diff options
Diffstat (limited to 'drivers/gles2/shaders/scene.glsl')
-rw-r--r-- | drivers/gles2/shaders/scene.glsl | 2176 |
1 files changed, 2176 insertions, 0 deletions
diff --git a/drivers/gles2/shaders/scene.glsl b/drivers/gles2/shaders/scene.glsl new file mode 100644 index 0000000000..ba3a81a532 --- /dev/null +++ b/drivers/gles2/shaders/scene.glsl @@ -0,0 +1,2176 @@ +/* clang-format off */ +[vertex] + +#ifdef USE_GLES_OVER_GL +#define lowp +#define mediump +#define highp +#else +precision highp float; +precision highp int; +#endif + +/* clang-format on */ +#include "stdlib.glsl" +/* clang-format off */ + +#define SHADER_IS_SRGB true + +#define M_PI 3.14159265359 + +// +// attributes +// + +attribute highp vec4 vertex_attrib; // attrib:0 +/* clang-format on */ +attribute vec3 normal_attrib; // attrib:1 + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) +attribute vec4 tangent_attrib; // attrib:2 +#endif + +#if defined(ENABLE_COLOR_INTERP) +attribute vec4 color_attrib; // attrib:3 +#endif + +#if defined(ENABLE_UV_INTERP) +attribute vec2 uv_attrib; // attrib:4 +#endif + +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) +attribute vec2 uv2_attrib; // attrib:5 +#endif + +#ifdef USE_SKELETON + +#ifdef USE_SKELETON_SOFTWARE + +attribute highp vec4 bone_transform_row_0; // attrib:13 +attribute highp vec4 bone_transform_row_1; // attrib:14 +attribute highp vec4 bone_transform_row_2; // attrib:15 + +#else + +attribute vec4 bone_ids; // attrib:6 +attribute highp vec4 bone_weights; // attrib:7 + +uniform highp sampler2D bone_transforms; // texunit:-1 +uniform ivec2 skeleton_texture_size; + +#endif + +#endif + +#ifdef USE_INSTANCING + +attribute highp vec4 instance_xform_row_0; // attrib:8 +attribute highp vec4 instance_xform_row_1; // attrib:9 +attribute highp vec4 instance_xform_row_2; // attrib:10 + +attribute highp vec4 instance_color; // attrib:11 +attribute highp vec4 instance_custom_data; // attrib:12 + +#endif + +// +// uniforms +// + +uniform highp mat4 camera_matrix; +uniform highp mat4 camera_inverse_matrix; +uniform highp mat4 projection_matrix; +uniform highp mat4 projection_inverse_matrix; + +uniform highp mat4 world_transform; + +uniform highp float time; + +uniform highp vec2 viewport_size; + +#ifdef RENDER_DEPTH +uniform float light_bias; +uniform float light_normal_bias; +#endif + +// +// varyings +// + +#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS) +varying highp vec4 position_interp; +#endif + +varying highp vec3 vertex_interp; +varying vec3 normal_interp; + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) +varying vec3 tangent_interp; +varying vec3 binormal_interp; +#endif + +#if defined(ENABLE_COLOR_INTERP) +varying vec4 color_interp; +#endif + +#if defined(ENABLE_UV_INTERP) +varying vec2 uv_interp; +#endif + +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) +varying vec2 uv2_interp; +#endif + +/* clang-format off */ + +VERTEX_SHADER_GLOBALS + +/* clang-format on */ + +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + +varying highp float dp_clip; +uniform highp float shadow_dual_paraboloid_render_zfar; +uniform highp float shadow_dual_paraboloid_render_side; + +#endif + +#if defined(USE_SHADOW) && defined(USE_LIGHTING) + +uniform highp mat4 light_shadow_matrix; +varying highp vec4 shadow_coord; + +#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) +uniform highp mat4 light_shadow_matrix2; +varying highp vec4 shadow_coord2; +#endif + +#if defined(LIGHT_USE_PSSM4) + +uniform highp mat4 light_shadow_matrix3; +uniform highp mat4 light_shadow_matrix4; +varying highp vec4 shadow_coord3; +varying highp vec4 shadow_coord4; + +#endif + +#endif + +#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING) + +varying highp vec3 diffuse_interp; +varying highp vec3 specular_interp; + +// general for all lights +uniform highp vec4 light_color; +uniform highp vec4 shadow_color; +uniform highp float light_specular; + +// directional +uniform highp vec3 light_direction; + +// omni +uniform highp vec3 light_position; + +uniform highp float light_range; +uniform highp float light_attenuation; + +// spot +uniform highp float light_spot_attenuation; +uniform highp float light_spot_range; +uniform highp float light_spot_angle; + +void light_compute( + vec3 N, + vec3 L, + vec3 V, + vec3 light_color, + vec3 attenuation, + float roughness) { +//this makes lights behave closer to linear, but then addition of lights looks bad +//better left disabled + +//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545); +/* +#define SRGB_APPROX(m_var) {\ + float S1 = sqrt(m_var);\ + float S2 = sqrt(S1);\ + float S3 = sqrt(S2);\ + m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\ + } +*/ +#define SRGB_APPROX(m_var) + + float NdotL = dot(N, L); + float cNdotL = max(NdotL, 0.0); // clamped NdotL + float NdotV = dot(N, V); + float cNdotV = max(NdotV, 0.0); + +#if defined(DIFFUSE_OREN_NAYAR) + vec3 diffuse_brdf_NL; +#else + float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance +#endif + +#if defined(DIFFUSE_LAMBERT_WRAP) + // energy conserving lambert wrap shader + diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); + +#elif defined(DIFFUSE_OREN_NAYAR) + + { + // see http://mimosa-pudica.net/improved-oren-nayar.html + float LdotV = dot(L, V); + + float s = LdotV - NdotL * NdotV; + float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); + + float sigma2 = roughness * roughness; // TODO: this needs checking + vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); + float B = 0.45 * sigma2 / (sigma2 + 0.09); + + diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); + } +#else + // lambert by default for everything else + diffuse_brdf_NL = cNdotL * (1.0 / M_PI); +#endif + + SRGB_APPROX(diffuse_brdf_NL) + + diffuse_interp += light_color * diffuse_brdf_NL * attenuation; + + if (roughness > 0.0) { + // D + float specular_brdf_NL = 0.0; + +#if !defined(SPECULAR_DISABLED) + //normalized blinn always unless disabled + vec3 H = normalize(V + L); + float cNdotH = max(dot(N, H), 0.0); + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float blinn = pow(cNdotH, shininess) * cNdotL; + blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); + specular_brdf_NL = blinn; +#endif + + SRGB_APPROX(specular_brdf_NL) + specular_interp += specular_brdf_NL * light_color * attenuation * (1.0 / M_PI); + } +} + +#endif + +#ifdef USE_VERTEX_LIGHTING + +#ifdef USE_REFLECTION_PROBE1 + +uniform highp mat4 refprobe1_local_matrix; +varying mediump vec4 refprobe1_reflection_normal_blend; +uniform highp vec3 refprobe1_box_extents; + +#ifndef USE_LIGHTMAP +varying mediump vec3 refprobe1_ambient_normal; +#endif + +#endif //reflection probe1 + +#ifdef USE_REFLECTION_PROBE2 + +uniform highp mat4 refprobe2_local_matrix; +varying mediump vec4 refprobe2_reflection_normal_blend; +uniform highp vec3 refprobe2_box_extents; + +#ifndef USE_LIGHTMAP +varying mediump vec3 refprobe2_ambient_normal; +#endif + +#endif //reflection probe2 + +#endif //vertex lighting for refprobes + +#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) + +varying vec4 fog_interp; + +uniform mediump vec4 fog_color_base; +#ifdef LIGHT_MODE_DIRECTIONAL +uniform mediump vec4 fog_sun_color_amount; +#endif + +uniform bool fog_transmit_enabled; +uniform mediump float fog_transmit_curve; + +#ifdef FOG_DEPTH_ENABLED +uniform highp float fog_depth_begin; +uniform mediump float fog_depth_curve; +uniform mediump float fog_max_distance; +#endif + +#ifdef FOG_HEIGHT_ENABLED +uniform highp float fog_height_min; +uniform highp float fog_height_max; +uniform mediump float fog_height_curve; +#endif + +#endif //fog + +void main() { + highp vec4 vertex = vertex_attrib; + + mat4 world_matrix = world_transform; + +#ifdef USE_INSTANCING + { + highp mat4 m = mat4( + instance_xform_row_0, + instance_xform_row_1, + instance_xform_row_2, + vec4(0.0, 0.0, 0.0, 1.0)); + world_matrix = world_matrix * transpose(m); + } + +#endif + + vec3 normal = normal_attrib; + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) + vec3 tangent = tangent_attrib.xyz; + float binormalf = tangent_attrib.a; + vec3 binormal = normalize(cross(normal, tangent) * binormalf); +#endif + +#if defined(ENABLE_COLOR_INTERP) + color_interp = color_attrib; +#ifdef USE_INSTANCING + color_interp *= instance_color; +#endif +#endif + +#if defined(ENABLE_UV_INTERP) + uv_interp = uv_attrib; +#endif + +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) + uv2_interp = uv2_attrib; +#endif + +#if defined(OVERRIDE_POSITION) + highp vec4 position; +#endif + +#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) + vertex = world_matrix * vertex; + normal = normalize((world_matrix * vec4(normal, 0.0)).xyz); +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) + + tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz); + binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz); +#endif +#endif + +#ifdef USE_SKELETON + + highp mat4 bone_transform = mat4(0.0); + +#ifdef USE_SKELETON_SOFTWARE + // passing the transform as attributes + + bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0); + bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0); + bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0); + bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0); + +#else + // look up transform from the "pose texture" + { + for (int i = 0; i < 4; i++) { + ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0); + + highp mat4 b = mat4( + texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)), + texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)), + texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)), + vec4(0.0, 0.0, 0.0, 1.0)); + + bone_transform += transpose(b) * bone_weights[i]; + } + } + +#endif + + world_matrix = world_matrix * bone_transform; + +#endif + +#ifdef USE_INSTANCING + vec4 instance_custom = instance_custom_data; +#else + vec4 instance_custom = vec4(0.0); + +#endif + + mat4 local_projection_matrix = projection_matrix; + + mat4 modelview = camera_inverse_matrix * world_matrix; + float roughness = 1.0; + +#define projection_matrix local_projection_matrix +#define world_transform world_matrix + + float point_size = 1.0; + + { + /* clang-format off */ + +VERTEX_SHADER_CODE + + /* clang-format on */ + } + + gl_PointSize = point_size; + vec4 outvec = vertex; + + // use local coordinates +#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) + vertex = modelview * vertex; + normal = normalize((modelview * vec4(normal, 0.0)).xyz); + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) + tangent = normalize((modelview * vec4(tangent, 0.0)).xyz); + binormal = normalize((modelview * vec4(binormal, 0.0)).xyz); +#endif +#endif + +#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) + vertex = camera_inverse_matrix * vertex; + normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz); +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) + tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz); + binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz); +#endif +#endif + + vertex_interp = vertex.xyz; + normal_interp = normal; + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) + tangent_interp = tangent; + binormal_interp = binormal; +#endif + +#ifdef RENDER_DEPTH + +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + + vertex_interp.z *= shadow_dual_paraboloid_render_side; + normal_interp.z *= shadow_dual_paraboloid_render_side; + + dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias + + //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges + + highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias; + highp float distance = length(vtx); + vtx = normalize(vtx); + vtx.xy /= 1.0 - vtx.z; + vtx.z = (distance / shadow_dual_paraboloid_render_zfar); + vtx.z = vtx.z * 2.0 - 1.0; + + vertex_interp = vtx; + +#else + float z_ofs = light_bias; + z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias; + + vertex_interp.z -= z_ofs; +#endif //dual parabolloid + +#endif //depth + +//vertex lighting +#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING) + //vertex shaded version of lighting (more limited) + vec3 L; + vec3 light_att; + +#ifdef LIGHT_MODE_OMNI + vec3 light_vec = light_position - vertex_interp; + float light_length = length(light_vec); + + float normalized_distance = light_length / light_range; + + if (normalized_distance < 1.0) { + float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation); + + vec3 attenuation = vec3(omni_attenuation); + light_att = vec3(omni_attenuation); + } else { + light_att = vec3(0.0); + } + + L = normalize(light_vec); + +#endif + +#ifdef LIGHT_MODE_SPOT + + vec3 light_rel_vec = light_position - vertex_interp; + float light_length = length(light_rel_vec); + float normalized_distance = light_length / light_range; + + if (normalized_distance < 1.0) { + float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation); + vec3 spot_dir = light_direction; + + float spot_cutoff = light_spot_angle; + + float angle = dot(-normalize(light_rel_vec), spot_dir); + + if (angle > spot_cutoff) { + float scos = max(angle, spot_cutoff); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); + + spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); + + light_att = vec3(spot_attenuation); + } else { + light_att = vec3(0.0); + } + } else { + light_att = vec3(0.0); + } + + L = normalize(light_rel_vec); + +#endif + +#ifdef LIGHT_MODE_DIRECTIONAL + vec3 light_vec = -light_direction; + light_att = vec3(1.0); //no base attenuation + L = normalize(light_vec); +#endif + + diffuse_interp = vec3(0.0); + specular_interp = vec3(0.0); + light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness); + +#endif + +//shadows (for both vertex and fragment) +#if defined(USE_SHADOW) && defined(USE_LIGHTING) + + vec4 vi4 = vec4(vertex_interp, 1.0); + shadow_coord = light_shadow_matrix * vi4; + +#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) + shadow_coord2 = light_shadow_matrix2 * vi4; +#endif + +#if defined(LIGHT_USE_PSSM4) + shadow_coord3 = light_shadow_matrix3 * vi4; + shadow_coord4 = light_shadow_matrix4 * vi4; + +#endif + +#endif //use shadow and use lighting + +#ifdef USE_VERTEX_LIGHTING + +#ifdef USE_REFLECTION_PROBE1 + { + vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp)); + vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz; + vec3 inner_pos = abs(local_pos / refprobe1_box_extents); + float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); + + { + vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz; + refprobe1_reflection_normal_blend.xyz = local_ref_vec; + refprobe1_reflection_normal_blend.a = blend; + } +#ifndef USE_LIGHTMAP + + refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz; +#endif + } + +#endif //USE_REFLECTION_PROBE1 + +#ifdef USE_REFLECTION_PROBE2 + { + vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp)); + vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz; + vec3 inner_pos = abs(local_pos / refprobe2_box_extents); + float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); + + { + vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz; + refprobe2_reflection_normal_blend.xyz = local_ref_vec; + refprobe2_reflection_normal_blend.a = blend; + } +#ifndef USE_LIGHTMAP + + refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz; +#endif + } + +#endif //USE_REFLECTION_PROBE2 + +#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) + + float fog_amount = 0.0; + +#ifdef LIGHT_MODE_DIRECTIONAL + + vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0)); +#else + vec3 fog_color = fog_color_base.rgb; +#endif + +#ifdef FOG_DEPTH_ENABLED + + { + float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex)); + + fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a; + } +#endif + +#ifdef FOG_HEIGHT_ENABLED + { + float y = (camera_matrix * vec4(vertex_interp, 1.0)).y; + fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve)); + } +#endif + fog_interp = vec4(fog_color, fog_amount); + +#endif //fog + +#endif //use vertex lighting + +#if defined(OVERRIDE_POSITION) + gl_Position = position; +#else + gl_Position = projection_matrix * vec4(vertex_interp, 1.0); +#endif + +#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS) + position_interp = gl_Position; +#endif +} + +/* clang-format off */ +[fragment] + +// texture2DLodEXT and textureCubeLodEXT are fragment shader specific. +// Do not copy these defines in the vertex section. +#ifndef USE_GLES_OVER_GL +#ifdef GL_EXT_shader_texture_lod +#extension GL_EXT_shader_texture_lod : enable +#define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod) +#define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod) +#endif +#endif // !USE_GLES_OVER_GL + +#ifdef GL_ARB_shader_texture_lod +#extension GL_ARB_shader_texture_lod : enable +#endif + +#if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod) +#define texture2DLod(img, coord, lod) texture2D(img, coord, lod) +#define textureCubeLod(img, coord, lod) textureCube(img, coord, lod) +#endif + +#ifdef USE_GLES_OVER_GL +#define lowp +#define mediump +#define highp +#else +#if defined(USE_HIGHP_PRECISION) +precision highp float; +precision highp int; +#else +precision mediump float; +precision mediump int; +#endif +#endif + +#include "stdlib.glsl" + +#define M_PI 3.14159265359 +#define SHADER_IS_SRGB true + +// +// uniforms +// + +uniform highp mat4 camera_matrix; +/* clang-format on */ +uniform highp mat4 camera_inverse_matrix; +uniform highp mat4 projection_matrix; +uniform highp mat4 projection_inverse_matrix; + +uniform highp mat4 world_transform; + +uniform highp float time; + +uniform highp vec2 viewport_size; + +#if defined(SCREEN_UV_USED) +uniform vec2 screen_pixel_size; +#endif + +#if defined(SCREEN_TEXTURE_USED) +uniform highp sampler2D screen_texture; //texunit:-4 +#endif +#if defined(DEPTH_TEXTURE_USED) +uniform highp sampler2D depth_texture; //texunit:-4 +#endif + +#ifdef USE_REFLECTION_PROBE1 + +#ifdef USE_VERTEX_LIGHTING + +varying mediump vec4 refprobe1_reflection_normal_blend; +#ifndef USE_LIGHTMAP +varying mediump vec3 refprobe1_ambient_normal; +#endif + +#else + +uniform bool refprobe1_use_box_project; +uniform highp vec3 refprobe1_box_extents; +uniform vec3 refprobe1_box_offset; +uniform highp mat4 refprobe1_local_matrix; + +#endif //use vertex lighting + +uniform bool refprobe1_exterior; + +uniform highp samplerCube reflection_probe1; //texunit:-5 + +uniform float refprobe1_intensity; +uniform vec4 refprobe1_ambient; + +#endif //USE_REFLECTION_PROBE1 + +#ifdef USE_REFLECTION_PROBE2 + +#ifdef USE_VERTEX_LIGHTING + +varying mediump vec4 refprobe2_reflection_normal_blend; +#ifndef USE_LIGHTMAP +varying mediump vec3 refprobe2_ambient_normal; +#endif + +#else + +uniform bool refprobe2_use_box_project; +uniform highp vec3 refprobe2_box_extents; +uniform vec3 refprobe2_box_offset; +uniform highp mat4 refprobe2_local_matrix; + +#endif //use vertex lighting + +uniform bool refprobe2_exterior; + +uniform highp samplerCube reflection_probe2; //texunit:-6 + +uniform float refprobe2_intensity; +uniform vec4 refprobe2_ambient; + +#endif //USE_REFLECTION_PROBE2 + +#define RADIANCE_MAX_LOD 6.0 + +#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2) + +void reflection_process(samplerCube reflection_map, +#ifdef USE_VERTEX_LIGHTING + vec3 ref_normal, +#ifndef USE_LIGHTMAP + vec3 amb_normal, +#endif + float ref_blend, + +#else //no vertex lighting + vec3 normal, vec3 vertex, + mat4 local_matrix, + bool use_box_project, vec3 box_extents, vec3 box_offset, +#endif //vertex lighting + bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) { + vec4 reflection; + +#ifdef USE_VERTEX_LIGHTING + + reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb; + + float blend = ref_blend; //crappier blend formula for vertex + blend *= blend; + blend = max(0.0, 1.0 - blend); + +#else //fragment lighting + + vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz; + + if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box + return; + } + + vec3 inner_pos = abs(local_pos / box_extents); + float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); + blend = mix(length(inner_pos), blend, blend); + blend *= blend; + blend = max(0.0, 1.0 - blend); + + //reflect and make local + vec3 ref_normal = normalize(reflect(vertex, normal)); + ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz; + + if (use_box_project) { //box project + + vec3 nrdir = normalize(ref_normal); + vec3 rbmax = (box_extents - local_pos) / nrdir; + vec3 rbmin = (-box_extents - local_pos) / nrdir; + + vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0)))); + + float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); + vec3 posonbox = local_pos + nrdir * fa; + ref_normal = posonbox - box_offset.xyz; + } + + reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb; +#endif + + if (exterior) { + reflection.rgb = mix(skybox, reflection.rgb, blend); + } + reflection.rgb *= intensity; + reflection.a = blend; + reflection.rgb *= blend; + + reflection_accum += reflection; + +#ifndef USE_LIGHTMAP + + vec4 ambient_out; +#ifndef USE_VERTEX_LIGHTING + + vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz; +#endif + + ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb; + ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a); + if (exterior) { + ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); + } + + ambient_out.a = blend; + ambient_out.rgb *= blend; + ambient_accum += ambient_out; + +#endif +} + +#endif //use refprobe 1 or 2 + +#ifdef USE_LIGHTMAP +uniform mediump sampler2D lightmap; //texunit:-4 +uniform mediump float lightmap_energy; +#endif + +#ifdef USE_LIGHTMAP_CAPTURE +uniform mediump vec4[12] lightmap_captures; +uniform bool lightmap_capture_sky; + +#endif + +#ifdef USE_RADIANCE_MAP + +uniform samplerCube radiance_map; // texunit:-2 + +uniform mat4 radiance_inverse_xform; + +#endif + +uniform vec4 bg_color; +uniform float bg_energy; + +uniform float ambient_sky_contribution; +uniform vec4 ambient_color; +uniform float ambient_energy; + +#ifdef USE_LIGHTING + +uniform highp vec4 shadow_color; + +#ifdef USE_VERTEX_LIGHTING + +//get from vertex +varying highp vec3 diffuse_interp; +varying highp vec3 specular_interp; + +uniform highp vec3 light_direction; //may be used by fog, so leave here + +#else +//done in fragment +// general for all lights +uniform highp vec4 light_color; + +uniform highp float light_specular; + +// directional +uniform highp vec3 light_direction; +// omni +uniform highp vec3 light_position; + +uniform highp float light_attenuation; + +// spot +uniform highp float light_spot_attenuation; +uniform highp float light_spot_range; +uniform highp float light_spot_angle; +#endif + +//this is needed outside above if because dual paraboloid wants it +uniform highp float light_range; + +#ifdef USE_SHADOW + +uniform highp vec2 shadow_pixel_size; + +#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT) +uniform highp sampler2D light_shadow_atlas; //texunit:-3 +#endif + +#ifdef LIGHT_MODE_DIRECTIONAL +uniform highp sampler2D light_directional_shadow; // texunit:-3 +uniform highp vec4 light_split_offsets; +#endif + +varying highp vec4 shadow_coord; + +#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) +varying highp vec4 shadow_coord2; +#endif + +#if defined(LIGHT_USE_PSSM4) + +varying highp vec4 shadow_coord3; +varying highp vec4 shadow_coord4; + +#endif + +uniform vec4 light_clamp; + +#endif // light shadow + +// directional shadow + +#endif + +// +// varyings +// + +#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS) +varying highp vec4 position_interp; +#endif + +varying highp vec3 vertex_interp; +varying vec3 normal_interp; + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) +varying vec3 tangent_interp; +varying vec3 binormal_interp; +#endif + +#if defined(ENABLE_COLOR_INTERP) +varying vec4 color_interp; +#endif + +#if defined(ENABLE_UV_INTERP) +varying vec2 uv_interp; +#endif + +#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) +varying vec2 uv2_interp; +#endif + +varying vec3 view_interp; + +vec3 F0(float metallic, float specular, vec3 albedo) { + float dielectric = 0.16 * specular * specular; + // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; + // see https://google.github.io/filament/Filament.md.html + return mix(vec3(dielectric), albedo, vec3(metallic)); +} + +/* clang-format off */ + +FRAGMENT_SHADER_GLOBALS + +/* clang-format on */ + +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + +varying highp float dp_clip; + +#endif + +#ifdef USE_LIGHTING + +// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. +// We're dividing this factor off because the overall term we'll end up looks like +// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): +// +// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) +// +// We're basically regouping this as +// +// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] +// +// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. +// +// The contents of the D and G (G1) functions (GGX) are taken from +// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). +// Eqns 71-72 and 85-86 (see also Eqns 43 and 80). + +/* +float G_GGX_2cos(float cos_theta_m, float alpha) { + // Schlick's approximation + // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) + // Eq. (19), although see Heitz (2014) the about the problems with his derivation. + // It nevertheless approximates GGX well with k = alpha/2. + float k = 0.5 * alpha; + return 0.5 / (cos_theta_m * (1.0 - k) + k); + + // float cos2 = cos_theta_m * cos_theta_m; + // float sin2 = (1.0 - cos2); + // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); +} +*/ + +// This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha) +// See Filament docs, Specular G section. +float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) { + return 0.5 / mix(2.0 * cos_theta_l * cos_theta_v, cos_theta_l + cos_theta_v, alpha); +} + +float D_GGX(float cos_theta_m, float alpha) { + float alpha2 = alpha * alpha; + float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; + return alpha2 / (M_PI * d * d); +} + +/* +float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { + float cos2 = cos_theta_m * cos_theta_m; + float sin2 = (1.0 - cos2); + float s_x = alpha_x * cos_phi; + float s_y = alpha_y * sin_phi; + return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); +} +*/ + +// This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...) +// See Filament docs, Anisotropic specular BRDF section. +float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) { + float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV)); + float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL)); + return 0.5 / (Lambda_V + Lambda_L); +} + +float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) { + float alpha2 = alpha_x * alpha_y; + highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH); + highp float v2 = dot(v, v); + float w2 = alpha2 / v2; + float D = alpha2 * w2 * w2 * (1.0 / M_PI); + return D; + + /* float cos2 = cos_theta_m * cos_theta_m; + float sin2 = (1.0 - cos2); + float r_x = cos_phi / alpha_x; + float r_y = sin_phi / alpha_y; + float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); + return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */ +} + +float SchlickFresnel(float u) { + float m = 1.0 - u; + float m2 = m * m; + return m2 * m2 * m; // pow(m,5) +} + +float GTR1(float NdotH, float a) { + if (a >= 1.0) + return 1.0 / M_PI; + float a2 = a * a; + float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; + return (a2 - 1.0) / (M_PI * log(a2) * t); +} + +void light_compute( + vec3 N, + vec3 L, + vec3 V, + vec3 B, + vec3 T, + vec3 light_color, + vec3 attenuation, + vec3 diffuse_color, + vec3 transmission, + float specular_blob_intensity, + float roughness, + float metallic, + float specular, + float rim, + float rim_tint, + float clearcoat, + float clearcoat_gloss, + float anisotropy, + inout vec3 diffuse_light, + inout vec3 specular_light, + inout float alpha) { +//this makes lights behave closer to linear, but then addition of lights looks bad +//better left disabled + +//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545); +/* +#define SRGB_APPROX(m_var) {\ + float S1 = sqrt(m_var);\ + float S2 = sqrt(S1);\ + float S3 = sqrt(S2);\ + m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\ + } +*/ +#define SRGB_APPROX(m_var) + +#if defined(USE_LIGHT_SHADER_CODE) + // light is written by the light shader + + vec3 normal = N; + vec3 albedo = diffuse_color; + vec3 light = L; + vec3 view = V; + + /* clang-format off */ + +LIGHT_SHADER_CODE + + /* clang-format on */ + +#else + float NdotL = dot(N, L); + float cNdotL = max(NdotL, 0.0); // clamped NdotL + float NdotV = dot(N, V); + float cNdotV = max(abs(NdotV), 1e-6); + +#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) + vec3 H = normalize(V + L); +#endif + +#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) + float cNdotH = max(dot(N, H), 0.0); +#endif + +#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) + float cLdotH = max(dot(L, H), 0.0); +#endif + + if (metallic < 1.0) { +#if defined(DIFFUSE_OREN_NAYAR) + vec3 diffuse_brdf_NL; +#else + float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance +#endif + +#if defined(DIFFUSE_LAMBERT_WRAP) + // energy conserving lambert wrap shader + diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); + +#elif defined(DIFFUSE_OREN_NAYAR) + + { + // see http://mimosa-pudica.net/improved-oren-nayar.html + float LdotV = dot(L, V); + + float s = LdotV - NdotL * NdotV; + float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); + + float sigma2 = roughness * roughness; // TODO: this needs checking + vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); + float B = 0.45 * sigma2 / (sigma2 + 0.09); + + diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); + } + +#elif defined(DIFFUSE_TOON) + + diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); + +#elif defined(DIFFUSE_BURLEY) + + { + float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; + float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); + float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); + diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; + /* + float energyBias = mix(roughness, 0.0, 0.5); + float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); + float fd90 = energyBias + 2.0 * VoH * VoH * roughness; + float f0 = 1.0; + float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); + float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); + + diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; + */ + } +#else + // lambert + diffuse_brdf_NL = cNdotL * (1.0 / M_PI); +#endif + + SRGB_APPROX(diffuse_brdf_NL) + + diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; + +#if defined(TRANSMISSION_USED) + diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation; +#endif + +#if defined(LIGHT_USE_RIM) + float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); + diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; +#endif + } + + if (roughness > 0.0) { + +#if defined(SPECULAR_SCHLICK_GGX) + vec3 specular_brdf_NL = vec3(0.0); +#else + float specular_brdf_NL = 0.0; +#endif + +#if defined(SPECULAR_BLINN) + + //normalized blinn + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float blinn = pow(cNdotH, shininess) * cNdotL; + blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); + specular_brdf_NL = blinn; + +#elif defined(SPECULAR_PHONG) + + vec3 R = normalize(-reflect(L, N)); + float cRdotV = max(0.0, dot(R, V)); + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float phong = pow(cRdotV, shininess); + phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); + specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); + +#elif defined(SPECULAR_TOON) + + vec3 R = normalize(-reflect(L, N)); + float RdotV = dot(R, V); + float mid = 1.0 - roughness; + mid *= mid; + specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; + +#elif defined(SPECULAR_DISABLED) + // none.. +#elif defined(SPECULAR_SCHLICK_GGX) + // shlick+ggx as default + +#if defined(LIGHT_USE_ANISOTROPY) + float alpha_ggx = roughness * roughness; + float aspect = sqrt(1.0 - anisotropy * 0.9); + float ax = alpha_ggx / aspect; + float ay = alpha_ggx * aspect; + float XdotH = dot(T, H); + float YdotH = dot(B, H); + float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH); + //float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); + float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL); + +#else + float alpha_ggx = roughness * roughness; + float D = D_GGX(cNdotH, alpha_ggx); + //float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx); + float G = V_GGX(cNdotL, cNdotV, alpha_ggx); +#endif + // F + vec3 f0 = F0(metallic, specular, diffuse_color); + float cLdotH5 = SchlickFresnel(cLdotH); + vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); + + specular_brdf_NL = cNdotL * D * F * G; + +#endif + + SRGB_APPROX(specular_brdf_NL) + specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; + +#if defined(LIGHT_USE_CLEARCOAT) + +#if !defined(SPECULAR_SCHLICK_GGX) + float cLdotH5 = SchlickFresnel(cLdotH); +#endif + float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); + float Fr = mix(.04, 1.0, cLdotH5); + //float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); + float Gr = V_GGX(cNdotL, cNdotV, 0.25); + + float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; + + specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation; +#endif + } + +#ifdef USE_SHADOW_TO_OPACITY + alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0)); +#endif + +#endif //defined(USE_LIGHT_SHADER_CODE) +} + +#endif +// shadows + +#ifdef USE_SHADOW + +#ifdef USE_RGBA_SHADOWS + +#define SHADOW_DEPTH(m_val) dot(m_val, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) + +#else + +#define SHADOW_DEPTH(m_val) (m_val).r + +#endif + +#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, SHADOW_DEPTH(texture2D(p_shadow, p_pos))) +#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, SHADOW_DEPTH(texture2DProj(p_shadow, p_pos))) + +float sample_shadow(highp sampler2D shadow, highp vec4 spos) { +#ifdef SHADOW_MODE_PCF_13 + + spos.xyz /= spos.w; + vec2 pos = spos.xy; + float depth = spos.z; + + float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth); + return avg * (1.0 / 13.0); +#endif + +#ifdef SHADOW_MODE_PCF_5 + + spos.xyz /= spos.w; + vec2 pos = spos.xy; + float depth = spos.z; + + float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth); + avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth); + return avg * (1.0 / 5.0); + +#endif + +#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13) + + return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos); +#endif +} + +#endif + +#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) + +#if defined(USE_VERTEX_LIGHTING) + +varying vec4 fog_interp; + +#else +uniform mediump vec4 fog_color_base; +#ifdef LIGHT_MODE_DIRECTIONAL +uniform mediump vec4 fog_sun_color_amount; +#endif + +uniform bool fog_transmit_enabled; +uniform mediump float fog_transmit_curve; + +#ifdef FOG_DEPTH_ENABLED +uniform highp float fog_depth_begin; +uniform mediump float fog_depth_curve; +uniform mediump float fog_max_distance; +#endif + +#ifdef FOG_HEIGHT_ENABLED +uniform highp float fog_height_min; +uniform highp float fog_height_max; +uniform mediump float fog_height_curve; +#endif + +#endif //vertex lit +#endif //fog + +void main() { +#ifdef RENDER_DEPTH_DUAL_PARABOLOID + + if (dp_clip > 0.0) + discard; +#endif + highp vec3 vertex = vertex_interp; + vec3 view = -normalize(vertex_interp); + vec3 albedo = vec3(1.0); + vec3 transmission = vec3(0.0); + float metallic = 0.0; + float specular = 0.5; + vec3 emission = vec3(0.0); + float roughness = 1.0; + float rim = 0.0; + float rim_tint = 0.0; + float clearcoat = 0.0; + float clearcoat_gloss = 0.0; + float anisotropy = 0.0; + vec2 anisotropy_flow = vec2(1.0, 0.0); + float sss_strength = 0.0; //unused + // gl_FragDepth is not available in GLES2, so writing to DEPTH is not converted to gl_FragDepth by Godot compiler resulting in a + // compile error because DEPTH is not a variable. + float m_DEPTH = 0.0; + + float alpha = 1.0; + float side = 1.0; + + float specular_blob_intensity = 1.0; +#if defined(SPECULAR_TOON) + specular_blob_intensity *= specular * 2.0; +#endif + +#if defined(ENABLE_AO) + float ao = 1.0; + float ao_light_affect = 0.0; +#endif + +#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) + vec3 binormal = normalize(binormal_interp) * side; + vec3 tangent = normalize(tangent_interp) * side; +#else + vec3 binormal = vec3(0.0); + vec3 tangent = vec3(0.0); +#endif + vec3 normal = normalize(normal_interp) * side; + +#if defined(ENABLE_NORMALMAP) + vec3 normalmap = vec3(0.5); +#endif + float normaldepth = 1.0; + +#if defined(ALPHA_SCISSOR_USED) + float alpha_scissor = 0.5; +#endif + +#if defined(SCREEN_UV_USED) + vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; +#endif + + { + /* clang-format off */ + +FRAGMENT_SHADER_CODE + + /* clang-format on */ + } + +#if defined(ENABLE_NORMALMAP) + normalmap.xy = normalmap.xy * 2.0 - 1.0; + normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); + + normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side; + //normal = normalmap; +#endif + + normal = normalize(normal); + + vec3 N = normal; + + vec3 specular_light = vec3(0.0, 0.0, 0.0); + vec3 diffuse_light = vec3(0.0, 0.0, 0.0); + vec3 ambient_light = vec3(0.0, 0.0, 0.0); + + vec3 eye_position = view; + +#if !defined(USE_SHADOW_TO_OPACITY) + +#if defined(ALPHA_SCISSOR_USED) + if (alpha < alpha_scissor) { + discard; + } +#endif // ALPHA_SCISSOR_USED + +#ifdef USE_DEPTH_PREPASS + if (alpha < 0.1) { + discard; + } +#endif // USE_DEPTH_PREPASS + +#endif // !USE_SHADOW_TO_OPACITY + +#ifdef BASE_PASS + + // IBL precalculations + float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0); + vec3 f0 = F0(metallic, specular, albedo); + vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0); + +#ifdef AMBIENT_LIGHT_DISABLED + ambient_light = vec3(0.0, 0.0, 0.0); +#else + +#ifdef USE_RADIANCE_MAP + + vec3 ref_vec = reflect(-eye_position, N); + ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); + + ref_vec.z *= -1.0; + + specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy; +#ifndef USE_LIGHTMAP + { + vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz); + vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, 4.0).xyz * bg_energy; + env_ambient *= 1.0 - F; + + ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution); + } +#endif + +#else + + ambient_light = ambient_color.rgb; + specular_light = bg_color.rgb * bg_energy; + +#endif +#endif // AMBIENT_LIGHT_DISABLED + ambient_light *= ambient_energy; + +#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2) + + vec4 ambient_accum = vec4(0.0); + vec4 reflection_accum = vec4(0.0); + +#ifdef USE_REFLECTION_PROBE1 + + reflection_process(reflection_probe1, +#ifdef USE_VERTEX_LIGHTING + refprobe1_reflection_normal_blend.rgb, +#ifndef USE_LIGHTMAP + refprobe1_ambient_normal, +#endif + refprobe1_reflection_normal_blend.a, +#else + normal_interp, vertex_interp, refprobe1_local_matrix, + refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset, +#endif + refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness, + ambient_light, specular_light, reflection_accum, ambient_accum); + +#endif // USE_REFLECTION_PROBE1 + +#ifdef USE_REFLECTION_PROBE2 + + reflection_process(reflection_probe2, +#ifdef USE_VERTEX_LIGHTING + refprobe2_reflection_normal_blend.rgb, +#ifndef USE_LIGHTMAP + refprobe2_ambient_normal, +#endif + refprobe2_reflection_normal_blend.a, +#else + normal_interp, vertex_interp, refprobe2_local_matrix, + refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset, +#endif + refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness, + ambient_light, specular_light, reflection_accum, ambient_accum); + +#endif // USE_REFLECTION_PROBE2 + + if (reflection_accum.a > 0.0) { + specular_light = reflection_accum.rgb / reflection_accum.a; + } + +#ifndef USE_LIGHTMAP + if (ambient_accum.a > 0.0) { + ambient_light = ambient_accum.rgb / ambient_accum.a; + } +#endif + +#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2) + + // environment BRDF approximation + { +#if defined(DIFFUSE_TOON) + //simplify for toon, as + specular_light *= specular * metallic * albedo * 2.0; +#else + + // scales the specular reflections, needs to be be computed before lighting happens, + // but after environment and reflection probes are added + //TODO: this curve is not really designed for gammaspace, should be adjusted + const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); + const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); + vec4 r = roughness * c0 + c1; + float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; + vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; + specular_light *= env.x * F + env.y; + +#endif + } + +#ifdef USE_LIGHTMAP + //ambient light will come entirely from lightmap is lightmap is used + ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy; +#endif + +#ifdef USE_LIGHTMAP_CAPTURE + { + vec3 cone_dirs[12]; + cone_dirs[0] = vec3(0.0, 0.0, 1.0); + cone_dirs[1] = vec3(0.866025, 0.0, 0.5); + cone_dirs[2] = vec3(0.267617, 0.823639, 0.5); + cone_dirs[3] = vec3(-0.700629, 0.509037, 0.5); + cone_dirs[4] = vec3(-0.700629, -0.509037, 0.5); + cone_dirs[5] = vec3(0.267617, -0.823639, 0.5); + cone_dirs[6] = vec3(0.0, 0.0, -1.0); + cone_dirs[7] = vec3(0.866025, 0.0, -0.5); + cone_dirs[8] = vec3(0.267617, 0.823639, -0.5); + cone_dirs[9] = vec3(-0.700629, 0.509037, -0.5); + cone_dirs[10] = vec3(-0.700629, -0.509037, -0.5); + cone_dirs[11] = vec3(0.267617, -0.823639, -0.5); + + vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz; + vec4 captured = vec4(0.0); + float sum = 0.0; + for (int i = 0; i < 12; i++) { + float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect + captured += lightmap_captures[i] * amount; + sum += amount; + } + + captured /= sum; + + if (lightmap_capture_sky) { + ambient_light = mix(ambient_light, captured.rgb, captured.a); + } else { + ambient_light = captured.rgb; + } + } +#endif + +#endif //BASE PASS + +// +// Lighting +// +#ifdef USE_LIGHTING + +#ifndef USE_VERTEX_LIGHTING + vec3 L; +#endif + vec3 light_att = vec3(1.0); + +#ifdef LIGHT_MODE_OMNI + +#ifndef USE_VERTEX_LIGHTING + vec3 light_vec = light_position - vertex; + float light_length = length(light_vec); + + float normalized_distance = light_length / light_range; + if (normalized_distance < 1.0) { + float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation); + + light_att = vec3(omni_attenuation); + } else { + light_att = vec3(0.0); + } + L = normalize(light_vec); + +#endif + +#if !defined(SHADOWS_DISABLED) + +#ifdef USE_SHADOW + { + highp vec4 splane = shadow_coord; + float shadow_len = length(splane.xyz); + + splane.xyz = normalize(splane.xyz); + + vec4 clamp_rect = light_clamp; + + if (splane.z >= 0.0) { + splane.z += 1.0; + + clamp_rect.y += clamp_rect.w; + } else { + splane.z = 1.0 - splane.z; + } + + splane.xy /= splane.z; + splane.xy = splane.xy * 0.5 + 0.5; + splane.z = shadow_len / light_range; + + splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; + splane.w = 1.0; + + float shadow = sample_shadow(light_shadow_atlas, splane); + + light_att *= mix(shadow_color.rgb, vec3(1.0), shadow); + } +#endif + +#endif //SHADOWS_DISABLED + +#endif //type omni + +#ifdef LIGHT_MODE_DIRECTIONAL + +#ifndef USE_VERTEX_LIGHTING + vec3 light_vec = -light_direction; + L = normalize(light_vec); +#endif + float depth_z = -vertex.z; + +#if !defined(SHADOWS_DISABLED) + +#ifdef USE_SHADOW + +#ifdef USE_VERTEX_LIGHTING + //compute shadows in a mobile friendly way + +#ifdef LIGHT_USE_PSSM4 + //take advantage of prefetch + float shadow1 = sample_shadow(light_directional_shadow, shadow_coord); + float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2); + float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3); + float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4); + + if (depth_z < light_split_offsets.w) { + float pssm_fade = 0.0; + float shadow_att = 1.0; +#ifdef LIGHT_USE_PSSM_BLEND + float shadow_att2 = 1.0; + float pssm_blend = 0.0; + bool use_blend = true; +#endif + if (depth_z < light_split_offsets.y) { + if (depth_z < light_split_offsets.x) { + shadow_att = shadow1; + +#ifdef LIGHT_USE_PSSM_BLEND + shadow_att2 = shadow2; + + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); +#endif + } else { + shadow_att = shadow2; + +#ifdef LIGHT_USE_PSSM_BLEND + shadow_att2 = shadow3; + + pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); +#endif + } + } else { + if (depth_z < light_split_offsets.z) { + shadow_att = shadow3; + +#if defined(LIGHT_USE_PSSM_BLEND) + shadow_att2 = shadow4; + pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); +#endif + + } else { + shadow_att = shadow4; + pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); + +#if defined(LIGHT_USE_PSSM_BLEND) + use_blend = false; +#endif + } + } +#if defined(LIGHT_USE_PSSM_BLEND) + if (use_blend) { + shadow_att = mix(shadow_att, shadow_att2, pssm_blend); + } +#endif + light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att); + } + +#endif //LIGHT_USE_PSSM4 + +#ifdef LIGHT_USE_PSSM2 + + //take advantage of prefetch + float shadow1 = sample_shadow(light_directional_shadow, shadow_coord); + float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2); + + if (depth_z < light_split_offsets.y) { + float shadow_att = 1.0; + float pssm_fade = 0.0; + +#ifdef LIGHT_USE_PSSM_BLEND + float shadow_att2 = 1.0; + float pssm_blend = 0.0; + bool use_blend = true; +#endif + if (depth_z < light_split_offsets.x) { + float pssm_fade = 0.0; + shadow_att = shadow1; + +#ifdef LIGHT_USE_PSSM_BLEND + shadow_att2 = shadow2; + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); +#endif + } else { + shadow_att = shadow2; + pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); +#ifdef LIGHT_USE_PSSM_BLEND + use_blend = false; +#endif + } +#ifdef LIGHT_USE_PSSM_BLEND + if (use_blend) { + shadow_att = mix(shadow_att, shadow_att2, pssm_blend); + } +#endif + light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att); + } + +#endif //LIGHT_USE_PSSM2 + +#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) + + light_att *= mix(shadow_color.rgb, vec3(1.0), sample_shadow(light_directional_shadow, shadow_coord)); +#endif //orthogonal + +#else //fragment version of pssm + + { +#ifdef LIGHT_USE_PSSM4 + if (depth_z < light_split_offsets.w) { +#elif defined(LIGHT_USE_PSSM2) + if (depth_z < light_split_offsets.y) { +#else + if (depth_z < light_split_offsets.x) { +#endif //pssm2 + + highp vec4 pssm_coord; + float pssm_fade = 0.0; + +#ifdef LIGHT_USE_PSSM_BLEND + float pssm_blend; + highp vec4 pssm_coord2; + bool use_blend = true; +#endif + +#ifdef LIGHT_USE_PSSM4 + + if (depth_z < light_split_offsets.y) { + if (depth_z < light_split_offsets.x) { + pssm_coord = shadow_coord; + +#ifdef LIGHT_USE_PSSM_BLEND + pssm_coord2 = shadow_coord2; + + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); +#endif + } else { + pssm_coord = shadow_coord2; + +#ifdef LIGHT_USE_PSSM_BLEND + pssm_coord2 = shadow_coord3; + + pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); +#endif + } + } else { + if (depth_z < light_split_offsets.z) { + pssm_coord = shadow_coord3; + +#if defined(LIGHT_USE_PSSM_BLEND) + pssm_coord2 = shadow_coord4; + pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); +#endif + + } else { + pssm_coord = shadow_coord4; + pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); + +#if defined(LIGHT_USE_PSSM_BLEND) + use_blend = false; +#endif + } + } + +#endif // LIGHT_USE_PSSM4 + +#ifdef LIGHT_USE_PSSM2 + if (depth_z < light_split_offsets.x) { + pssm_coord = shadow_coord; + +#ifdef LIGHT_USE_PSSM_BLEND + pssm_coord2 = shadow_coord2; + pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); +#endif + } else { + pssm_coord = shadow_coord2; + pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); +#ifdef LIGHT_USE_PSSM_BLEND + use_blend = false; +#endif + } + +#endif // LIGHT_USE_PSSM2 + +#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) + { + pssm_coord = shadow_coord; + } +#endif + + float shadow = sample_shadow(light_directional_shadow, pssm_coord); + +#ifdef LIGHT_USE_PSSM_BLEND + if (use_blend) { + shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend); + } +#endif + + light_att *= mix(shadow_color.rgb, vec3(1.0), shadow); + } + } +#endif //use vertex lighting + +#endif //use shadow + +#endif // SHADOWS_DISABLED + +#endif + +#ifdef LIGHT_MODE_SPOT + + light_att = vec3(1.0); + +#ifndef USE_VERTEX_LIGHTING + + vec3 light_rel_vec = light_position - vertex; + float light_length = length(light_rel_vec); + float normalized_distance = light_length / light_range; + + if (normalized_distance < 1.0) { + float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation); + vec3 spot_dir = light_direction; + + float spot_cutoff = light_spot_angle; + float angle = dot(-normalize(light_rel_vec), spot_dir); + + if (angle > spot_cutoff) { + float scos = max(angle, spot_cutoff); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); + spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); + + light_att = vec3(spot_attenuation); + } else { + light_att = vec3(0.0); + } + } else { + light_att = vec3(0.0); + } + + L = normalize(light_rel_vec); + +#endif + +#if !defined(SHADOWS_DISABLED) + +#ifdef USE_SHADOW + { + highp vec4 splane = shadow_coord; + + float shadow = sample_shadow(light_shadow_atlas, splane); + light_att *= mix(shadow_color.rgb, vec3(1.0), shadow); + } +#endif + +#endif // SHADOWS_DISABLED + +#endif // LIGHT_MODE_SPOT + +#ifdef USE_VERTEX_LIGHTING + //vertex lighting + + specular_light += specular_interp * specular_blob_intensity * light_att; + diffuse_light += diffuse_interp * albedo * light_att; + +#else + //fragment lighting + light_compute( + normal, + L, + eye_position, + binormal, + tangent, + light_color.xyz, + light_att, + albedo, + transmission, + specular_blob_intensity * light_specular, + roughness, + metallic, + specular, + rim, + rim_tint, + clearcoat, + clearcoat_gloss, + anisotropy, + diffuse_light, + specular_light, + alpha); + +#endif //vertex lighting + +#endif //USE_LIGHTING + //compute and merge + +#ifdef USE_SHADOW_TO_OPACITY + + alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); + +#if defined(ALPHA_SCISSOR_USED) + if (alpha < alpha_scissor) { + discard; + } +#endif // ALPHA_SCISSOR_USED + +#ifdef USE_DEPTH_PREPASS + if (alpha < 0.1) { + discard; + } +#endif // USE_DEPTH_PREPASS + +#endif // !USE_SHADOW_TO_OPACITY + +#ifndef RENDER_DEPTH + +#ifdef SHADELESS + + gl_FragColor = vec4(albedo, alpha); +#else + + ambient_light *= albedo; + +#if defined(ENABLE_AO) + ambient_light *= ao; + ao_light_affect = mix(1.0, ao, ao_light_affect); + specular_light *= ao_light_affect; + diffuse_light *= ao_light_affect; +#endif + + diffuse_light *= 1.0 - metallic; + ambient_light *= 1.0 - metallic; + + gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha); + + //add emission if in base pass +#ifdef BASE_PASS + gl_FragColor.rgb += emission; +#endif + // gl_FragColor = vec4(normal, 1.0); + +//apply fog +#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) + +#if defined(USE_VERTEX_LIGHTING) + +#if defined(BASE_PASS) + gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_interp.rgb, fog_interp.a); +#else + gl_FragColor.rgb *= (1.0 - fog_interp.a); +#endif // BASE_PASS + +#else //pixel based fog + float fog_amount = 0.0; + +#ifdef LIGHT_MODE_DIRECTIONAL + + vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0)); +#else + vec3 fog_color = fog_color_base.rgb; +#endif + +#ifdef FOG_DEPTH_ENABLED + + { + float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex)); + + fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a; + + if (fog_transmit_enabled) { + vec3 total_light = gl_FragColor.rgb; + float transmit = pow(fog_z, fog_transmit_curve); + fog_color = mix(max(total_light, fog_color), fog_color, transmit); + } + } +#endif + +#ifdef FOG_HEIGHT_ENABLED + { + float y = (camera_matrix * vec4(vertex, 1.0)).y; + fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve)); + } +#endif + +#if defined(BASE_PASS) + gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_color, fog_amount); +#else + gl_FragColor.rgb *= (1.0 - fog_amount); +#endif // BASE_PASS + +#endif //use vertex lit + +#endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) + +#endif //unshaded + +#else // not RENDER_DEPTH +//depth render +#ifdef USE_RGBA_SHADOWS + + highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias + highp vec4 comp = fract(depth * vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0)); + comp -= comp.xxyz * vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0); + gl_FragColor = comp; + +#endif +#endif +} |