIGHTING
-
- for(int i=0;i<omni_light_count;i++) {
- light_process_omni(omni_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
- }
-
- for(int i=0;i<spot_light_count;i++) {
- light_process_spot(spot_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
- }
#endif
-#ifdef USE_LIGHT_DIRECTIONAL
-
- vec3 directional_diffuse = vec3(0.0);
- vec3 directional_specular = vec3(0.0);
- light_compute(normal_interp,-light_direction_attenuation.xyz,-normalize( vertex_interp ),light_color_energy.rgb,roughness,directional_diffuse,directional_specular);
-
- float diff_avg = dot(diffuse_light_interp.rgb,vec3(0.33333));
- float diff_dir_avg = dot(directional_diffuse,vec3(0.33333));
- if (diff_avg>0.0) {
- diffuse_light_interp.a=diff_dir_avg/(diff_avg+diff_dir_avg);
- } else {
- diffuse_light_interp.a=1.0;
- }
-
- diffuse_light_interp.rgb+=directional_diffuse;
-
- float spec_avg = dot(specular_light_interp.rgb,vec3(0.33333));
- float spec_dir_avg = dot(directional_specular,vec3(0.33333));
- if (spec_avg>0.0) {
- specular_light_interp.a=spec_dir_avg/(spec_avg+spec_dir_avg);
- } else {
- specular_light_interp.a=1.0;
- }
-
- specular_light_interp.rgb+=directional_specular;
-
-#endif //USE_LIGHT_DIRECTIONAL
-
-
-#endif // USE_VERTEX_LIGHTING
+ gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
}
-
[fragment]
+#extension GL_ARB_shader_texture_lod : require
-/* texture unit usage, N is max_texture_unity-N
-
-1-skeleton
-2-radiance
-3-reflection_atlas
-4-directional_shadow
-5-shadow_atlas
-6-decal_atlas
-7-screen
-8-depth
-9-probe1
-10-probe2
-
-*/
-
-uniform highp mat4 world_transform;
-
-#define M_PI 3.14159265359
-
-/* Varyings */
-
-#if defined(ENABLE_COLOR_INTERP)
-in vec4 color_interp;
-#endif
-
-#if defined(ENABLE_UV_INTERP)
-in vec2 uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP)
-in vec2 uv2_interp;
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
-in vec3 tangent_interp;
-in vec3 binormal_interp;
-#endif
-
-in highp vec3 vertex_interp;
-in vec3 normal_interp;
-
-
-/* PBR CHANNELS */
-
-//used on forward mainly
-uniform bool no_ambient_light;
-
-
-
-#ifdef USE_RADIANCE_MAP
-
-
-
-layout(std140) uniform Radiance { //ubo:2
-
- mat4 radiance_inverse_xform;
- float radiance_ambient_contribution;
-
-};
-
-#define RADIANCE_MAX_LOD 5.0
-
-#ifdef USE_RADIANCE_MAP_ARRAY
-
-uniform sampler2DArray radiance_map; //texunit:-2
-
-vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec,float p_roughness) {
-
- vec3 norm = normalize(p_vec);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
-
- // we need to lie the derivatives (normg) and assume that DP side is always the same
- // to get proper texture filtering
- vec2 normg=norm.xy;
- if (norm.z>0.0) {
- norm.y=0.5-norm.y+0.5;
- }
-
- // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
- // it's easy to have precision errors using fract() to interpolate layers
- // as such, using fixed point to ensure it works.
-
- float index = p_roughness * RADIANCE_MAX_LOD;
- int indexi = int(index * 256.0);
- vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi/256)),dFdx(normg),dFdy(normg)).xyz;
- vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi/256+1)),dFdx(normg),dFdy(normg)).xyz;
- return mix(base,next,float(indexi%256)/256.0);
-}
-
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
#else
-
-uniform sampler2D radiance_map; //texunit:-2
-
-vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec,float p_roughness) {
-
- vec3 norm = normalize(p_vec);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
- if (norm.z>0.0) {
- norm.y=0.5-norm.y+0.5;
- }
- return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
-}
-
+precision mediump float;
+precision mediump int;
#endif
-#endif
-
-/* Material Uniforms */
-
-
-
-#if defined(USE_MATERIAL)
-
-layout(std140) uniform UniformData {
-
-MATERIAL_UNIFORMS
-
-};
-
-#endif
-
-FRAGMENT_SHADER_GLOBALS
-
-layout(std140) uniform SceneData {
-
- highp mat4 projection_matrix;
- highp mat4 inv_projection_matrix;
- highp mat4 camera_inverse_matrix;
- highp mat4 camera_matrix;
-
- mediump vec4 ambient_light_color;
- mediump vec4 bg_color;
-
- mediump vec4 fog_color_enabled;
- mediump vec4 fog_sun_color_amount;
-
- mediump float ambient_energy;
- mediump float bg_energy;
-
- mediump float z_offset;
- mediump float z_slope_scale;
- highp float shadow_dual_paraboloid_render_zfar;
- highp float shadow_dual_paraboloid_render_side;
-
- highp vec2 viewport_size;
- highp vec2 screen_pixel_size;
- highp vec2 shadow_atlas_pixel_size;
- highp vec2 directional_shadow_pixel_size;
-
- highp float time;
- highp float z_far;
- mediump float reflection_multiplier;
- mediump float subsurface_scatter_width;
- mediump float ambient_occlusion_affect_light;
-
- bool fog_depth_enabled;
- highp float fog_depth_begin;
- highp float fog_depth_curve;
- bool fog_transmit_enabled;
- highp float fog_transmit_curve;
- bool fog_height_enabled;
- highp float fog_height_min;
- highp float fog_height_max;
- highp float fog_height_curve;
-};
-
-//directional light data
+#include "stdlib.glsl"
-#ifdef USE_LIGHT_DIRECTIONAL
-
-layout(std140) uniform DirectionalLightData {
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix1;
- highp mat4 shadow_matrix2;
- highp mat4 shadow_matrix3;
- highp mat4 shadow_matrix4;
- mediump vec4 shadow_split_offsets;
-};
-
-
-uniform highp sampler2DShadow directional_shadow; //texunit:-4
-
-#endif
-
-#ifdef USE_VERTEX_LIGHTING
-in vec4 diffuse_light_interp;
-in vec4 specular_light_interp;
-#endif
-//omni and spot
-
-struct LightData {
-
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix;
-
-};
-
-
-layout(std140) uniform OmniLightData { //ubo:4
-
- LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-layout(std140) uniform SpotLightData { //ubo:5
-
- LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
-};
-
-
-uniform highp sampler2DShadow shadow_atlas; //texunit:-5
-
-
-struct ReflectionData {
-
- mediump vec4 box_extents;
- mediump vec4 box_offset;
- mediump vec4 params; // intensity, 0, interior , boxproject
- mediump vec4 ambient; //ambient color, energy
- mediump vec4 atlas_clamp;
- highp mat4 local_matrix; //up to here for spot and omni, rest is for directional
- //notes: for ambientblend, use distance to edge to blend between already existing global environment
-};
-
-layout(std140) uniform ReflectionProbeData { //ubo:6
-
- ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
-};
-uniform mediump sampler2D reflection_atlas; //texunit:-3
+#define M_PI 3.14159265359
+//
+// uniforms
+//
-#ifdef USE_FORWARD_LIGHTING
+uniform mat4 camera_matrix;
+uniform mat4 camera_inverse_matrix;
+uniform mat4 projection_matrix;
+uniform mat4 projection_inverse_matrix;
-uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
-uniform int omni_light_count;
+uniform mat4 world_transform;
-uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
-uniform int spot_light_count;
+uniform highp float time;
-uniform int reflection_indices[MAX_FORWARD_LIGHTS];
-uniform int reflection_count;
+#ifdef SCREEN_UV_USED
+uniform vec2 screen_pixel_size;
#endif
+uniform highp sampler2D depth_buffer; //texunit:1
#if defined(SCREEN_TEXTURE_USED)
-
-uniform highp sampler2D screen_texture; //texunit:-7
-
+uniform highp sampler2D screen_texture; //texunit:2
#endif
-#ifdef USE_MULTIPLE_RENDER_TARGETS
+#ifdef USE_RADIANCE_MAP
-layout(location=0) out vec4 diffuse_buffer;
-layout(location=1) out vec4 specular_buffer;
-layout(location=2) out vec4 normal_mr_buffer;
-#if defined(ENABLE_SSS)
-layout(location=3) out float sss_buffer;
-#endif
+#define RADIANCE_MAX_LOD 6.0
-#else
+uniform samplerCube radiance_map; // texunit:0
-layout(location=0) out vec4 frag_color;
+uniform mat4 radiance_inverse_xform;
#endif
-in highp vec4 position_interp;
-uniform highp sampler2D depth_buffer; //texunit:-8
-
-#ifdef USE_CONTACT_SHADOWS
-
-float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
+uniform float bg_energy;
- if (abs(dir.z)>0.99)
- return 1.0;
+uniform float ambient_sky_contribution;
+uniform vec4 ambient_color;
+uniform float ambient_energy;
- vec3 endpoint = pos+dir*max_distance;
- vec4 source = position_interp;
- vec4 dest = projection_matrix * vec4(endpoint, 1.0);
+#ifdef LIGHT_PASS
- vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5;
- vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5;
+#define LIGHT_TYPE_DIRECTIONAL 0
+#define LIGHT_TYPE_OMNI 1
+#define LIGHT_TYPE_SPOT 2
- vec2 screen_rel = to_screen - from_screen;
+// general for all lights
+uniform int light_type;
- if (length(screen_rel)<0.00001)
- return 1.0; //too small, don't do anything
+uniform float light_energy;
+uniform vec4 light_color;
+uniform float light_specular;
- /*float pixel_size; //approximate pixel size
+// directional
+uniform vec3 light_direction;
- if (screen_rel.x > screen_rel.y) {
+// omni
+uniform vec3 light_position;
- pixel_size = abs((pos.x-endpoint.x)/(screen_rel.x/screen_pixel_size.x));
- } else {
- pixel_size = abs((pos.y-endpoint.y)/(screen_rel.y/screen_pixel_size.y));
+uniform float light_range;
+uniform vec4 light_attenuation;
- }*/
- vec4 bias = projection_matrix * vec4(pos+vec3(0.0,0.0,0.04), 1.0); //todo un-harcode the 0.04
+// spot
+uniform float light_spot_attenuation;
+uniform float light_spot_range;
+uniform float light_spot_angle;
+// shadows
+uniform highp sampler2D light_shadow_atlas; //texunit:3
+uniform float light_has_shadow;
- vec2 pixel_incr = normalize(screen_rel)*screen_pixel_size;
-
-
- float steps = length(screen_rel) / length(pixel_incr);
- steps = min(2000.0,steps); //put a limit to avoid freezing in some strange situation
- //steps=10.0;
-
- vec4 incr = (dest - source)/steps;
- float ratio=0.0;
- float ratio_incr = 1.0/steps;
-
- while(steps>0.0) {
- source += incr*2.0;
- bias+=incr*2.0;
-
- vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
- float depth = texture(depth_buffer,uv_depth.xy).r;
-
- if (depth < uv_depth.z) {
- if (depth > (bias.z/bias.w) * 0.5 + 0.5) {
- return min(pow(ratio,4.0),1.0);
- } else {
- return 1.0;
- }
- }
-
+uniform mat4 light_shadow_matrix;
+uniform vec4 light_clamp;
- ratio+=ratio_incr;
- steps-=1.0;
- }
+// directional shadow
- return 1.0;
-}
+uniform highp sampler2D light_directional_shadow; // texunit:3
+uniform vec4 light_split_offsets;
+uniform mat4 light_shadow_matrix1;
+uniform mat4 light_shadow_matrix2;
+uniform mat4 light_shadow_matrix3;
+uniform mat4 light_shadow_matrix4;
#endif
-// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
-// We're dividing this factor off because the overall term we'll end up looks like
-// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
-//
-// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
-// We're basically regouping this as
+// varyings
//
-// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
-//
-// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
-//
-// The contents of the D and G (G1) functions (GGX) are taken from
-// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
-// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
-
-float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5*alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
-
- // float cos2 = cos_theta_m*cos_theta_m;
- // float sin2 = (1.0-cos2);
- // return 1.0 /( cos_theta_m + sqrt(cos2 + alpha*alpha*sin2) );
-}
-float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha*alpha;
- float d = 1.0 + (alpha2-1.0)*cos_theta_m*cos_theta_m;
- return alpha2/(M_PI * d * d);
-}
+varying highp vec3 vertex_interp;
+varying vec3 normal_interp;
-float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0-cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / (cos_theta_m + sqrt(cos2 + (s_x*s_x + s_y*s_y)*sin2 ));
-}
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
+varying vec3 tangent_interp;
+varying vec3 binormal_interp;
+#endif
-float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0-cos2);
- float r_x = cos_phi/alpha_x;
- float r_y = sin_phi/alpha_y;
- float d = cos2 + sin2*(r_x * r_x + r_y * r_y);
- return 1.0 / (M_PI * alpha_x * alpha_y * d * d );
-}
+#ifdef ENABLE_COLOR_INTERP
+varying vec4 color_interp;
+#endif
+#ifdef ENABLE_UV_INTERP
+varying vec2 uv_interp;
+#endif
-float SchlickFresnel(float u)
-{
- float m = 1.0-u;
- float m2 = m*m;
- return m2*m2*m; // pow(m,5)
-}
+#ifdef ENABLE_UV2_INTERP
+varying vec2 uv2_interp;
+#endif
-float GTR1(float NdotH, float a)
-{
- if (a >= 1.0) return 1.0/M_PI;
- float a2 = a*a;
- float t = 1.0 + (a2-1.0)*NdotH*NdotH;
- return (a2-1.0) / (M_PI*log(a2)*t);
-}
+varying vec3 view_interp;
vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) {
float dielectric = (0.034 * 2.0) * specular;
@@ -942,1172 +395,490 @@ vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) {
return mix(vec3(dielectric), albedo, metallic); // TODO: reference?
}
-void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) {
-
-#if defined(USE_LIGHT_SHADER_CODE)
-//light is written by the light shader
-
- vec3 normal = N;
- vec3 albedo = diffuse_color;
- vec3 light = L;
- vec3 view = V;
-
-LIGHT_SHADER_CODE
+FRAGMENT_SHADER_GLOBALS
-#else
- float NdotL = dot(N,L);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
+#ifdef LIGHT_PASS
+void light_compute(vec3 N,
+ vec3 L,
+ vec3 V,
+ vec3 B,
+ vec3 T,
+ vec3 light_color,
+ vec3 attenuation,
+ vec3 diffuse_color,
+ vec3 transmission,
+ float specular_blob_intensity,
+ float roughness,
+ float metallic,
+ float rim,
+ float rim_tint,
+ float clearcoat,
+ float clearcoat_gloss,
+ float anisotropy,
+ inout vec3 diffuse_light,
+ inout vec3 specular_light) {
+
+ float NdotL = dot(N, L);
+ float cNdotL = max(NdotL, 0.0);
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
- if (metallic < 1.0) {
-#if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
-#else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
-#endif
+ {
+ // calculate diffuse reflection
+ // TODO hardcode Oren Nayar for now
+ float diffuse_brdf_NL;
-#if defined(DIFFUSE_LAMBERT_WRAP)
- //energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0,(NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
+ // diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (- 0.5 / (sigma2 + 0.33) + 0.17*diffuse_color / (sigma2 + 0.13) );
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-
-#elif defined(DIFFUSE_TOON)
-
- diffuse_brdf_NL = smoothstep(-roughness,max(roughness,0.01),NdotL);
-
-#elif defined(DIFFUSE_BURLEY)
-
- {
-
-
- vec3 H = normalize(V + L);
- float cLdotH = max(0.0,dot(L, H));
-
- float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness;
- float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV);
- float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL);
- diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
-
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;*/
- }
-#else
- //lambert
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
-#endif
-
-#if defined(TRANSMISSION_USED)
- diffuse_light += light_color * diffuse_color * mix(vec3(diffuse_brdf_NL), vec3(M_PI), transmission) * attenuation;
-#else
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
-#endif
-
-
-
-#if defined(LIGHT_USE_RIM)
- float rim_light = pow(1.0-cNdotV, (1.0-roughness)*16.0);
- diffuse_light += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color;
-#endif
}
-
- if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
-
-
- // D
-
-#if defined(SPECULAR_BLINN)
-
- vec3 H = normalize(V + L);
- float cNdotH = max(dot(N,H), 0.0 );
- float intensity = pow( cNdotH, (1.0-roughness) * 256.0);
- specular_light += light_color * intensity * specular_blob_intensity * attenuation;
-
-#elif defined(SPECULAR_PHONG)
+ {
+ // calculate specular reflection
vec3 R = normalize(-reflect(L,N));
- float cRdotV = max(0.0,dot(R,V));
- float intensity = pow( cRdotV, (1.0-roughness) * 256.0);
- specular_light += light_color * intensity * specular_blob_intensity * attenuation;
-
-#elif defined(SPECULAR_TOON)
-
- vec3 R = normalize(-reflect(L,N));
- float RdotV = dot(R,V);
- float mid = 1.0-roughness;
- mid*=mid;
- float intensity = smoothstep(mid-roughness*0.5, mid+roughness*0.5, RdotV) * mid;
- diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
-
-#elif defined(SPECULAR_DISABLED)
- //none..
-
-#elif defined(SPECULAR_SCHLICK_GGX)
- // shlick+ggx as default
-
- vec3 H = normalize(V + L);
-
- float cNdotH = max(dot(N,H), 0.0);
- float cLdotH = max(dot(L,H), 0.0);
-
-# if defined(LIGHT_USE_ANISOTROPY)
-
- float aspect = sqrt(1.0-anisotropy*0.9);
- float rx = roughness/aspect;
- float ry = roughness*aspect;
- float ax = rx*rx;
- float ay = ry*ry;
- float XdotH = dot( T, H );
- float YdotH = dot( B, H );
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
- float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
-
-# else
- float alpha = roughness * roughness;
- float D = D_GGX(cNdotH, alpha);
- float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha);
-# endif
- // F
- float F0 = 1.0; // FIXME
- float cLdotH5 = SchlickFresnel(cLdotH);
- float F = mix(cLdotH5, 1.0, F0);
-
- float specular_brdf_NL = cNdotL * D * F * G;
-
- specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
-#endif
-
-#if defined(LIGHT_USE_CLEARCOAT)
- if (clearcoat_gloss > 0.0) {
-# if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN)
- vec3 H = normalize(V + L);
-# endif
-# if !defined(SPECULAR_SCHLICK_GGX)
- float cNdotH = max(dot(N,H), 0.0);
- float cLdotH = max(dot(L,H), 0.0);
- float cLdotH5 = SchlickFresnel(cLdotH);
-#endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
- float Fr = mix(.04, 1.0, cLdotH5);
- float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
-
+ float cRdotV = max(dot(R, V), 0.0);
+ float blob_intensity = pow(cRdotV, (1.0 - roughness) * 256.0);
+ specular_light += light_color * attenuation * blob_intensity * specular_blob_intensity;
- float specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
- specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
- }
-#endif
}
-
-
-#endif //defined(USE_LIGHT_SHADER_CODE)
}
-float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {
-
-#ifdef SHADOW_MODE_PCF_13
-
- float avg=textureProj(shadow,vec4(pos,depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0));
- return avg*(1.0/13.0);
-#elif defined(SHADOW_MODE_PCF_5)
-
- float avg=textureProj(shadow,vec4(pos,depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
- return avg*(1.0/5.0);
-
-#else
-
- return textureProj(shadow,vec4(pos,depth,1.0));
-
-#endif
-
-}
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
-in highp float dp_clip;
-
-#endif
-
-
-
-#if 0
-//need to save texture depth for this
-
-vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) {
-
- float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width;
- float d = scale * distance;
-
- /**
- * Armed with the thickness, we can now calculate the color by means of the
- * precalculated transmittance profile.
- * (It can be precomputed into a texture, for maximum performance):
- */
- float dd = -d * d;
- vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
- vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
- vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
- vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
- vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
- vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
-
- /**
- * Using the profile, we finally approximate the transmitted lighting from
- * the back of the object:
- */
- return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0);
-}
-#endif
-void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
-
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
-
- if (omni_lights[idx].light_params.w>0.5) {
- //there is a shadowmap
-
- highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz;
- float shadow_len=length(splane);
- splane=normalize(splane);
- vec4 clamp_rect=omni_lights[idx].light_clamp;
-
- if (splane.z>=0.0) {
-
- splane.z+=1.0;
-
- clamp_rect.y+=clamp_rect.w;
-
- } else {
-
- splane.z=1.0 - splane.z;
-
- /*
- if (clamp_rect.z<clamp_rect.w) {
- clamp_rect.x+=clamp_rect.z;
- } else {
- clamp_rect.y+=clamp_rect.w;
- }
- */
-
- }
-
- splane.xy/=splane.z;
- splane.xy=splane.xy * 0.5 + 0.5;
- splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
-
- splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw;
- float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect);
-
-#ifdef USE_CONTACT_SHADOWS
-
- if (shadow>0.01 && omni_lights[idx].shadow_color_contact.a>0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,omni_lights[idx].shadow_color_contact.a));
- shadow=min(shadow,contact_shadow);
-
- }
-#endif
- light_attenuation*=mix(omni_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
- }
-
- light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,omni_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
-
-}
-
-void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent,vec3 albedo, vec3 transmission,float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
-
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ));
- vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff=spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
- float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
- light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x);
-
- if (spot_lights[idx].light_params.w>0.5) {
- //there is a shadowmap
- highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0));
- splane.xyz/=splane.w;
-
- float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp);
-
-#ifdef USE_CONTACT_SHADOWS
- if (shadow>0.01 && spot_lights[idx].shadow_color_contact.a>0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,spot_lights[idx].shadow_color_contact.a));
- shadow=min(shadow,contact_shadow);
-
- }
-#endif
- light_attenuation*=mix(spot_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
- }
-
- light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,spot_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
-
-}
-
-void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) {
-
- vec3 ref_vec = normalize(reflect(vertex,normal));
- vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz;
- vec3 box_extents = reflections[idx].box_extents.xyz;
-
- if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box
- return;
- }
-
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z));
- //make blend more rounded
- blend=mix(length(inner_pos),blend,blend);
- blend*=blend;
- blend=1.001-blend;
-
- if (reflections[idx].params.x>0.0){// compute reflection
-
- vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz;
-
- if (reflections[idx].params.w > 0.5) { //box project
-
- vec3 nrdir = normalize(local_ref_vec);
- vec3 rbmax = (box_extents - local_pos)/nrdir;
- vec3 rbmin = (-box_extents - local_pos)/nrdir;
-
-
- vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0)));
-
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
- }
-
-
- vec4 clamp_rect=reflections[idx].atlas_clamp;
- vec3 norm = normalize(local_ref_vec);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
- if (norm.z>0.0) {
- norm.y=0.5-norm.y+0.5;
- }
-
- vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
- atlas_uv = clamp(atlas_uv,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
-
- highp vec4 reflection;
- reflection.rgb = textureLod(reflection_atlas,atlas_uv,roughness*5.0).rgb;
-
- if (reflections[idx].params.z < 0.5) {
- reflection.rgb = mix(skybox,reflection.rgb,blend);
- }
- reflection.rgb*=reflections[idx].params.x;
- reflection.a = blend;
- reflection.rgb*=reflection.a;
-
- reflection_accum+=reflection;
- }
-
- if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox
-
-
- vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz;
-
- vec3 splane=normalize(local_amb_vec);
- vec4 clamp_rect=reflections[idx].atlas_clamp;
-
- splane.z*=-1.0;
- if (splane.z>=0.0) {
- splane.z+=1.0;
- clamp_rect.y+=clamp_rect.w;
- } else {
- splane.z=1.0 - splane.z;
- splane.y=-splane.y;
- }
-
- splane.xy/=splane.z;
- splane.xy=splane.xy * 0.5 + 0.5;
-
- splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
- splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
-
- highp vec4 ambient_out;
- ambient_out.a=blend;
- ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb;
- ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a);
- if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
- }
-
- ambient_out.rgb *= ambient_out.a;
- ambient_accum+=ambient_out;
- } else {
-
- highp vec4 ambient_out;
- ambient_out.a=blend;
- ambient_out.rgb=reflections[idx].ambient.rgb;
- if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum+=ambient_out;
-
- }
-}
-
-#ifdef USE_GI_PROBES
-
-uniform mediump sampler3D gi_probe1; //texunit:-9
-uniform highp mat4 gi_probe_xform1;
-uniform highp vec3 gi_probe_bounds1;
-uniform highp vec3 gi_probe_cell_size1;
-uniform highp float gi_probe_multiplier1;
-uniform highp float gi_probe_bias1;
-uniform highp float gi_probe_normal_bias1;
-uniform bool gi_probe_blend_ambient1;
-
-uniform mediump sampler3D gi_probe2; //texunit:-10
-uniform highp mat4 gi_probe_xform2;
-uniform highp vec3 gi_probe_bounds2;
-uniform highp vec3 gi_probe_cell_size2;
-uniform highp float gi_probe_multiplier2;
-uniform highp float gi_probe_bias2;
-uniform highp float gi_probe_normal_bias2;
-uniform bool gi_probe2_enabled;
-uniform bool gi_probe_blend_ambient2;
-
-vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
-
- float dist = p_bias;//1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
- float alpha=0.0;
- vec3 color = vec3(0.0);
-
- while(dist < max_distance && alpha < 0.95) {
- float diameter = max(1.0, 2.0 * tan_half_angle * dist);
- vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) );
- float a = (1.0 - alpha);
- color += scolor.rgb * a;
- alpha += a * scolor.a;
- dist += diameter * 0.5;
- }
-
- if (blend_ambient) {
- color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95));
- }
-
- return color;
-}
-
-void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds,vec3 cell_size,vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient,float multiplier, mat3 normal_mtx,vec3 ref_vec, float roughness,float p_bias,float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {
-
-
-
- vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz;
- vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz;
- ref_vec = normalize(ref_pos - probe_pos);
-
- probe_pos+=(probe_xform * vec4(normal_mtx[2],0.0)).xyz*p_normal_bias;
-
-/* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
- out_diff.a = 1.0;
- return;*/
- //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
- //return;
-
- //this causes corrupted pixels, i have no idea why..
- if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) {
- return;
- }
-
- //vec3 blendv = probe_pos/bounds * 2.0 - 1.0;
- //float blend = 1.001-max(blendv.x,max(blendv.y,blendv.z));
- float blend=1.0;
-
- float max_distance = length(bounds);
-
- //radiance
-#ifdef VCT_QUALITY_HIGH
-
-#define MAX_CONE_DIRS 6
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
- vec3(0, 0, 1),
- vec3(0.866025, 0, 0.5),
- vec3(0.267617, 0.823639, 0.5),
- vec3(-0.700629, 0.509037, 0.5),
- vec3(-0.700629, -0.509037, 0.5),
- vec3(0.267617, -0.823639, 0.5)
- );
-
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
- float cone_angle_tan = 0.577;
- float min_ref_tan = 0.0;
-#else
-
-#define MAX_CONE_DIRS 4
-
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
- vec3(0.707107, 0, 0.707107),
- vec3(0, 0.707107, 0.707107),
- vec3(-0.707107, 0, 0.707107),
- vec3(0, -0.707107, 0.707107)
- );
-
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
- float cone_angle_tan = 0.98269;
- max_distance*=0.5;
- float min_ref_tan = 0.2;
-
-#endif
- vec3 light=vec3(0.0);
- for(int i=0;i<MAX_CONE_DIRS;i++) {
-
- vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos);
- light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance,p_bias);
-
- }
-
- light*=multiplier;
-
- out_diff += vec4(light*blend,blend);
-
- //irradiance
-
- vec3 irr_light = voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance,p_bias);
-
- irr_light *= multiplier;
- //irr_light=vec3(0.0);
-
- out_spec += vec4(irr_light*blend,blend);
+// shadows
+float sample_shadow(highp sampler2D shadow,
+ vec2 shadow_pixel_size,
+ vec2 pos,
+ float depth,
+ vec4 clamp_rect)
+{
+ // vec4 depth_value = texture2D(shadow, pos);
+
+ // return depth_value.z;
+ return texture2DProj(shadow, vec4(pos, depth, 1.0)).r;
+ // return (depth_value.x + depth_value.y + depth_value.z + depth_value.w) / 4.0;
}
-void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) {
-
- roughness = roughness * roughness;
-
- vec3 ref_vec = normalize(reflect(normalize(pos),normal));
-
- //find arbitrary tangent and bitangent, then build a matrix
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- mat3 normal_mat = mat3(tangent,bitangent,normal);
-
- vec4 diff_accum = vec4(0.0);
- vec4 spec_accum = vec4(0.0);
-
- vec3 ambient = out_ambient;
- out_ambient = vec3(0.0);
-
- vec3 environment = out_specular;
-
- out_specular = vec3(0.0);
-
- gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,gi_probe_bias1,gi_probe_normal_bias1,spec_accum,diff_accum);
-
- if (gi_probe2_enabled) {
-
- gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,gi_probe_bias2,gi_probe_normal_bias2,spec_accum,diff_accum);
- }
-
- if (diff_accum.a>0.0) {
- diff_accum.rgb/=diff_accum.a;
- }
-
- if (spec_accum.a>0.0) {
- spec_accum.rgb/=spec_accum.a;
- }
-
- out_specular+=spec_accum.rgb;
- out_ambient+=diff_accum.rgb;
-
-}
-
#endif
+void main()
+{
-
-void main() {
-
-#ifdef RENDER_DEPTH_DUAL_PARABOLOID
-
- if (dp_clip>0.0)
- discard;
-#endif
-
- //lay out everything, whathever is unused is optimized away anyway
highp vec3 vertex = vertex_interp;
- vec3 albedo = vec3(0.8,0.8,0.8);
+ vec3 albedo = vec3(0.8, 0.8, 0.8);
vec3 transmission = vec3(0.0);
float metallic = 0.0;
float specular = 0.5;
- vec3 emission = vec3(0.0,0.0,0.0);
+ vec3 emission = vec3(0.0, 0.0, 0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
- float clearcoat=0.0;
- float clearcoat_gloss=0.0;
+ float clearcoat = 0.0;
+ float clearcoat_gloss = 0.0;
float anisotropy = 1.0;
vec2 anisotropy_flow = vec2(1.0,0.0);
-#if defined(ENABLE_AO)
- float ao=1.0;
- float ao_light_affect=0.0;
-#endif
-
float alpha = 1.0;
+ float side = 1.0;
-#ifdef METERIAL_DOUBLESIDED
- float side=float(gl_FrontFacing)*2.0-1.0;
-#else
- float side=1.0;
+#if defined(ENABLE_AO)
+ float ao = 1.0;
+ float ao_light_affect = 0.0;
#endif
-#if defined(ALPHA_SCISSOR_USED)
- float alpha_scissor = 0.5;
-#endif
-
-#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 binormal = normalize(binormal_interp)*side;
- vec3 tangent = normalize(tangent_interp)*side;
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
+ vec3 binormal = normalize(binormal_interp) * side;
+ vec3 tangent = normalize(tangent_interp) * side;
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
- vec3 normal = normalize(normal_interp)*side;
-
-#if defined(ENABLE_UV_INTERP)
- vec2 uv = uv_interp;
-#endif
-
-#if defined(ENABLE_UV2_INTERP)
- vec2 uv2 = uv2_interp;
-#endif
-
-#if defined(ENABLE_COLOR_INTERP)
- vec4 color = color_interp;
-#endif
+ vec3 normal = normalize(normal_interp) * side;
#if defined(ENABLE_NORMALMAP)
-
- vec3 normalmap = vec3(0.0);
+ vec3 normalmap = vec3(0.5);
#endif
+ float normaldepth = 1.0;
- float normaldepth=1.0;
-#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size;
+#ifdef ALPHA_SCISSOR_USED
+ float alpha_scissor = 0.5;
#endif
-#if defined (ENABLE_SSS)
- float sss_strength=0.0;
+#ifdef SCREEN_UV_USED
+ vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif
{
-
FRAGMENT_SHADER_CODE
-}
-
-#if defined(ALPHA_SCISSOR_USED)
- if (alpha<alpha_scissor) {
- discard;
- }
-#endif
-
-#ifdef USE_OPAQUE_PREPASS
-
- if (alpha<0.99) {
- discard;
- }
-#endif
+}
#if defined(ENABLE_NORMALMAP)
+ normalmap.xy = normalmap.xy * 2.0 - 1.0;
+ normalmap.z = sqrt(1.0 - dot(normalmap.xy, normalmap.xy));
- normalmap.xy=normalmap.xy*2.0-1.0;
- normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
+ // normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
+ normal = normalmap;
+#endif
- normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side;
+ normal = normalize(normal);
-#endif
+ vec3 N = normal;
+
+ vec3 specular_light = vec3(0.0, 0.0, 0.0);
+ vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
-#if defined(LIGHT_USE_ANISOTROPY)
+ vec3 ambient_light = vec3(0.0, 0.0, 0.0);
- if (anisotropy>0.01) {
- //rotation matrix
- mat3 rot = mat3( tangent, binormal, normal );
- //make local to space
- tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0));
- binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0));
- }
+ vec3 env_reflection_light = vec3(0.0, 0.0, 0.0);
-#endif
+ vec3 eye_position = -normalize(vertex_interp);
-#ifdef ENABLE_CLIP_ALPHA
- if (albedo.a<0.99) {
- //used for doublepass and shadowmapping
+#ifdef ALPHA_SCISSOR_USED
+ if (alpha < alpha_scissor) {
discard;
}
#endif
+
+//
+// Lighting
+//
+#ifdef LIGHT_PASS
-/////////////////////// LIGHTING //////////////////////////////
-
- //apply energy conservation
-
-#ifdef USE_VERTEX_LIGHTING
-
- vec3 specular_light = specular_light_interp.rgb;
- vec3 diffuse_light = diffuse_light_interp.rgb;
-#else
-
- vec3 specular_light = vec3(0.0,0.0,0.0);
- vec3 diffuse_light = vec3(0.0,0.0,0.0);
-
-#endif
+ if (light_type == LIGHT_TYPE_OMNI) {
+ vec3 light_vec = light_position - vertex;
+ float light_length = length(light_vec);
- vec3 ambient_light;
- vec3 env_reflection_light = vec3(0.0,0.0,0.0);
+ float normalized_distance = light_length / light_range;
- vec3 eye_vec = -normalize( vertex_interp );
+ float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation.w);
+ vec3 attenuation = vec3(omni_attenuation);
+ if (light_has_shadow > 0.5) {
+ highp vec3 splane = (light_shadow_matrix * vec4(vertex, 1.0)).xyz;
+ float shadow_len = length(splane);
-#ifdef USE_RADIANCE_MAP
+ splane = normalize(splane);
- if (no_ambient_light) {
- ambient_light=vec3(0.0,0.0,0.0);
- } else {
- {
+ vec4 clamp_rect = light_clamp;
- { //read radiance from dual paraboloid
-
- vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n);
- ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz);
- vec3 radiance = textureDualParaboloid(radiance_map,ref_vec,roughness) * bg_energy;
- env_reflection_light = radiance;
+ if (splane.z >= 0.0) {
+ splane.z += 1.0;
+ clamp_rect.y += clamp_rect.w;
+ } else {
+ splane.z = 1.0 - splane.z;
}
- //no longer a cubemap
- //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
- }
+ splane.xy /= splane.z;
+ splane.xy = splane.xy * 0.5 + 0.5;
+ splane.z = shadow_len / light_range;
- {
+ splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz);
- vec3 env_ambient=textureDualParaboloid(radiance_map,ambient_dir,1.0) * bg_energy;
+ float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, clamp_rect);
- ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);
- //ambient_light=vec3(0.0,0.0,0.0);
+ if (shadow > splane.z) {
+ } else {
+ attenuation = vec3(0.0);
+ }
}
- }
-
-#else
-
- if (no_ambient_light){
- ambient_light=vec3(0.0,0.0,0.0);
- } else {
- ambient_light=ambient_light_color.rgb;
- }
-#endif
-
- ambient_light*=ambient_energy;
-
- float specular_blob_intensity=1.0;
-#if defined(SPECULAR_TOON)
- specular_blob_intensity*=specular * 2.0;
-#endif
-
-#if defined(USE_LIGHT_DIRECTIONAL)
-
- vec3 light_attenuation=vec3(1.0);
-
- float depth_z = -vertex.z;
-#ifdef LIGHT_DIRECTIONAL_SHADOW
+ light_compute(normal,
+ normalize(light_vec),
+ eye_position,
+ binormal,
+ tangent,
+ light_color.xyz * light_energy,
+ attenuation,
+ albedo,
+ transmission,
+ specular * light_specular,
+ roughness,
+ metallic,
+ rim,
+ rim_tint,
+ clearcoat,
+ clearcoat_gloss,
+ anisotropy,
+ diffuse_light,
+ specular_light);
+
+ } else if (light_type == LIGHT_TYPE_DIRECTIONAL) {
+
+ vec3 light_vec = -light_direction;
+ vec3 attenuation = vec3(1.0, 1.0, 1.0);
+
+ float depth_z = -vertex.z;
+
+ if (light_has_shadow > 0.5) {
+
#ifdef LIGHT_USE_PSSM4
- if (depth_z < shadow_split_offsets.w) {
+ if (depth_z < light_split_offsets.w) {
#elif defined(LIGHT_USE_PSSM2)
- if (depth_z < shadow_split_offsets.y) {
+ if (depth_z < light_split_offsets.y) {
#else
- if (depth_z < shadow_split_offsets.x) {
-#endif //LIGHT_USE_PSSM4
-
- vec3 pssm_coord;
- float pssm_fade=0.0;
-
+ if (depth_z < light_split_offsets.x) {
+#endif
+
+ vec3 pssm_coord;
+ float pssm_fade = 0.0;
+
#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- vec3 pssm_coord2;
- bool use_blend=true;
+ float pssm_blend;
+ vec3 pssm_coord2;
+ bool use_blend = true;
#endif
-
-
+
#ifdef LIGHT_USE_PSSM4
-
-
- if (depth_z < shadow_split_offsets.y) {
-
- if (depth_z < shadow_split_offsets.x) {
-
- highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
-
-
-#if defined(LIGHT_USE_PSSM_BLEND)
-
- splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z);
-#endif
-
- } else {
-
- highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
-
-#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix3 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z);
+ if (depth_z < light_split_offsets.y) {
+ if (depth_z < light_split_offsets.x) {
+ highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+
+ pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+#endif
+ } else {
+ highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+
+ pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
+ }
+ } else {
+ if (depth_z < light_split_offsets.z) {
- }
- } else {
-
-
- if (depth_z < shadow_split_offsets.z) {
-
- highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
+ highp vec4 splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix4 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(shadow_split_offsets.y,shadow_split_offsets.z,depth_z);
+ splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+ pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
- } else {
+ } else {
- highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.z,shadow_split_offsets.w,depth_z);
+ highp vec4 splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+ pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend=false;
-
+ use_blend = false;
#endif
-
- }
- }
-
-
-
-#endif //LIGHT_USE_PSSM4
-
+ }
+ }
+
+#endif // LIGHT_USE_PSSM4
+
#ifdef LIGHT_USE_PSSM2
-
- if (depth_z < shadow_split_offsets.x) {
-
- highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
-
-
-#if defined(LIGHT_USE_PSSM_BLEND)
-
- splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z);
+ if (depth_z < light_split_offsets.x) {
+
+ highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+ pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
-
- } else {
- highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z);
-#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend=false;
-
+ } else {
+ highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+ pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
+#ifdef LIGHT_USE_PSSM_BLEND
+ use_blend = false;
#endif
-
- }
-
-#endif //LIGHT_USE_PSSM2
-
+ }
+
+#endif // LIGHT_USE_PSSM2
+
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- { //regular orthogonal
- highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
- }
-#endif
-
-
- //one one sample
-
- float shadow = sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp);
-
-#if defined(LIGHT_USE_PSSM_BLEND)
-
- if (use_blend) {
- shadow=mix(shadow, sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp),pssm_blend);
- }
+ {
+ highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+ }
#endif
-
-#ifdef USE_CONTACT_SHADOWS
- if (shadow>0.01 && shadow_color_contact.a>0.0) {
-
- float contact_shadow = contact_shadow_compute(vertex,-light_direction_attenuation.xyz,shadow_color_contact.a);
- shadow=min(shadow,contact_shadow);
-
- }
+
+ float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord.xy, pssm_coord.z, light_clamp);
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ if (use_blend) {
+ shadow = mix(shadow, sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
+ }
#endif
- light_attenuation=mix(mix(shadow_color_contact.rgb,vec3(1.0),shadow),vec3(1.0),pssm_fade);
-
-
- }
-
-
-#endif //LIGHT_DIRECTIONAL_SHADOW
+
+ attenuation *= shadow;
+
+
+ }
+
+ }
-#ifdef USE_VERTEX_LIGHTING
- diffuse_light*=mix(vec3(1.0),light_attenuation,diffuse_light_interp.a);
- specular_light*=mix(vec3(1.0),light_attenuation,specular_light_interp.a);
+ light_compute(normal,
+ normalize(light_vec),
+ eye_position,
+ binormal,
+ tangent,
+ light_color.xyz * light_energy,
+ attenuation,
+ albedo,
+ transmission,
+ specular * light_specular,
+ roughness,
+ metallic,
+ rim,
+ rim_tint,
+ clearcoat,
+ clearcoat_gloss,
+ anisotropy,
+ diffuse_light,
+ specular_light);
+ } else if (light_type == LIGHT_TYPE_SPOT) {
+
+ vec3 light_att = vec3(1.0);
+
+ if (light_has_shadow > 0.5) {
+ highp vec4 splane = (light_shadow_matrix * vec4(vertex, 1.0));
+ splane.xyz /= splane.w;
+
+ float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, light_clamp);
+
+ if (shadow > splane.z) {
+ } else {
+ light_att = vec3(0.0);
+ }
+
+
+ }
+ vec3 light_rel_vec = light_position - vertex;
+ float light_length = length(light_rel_vec);
+ float normalized_distance = light_length / light_range;
+
+ float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation.w);
+ vec3 spot_dir = light_direction;
+
+ float spot_cutoff = light_spot_angle;
+
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
+ float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
+
+ spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
+
+ light_att *= vec3(spot_attenuation);
+
+ light_compute(normal,
+ normalize(light_rel_vec),
+ eye_position,
+ binormal,
+ tangent,
+ light_color.xyz * light_energy,
+ light_att,
+ albedo,
+ transmission,
+ specular * light_specular,
+ roughness,
+ metallic,
+ rim,
+ rim_tint,
+ clearcoat,
+ clearcoat_gloss,
+ anisotropy,
+ diffuse_light,
+ specular_light);
+
+ }
+
+ gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
#else
- light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb,light_attenuation,albedo,transmission,light_params.z*specular_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
-#endif
-
-
-#endif //#USE_LIGHT_DIRECTIONAL
-
-#ifdef USE_GI_PROBES
- gi_probes_compute(vertex,normal,roughness,env_reflection_light,ambient_light);
-#endif
-
-#ifdef USE_FORWARD_LIGHTING
-
-
- highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0);
- highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0);
- for(int i=0;i<reflection_count;i++) {
- reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,env_reflection_light,reflection_accum,ambient_accum);
- }
-
- if (reflection_accum.a>0.0) {
- specular_light+=reflection_accum.rgb/reflection_accum.a;
- } else {
- specular_light+=env_reflection_light;
- }
-
- if (ambient_accum.a>0.0) {
- ambient_light+=ambient_accum.rgb/ambient_accum.a;
- }
-
-
-
-#ifdef USE_VERTEX_LIGHTING
+#ifdef RENDER_DEPTH
- diffuse_light*=albedo;
#else
- for(int i=0;i<omni_light_count;i++) {
- light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
- }
+#ifdef USE_RADIANCE_MAP
- for(int i=0;i<spot_light_count;i++) {
- light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
- }
-#endif //USE_VERTEX_LIGHTING
+ vec3 ref_vec = reflect(-eye_position, N);
+ ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
-#endif
+ ref_vec.z *= -1.0;
+ env_reflection_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
+ {
+ vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
+ vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy;
+ ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
-#ifdef RENDER_DEPTH
-//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
-#else
+ }
- specular_light*=reflection_multiplier;
- ambient_light*=albedo; //ambient must be multiplied by albedo at the end
+ ambient_light *= ambient_energy;
+
+ specular_light += env_reflection_light;
+
+ ambient_light *= albedo;
#if defined(ENABLE_AO)
- ambient_light*=ao;
- ao_light_affect = mix(1.0,ao,ao_light_affect);
- specular_light*=ao_light_affect;
- diffuse_light*=ao_light_affect;
-#endif
-
-
-
- //energy conservation
- diffuse_light *= 1.0-metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
- ambient_light *= 1.0-metallic;
-
-
+ ambient_light *= ao;
+ ao_light_affect = mix(1.0, ao, ao_light_affect);
+ specular_light *= ao_light_affect;
+ diffuse_light *= ao_light_affect;
+#endif
+
+ diffuse_light *= 1.0 - metallic;
+ ambient_light *= 1.0 - metallic;
+
+ // environment BRDF approximation
+
+ // TODO shadeless
{
-
-#if defined(DIFFUSE_TOON)
- //simplify for toon, as
- specular_light *= specular * metallic * albedo * 2.0;
-#else
- // Environment brdf approximation (Lazarov 2013)
- // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
- float ndotv = clamp(dot(normal,eye_vec),0.0,1.0);
+ float ndotv = clamp(dot(normal,eye_position),0.0,1.0);
float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y;
vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo);
specular_light *= AB.x * specular_color + AB.y;
-#endif
-
}
- if (fog_color_enabled.a > 0.5) {
-
- float fog_amount=0.0;
+ gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
+ // gl_FragColor = vec4(normal, 1.0);
-#ifdef USE_LIGHT_DIRECTIONAL
-
- vec3 fog_color = mix( fog_color_enabled.rgb, fog_sun_color_amount.rgb,fog_sun_color_amount.a * pow(max( dot(normalize(vertex),-light_direction_attenuation.xyz), 0.0),8.0) );
#else
-
- vec3 fog_color = fog_color_enabled.rgb;
+ gl_FragColor = vec4(albedo, alpha);
#endif
-
- //apply fog
-
- if (fog_depth_enabled) {
-
- float fog_z = smoothstep(fog_depth_begin,z_far,length(vertex));
-
- fog_amount = pow(fog_z,fog_depth_curve);
- if (fog_transmit_enabled) {
- vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
- float transmit = pow(fog_z,fog_transmit_curve);
- fog_color = mix(max(total_light,fog_color),fog_color,transmit);
- }
- }
-
- if (fog_height_enabled) {
- float y = (camera_matrix * vec4(vertex,1.0)).y;
- fog_amount = max(fog_amount,pow(smoothstep(fog_height_min,fog_height_max,y),fog_height_curve));
- }
-
- float rev_amount = 1.0 - fog_amount;
-
-
- emission = emission * rev_amount + fog_color * fog_amount;
- ambient_light*=rev_amount;
- specular_light*rev_amount;
- diffuse_light*=rev_amount;
-
- }
-
-#ifdef USE_MULTIPLE_RENDER_TARGETS
-
-
-#ifdef SHADELESS
- diffuse_buffer=vec4(albedo.rgb,0.0);
- specular_buffer=vec4(0.0);
-
-#else
-
-#if defined(ENABLE_AO)
-
- float ambient_scale=0.0; // AO is supplied by material
-#else
- //approximate ambient scale for SSAO, since we will lack full ambient
- float max_emission=max(emission.r,max(emission.g,emission.b));
- float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b));
- float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b));
- float total_ambient = max_ambient+max_diffuse+max_emission;
- float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0;
-#endif //ENABLE_AO
-
- diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale);
- specular_buffer=vec4(specular_light,metallic);
-
-#endif //SHADELESS
-
- normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness);
-
-#if defined (ENABLE_SSS)
- sss_buffer = sss_strength;
-#endif
-
-
-#else //USE_MULTIPLE_RENDER_TARGETS
-
-
-#ifdef SHADELESS
- frag_color=vec4(albedo,alpha);
-#else
- frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha);
-#endif //SHADELESS
-
-
-#endif //USE_MULTIPLE_RENDER_TARGETS
-
+#endif // RENDER_DEPTH
-#endif //RENDER_DEPTH
+#endif // lighting
}
diff --git a/drivers/gles2/shaders/stdlib.glsl b/drivers/gles2/shaders/stdlib.glsl
new file mode 100644
index 0000000000..ebbdb96311
--- /dev/null
+++ b/drivers/gles2/shaders/stdlib.glsl
@@ -0,0 +1,45 @@
+
+vec2 select2(vec2 a, vec2 b, bvec2 c)
+{
+ vec2 ret;
+
+ ret.x = c.x ? b.x : a.x;
+ ret.y = c.y ? b.y : a.y;
+
+ return ret;
+}
+
+vec3 select3(vec3 a, vec3 b, bvec3 c)
+{
+ vec3 ret;
+
+ ret.x = c.x ? b.x : a.x;
+ ret.y = c.y ? b.y : a.y;
+ ret.z = c.z ? b.z : a.z;
+
+ return ret;
+}
+
+vec4 select4(vec4 a, vec4 b, bvec4 c)
+{
+ vec4 ret;
+
+ ret.x = c.x ? b.x : a.x;
+ ret.y = c.y ? b.y : a.y;
+ ret.z = c.z ? b.z : a.z;
+ ret.w = c.w ? b.w : a.w;
+
+ return ret;
+}
+
+
+highp vec4 texel2DFetch(highp sampler2D tex, ivec2 size, ivec2 coord)
+{
+ float x_coord = float(2 * coord.x + 1) / float(size.x * 2);
+ float y_coord = float(2 * coord.y + 1) / float(size.y * 2);
+
+ x_coord = float(coord.x) / float(size.x);
+ y_coord = float(coord.y) / float(size.y);
+
+ return texture2DLod(tex, vec2(x_coord, y_coord), 0.0);
+}