diff options
Diffstat (limited to 'drivers/gles2/rasterizer_scene_gles2.cpp')
-rw-r--r-- | drivers/gles2/rasterizer_scene_gles2.cpp | 3955 |
1 files changed, 3955 insertions, 0 deletions
diff --git a/drivers/gles2/rasterizer_scene_gles2.cpp b/drivers/gles2/rasterizer_scene_gles2.cpp new file mode 100644 index 0000000000..6ef0816934 --- /dev/null +++ b/drivers/gles2/rasterizer_scene_gles2.cpp @@ -0,0 +1,3955 @@ +/*************************************************************************/ +/* rasterizer_scene_gles2.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "rasterizer_scene_gles2.h" +#ifdef GLES2_BACKEND_ENABLED + +#ifdef GODOT_3 + +#include "core/math/math_funcs.h" +#include "core/math/transform.h" +#include "core/os/os.h" +#include "core/project_settings.h" +#include "core/vmap.h" +#include "rasterizer_canvas_gles2.h" +#include "servers/camera/camera_feed.h" +#include "servers/visual/visual_server_raster.h" + +#ifndef GLES_OVER_GL +#define glClearDepth glClearDepthf +#endif + +#ifndef GLES_OVER_GL +#ifdef IPHONE_ENABLED +#include <OpenGLES/ES2/glext.h> +//void *glResolveMultisampleFramebufferAPPLE; + +#define GL_READ_FRAMEBUFFER 0x8CA8 +#define GL_DRAW_FRAMEBUFFER 0x8CA9 +#endif +#endif + +static const GLenum _cube_side_enum[6] = { + GL_TEXTURE_CUBE_MAP_NEGATIVE_X, + GL_TEXTURE_CUBE_MAP_POSITIVE_X, + GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, + GL_TEXTURE_CUBE_MAP_POSITIVE_Y, + GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, + GL_TEXTURE_CUBE_MAP_POSITIVE_Z, +}; + +/* SHADOW ATLAS API */ + +RID RasterizerSceneGLES2::shadow_atlas_create() { + ShadowAtlas *shadow_atlas = memnew(ShadowAtlas); + shadow_atlas->fbo = 0; + shadow_atlas->depth = 0; + shadow_atlas->color = 0; + shadow_atlas->size = 0; + shadow_atlas->smallest_subdiv = 0; + + for (int i = 0; i < 4; i++) { + shadow_atlas->size_order[i] = i; + } + + return shadow_atlas_owner.make_rid(shadow_atlas); +} + +void RasterizerSceneGLES2::shadow_atlas_set_size(RID p_atlas, int p_size) { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); + ERR_FAIL_COND(!shadow_atlas); + ERR_FAIL_COND(p_size < 0); + + p_size = next_power_of_2(p_size); + + if (p_size == shadow_atlas->size) + return; + + // erase the old atlast + if (shadow_atlas->fbo) { + if (storage->config.use_rgba_3d_shadows) { + glDeleteRenderbuffers(1, &shadow_atlas->depth); + } else { + glDeleteTextures(1, &shadow_atlas->depth); + } + glDeleteFramebuffers(1, &shadow_atlas->fbo); + if (shadow_atlas->color) { + glDeleteTextures(1, &shadow_atlas->color); + } + + shadow_atlas->fbo = 0; + shadow_atlas->depth = 0; + shadow_atlas->color = 0; + } + + // erase shadow atlast references from lights + for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) { + LightInstance *li = light_instance_owner.getornull(E->key()); + ERR_CONTINUE(!li); + li->shadow_atlases.erase(p_atlas); + } + + shadow_atlas->shadow_owners.clear(); + + shadow_atlas->size = p_size; + + if (shadow_atlas->size) { + glGenFramebuffers(1, &shadow_atlas->fbo); + glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo); + + // create a depth texture + glActiveTexture(GL_TEXTURE0); + + if (storage->config.use_rgba_3d_shadows) { + //maximum compatibility, renderbuffer and RGBA shadow + glGenRenderbuffers(1, &shadow_atlas->depth); + glBindRenderbuffer(GL_RENDERBUFFER, shadow_atlas->depth); + glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, shadow_atlas->size, shadow_atlas->size); + glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, shadow_atlas->depth); + + glGenTextures(1, &shadow_atlas->color); + glBindTexture(GL_TEXTURE_2D, shadow_atlas->color); + glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, shadow_atlas->size, shadow_atlas->size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, shadow_atlas->color, 0); + } else { + //just depth texture + glGenTextures(1, &shadow_atlas->depth); + glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); + glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, shadow_atlas->size, shadow_atlas->size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL); + + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + + glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadow_atlas->depth, 0); + } + glViewport(0, 0, shadow_atlas->size, shadow_atlas->size); + + glDepthMask(GL_TRUE); + + glClearDepth(0.0f); + glClear(GL_DEPTH_BUFFER_BIT); + + glBindFramebuffer(GL_FRAMEBUFFER, 0); + } +} + +void RasterizerSceneGLES2::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); + ERR_FAIL_COND(!shadow_atlas); + ERR_FAIL_INDEX(p_quadrant, 4); + ERR_FAIL_INDEX(p_subdivision, 16384); + + uint32_t subdiv = next_power_of_2(p_subdivision); + if (subdiv & 0xaaaaaaaa) { // sqrt(subdiv) must be integer + subdiv <<= 1; + } + + subdiv = int(Math::sqrt((float)subdiv)); + + if (shadow_atlas->quadrants[p_quadrant].shadows.size() == (int)subdiv) + return; + + // erase all data from the quadrant + for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { + if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { + shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); + + LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); + ERR_CONTINUE(!li); + li->shadow_atlases.erase(p_atlas); + } + } + + shadow_atlas->quadrants[p_quadrant].shadows.resize(0); + shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv); + shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; + + // cache the smallest subdivision for faster allocations + + shadow_atlas->smallest_subdiv = 1 << 30; + + for (int i = 0; i < 4; i++) { + if (shadow_atlas->quadrants[i].subdivision) { + shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); + } + } + + if (shadow_atlas->smallest_subdiv == 1 << 30) { + shadow_atlas->smallest_subdiv = 0; + } + + // re-sort the quadrants + + int swaps = 0; + do { + swaps = 0; + + for (int i = 0; i < 3; i++) { + if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { + SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); + swaps++; + } + } + + } while (swaps > 0); +} + +bool RasterizerSceneGLES2::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { + for (int i = p_quadrant_count - 1; i >= 0; i--) { + int qidx = p_in_quadrants[i]; + + if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { + return false; + } + + // look for an empty space + + int sc = shadow_atlas->quadrants[qidx].shadows.size(); + + ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw(); + + int found_free_idx = -1; // found a free one + int found_used_idx = -1; // found an existing one, must steal it + uint64_t min_pass = 0; // pass of the existing one, try to use the least recently + + for (int j = 0; j < sc; j++) { + if (!sarr[j].owner.is_valid()) { + found_free_idx = j; + break; + } + + LightInstance *sli = light_instance_owner.getornull(sarr[j].owner); + ERR_CONTINUE(!sli); + + if (sli->last_scene_pass != scene_pass) { + // was just allocated, don't kill it so soon, wait a bit... + + if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) { + continue; + } + + if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { + found_used_idx = j; + min_pass = sli->last_scene_pass; + } + } + } + + if (found_free_idx == -1 && found_used_idx == -1) { + continue; // nothing found + } + + if (found_free_idx == -1 && found_used_idx != -1) { + found_free_idx = found_used_idx; + } + + r_quadrant = qidx; + r_shadow = found_free_idx; + + return true; + } + + return false; +} + +bool RasterizerSceneGLES2::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); + ERR_FAIL_COND_V(!shadow_atlas, false); + + LightInstance *li = light_instance_owner.getornull(p_light_intance); + ERR_FAIL_COND_V(!li, false); + + if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { + return false; + } + + uint32_t quad_size = shadow_atlas->size >> 1; + int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); + + int valid_quadrants[4]; + int valid_quadrant_count = 0; + int best_size = -1; + int best_subdiv = -1; + + for (int i = 0; i < 4; i++) { + int q = shadow_atlas->size_order[i]; + int sd = shadow_atlas->quadrants[q].subdivision; + + if (sd == 0) { + continue; + } + + int max_fit = quad_size / sd; + + if (best_size != -1 && max_fit > best_size) { + break; // what we asked for is bigger than this. + } + + valid_quadrants[valid_quadrant_count] = q; + valid_quadrant_count++; + + best_subdiv = sd; + + if (max_fit >= desired_fit) { + best_size = max_fit; + } + } + + ERR_FAIL_COND_V(valid_quadrant_count == 0, false); // no suitable block available + + uint64_t tick = OS::get_singleton()->get_ticks_msec(); + + if (shadow_atlas->shadow_owners.has(p_light_intance)) { + // light was already known! + + uint32_t key = shadow_atlas->shadow_owners[p_light_intance]; + uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; + uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; + + bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); + + bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version; + + if (!should_realloc) { + shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; + return should_redraw; + } + + int new_quadrant; + int new_shadow; + + // find a better place + + if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) { + // found a better place + + ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; + if (sh->owner.is_valid()) { + // it is take but invalid, so we can take it + + shadow_atlas->shadow_owners.erase(sh->owner); + LightInstance *sli = light_instance_owner.get(sh->owner); + sli->shadow_atlases.erase(p_atlas); + } + + // erase previous + shadow_atlas->quadrants[q].shadows.write[s].version = 0; + shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); + + sh->owner = p_light_intance; + sh->alloc_tick = tick; + sh->version = p_light_version; + li->shadow_atlases.insert(p_atlas); + + // make a new key + key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; + key |= new_shadow; + + // update it in the map + shadow_atlas->shadow_owners[p_light_intance] = key; + + // make it dirty, so we redraw + return true; + } + + // no better place found, so we keep the current place + + shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; + + return should_redraw; + } + + int new_quadrant; + int new_shadow; + + if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) { + // found a better place + + ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; + if (sh->owner.is_valid()) { + // it is take but invalid, so we can take it + + shadow_atlas->shadow_owners.erase(sh->owner); + LightInstance *sli = light_instance_owner.get(sh->owner); + sli->shadow_atlases.erase(p_atlas); + } + + sh->owner = p_light_intance; + sh->alloc_tick = tick; + sh->version = p_light_version; + li->shadow_atlases.insert(p_atlas); + + // make a new key + uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; + key |= new_shadow; + + // update it in the map + shadow_atlas->shadow_owners[p_light_intance] = key; + + // make it dirty, so we redraw + return true; + } + + return false; +} + +void RasterizerSceneGLES2::set_directional_shadow_count(int p_count) { + directional_shadow.light_count = p_count; + directional_shadow.current_light = 0; +} + +int RasterizerSceneGLES2::get_directional_light_shadow_size(RID p_light_intance) { + ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); + + int shadow_size; + + if (directional_shadow.light_count == 1) { + shadow_size = directional_shadow.size; + } else { + shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway + } + + LightInstance *light_instance = light_instance_owner.getornull(p_light_intance); + ERR_FAIL_COND_V(!light_instance, 0); + + switch (light_instance->light_ptr->directional_shadow_mode) { + case GD_VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: + break; //none + case GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: + case GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: + shadow_size /= 2; + break; + } + + return shadow_size; +} +////////////////////////////////////////////////////// + +RID RasterizerSceneGLES2::reflection_atlas_create() { + return RID(); +} + +void RasterizerSceneGLES2::reflection_atlas_set_size(RID p_ref_atlas, int p_size) { +} + +void RasterizerSceneGLES2::reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv) { +} + +//////////////////////////////////////////////////// + +RID RasterizerSceneGLES2::reflection_probe_instance_create(RID p_probe) { + RasterizerStorageGLES2::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe); + ERR_FAIL_COND_V(!probe, RID()); + + ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance); + + rpi->probe_ptr = probe; + rpi->self = reflection_probe_instance_owner.make_rid(rpi); + rpi->probe = p_probe; + rpi->reflection_atlas_index = -1; + rpi->render_step = -1; + rpi->last_pass = 0; + rpi->current_resolution = 0; + rpi->dirty = true; + + rpi->index = 0; + + for (int i = 0; i < 6; i++) { + glGenFramebuffers(1, &rpi->fbo[i]); + glGenTextures(1, &rpi->color[i]); + } + + glGenRenderbuffers(1, &rpi->depth); + + rpi->cubemap = 0; + //glGenTextures(1, &rpi->cubemap); + + return rpi->self; +} + +void RasterizerSceneGLES2::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND(!rpi); + rpi->transform = p_transform; +} + +void RasterizerSceneGLES2::reflection_probe_release_atlas_index(RID p_instance) { +} + +bool RasterizerSceneGLES2::reflection_probe_instance_needs_redraw(RID p_instance) { + const ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + + bool need_redraw = rpi->probe_ptr->resolution != rpi->current_resolution || rpi->dirty || rpi->probe_ptr->update_mode == GD_VS::REFLECTION_PROBE_UPDATE_ALWAYS; + rpi->dirty = false; + return need_redraw; +} + +bool RasterizerSceneGLES2::reflection_probe_instance_has_reflection(RID p_instance) { + return true; +} + +bool RasterizerSceneGLES2::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + + rpi->render_step = 0; + + if (rpi->probe_ptr->resolution != rpi->current_resolution) { + //update cubemap if resolution changed + int size = rpi->probe_ptr->resolution; + rpi->current_resolution = size; + + GLenum internal_format = GL_RGB; + GLenum format = GL_RGB; + GLenum type = GL_UNSIGNED_BYTE; + + glActiveTexture(GL_TEXTURE0); + + glBindRenderbuffer(GL_RENDERBUFFER, rpi->depth); + glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, size, size); + + if (rpi->cubemap != 0) { + glDeleteTextures(1, &rpi->cubemap); + } + + glGenTextures(1, &rpi->cubemap); + glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap); + + // Mobile hardware (PowerVR specially) prefers this approach, + // the previous approach with manual lod levels kills the game. + for (int i = 0; i < 6; i++) { + glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, NULL); + } + + glGenerateMipmap(GL_TEXTURE_CUBE_MAP); + + // Generate framebuffers for rendering + for (int i = 0; i < 6; i++) { + glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]); + glBindTexture(GL_TEXTURE_2D, rpi->color[i]); + glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size, 0, format, type, NULL); + glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rpi->color[i], 0); + glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth); + GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); + ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); + } + + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + + glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo); + } + + return true; +} + +bool RasterizerSceneGLES2::reflection_probe_instance_postprocess_step(RID p_instance) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + ERR_FAIL_COND_V(rpi->current_resolution == 0, false); + + int size = rpi->probe_ptr->resolution; + + { + glBindBuffer(GL_ARRAY_BUFFER, 0); + glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); + glDisable(GL_CULL_FACE); + glDisable(GL_DEPTH_TEST); + glDisable(GL_SCISSOR_TEST); + glDisable(GL_BLEND); + glDepthMask(GL_FALSE); + + for (int i = 0; i < GD_VS::ARRAY_MAX - 1; i++) { + glDisableVertexAttribArray(i); + } + } + + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap); + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //use linear, no mipmaps so it does not read from what is being written to + + //first of all, copy rendered textures to cubemap + for (int i = 0; i < 6; i++) { + glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]); + glViewport(0, 0, size, size); + glCopyTexSubImage2D(_cube_side_enum[i], 0, 0, 0, 0, 0, size, size); + } + //do filtering + //vdc cache + glActiveTexture(GL_TEXTURE1); + glBindTexture(GL_TEXTURE_2D, storage->resources.radical_inverse_vdc_cache_tex); + + // now render to the framebuffer, mipmap level for mipmap level + int lod = 1; + + size >>= 1; + int mipmaps = 6; + + storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, false); + storage->shaders.cubemap_filter.bind(); + + glBindFramebuffer(GL_FRAMEBUFFER, storage->resources.mipmap_blur_fbo); + + //blur + while (size >= 1) { + glActiveTexture(GL_TEXTURE3); + glBindTexture(GL_TEXTURE_2D, storage->resources.mipmap_blur_color); + glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); + glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, storage->resources.mipmap_blur_color, 0); + glViewport(0, 0, size, size); + glActiveTexture(GL_TEXTURE0); + + for (int i = 0; i < 6; i++) { + storage->bind_quad_array(); + storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i); + float roughness = CLAMP(lod / (float)(mipmaps - 1), 0, 1); + storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness); + storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::Z_FLIP, false); + + glDrawArrays(GL_TRIANGLE_FAN, 0, 4); + glCopyTexSubImage2D(_cube_side_enum[i], lod, 0, 0, 0, 0, size, size); + } + + size >>= 1; + + lod++; + } + + // restore ranges + glActiveTexture(GL_TEXTURE0); + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); + glBindTexture(GL_TEXTURE_2D, 0); + glActiveTexture(GL_TEXTURE3); //back to panorama + glBindTexture(GL_TEXTURE_2D, 0); + glActiveTexture(GL_TEXTURE1); + glBindTexture(GL_TEXTURE_2D, 0); + glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo); + + return true; +} + +/* ENVIRONMENT API */ + +RID RasterizerSceneGLES2::environment_create() { + Environment *env = memnew(Environment); + + return environment_owner.make_rid(env); +} + +void RasterizerSceneGLES2::environment_set_background(RID p_env, GD_VS::EnvironmentBG p_bg) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->bg_mode = p_bg; +} + +void RasterizerSceneGLES2::environment_set_sky(RID p_env, RID p_sky) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->sky = p_sky; +} + +void RasterizerSceneGLES2::environment_set_sky_custom_fov(RID p_env, float p_scale) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->sky_custom_fov = p_scale; +} + +void RasterizerSceneGLES2::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->sky_orientation = p_orientation; +} + +void RasterizerSceneGLES2::environment_set_bg_color(RID p_env, const Color &p_color) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->bg_color = p_color; +} + +void RasterizerSceneGLES2::environment_set_bg_energy(RID p_env, float p_energy) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->bg_energy = p_energy; +} + +void RasterizerSceneGLES2::environment_set_canvas_max_layer(RID p_env, int p_max_layer) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->canvas_max_layer = p_max_layer; +} + +void RasterizerSceneGLES2::environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy, float p_sky_contribution) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->ambient_color = p_color; + env->ambient_energy = p_energy; + env->ambient_sky_contribution = p_sky_contribution; +} + +void RasterizerSceneGLES2::environment_set_camera_feed_id(RID p_env, int p_camera_feed_id) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->camera_feed_id = p_camera_feed_id; +} + +void RasterizerSceneGLES2::environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, GD_VS::EnvironmentDOFBlurQuality p_quality) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->dof_blur_far_enabled = p_enable; + env->dof_blur_far_distance = p_distance; + env->dof_blur_far_transition = p_transition; + env->dof_blur_far_amount = p_amount; + env->dof_blur_far_quality = p_quality; +} + +void RasterizerSceneGLES2::environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, GD_VS::EnvironmentDOFBlurQuality p_quality) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->dof_blur_near_enabled = p_enable; + env->dof_blur_near_distance = p_distance; + env->dof_blur_near_transition = p_transition; + env->dof_blur_near_amount = p_amount; + env->dof_blur_near_quality = p_quality; +} + +void RasterizerSceneGLES2::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, GD_VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->glow_enabled = p_enable; + env->glow_levels = p_level_flags; + env->glow_intensity = p_intensity; + env->glow_strength = p_strength; + env->glow_bloom = p_bloom_threshold; + env->glow_blend_mode = p_blend_mode; + env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold; + env->glow_hdr_bleed_scale = p_hdr_bleed_scale; + env->glow_hdr_luminance_cap = p_hdr_luminance_cap; + env->glow_bicubic_upscale = p_bicubic_upscale; +} + +void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); +} + +void RasterizerSceneGLES2::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); +} + +void RasterizerSceneGLES2::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, GD_VS::EnvironmentSSAOQuality p_quality, VisualServer::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); +} + +void RasterizerSceneGLES2::environment_set_tonemap(RID p_env, GD_VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); +} + +void RasterizerSceneGLES2::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->adjustments_enabled = p_enable; + env->adjustments_brightness = p_brightness; + env->adjustments_contrast = p_contrast; + env->adjustments_saturation = p_saturation; + env->color_correction = p_ramp; +} + +void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->fog_enabled = p_enable; + env->fog_color = p_color; + env->fog_sun_color = p_sun_color; + env->fog_sun_amount = p_sun_amount; +} + +void RasterizerSceneGLES2::environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->fog_depth_enabled = p_enable; + env->fog_depth_begin = p_depth_begin; + env->fog_depth_end = p_depth_end; + env->fog_depth_curve = p_depth_curve; + env->fog_transmit_enabled = p_transmit; + env->fog_transmit_curve = p_transmit_curve; +} + +void RasterizerSceneGLES2::environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) { + Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->fog_height_enabled = p_enable; + env->fog_height_min = p_min_height; + env->fog_height_max = p_max_height; + env->fog_height_curve = p_height_curve; +} +bool RasterizerSceneGLES2::is_environment(RID p_env) { + return environment_owner.owns(p_env); +} + +VS::EnvironmentBG RasterizerSceneGLES2::environment_get_background(RID p_env) { + const Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, GD_VS::ENV_BG_MAX); + + return env->bg_mode; +} + +int RasterizerSceneGLES2::environment_get_canvas_max_layer(RID p_env) { + const Environment *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, -1); + + return env->canvas_max_layer; +} + +RID RasterizerSceneGLES2::light_instance_create(RID p_light) { + LightInstance *light_instance = memnew(LightInstance); + + light_instance->last_scene_pass = 0; + + light_instance->light = p_light; + light_instance->light_ptr = storage->light_owner.getornull(p_light); + + light_instance->light_index = 0xFFFF; + + if (!light_instance->light_ptr) { + memdelete(light_instance); + ERR_FAIL_V_MSG(RID(), "Condition ' !light_instance->light_ptr ' is true."); + } + + light_instance->self = light_instance_owner.make_rid(light_instance); + + return light_instance->self; +} + +void RasterizerSceneGLES2::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) { + LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); + ERR_FAIL_COND(!light_instance); + + light_instance->transform = p_transform; +} + +void RasterizerSceneGLES2::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) { + LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); + ERR_FAIL_COND(!light_instance); + + if (light_instance->light_ptr->type != GD_VS::LIGHT_DIRECTIONAL) { + p_pass = 0; + } + + ERR_FAIL_INDEX(p_pass, 4); + + light_instance->shadow_transform[p_pass].camera = p_projection; + light_instance->shadow_transform[p_pass].transform = p_transform; + light_instance->shadow_transform[p_pass].farplane = p_far; + light_instance->shadow_transform[p_pass].split = p_split; + light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; +} + +void RasterizerSceneGLES2::light_instance_mark_visible(RID p_light_instance) { + LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); + ERR_FAIL_COND(!light_instance); + + light_instance->last_scene_pass = scene_pass; +} + +////////////////////// + +RID RasterizerSceneGLES2::gi_probe_instance_create() { + return RID(); +} + +void RasterizerSceneGLES2::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) { +} +void RasterizerSceneGLES2::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) { +} + +void RasterizerSceneGLES2::gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) { +} + +//////////////////////////// +//////////////////////////// +//////////////////////////// + +void RasterizerSceneGLES2::_add_geometry(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass) { + RasterizerStorageGLES2::Material *material = NULL; + RID material_src; + + if (p_instance->material_override.is_valid()) { + material_src = p_instance->material_override; + } else if (p_material >= 0) { + material_src = p_instance->materials[p_material]; + } else { + material_src = p_geometry->material; + } + + if (material_src.is_valid()) { + material = storage->material_owner.getornull(material_src); + + if (!material->shader || !material->shader->valid) { + material = NULL; + } + } + + if (!material) { + material = storage->material_owner.getptr(default_material); + } + + ERR_FAIL_COND(!material); + + _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass); + + while (material->next_pass.is_valid()) { + material = storage->material_owner.getornull(material->next_pass); + + if (!material || !material->shader || !material->shader->valid) { + break; + } + + _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass); + } +} +void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, RasterizerStorageGLES2::Material *p_material, bool p_depth_pass, bool p_shadow_pass) { + bool has_base_alpha = (p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.uses_screen_texture || p_material->shader->spatial.uses_depth_texture; + bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX; + bool has_alpha = has_base_alpha || has_blend_alpha; + + bool mirror = p_instance->mirror; + + if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED) { + mirror = false; + } else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT) { + mirror = !mirror; + } + + //if (p_material->shader->spatial.uses_sss) { + // state.used_sss = true; + //} + + if (p_material->shader->spatial.uses_screen_texture) { + state.used_screen_texture = true; + } + + if (p_depth_pass) { + if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) + return; //bye + + if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { + //shader does not use discard and does not write a vertex position, use generic material + if (p_instance->cast_shadows == GD_VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) { + p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided); + mirror = false; + } else { + p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material); + } + } + + has_alpha = false; + } + + RenderList::Element *e = (has_alpha || p_material->shader->spatial.no_depth_test) ? render_list.add_alpha_element() : render_list.add_element(); + + if (!e) { + return; + } + + e->geometry = p_geometry; + e->material = p_material; + e->instance = p_instance; + e->owner = p_owner; + e->sort_key = 0; + e->depth_key = 0; + e->use_accum = false; + e->light_index = RenderList::MAX_LIGHTS; + e->use_accum_ptr = &e->use_accum; + e->instancing = (e->instance->base_type == GD_VS::INSTANCE_MULTIMESH) ? 1 : 0; + e->front_facing = false; + + if (e->geometry->last_pass != render_pass) { + e->geometry->last_pass = render_pass; + e->geometry->index = current_geometry_index++; + } + + e->geometry_index = e->geometry->index; + + if (e->material->last_pass != render_pass) { + e->material->last_pass = render_pass; + e->material->index = current_material_index++; + + if (e->material->shader->last_pass != render_pass) { + e->material->shader->index = current_shader_index++; + } + } + + e->material_index = e->material->index; + + if (mirror) { + e->front_facing = true; + } + + e->refprobe_0_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default + e->refprobe_1_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default + + if (!p_depth_pass) { + e->depth_layer = e->instance->depth_layer; + e->priority = p_material->render_priority; + + if (has_alpha && p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { + //add element to opaque + RenderList::Element *eo = render_list.add_element(); + *eo = *e; + eo->use_accum_ptr = &eo->use_accum; + } + + int rpsize = e->instance->reflection_probe_instances.size(); + if (rpsize > 0) { + bool first = true; + rpsize = MIN(rpsize, 2); //more than 2 per object are not supported, this keeps it stable + + for (int i = 0; i < rpsize; i++) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(e->instance->reflection_probe_instances[i]); + if (rpi->last_pass != render_pass) { + continue; + } + if (first) { + e->refprobe_0_index = rpi->index; + first = false; + } else { + e->refprobe_1_index = rpi->index; + break; + } + } + + /* if (e->refprobe_0_index > e->refprobe_1_index) { //if both are valid, swap them to keep order as best as possible + uint64_t tmp = e->refprobe_0_index; + e->refprobe_0_index = e->refprobe_1_index; + e->refprobe_1_index = tmp; + }*/ + } + + //add directional lights + + if (p_material->shader->spatial.unshaded) { + e->light_mode = LIGHTMODE_UNSHADED; + } else { + bool copy = false; + + for (int i = 0; i < render_directional_lights; i++) { + if (copy) { + RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element(); + if (!e2) { + break; + } + *e2 = *e; //this includes accum ptr :) + e = e2; + } + + //directional sort key + e->light_type1 = 0; + e->light_type2 = 1; + e->light_index = i; + + copy = true; + } + + //add omni / spots + + for (int i = 0; i < e->instance->light_instances.size(); i++) { + LightInstance *li = light_instance_owner.getornull(e->instance->light_instances[i]); + + if (!li || li->light_index >= render_light_instance_count || render_light_instances[li->light_index] != li) { + continue; // too many or light_index did not correspond to the light instances to be rendered + } + + if (copy) { + RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element(); + if (!e2) { + break; + } + *e2 = *e; //this includes accum ptr :) + e = e2; + } + + //directional sort key + e->light_type1 = 1; + e->light_type2 = li->light_ptr->type == VisualServer::LIGHT_OMNI ? 0 : 1; + e->light_index = li->light_index; + + copy = true; + } + + if (e->instance->lightmap.is_valid()) { + e->light_mode = LIGHTMODE_LIGHTMAP; + } else if (!e->instance->lightmap_capture_data.empty()) { + e->light_mode = LIGHTMODE_LIGHTMAP_CAPTURE; + } else { + e->light_mode = LIGHTMODE_NORMAL; + } + } + } + + // do not add anything here, as lights are duplicated elements.. + + if (p_material->shader->spatial.uses_time) { + VisualServerRaster::redraw_request(); + } +} + +void RasterizerSceneGLES2::_copy_texture_to_buffer(GLuint p_texture, GLuint p_buffer) { + //copy to front buffer + glBindFramebuffer(GL_FRAMEBUFFER, p_buffer); + + glDepthMask(GL_FALSE); + glDisable(GL_DEPTH_TEST); + glDisable(GL_CULL_FACE); + glDisable(GL_BLEND); + glDepthFunc(GL_LEQUAL); + glColorMask(1, 1, 1, 1); + + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_2D, p_texture); + + glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); + + storage->shaders.copy.bind(); + + storage->bind_quad_array(); + glDrawArrays(GL_TRIANGLE_FAN, 0, 4); + glBindBuffer(GL_ARRAY_BUFFER, 0); +} + +void RasterizerSceneGLES2::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) { + render_pass++; + current_material_index = 0; + current_geometry_index = 0; + current_light_index = 0; + current_refprobe_index = 0; + current_shader_index = 0; + + for (int i = 0; i < p_cull_count; i++) { + InstanceBase *instance = p_cull_result[i]; + + switch (instance->base_type) { + case GD_VS::INSTANCE_MESH: { + RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getornull(instance->base); + ERR_CONTINUE(!mesh); + + int num_surfaces = mesh->surfaces.size(); + + for (int j = 0; j < num_surfaces; j++) { + int material_index = instance->materials[j].is_valid() ? j : -1; + + RasterizerStorageGLES2::Surface *surface = mesh->surfaces[j]; + + _add_geometry(surface, instance, NULL, material_index, p_depth_pass, p_shadow_pass); + } + + } break; + + case GD_VS::INSTANCE_MULTIMESH: { + RasterizerStorageGLES2::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(instance->base); + ERR_CONTINUE(!multi_mesh); + + if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0) + continue; + + RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh); + if (!mesh) + continue; + + int ssize = mesh->surfaces.size(); + + for (int j = 0; j < ssize; j++) { + RasterizerStorageGLES2::Surface *s = mesh->surfaces[j]; + _add_geometry(s, instance, multi_mesh, -1, p_depth_pass, p_shadow_pass); + } + } break; + + case GD_VS::INSTANCE_IMMEDIATE: { + RasterizerStorageGLES2::Immediate *im = storage->immediate_owner.getptr(instance->base); + ERR_CONTINUE(!im); + + _add_geometry(im, instance, NULL, -1, p_depth_pass, p_shadow_pass); + + } break; + + default: { + } + } + } +} + +static const GLenum gl_primitive[] = { + GL_POINTS, + GL_LINES, + GL_LINE_STRIP, + GL_LINE_LOOP, + GL_TRIANGLES, + GL_TRIANGLE_STRIP, + GL_TRIANGLE_FAN +}; + +void RasterizerSceneGLES2::_set_cull(bool p_front, bool p_disabled, bool p_reverse_cull) { + bool front = p_front; + if (p_reverse_cull) + front = !front; + + if (p_disabled != state.cull_disabled) { + if (p_disabled) + glDisable(GL_CULL_FACE); + else + glEnable(GL_CULL_FACE); + + state.cull_disabled = p_disabled; + } + + if (front != state.cull_front) { + glCullFace(front ? GL_FRONT : GL_BACK); + state.cull_front = front; + } +} + +bool RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_material, bool p_alpha_pass, Size2i p_skeleton_tex_size) { + // material parameters + + state.scene_shader.set_custom_shader(p_material->shader->custom_code_id); + + if (p_material->shader->spatial.uses_screen_texture && storage->frame.current_rt) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->copy_screen_effect.color); + } + + if (p_material->shader->spatial.uses_depth_texture && storage->frame.current_rt) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); + } + + bool shader_rebind = state.scene_shader.bind(); + + if (p_material->shader->spatial.no_depth_test || p_material->shader->spatial.uses_depth_texture) { + glDisable(GL_DEPTH_TEST); + } else { + glEnable(GL_DEPTH_TEST); + } + + switch (p_material->shader->spatial.depth_draw_mode) { + case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS: + case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_OPAQUE: { + glDepthMask(!p_alpha_pass && !p_material->shader->spatial.uses_depth_texture); + } break; + case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALWAYS: { + glDepthMask(GL_TRUE && !p_material->shader->spatial.uses_depth_texture); + } break; + case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_NEVER: { + glDepthMask(GL_FALSE); + } break; + } + + int tc = p_material->textures.size(); + const Pair<StringName, RID> *textures = p_material->textures.ptr(); + + const ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = p_material->shader->texture_hints.ptr(); + + state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TEXTURE_SIZE, p_skeleton_tex_size); + + state.current_main_tex = 0; + + for (int i = 0; i < tc; i++) { + glActiveTexture(GL_TEXTURE0 + i); + + RasterizerStorageGLES2::Texture *t = storage->texture_owner.getornull(textures[i].second); + + if (!t) { + switch (texture_hints[i]) { + case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO: + case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: { + glBindTexture(GL_TEXTURE_2D, storage->resources.black_tex); + } break; + case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: { + glBindTexture(GL_TEXTURE_2D, storage->resources.aniso_tex); + } break; + case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: { + glBindTexture(GL_TEXTURE_2D, storage->resources.normal_tex); + } break; + default: { + glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex); + } break; + } + + continue; + } + + if (t->redraw_if_visible) { //must check before proxy because this is often used with proxies + VisualServerRaster::redraw_request(); + } + + t = t->get_ptr(); + +#ifdef TOOLS_ENABLED + if (t->detect_3d) { + t->detect_3d(t->detect_3d_ud); + } +#endif + +#ifdef TOOLS_ENABLED + if (t->detect_normal && texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL) { + t->detect_normal(t->detect_normal_ud); + } +#endif + if (t->render_target) + t->render_target->used_in_frame = true; + + glBindTexture(t->target, t->tex_id); + if (i == 0) { + state.current_main_tex = t->tex_id; + } + } + state.scene_shader.use_material((void *)p_material); + + return shader_rebind; +} + +void RasterizerSceneGLES2::_setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton) { + switch (p_element->instance->base_type) { + case GD_VS::INSTANCE_MESH: { + RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); + + glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id); + + if (s->index_array_len > 0) { + glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); + } + + for (int i = 0; i < GD_VS::ARRAY_MAX - 1; i++) { + if (s->attribs[i].enabled) { + glEnableVertexAttribArray(i); + glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, CAST_INT_TO_UCHAR_PTR(s->attribs[i].offset)); + } else { + glDisableVertexAttribArray(i); + switch (i) { + case GD_VS::ARRAY_NORMAL: { + glVertexAttrib4f(GD_VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1); + } break; + case GD_VS::ARRAY_COLOR: { + glVertexAttrib4f(GD_VS::ARRAY_COLOR, 1, 1, 1, 1); + + } break; + default: { + } + } + } + } + + bool clear_skeleton_buffer = storage->config.use_skeleton_software; + + if (p_skeleton) { + if (!storage->config.use_skeleton_software) { + //use float texture workflow + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1); + glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id); + } else { + //use transform buffer workflow + ERR_FAIL_COND(p_skeleton->use_2d); + + PoolVector<float> &transform_buffer = storage->resources.skeleton_transform_cpu_buffer; + + if (!s->attribs[VS::ARRAY_BONES].enabled || !s->attribs[VS::ARRAY_WEIGHTS].enabled) { + break; // the whole instance has a skeleton, but this surface is not affected by it. + } + + // 3 * vec4 per vertex + if (transform_buffer.size() < s->array_len * 12) { + transform_buffer.resize(s->array_len * 12); + } + + const size_t bones_offset = s->attribs[VS::ARRAY_BONES].offset; + const size_t bones_stride = s->attribs[VS::ARRAY_BONES].stride; + const size_t bone_weight_offset = s->attribs[VS::ARRAY_WEIGHTS].offset; + const size_t bone_weight_stride = s->attribs[VS::ARRAY_WEIGHTS].stride; + + { + PoolVector<float>::Write write = transform_buffer.write(); + float *buffer = write.ptr(); + + PoolVector<uint8_t>::Read vertex_array_read = s->data.read(); + const uint8_t *vertex_data = vertex_array_read.ptr(); + + for (int i = 0; i < s->array_len; i++) { + // do magic + + size_t bones[4]; + float bone_weight[4]; + + if (s->attribs[VS::ARRAY_BONES].type == GL_UNSIGNED_BYTE) { + // read as byte + const uint8_t *bones_ptr = vertex_data + bones_offset + (i * bones_stride); + bones[0] = bones_ptr[0]; + bones[1] = bones_ptr[1]; + bones[2] = bones_ptr[2]; + bones[3] = bones_ptr[3]; + } else { + // read as short + const uint16_t *bones_ptr = (const uint16_t *)(vertex_data + bones_offset + (i * bones_stride)); + bones[0] = bones_ptr[0]; + bones[1] = bones_ptr[1]; + bones[2] = bones_ptr[2]; + bones[3] = bones_ptr[3]; + } + + if (s->attribs[VS::ARRAY_WEIGHTS].type == GL_FLOAT) { + // read as float + const float *weight_ptr = (const float *)(vertex_data + bone_weight_offset + (i * bone_weight_stride)); + bone_weight[0] = weight_ptr[0]; + bone_weight[1] = weight_ptr[1]; + bone_weight[2] = weight_ptr[2]; + bone_weight[3] = weight_ptr[3]; + } else { + // read as half + const uint16_t *weight_ptr = (const uint16_t *)(vertex_data + bone_weight_offset + (i * bone_weight_stride)); + bone_weight[0] = (weight_ptr[0] / (float)0xFFFF); + bone_weight[1] = (weight_ptr[1] / (float)0xFFFF); + bone_weight[2] = (weight_ptr[2] / (float)0xFFFF); + bone_weight[3] = (weight_ptr[3] / (float)0xFFFF); + } + + Transform3D transform; + + Transform3D bone_transforms[4] = { + storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[0]), + storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[1]), + storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[2]), + storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[3]), + }; + + transform.origin = + bone_weight[0] * bone_transforms[0].origin + + bone_weight[1] * bone_transforms[1].origin + + bone_weight[2] * bone_transforms[2].origin + + bone_weight[3] * bone_transforms[3].origin; + + transform.basis = + bone_transforms[0].basis * bone_weight[0] + + bone_transforms[1].basis * bone_weight[1] + + bone_transforms[2].basis * bone_weight[2] + + bone_transforms[3].basis * bone_weight[3]; + + float row[3][4] = { + { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] }, + { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] }, + { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] }, + }; + + size_t transform_buffer_offset = i * 12; + + copymem(&buffer[transform_buffer_offset], row, sizeof(row)); + } + } + + storage->_update_skeleton_transform_buffer(transform_buffer, s->array_len * 12); + + //enable transform buffer and bind it + glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer); + + glEnableVertexAttribArray(INSTANCE_BONE_BASE + 0); + glEnableVertexAttribArray(INSTANCE_BONE_BASE + 1); + glEnableVertexAttribArray(INSTANCE_BONE_BASE + 2); + + glVertexAttribPointer(INSTANCE_BONE_BASE + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0)); + glVertexAttribPointer(INSTANCE_BONE_BASE + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1)); + glVertexAttribPointer(INSTANCE_BONE_BASE + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2)); + + clear_skeleton_buffer = false; + } + } + + if (clear_skeleton_buffer) { + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2); + } + + } break; + + case GD_VS::INSTANCE_MULTIMESH: { + RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); + + glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id); + + if (s->index_array_len > 0) { + glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); + } + + for (int i = 0; i < GD_VS::ARRAY_MAX - 1; i++) { + if (s->attribs[i].enabled) { + glEnableVertexAttribArray(i); + glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, CAST_INT_TO_UCHAR_PTR(s->attribs[i].offset)); + } else { + glDisableVertexAttribArray(i); + switch (i) { + case GD_VS::ARRAY_NORMAL: { + glVertexAttrib4f(GD_VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1); + } break; + case GD_VS::ARRAY_COLOR: { + glVertexAttrib4f(GD_VS::ARRAY_COLOR, 1, 1, 1, 1); + + } break; + default: { + } + } + } + } + + // prepare multimesh (disable) + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 0); + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 1); + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 2); + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 3); + glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 4); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1); + glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2); + + } break; + + case GD_VS::INSTANCE_IMMEDIATE: { + } break; + + default: { + } + } +} + +void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) { + switch (p_element->instance->base_type) { + case GD_VS::INSTANCE_MESH: { + RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); + + // drawing + + if (s->index_array_len > 0) { + glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); + storage->info.render.vertices_count += s->index_array_len; + } else { + glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); + storage->info.render.vertices_count += s->array_len; + } + /* + if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) { + //clean up after skeleton + glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer); + + glDisableVertexAttribArray(GD_VS::ARRAY_MAX + 0); + glDisableVertexAttribArray(GD_VS::ARRAY_MAX + 1); + glDisableVertexAttribArray(GD_VS::ARRAY_MAX + 2); + + glVertexAttrib4f(GD_VS::ARRAY_MAX + 0, 1, 0, 0, 0); + glVertexAttrib4f(GD_VS::ARRAY_MAX + 1, 0, 1, 0, 0); + glVertexAttrib4f(GD_VS::ARRAY_MAX + 2, 0, 0, 1, 0); + } +*/ + } break; + + case GD_VS::INSTANCE_MULTIMESH: { + RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES2::MultiMesh *>(p_element->owner); + RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry); + + int amount = MIN(multi_mesh->size, multi_mesh->visible_instances); + + if (amount == -1) { + amount = multi_mesh->size; + } + + int stride = multi_mesh->color_floats + multi_mesh->custom_data_floats + multi_mesh->xform_floats; + + int color_ofs = multi_mesh->xform_floats; + int custom_data_ofs = color_ofs + multi_mesh->color_floats; + + // drawing + + const float *base_buffer = multi_mesh->data.ptr(); + + for (int i = 0; i < amount; i++) { + const float *buffer = base_buffer + i * stride; + + { + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 0, &buffer[0]); + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 1, &buffer[4]); + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 2, &buffer[8]); + } + + if (multi_mesh->color_floats) { + if (multi_mesh->color_format == GD_VS::MULTIMESH_COLOR_8BIT) { + uint8_t *color_data = (uint8_t *)(buffer + color_ofs); + glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, color_data[0] / 255.0, color_data[1] / 255.0, color_data[2] / 255.0, color_data[3] / 255.0); + } else { + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 3, buffer + color_ofs); + } + } else { + glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, 1.0, 1.0, 1.0, 1.0); + } + + if (multi_mesh->custom_data_floats) { + if (multi_mesh->custom_data_format == GD_VS::MULTIMESH_CUSTOM_DATA_8BIT) { + uint8_t *custom_data = (uint8_t *)(buffer + custom_data_ofs); + glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 4, custom_data[0] / 255.0, custom_data[1] / 255.0, custom_data[2] / 255.0, custom_data[3] / 255.0); + } else { + glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 4, buffer + custom_data_ofs); + } + } + + if (s->index_array_len > 0) { + glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); + storage->info.render.vertices_count += s->index_array_len; + } else { + glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); + storage->info.render.vertices_count += s->array_len; + } + } + + } break; + + case GD_VS::INSTANCE_IMMEDIATE: { + const RasterizerStorageGLES2::Immediate *im = static_cast<const RasterizerStorageGLES2::Immediate *>(p_element->geometry); + + if (im->building) { + return; + } + + bool restore_tex = false; + + glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer); + + for (const List<RasterizerStorageGLES2::Immediate::Chunk>::Element *E = im->chunks.front(); E; E = E->next()) { + const RasterizerStorageGLES2::Immediate::Chunk &c = E->get(); + + if (c.vertices.empty()) { + continue; + } + + int vertices = c.vertices.size(); + + uint32_t buf_ofs = 0; + + storage->info.render.vertices_count += vertices; + + if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) { + RasterizerStorageGLES2::Texture *t = storage->texture_owner.get(c.texture); + + if (t->redraw_if_visible) { + VisualServerRaster::redraw_request(); + } + t = t->get_ptr(); + +#ifdef TOOLS_ENABLED + if (t->detect_3d) { + t->detect_3d(t->detect_3d_ud); + } +#endif + if (t->render_target) { + t->render_target->used_in_frame = true; + } + + glActiveTexture(GL_TEXTURE0); + glBindTexture(t->target, t->tex_id); + restore_tex = true; + } else if (restore_tex) { + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_2D, state.current_main_tex); + restore_tex = false; + } + + if (!c.normals.empty()) { + glEnableVertexAttribArray(GD_VS::ARRAY_NORMAL); + glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.normals.ptr()); + glVertexAttribPointer(GD_VS::ARRAY_NORMAL, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs)); + buf_ofs += sizeof(Vector3) * vertices; + } else { + glDisableVertexAttribArray(GD_VS::ARRAY_NORMAL); + } + + if (!c.tangents.empty()) { + glEnableVertexAttribArray(GD_VS::ARRAY_TANGENT); + glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Plane) * vertices, c.tangents.ptr()); + glVertexAttribPointer(GD_VS::ARRAY_TANGENT, 4, GL_FLOAT, GL_FALSE, sizeof(Plane), CAST_INT_TO_UCHAR_PTR(buf_ofs)); + buf_ofs += sizeof(Plane) * vertices; + } else { + glDisableVertexAttribArray(GD_VS::ARRAY_TANGENT); + } + + if (!c.colors.empty()) { + glEnableVertexAttribArray(GD_VS::ARRAY_COLOR); + glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Color) * vertices, c.colors.ptr()); + glVertexAttribPointer(GD_VS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(Color), CAST_INT_TO_UCHAR_PTR(buf_ofs)); + buf_ofs += sizeof(Color) * vertices; + } else { + glDisableVertexAttribArray(GD_VS::ARRAY_COLOR); + } + + if (!c.uvs.empty()) { + glEnableVertexAttribArray(GD_VS::ARRAY_TEX_UV); + glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs.ptr()); + glVertexAttribPointer(GD_VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs)); + buf_ofs += sizeof(Vector2) * vertices; + } else { + glDisableVertexAttribArray(GD_VS::ARRAY_TEX_UV); + } + + if (!c.uv2s.empty()) { + glEnableVertexAttribArray(GD_VS::ARRAY_TEX_UV2); + glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uv2s.ptr()); + glVertexAttribPointer(GD_VS::ARRAY_TEX_UV2, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs)); + buf_ofs += sizeof(Vector2) * vertices; + } else { + glDisableVertexAttribArray(GD_VS::ARRAY_TEX_UV2); + } + + glEnableVertexAttribArray(GD_VS::ARRAY_VERTEX); + glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.vertices.ptr()); + glVertexAttribPointer(GD_VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs)); + + glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size()); + } + + if (restore_tex) { + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_2D, state.current_main_tex); + restore_tex = false; + } + + } break; + default: { + } + } +} + +void RasterizerSceneGLES2::_setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas) { + //turn off all by default + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, false); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false); + + if (!p_light) { //no light, return off + return; + } + + //turn on lighting + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, true); + + switch (p_light->light_ptr->type) { + case GD_VS::LIGHT_DIRECTIONAL: { + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, true); + switch (p_light->light_ptr->directional_shadow_mode) { + case GD_VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { + //no need + } break; + case GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: { + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, true); + + } break; + case GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, true); + } break; + } + + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, p_light->light_ptr->directional_blend_splits); + if (!state.render_no_shadows && p_light->light_ptr->shadow) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true); + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); + if (storage->config.use_rgba_3d_shadows) { + glBindTexture(GL_TEXTURE_2D, directional_shadow.color); + } else { + glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); + } + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); + } + + } break; + case GD_VS::LIGHT_OMNI: { + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, true); + if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true); + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); + if (storage->config.use_rgba_3d_shadows) { + glBindTexture(GL_TEXTURE_2D, shadow_atlas->color); + } else { + glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); + } + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); + } + } break; + case GD_VS::LIGHT_SPOT: { + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, true); + if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true); + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); + if (storage->config.use_rgba_3d_shadows) { + glBindTexture(GL_TEXTURE_2D, shadow_atlas->color); + } else { + glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); + } + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); + } + } break; + } +} + +void RasterizerSceneGLES2::_setup_light(LightInstance *light, ShadowAtlas *shadow_atlas, const Transform3D &p_view_transform, bool accum_pass) { + RasterizerStorageGLES2::Light *light_ptr = light->light_ptr; + + //common parameters + float energy = light_ptr->param[VS::LIGHT_PARAM_ENERGY]; + float specular = light_ptr->param[VS::LIGHT_PARAM_SPECULAR]; + float sign = (light_ptr->negative && !accum_pass) ? -1 : 1; //inverse color for base pass lights only + + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular); + Color color = light_ptr->color * sign * energy * Math_PI; + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, color); + + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_COLOR, light_ptr->shadow_color); + + //specific parameters + + switch (light_ptr->type) { + case GD_VS::LIGHT_DIRECTIONAL: { + //not using inverse for performance, view should be normalized anyway + Vector3 direction = p_view_transform.basis.xform_inv(light->transform.basis.xform(Vector3(0, 0, -1))).normalized(); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction); + + CameraMatrix matrices[4]; + + if (!state.render_no_shadows && light_ptr->shadow && directional_shadow.depth) { + int shadow_count = 0; + Color split_offsets; + + switch (light_ptr->directional_shadow_mode) { + case GD_VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { + shadow_count = 1; + } break; + + case GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: { + shadow_count = 2; + } break; + + case GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { + shadow_count = 4; + } break; + } + + for (int k = 0; k < shadow_count; k++) { + uint32_t x = light->directional_rect.position.x; + uint32_t y = light->directional_rect.position.y; + uint32_t width = light->directional_rect.size.x; + uint32_t height = light->directional_rect.size.y; + + if (light_ptr->directional_shadow_mode == GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { + width /= 2; + height /= 2; + + if (k == 1) { + x += width; + } else if (k == 2) { + y += height; + } else if (k == 3) { + x += width; + y += height; + } + + } else if (light_ptr->directional_shadow_mode == GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { + height /= 2; + + if (k != 0) { + y += height; + } + } + + split_offsets[k] = light->shadow_transform[k].split; + + Transform3D modelview = (p_view_transform.inverse() * light->shadow_transform[k].transform).affine_inverse(); + + CameraMatrix bias; + bias.set_light_bias(); + CameraMatrix rectm; + Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size); + rectm.set_light_atlas_rect(atlas_rect); + + CameraMatrix shadow_mtx = rectm * bias * light->shadow_transform[k].camera * modelview; + matrices[k] = shadow_mtx; + + /*Color light_clamp; + light_clamp[0] = atlas_rect.position.x; + light_clamp[1] = atlas_rect.position.y; + light_clamp[2] = atlas_rect.size.x; + light_clamp[3] = atlas_rect.size.y;*/ + } + + // state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / directional_shadow.size, 1.0 / directional_shadow.size)); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPLIT_OFFSETS, split_offsets); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, matrices[0]); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX2, matrices[1]); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX3, matrices[2]); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX4, matrices[3]); + } + } break; + case GD_VS::LIGHT_OMNI: { + Vector3 position = p_view_transform.xform_inv(light->transform.origin); + + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position); + + float range = light_ptr->param[VS::LIGHT_PARAM_RANGE]; + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range); + + float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation); + + if (!state.render_no_shadows && light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) { + uint32_t key = shadow_atlas->shadow_owners[light->self]; + + uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; + uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; + + ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); + + uint32_t atlas_size = shadow_atlas->size; + uint32_t quadrant_size = atlas_size >> 1; + + uint32_t x = (quadrant & 1) * quadrant_size; + uint32_t y = (quadrant >> 1) * quadrant_size; + + uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); + x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + + uint32_t width = shadow_size; + uint32_t height = shadow_size; + + if (light->light_ptr->omni_shadow_detail == GD_VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { + height /= 2; + } else { + width /= 2; + } + + Transform3D proj = (p_view_transform.inverse() * light->transform).inverse(); + + Color light_clamp; + light_clamp[0] = float(x) / atlas_size; + light_clamp[1] = float(y) / atlas_size; + light_clamp[2] = float(width) / atlas_size; + light_clamp[3] = float(height) / atlas_size; + + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size)); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, proj); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); + } + } break; + + case GD_VS::LIGHT_SPOT: { + Vector3 position = p_view_transform.xform_inv(light->transform.origin); + + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position); + + Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized(); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction); + float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; + float range = light_ptr->param[VS::LIGHT_PARAM_RANGE]; + float spot_attenuation = light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION]; + float angle = light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE]; + angle = Math::cos(Math::deg2rad(angle)); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ATTENUATION, spot_attenuation); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_RANGE, spot_attenuation); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ANGLE, angle); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range); + + if (!state.render_no_shadows && light->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) { + uint32_t key = shadow_atlas->shadow_owners[light->self]; + + uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; + uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; + + ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); + + uint32_t atlas_size = shadow_atlas->size; + uint32_t quadrant_size = atlas_size >> 1; + + uint32_t x = (quadrant & 1) * quadrant_size; + uint32_t y = (quadrant >> 1) * quadrant_size; + + uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); + x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + + uint32_t width = shadow_size; + uint32_t height = shadow_size; + + Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size); + + Color light_clamp; + light_clamp[0] = rect.position.x; + light_clamp[1] = rect.position.y; + light_clamp[2] = rect.size.x; + light_clamp[3] = rect.size.y; + + Transform3D modelview = (p_view_transform.inverse() * light->transform).inverse(); + + CameraMatrix bias; + bias.set_light_bias(); + + CameraMatrix rectm; + rectm.set_light_atlas_rect(rect); + + CameraMatrix shadow_matrix = rectm * bias * light->shadow_transform[0].camera * modelview; + + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size)); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, shadow_matrix); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); + } + + } break; + default: { + } + } +} + +void RasterizerSceneGLES2::_setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform3D &p_view_transform, Environment *p_env) { + if (p_refprobe1) { + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_USE_BOX_PROJECT, p_refprobe1->probe_ptr->box_projection); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_EXTENTS, p_refprobe1->probe_ptr->extents); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_OFFSET, p_refprobe1->probe_ptr->origin_offset); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_EXTERIOR, !p_refprobe1->probe_ptr->interior); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_INTENSITY, p_refprobe1->probe_ptr->intensity); + + Color ambient; + if (p_refprobe1->probe_ptr->interior) { + ambient = p_refprobe1->probe_ptr->interior_ambient * p_refprobe1->probe_ptr->interior_ambient_energy; + ambient.a = p_refprobe1->probe_ptr->interior_ambient_probe_contrib; + } else if (p_env) { + ambient = p_env->ambient_color * p_env->ambient_energy; + ambient.a = p_env->ambient_sky_contribution; + } + + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_AMBIENT, ambient); + + Transform3D proj = (p_view_transform.inverse() * p_refprobe1->transform).affine_inverse(); + + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_LOCAL_MATRIX, proj); + } + + if (p_refprobe2) { + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_USE_BOX_PROJECT, p_refprobe2->probe_ptr->box_projection); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_EXTENTS, p_refprobe2->probe_ptr->extents); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_OFFSET, p_refprobe2->probe_ptr->origin_offset); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_EXTERIOR, p_refprobe2->probe_ptr->interior); + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_INTENSITY, p_refprobe2->probe_ptr->intensity); + + Color ambient; + if (p_refprobe2->probe_ptr->interior) { + ambient = p_refprobe2->probe_ptr->interior_ambient * p_refprobe2->probe_ptr->interior_ambient_energy; + ambient.a = p_refprobe2->probe_ptr->interior_ambient_probe_contrib; + } else if (p_env) { + ambient = p_env->ambient_color * p_env->ambient_energy; + ambient.a = p_env->ambient_sky_contribution; + } + + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_AMBIENT, ambient); + + Transform3D proj = (p_view_transform.inverse() * p_refprobe2->transform).affine_inverse(); + + state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_LOCAL_MATRIX, proj); + } +} + +void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements, int p_element_count, const Transform3D &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow) { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); + + Vector2 viewport_size = state.viewport_size; + + Vector2 screen_pixel_size = state.screen_pixel_size; + + bool use_radiance_map = false; + if (!p_shadow && p_base_env) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2); + glBindTexture(GL_TEXTURE_CUBE_MAP, p_base_env); + use_radiance_map = true; + state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, true); //since prev unshaded is false, this needs to be true if exists + } + + bool prev_unshaded = false; + bool prev_instancing = false; + bool prev_depth_prepass = false; + state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false); + RasterizerStorageGLES2::Material *prev_material = NULL; + RasterizerStorageGLES2::Geometry *prev_geometry = NULL; + RasterizerStorageGLES2::Skeleton *prev_skeleton = NULL; + RasterizerStorageGLES2::GeometryOwner *prev_owner = NULL; + + Transform3D view_transform_inverse = p_view_transform.inverse(); + CameraMatrix projection_inverse = p_projection.inverse(); + + bool prev_base_pass = false; + LightInstance *prev_light = NULL; + bool prev_vertex_lit = false; + ReflectionProbeInstance *prev_refprobe_1 = NULL; + ReflectionProbeInstance *prev_refprobe_2 = NULL; + + int prev_blend_mode = -2; //will always catch the first go + + state.cull_front = false; + state.cull_disabled = false; + glCullFace(GL_BACK); + glEnable(GL_CULL_FACE); + + if (p_alpha_pass) { + glEnable(GL_BLEND); + } else { + glDisable(GL_BLEND); + } + + float fog_max_distance = 0; + bool using_fog = false; + if (p_env && !p_shadow && p_env->fog_enabled && (p_env->fog_depth_enabled || p_env->fog_height_enabled)) { + state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, p_env->fog_depth_enabled); + state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, p_env->fog_height_enabled); + if (p_env->fog_depth_end > 0) { + fog_max_distance = p_env->fog_depth_end; + } else { + fog_max_distance = p_projection.get_z_far(); + } + using_fog = true; + } + + RasterizerStorageGLES2::Texture *prev_lightmap = NULL; + float lightmap_energy = 1.0; + bool prev_use_lightmap_capture = false; + + storage->info.render.draw_call_count += p_element_count; + + for (int i = 0; i < p_element_count; i++) { + RenderList::Element *e = p_elements[i]; + + RasterizerStorageGLES2::Material *material = e->material; + + bool rebind = false; + bool accum_pass = *e->use_accum_ptr; + *e->use_accum_ptr = true; //set to accum for next time this is found + LightInstance *light = NULL; + ReflectionProbeInstance *refprobe_1 = NULL; + ReflectionProbeInstance *refprobe_2 = NULL; + RasterizerStorageGLES2::Texture *lightmap = NULL; + bool use_lightmap_capture = false; + bool rebind_light = false; + bool rebind_reflection = false; + bool rebind_lightmap = false; + + if (!p_shadow && material->shader) { + bool unshaded = material->shader->spatial.unshaded; + + if (unshaded != prev_unshaded) { + rebind = true; + if (unshaded) { + state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, true); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false); + } else { + state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map); + } + + prev_unshaded = unshaded; + } + + bool base_pass = !accum_pass && !unshaded; //conditions for a base pass + + if (base_pass != prev_base_pass) { + state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, base_pass); + rebind = true; + prev_base_pass = base_pass; + } + + if (!unshaded && e->light_index < RenderList::MAX_LIGHTS) { + light = render_light_instances[e->light_index]; + if (e->light_mode == LightMode::LIGHTMODE_LIGHTMAP && light->light_ptr->bake_mode == GD_VS::LIGHT_BAKE_ALL) { + light = NULL; // Don't use this light, it is already included in the lightmap + } + } + + if (light != prev_light) { + _setup_light_type(light, shadow_atlas); + rebind = true; + rebind_light = true; + } + + int blend_mode = p_alpha_pass ? material->shader->spatial.blend_mode : -1; // -1 no blend, no mix + + if (accum_pass) { //accum pass force pass + blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD; + if (light && light->light_ptr->negative) { + blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB; + } + } + + if (prev_blend_mode != blend_mode) { + if (prev_blend_mode == -1 && blend_mode != -1) { + //does blend + glEnable(GL_BLEND); + } else if (blend_mode == -1 && prev_blend_mode != -1) { + //do not blend + glDisable(GL_BLEND); + } + + switch (blend_mode) { + //-1 not handled because not blend is enabled anyway + case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX: { + glBlendEquation(GL_FUNC_ADD); + if (storage->frame.current_rt && storage->frame.current_rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) { + glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); + } else { + glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); + } + + } break; + case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD: { + glBlendEquation(GL_FUNC_ADD); + glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE); + + } break; + case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB: { + glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); + glBlendFunc(GL_SRC_ALPHA, GL_ONE); + } break; + case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MUL: { + glBlendEquation(GL_FUNC_ADD); + if (storage->frame.current_rt && storage->frame.current_rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) { + glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); + } else { + glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); + } + + } break; + } + + prev_blend_mode = blend_mode; + } + + //condition to enable vertex lighting on this object + bool vertex_lit = (material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading) && ((!unshaded && light) || using_fog); //fog forces vertex lighting because it still applies even if unshaded or no fog + + if (vertex_lit != prev_vertex_lit) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, vertex_lit); + prev_vertex_lit = vertex_lit; + rebind = true; + } + + if (!unshaded && !accum_pass && e->refprobe_0_index != RenderList::MAX_REFLECTION_PROBES) { + ERR_FAIL_INDEX(e->refprobe_0_index, reflection_probe_count); + refprobe_1 = reflection_probe_instances[e->refprobe_0_index]; + } + if (!unshaded && !accum_pass && e->refprobe_1_index != RenderList::MAX_REFLECTION_PROBES) { + ERR_FAIL_INDEX(e->refprobe_1_index, reflection_probe_count); + refprobe_2 = reflection_probe_instances[e->refprobe_1_index]; + } + + if (refprobe_1 != prev_refprobe_1 || refprobe_2 != prev_refprobe_2) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, refprobe_1 != NULL); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, refprobe_2 != NULL); + if (refprobe_1 != NULL && refprobe_1 != prev_refprobe_1) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5); + glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_1->cubemap); + } + if (refprobe_2 != NULL && refprobe_2 != prev_refprobe_2) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 6); + glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_2->cubemap); + } + rebind = true; + rebind_reflection = true; + } + + use_lightmap_capture = !unshaded && !accum_pass && !e->instance->lightmap_capture_data.empty(); + + if (use_lightmap_capture != prev_use_lightmap_capture) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, use_lightmap_capture); + rebind = true; + } + + if (!unshaded && !accum_pass && e->instance->lightmap.is_valid()) { + lightmap = storage->texture_owner.getornull(e->instance->lightmap); + lightmap_energy = 1.0; + if (lightmap) { + RasterizerStorageGLES2::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base); + if (capture) { + lightmap_energy = capture->energy; + } + } + } + + if (lightmap != prev_lightmap) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, lightmap != NULL); + if (lightmap != NULL) { + glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); + glBindTexture(GL_TEXTURE_2D, lightmap->tex_id); + } + rebind = true; + rebind_lightmap = true; + } + } + + bool depth_prepass = false; + + if (!p_alpha_pass && material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { + depth_prepass = true; + } + + if (depth_prepass != prev_depth_prepass) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, depth_prepass); + prev_depth_prepass = depth_prepass; + rebind = true; + } + + bool instancing = e->instance->base_type == GD_VS::INSTANCE_MULTIMESH; + + if (instancing != prev_instancing) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, instancing); + rebind = true; + } + + RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton); + + if (skeleton != prev_skeleton) { + if ((prev_skeleton == NULL) != (skeleton == NULL)) { + if (skeleton) { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, true); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, storage->config.use_skeleton_software); + } else { + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, false); + } + } + rebind = true; + } + + if (e->owner != prev_owner || e->geometry != prev_geometry || skeleton != prev_skeleton) { + _setup_geometry(e, skeleton); + storage->info.render.surface_switch_count++; + } + + bool shader_rebind = false; + if (rebind || material != prev_material) { + storage->info.render.material_switch_count++; + shader_rebind = _setup_material(material, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0)); + if (shader_rebind) { + storage->info.render.shader_rebind_count++; + } + } + + _set_cull(e->front_facing, material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED, p_reverse_cull); + + if (i == 0 || shader_rebind) { //first time must rebind + + if (p_shadow) { + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_BIAS, p_shadow_bias); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_NORMAL_BIAS, p_shadow_normal_bias); + if (state.shadow_is_dual_parabolloid) { + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_SIDE, state.dual_parbolloid_direction); + state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_ZFAR, state.dual_parbolloid_zfar); + } + } else { + if (use_radiance_map) { + if (p_env) { + Transform3D sky_orientation(p_env->sky_orientation, Vector3(0.0, 0.0, 0.0)); + state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, sky_orientation.affine_inverse() * p_view_transform); + } else { + // would be a bit weird if we don't have this... + state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, p_view_transform); + } + } + + if (p_env) { + state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, p_env->bg_energy); + state.scene_shader.set_uniform(SceneShaderGLES2::BG_COLOR, p_env->bg_color); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, p_env->ambient_sky_contribution); + + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, p_env->ambient_color); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, p_env->ambient_energy); + + } else { + state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, 1.0); + state.scene_shader.set_uniform(SceneShaderGLES2::BG_COLOR, state.default_bg); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, 1.0); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, state.default_ambient); + state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, 1.0); + } + + //rebind all these + rebind_light = true; + rebind_reflection = true; + rebind_lightmap = true; + + if (using_fog) { + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_COLOR_BASE, p_env->fog_color); + Color sun_color_amount = p_env->fog_sun_color; + sun_color_amount.a = p_env->fog_sun_amount; + + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_SUN_COLOR_AMOUNT, sun_color_amount); + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_ENABLED, p_env->fog_transmit_enabled); + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_CURVE, p_env->fog_transmit_curve); + + if (p_env->fog_depth_enabled) { + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_BEGIN, p_env->fog_depth_begin); + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_CURVE, p_env->fog_depth_curve); + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_MAX_DISTANCE, fog_max_distance); + } + + if (p_env->fog_height_enabled) { + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MIN, p_env->fog_height_min); + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max); + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max); + state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_CURVE, p_env->fog_height_curve); + } + } + } + + state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform); + state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, view_transform_inverse); + state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection); + state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, projection_inverse); + + state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]); + + state.scene_shader.set_uniform(SceneShaderGLES2::VIEWPORT_SIZE, viewport_size); + + state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size); + } + + if (rebind_light && light) { + _setup_light(light, shadow_atlas, p_view_transform, accum_pass); + } + + if (rebind_reflection && (refprobe_1 || refprobe_2)) { + _setup_refprobes(refprobe_1, refprobe_2, p_view_transform, p_env); + } + + if (rebind_lightmap && lightmap) { + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_ENERGY, lightmap_energy); + } + + state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform); + + if (use_lightmap_capture) { //this is per instance, must be set always if present + glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES2::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr()); + state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_CAPTURE_SKY, false); + } + + _render_geometry(e); + + prev_geometry = e->geometry; + prev_owner = e->owner; + prev_material = material; + prev_skeleton = skeleton; + prev_instancing = instancing; + prev_light = light; + prev_refprobe_1 = refprobe_1; + prev_refprobe_2 = refprobe_2; + prev_lightmap = lightmap; + prev_use_lightmap_capture = use_lightmap_capture; + } + + _setup_light_type(NULL, NULL); //clear light stuff + state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false); + state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false); + state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false); + state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, false); + state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, false); + state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, false); + state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, false); +} + +void RasterizerSceneGLES2::_draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform3D &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) { + ERR_FAIL_COND(!p_sky); + + RasterizerStorageGLES2::Texture *tex = storage->texture_owner.getornull(p_sky->panorama); + ERR_FAIL_COND(!tex); + + glActiveTexture(GL_TEXTURE0); + glBindTexture(tex->target, tex->tex_id); + + glDepthMask(GL_TRUE); + glEnable(GL_DEPTH_TEST); + glDisable(GL_CULL_FACE); + glDisable(GL_BLEND); + glDepthFunc(GL_LEQUAL); + + // Camera + CameraMatrix camera; + + if (p_custom_fov) { + float near_plane = p_projection.get_z_near(); + float far_plane = p_projection.get_z_far(); + float aspect = p_projection.get_aspect(); + + camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane); + } else { + camera = p_projection; + } + + float flip_sign = p_vflip ? -1 : 1; + + // If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR). + // To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced. + // It also means the uv coordinates are ignored in this mode and we don't need our loop. + bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0)); + + Vector3 vertices[8] = { + Vector3(-1, -1 * flip_sign, 1), + Vector3(0, 1, 0), + Vector3(1, -1 * flip_sign, 1), + Vector3(1, 1, 0), + Vector3(1, 1 * flip_sign, 1), + Vector3(1, 0, 0), + Vector3(-1, 1 * flip_sign, 1), + Vector3(0, 0, 0), + }; + + if (!asymmetrical) { + Vector2 vp_he = camera.get_viewport_half_extents(); + float zn; + zn = p_projection.get_z_near(); + + for (int i = 0; i < 4; i++) { + Vector3 uv = vertices[i * 2 + 1]; + uv.x = (uv.x * 2.0 - 1.0) * vp_he.x; + uv.y = -(uv.y * 2.0 - 1.0) * vp_he.y; + uv.z = -zn; + vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized(); + vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z; + } + } + + glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts); + glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, vertices, GL_DYNAMIC_DRAW); + + // bind sky vertex array.... + glVertexAttribPointer(GD_VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, 0); + glVertexAttribPointer(GD_VS::ARRAY_TEX_UV, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, CAST_INT_TO_UCHAR_PTR(sizeof(Vector3))); + glEnableVertexAttribArray(GD_VS::ARRAY_VERTEX); + glEnableVertexAttribArray(GD_VS::ARRAY_TEX_UV); + + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, asymmetrical); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, !asymmetrical); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, true); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false); + storage->shaders.copy.bind(); + storage->shaders.copy.set_uniform(CopyShaderGLES2::MULTIPLIER, p_energy); + + // don't know why but I always have problems setting a uniform mat3, so we're using a transform + storage->shaders.copy.set_uniform(CopyShaderGLES2::SKY_TRANSFORM, Transform3D(p_sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse()); + + if (asymmetrical) { + // pack the bits we need from our projection matrix + storage->shaders.copy.set_uniform(CopyShaderGLES2::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]); + ///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here. + storage->shaders.copy.set_uniform(CopyShaderGLES2::PANO_TRANSFORM, p_transform); + } + + glDrawArrays(GL_TRIANGLE_FAN, 0, 4); + + glDisableVertexAttribArray(GD_VS::ARRAY_VERTEX); + glDisableVertexAttribArray(GD_VS::ARRAY_TEX_UV); + glBindBuffer(GL_ARRAY_BUFFER, 0); + + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); +} + +void RasterizerSceneGLES2::_post_process(Environment *env, const CameraMatrix &p_cam_projection) { + //copy to front buffer + + glDepthMask(GL_FALSE); + glDisable(GL_DEPTH_TEST); + glDisable(GL_CULL_FACE); + glDisable(GL_BLEND); + glDepthFunc(GL_LEQUAL); + glColorMask(1, 1, 1, 1); + + //no post process on small, transparent or render targets without an env + bool use_post_process = env && !storage->frame.current_rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]; + use_post_process = use_post_process && storage->frame.current_rt->width >= 4 && storage->frame.current_rt->height >= 4; + use_post_process = use_post_process && storage->frame.current_rt->mip_maps_allocated; + + if (env) { + use_post_process = use_post_process && (env->adjustments_enabled || env->glow_enabled || env->dof_blur_far_enabled || env->dof_blur_near_enabled); + } + use_post_process = use_post_process || storage->frame.current_rt->use_fxaa; + + GLuint next_buffer; + + if (use_post_process) { + next_buffer = storage->frame.current_rt->mip_maps[0].sizes[0].fbo; + } else if (storage->frame.current_rt->external.fbo != 0) { + next_buffer = storage->frame.current_rt->external.fbo; + } else { + // set next_buffer to front buffer so multisample blit can happen if needed + next_buffer = storage->frame.current_rt->fbo; + } + + // If using multisample buffer, resolve to post_process_effect buffer or to front buffer + if (storage->frame.current_rt && storage->frame.current_rt->multisample_active) { +#ifdef GLES_OVER_GL + + glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo); + glReadBuffer(GL_COLOR_ATTACHMENT0); + glBindFramebuffer(GL_DRAW_FRAMEBUFFER, next_buffer); + glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); + + glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); + glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); +#elif IPHONE_ENABLED + + glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo); + glBindFramebuffer(GL_DRAW_FRAMEBUFFER, next_buffer); + glResolveMultisampleFramebufferAPPLE(); + + glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); + glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); +#elif ANDROID_ENABLED + + // In GLES2 Android Blit is not available, so just copy color texture manually + _copy_texture_to_buffer(storage->frame.current_rt->multisample_color, next_buffer); +#else + // TODO: any other platform not supported? this will fail.. maybe we should just call _copy_texture_to_buffer here as well? +#endif + } else if (use_post_process) { + if (storage->frame.current_rt->external.fbo != 0) { + _copy_texture_to_buffer(storage->frame.current_rt->external.color, storage->frame.current_rt->mip_maps[0].sizes[0].fbo); + } else { + _copy_texture_to_buffer(storage->frame.current_rt->color, storage->frame.current_rt->mip_maps[0].sizes[0].fbo); + } + } + + if (!use_post_process) { + return; + } + + // Order of operation + //1) DOF Blur (first blur, then copy to buffer applying the blur) //only on desktop + //2) FXAA + //3) Bloom (Glow) //only on desktop + //4) Adjustments + + // DOF Blur + + if (env && env->dof_blur_far_enabled) { + int vp_h = storage->frame.current_rt->height; + int vp_w = storage->frame.current_rt->width; + + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal()); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_FAR_BLUR, true); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_LOW, env->dof_blur_far_quality == GD_VS::ENV_DOF_BLUR_QUALITY_LOW); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_MEDIUM, env->dof_blur_far_quality == GD_VS::ENV_DOF_BLUR_QUALITY_MEDIUM); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_HIGH, env->dof_blur_far_quality == GD_VS::ENV_DOF_BLUR_QUALITY_HIGH); + + state.effect_blur_shader.bind(); + int qsteps[3] = { 4, 10, 20 }; + + float radius = (env->dof_blur_far_amount * env->dof_blur_far_amount) / qsteps[env->dof_blur_far_quality]; + + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_BEGIN, env->dof_blur_far_distance); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_END, env->dof_blur_far_distance + env->dof_blur_far_transition); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_DIR, Vector2(1, 0)); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_RADIUS, radius); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_FAR, p_cam_projection.get_z_far()); + + glActiveTexture(GL_TEXTURE1); + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); + + glActiveTexture(GL_TEXTURE0); + + if (storage->frame.current_rt->mip_maps[0].color) { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color); + } else { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[0].color); + } + + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + + glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first + + storage->_copy_screen(); + + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_DIR, Vector2(0, 1)); + glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->mip_maps[0].sizes[0].fbo); // copy to base level + storage->_copy_screen(); + + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_FAR_BLUR, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_LOW, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_MEDIUM, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_HIGH, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::USE_ORTHOGONAL_PROJECTION, false); + } + + if (env && env->dof_blur_near_enabled) { + //convert texture to RGBA format if not already + if (!storage->frame.current_rt->used_dof_blur_near) { + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); + glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); + } + + int vp_h = storage->frame.current_rt->height; + int vp_w = storage->frame.current_rt->width; + + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal()); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_BLUR, true); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_FIRST_TAP, true); + + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_LOW, env->dof_blur_near_quality == GD_VS::ENV_DOF_BLUR_QUALITY_LOW); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_MEDIUM, env->dof_blur_near_quality == GD_VS::ENV_DOF_BLUR_QUALITY_MEDIUM); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_HIGH, env->dof_blur_near_quality == GD_VS::ENV_DOF_BLUR_QUALITY_HIGH); + + state.effect_blur_shader.bind(); + int qsteps[3] = { 4, 10, 20 }; + + float radius = (env->dof_blur_near_amount * env->dof_blur_near_amount) / qsteps[env->dof_blur_near_quality]; + + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_BEGIN, env->dof_blur_near_distance); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_END, env->dof_blur_near_distance - env->dof_blur_near_transition); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_DIR, Vector2(1, 0)); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_RADIUS, radius); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_FAR, p_cam_projection.get_z_far()); + + glActiveTexture(GL_TEXTURE1); + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); + + glActiveTexture(GL_TEXTURE0); + if (storage->frame.current_rt->mip_maps[0].color) { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color); + } else { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[0].color); + } + + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + + glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first + + storage->_copy_screen(); + + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_FIRST_TAP, false); + state.effect_blur_shader.bind(); + + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_BEGIN, env->dof_blur_near_distance); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_END, env->dof_blur_near_distance - env->dof_blur_near_transition); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_DIR, Vector2(0, 1)); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::DOF_RADIUS, radius); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::CAMERA_Z_FAR, p_cam_projection.get_z_far()); + + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); + + glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->mip_maps[0].sizes[0].fbo); // copy to base level + + glEnable(GL_BLEND); + glBlendEquation(GL_FUNC_ADD); + glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); + + storage->_copy_screen(); + + glDisable(GL_BLEND); + + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_BLUR, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_NEAR_FIRST_TAP, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_LOW, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_MEDIUM, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::DOF_QUALITY_HIGH, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::USE_ORTHOGONAL_PROJECTION, false); + storage->frame.current_rt->used_dof_blur_near = true; + } + + if (env && (env->dof_blur_near_enabled || env->dof_blur_far_enabled)) { + //these needed to disable filtering, reenamble + glActiveTexture(GL_TEXTURE0); + if (storage->frame.current_rt->mip_maps[0].color) { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); + } else { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[0].color); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); + } + + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + } + + //glow + + int max_glow_level = -1; + int glow_mask = 0; + + if (env && env->glow_enabled) { + for (int i = 0; i < GD_VS::MAX_GLOW_LEVELS; i++) { + if (env->glow_levels & (1 << i)) { + if (i >= storage->frame.current_rt->mip_maps[1].sizes.size()) { + max_glow_level = storage->frame.current_rt->mip_maps[1].sizes.size() - 1; + glow_mask |= 1 << max_glow_level; + + } else { + max_glow_level = i; + glow_mask |= (1 << i); + } + } + } + + // If max_texture_image_units is 8, our max glow level is 5, which allows 6 layers of glow + max_glow_level = MIN(max_glow_level, storage->config.max_texture_image_units - 3); + + for (int i = 0; i < (max_glow_level + 1); i++) { + int vp_w = storage->frame.current_rt->mip_maps[1].sizes[i].width; + int vp_h = storage->frame.current_rt->mip_maps[1].sizes[i].height; + glViewport(0, 0, vp_w, vp_h); + //horizontal pass + if (i == 0) { + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_FIRST_PASS, true); + } + + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_GAUSSIAN_HORIZONTAL, true); + state.effect_blur_shader.bind(); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::LOD, storage->frame.current_rt->mip_maps[0].color ? float(i) : 0.0); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_STRENGTH, env->glow_strength); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::LUMINANCE_CAP, env->glow_hdr_luminance_cap); + + glActiveTexture(GL_TEXTURE0); + + if (storage->frame.current_rt->mip_maps[0].color) { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color); + } else { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[i].color); + } + + if (i == 0) { + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_BLOOM, env->glow_bloom); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_HDR_THRESHOLD, env->glow_hdr_bleed_threshold); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_HDR_SCALE, env->glow_hdr_bleed_scale); + } + + glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->mip_maps[1].sizes[i].fbo); + storage->_copy_screen(); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_GAUSSIAN_HORIZONTAL, false); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_FIRST_PASS, false); + + //vertical pass + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_GAUSSIAN_VERTICAL, true); + state.effect_blur_shader.bind(); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::LOD, storage->frame.current_rt->mip_maps[0].color ? float(i) : 0.0); + state.effect_blur_shader.set_uniform(EffectBlurShaderGLES2::GLOW_STRENGTH, env->glow_strength); + glActiveTexture(GL_TEXTURE0); + + if (storage->frame.current_rt->mip_maps[0].color) { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[1].color); + } else { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[1].sizes[i].color); + } + + glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->mip_maps[0].sizes[i + 1].fbo); //next level, since mipmaps[0] starts one level bigger + storage->_copy_screen(); + state.effect_blur_shader.set_conditional(EffectBlurShaderGLES2::GLOW_GAUSSIAN_VERTICAL, false); + } + + glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); + } + + if (storage->frame.current_rt->external.fbo != 0) { + glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->external.fbo); + } else { + glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); + } + + glActiveTexture(GL_TEXTURE0); + if (storage->frame.current_rt->mip_maps[0].color) { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color); + } else { + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[0].color); + } + + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_FXAA, storage->frame.current_rt->use_fxaa); + + if (env) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_FILTER_BICUBIC, env->glow_bicubic_upscale); + + if (max_glow_level >= 0) { + if (storage->frame.current_rt->mip_maps[0].color) { + for (int i = 0; i < (max_glow_level + 1); i++) { + if (glow_mask & (1 << i)) { + if (i == 0) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL1, true); + } + if (i == 1) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL2, true); + } + if (i == 2) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL3, true); + } + if (i == 3) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL4, true); + } + if (i == 4) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL5, true); + } + if (i == 5) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL6, true); + } + if (i == 6) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL7, true); + } + } + } + glActiveTexture(GL_TEXTURE2); + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].color); + } else { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_MULTI_TEXTURE_GLOW, true); + int active_glow_level = 0; + for (int i = 0; i < (max_glow_level + 1); i++) { + if (glow_mask & (1 << i)) { + active_glow_level++; + glActiveTexture(GL_TEXTURE1 + active_glow_level); + glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->mip_maps[0].sizes[i + 1].color); + if (active_glow_level == 1) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL1, true); + } + if (active_glow_level == 2) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL2, true); + } + if (active_glow_level == 3) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL3, true); + } + if (active_glow_level == 4) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL4, true); + } + if (active_glow_level == 5) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL5, true); + } + if (active_glow_level == 6) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL6, true); + } + if (active_glow_level == 7) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL7, true); + } + } + } + } + + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_SCREEN, env->glow_blend_mode == GD_VS::GLOW_BLEND_MODE_SCREEN); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_SOFTLIGHT, env->glow_blend_mode == GD_VS::GLOW_BLEND_MODE_SOFTLIGHT); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_REPLACE, env->glow_blend_mode == GD_VS::GLOW_BLEND_MODE_REPLACE); + } + } + + //Adjustments + if (env && env->adjustments_enabled) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_BCS, true); + RasterizerStorageGLES2::Texture *tex = storage->texture_owner.getornull(env->color_correction); + if (tex) { + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_COLOR_CORRECTION, true); + glActiveTexture(GL_TEXTURE1); + glBindTexture(tex->target, tex->tex_id); + } + } + + state.tonemap_shader.bind(); + if (env) { + if (max_glow_level >= 0) { + state.tonemap_shader.set_uniform(TonemapShaderGLES2::GLOW_INTENSITY, env->glow_intensity); + int ss[2] = { + storage->frame.current_rt->width, + storage->frame.current_rt->height, + }; + glUniform2iv(state.tonemap_shader.get_uniform(TonemapShaderGLES2::GLOW_TEXTURE_SIZE), 1, ss); + } + + if (env->adjustments_enabled) { + state.tonemap_shader.set_uniform(TonemapShaderGLES2::BCS, Vector3(env->adjustments_brightness, env->adjustments_contrast, env->adjustments_saturation)); + } + } + + if (storage->frame.current_rt->use_fxaa) { + state.tonemap_shader.set_uniform(TonemapShaderGLES2::PIXEL_SIZE, Vector2(1.0 / storage->frame.current_rt->width, 1.0 / storage->frame.current_rt->height)); + } + + storage->_copy_screen(); + + //turn off everything used + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_FXAA, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL1, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL2, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL3, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL4, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL5, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL6, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_LEVEL7, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_REPLACE, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_SCREEN, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_SOFTLIGHT, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_GLOW_FILTER_BICUBIC, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_MULTI_TEXTURE_GLOW, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_BCS, false); + state.tonemap_shader.set_conditional(TonemapShaderGLES2::USE_COLOR_CORRECTION, false); +} + +void RasterizerSceneGLES2::render_scene(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { + Transform3D cam_transform = p_cam_transform; + + storage->info.render.object_count += p_cull_count; + + GLuint current_fb = 0; + Environment *env = NULL; + + int viewport_width, viewport_height; + int viewport_x = 0; + int viewport_y = 0; + bool probe_interior = false; + bool reverse_cull = false; + + if (storage->frame.current_rt && storage->frame.current_rt->flags[RendererStorage::RENDER_TARGET_VFLIP]) { + cam_transform.basis.set_axis(1, -cam_transform.basis.get_axis(1)); + reverse_cull = true; + } + + if (p_reflection_probe.is_valid()) { + ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe); + ERR_FAIL_COND(!probe); + state.render_no_shadows = !probe->probe_ptr->enable_shadows; + + if (!probe->probe_ptr->interior) { //use env only if not interior + env = environment_owner.getornull(p_environment); + } + + current_fb = probe->fbo[p_reflection_probe_pass]; + + viewport_width = probe->probe_ptr->resolution; + viewport_height = probe->probe_ptr->resolution; + + probe_interior = probe->probe_ptr->interior; + + } else { + state.render_no_shadows = false; + if (storage->frame.current_rt->multisample_active) { + current_fb = storage->frame.current_rt->multisample_fbo; + } else if (storage->frame.current_rt->external.fbo != 0) { + current_fb = storage->frame.current_rt->external.fbo; + } else { + current_fb = storage->frame.current_rt->fbo; + } + env = environment_owner.getornull(p_environment); + + viewport_width = storage->frame.current_rt->width; + viewport_height = storage->frame.current_rt->height; + viewport_x = storage->frame.current_rt->x; + + if (storage->frame.current_rt->flags[RendererStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) { + viewport_y = OS::get_singleton()->get_window_size().height - viewport_height - storage->frame.current_rt->y; + } else { + viewport_y = storage->frame.current_rt->y; + } + } + + state.used_screen_texture = false; + state.viewport_size.x = viewport_width; + state.viewport_size.y = viewport_height; + state.screen_pixel_size.x = 1.0 / viewport_width; + state.screen_pixel_size.y = 1.0 / viewport_height; + + //push back the directional lights + + if (p_light_cull_count) { + //hardcoded limit of 256 lights + render_light_instance_count = MIN(RenderList::MAX_LIGHTS, p_light_cull_count); + render_light_instances = (LightInstance **)alloca(sizeof(LightInstance *) * render_light_instance_count); + render_directional_lights = 0; + + //doing this because directional lights are at the end, put them at the beginning + int index = 0; + for (int i = render_light_instance_count - 1; i >= 0; i--) { + RID light_rid = p_light_cull_result[i]; + + LightInstance *light = light_instance_owner.getornull(light_rid); + + if (light->light_ptr->type == GD_VS::LIGHT_DIRECTIONAL) { + render_directional_lights++; + //as going in reverse, directional lights are always first anyway + } + + light->light_index = index; + render_light_instances[index] = light; + + index++; + } + + } else { + render_light_instances = NULL; + render_directional_lights = 0; + render_light_instance_count = 0; + } + + if (p_reflection_probe_cull_count) { + reflection_probe_instances = (ReflectionProbeInstance **)alloca(sizeof(ReflectionProbeInstance *) * p_reflection_probe_cull_count); + reflection_probe_count = p_reflection_probe_cull_count; + for (int i = 0; i < p_reflection_probe_cull_count; i++) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]); + ERR_CONTINUE(!rpi); + rpi->last_pass = render_pass + 1; //will be incremented later + rpi->index = i; + reflection_probe_instances[i] = rpi; + } + + } else { + reflection_probe_instances = NULL; + reflection_probe_count = 0; + } + + if (env && env->bg_mode == GD_VS::ENV_BG_CANVAS) { + // If using canvas background, copy 2d to screen copy texture + // TODO: When GLES2 renders to current_rt->mip_maps[], this copy will no longer be needed + _copy_texture_to_buffer(storage->frame.current_rt->color, storage->frame.current_rt->copy_screen_effect.fbo); + } + + // render list stuff + + render_list.clear(); + _fill_render_list(p_cull_result, p_cull_count, false, false); + + // other stuff + + glBindFramebuffer(GL_FRAMEBUFFER, current_fb); + glViewport(viewport_x, viewport_y, viewport_width, viewport_height); + + if (storage->frame.current_rt && storage->frame.current_rt->flags[RendererStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) { + glScissor(viewport_x, viewport_y, viewport_width, viewport_height); + glEnable(GL_SCISSOR_TEST); + } + + glDepthFunc(GL_LEQUAL); + glDepthMask(GL_TRUE); + glClearDepth(1.0f); + glEnable(GL_DEPTH_TEST); + glClear(GL_DEPTH_BUFFER_BIT); + + // clear color + + Color clear_color(0, 0, 0, 1); + Ref<CameraFeed> feed; + + if (storage->frame.current_rt && storage->frame.current_rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) { + clear_color = Color(0, 0, 0, 0); + storage->frame.clear_request = false; + } else if (!env || env->bg_mode == GD_VS::ENV_BG_CLEAR_COLOR || env->bg_mode == GD_VS::ENV_BG_SKY) { + if (storage->frame.clear_request) { + clear_color = storage->frame.clear_request_color; + storage->frame.clear_request = false; + } + } else if (env->bg_mode == GD_VS::ENV_BG_CANVAS || env->bg_mode == GD_VS::ENV_BG_COLOR || env->bg_mode == GD_VS::ENV_BG_COLOR_SKY) { + clear_color = env->bg_color; + storage->frame.clear_request = false; + } else if (env->bg_mode == GD_VS::ENV_BG_CAMERA_FEED) { + feed = CameraServer::get_singleton()->get_feed_by_id(env->camera_feed_id); + storage->frame.clear_request = false; + } else { + storage->frame.clear_request = false; + } + + if (!env || env->bg_mode != GD_VS::ENV_BG_KEEP) { + glClearColor(clear_color.r, clear_color.g, clear_color.b, clear_color.a); + glClear(GL_COLOR_BUFFER_BIT); + } + + state.default_ambient = Color(clear_color.r, clear_color.g, clear_color.b, 1.0); + state.default_bg = Color(clear_color.r, clear_color.g, clear_color.b, 1.0); + + if (storage->frame.current_rt && storage->frame.current_rt->flags[RendererStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) { + glDisable(GL_SCISSOR_TEST); + } + + glVertexAttrib4f(GD_VS::ARRAY_COLOR, 1, 1, 1, 1); + + glBlendEquation(GL_FUNC_ADD); + glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); + + // render sky + RasterizerStorageGLES2::Sky *sky = NULL; + GLuint env_radiance_tex = 0; + if (env) { + switch (env->bg_mode) { + case GD_VS::ENV_BG_COLOR_SKY: + case GD_VS::ENV_BG_SKY: { + sky = storage->sky_owner.getornull(env->sky); + + if (sky) { + env_radiance_tex = sky->radiance; + } + } break; + case GD_VS::ENV_BG_CAMERA_FEED: { + if (feed.is_valid() && (feed->get_base_width() > 0) && (feed->get_base_height() > 0)) { + // copy our camera feed to our background + + glDisable(GL_BLEND); + glDepthMask(GL_FALSE); + glDisable(GL_DEPTH_TEST); + glDisable(GL_CULL_FACE); + + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_NO_ALPHA, true); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_DISPLAY_TRANSFORM, true); + + if (feed->get_datatype() == CameraFeed::FEED_RGB) { + RID camera_RGBA = feed->get_texture(CameraServer::FEED_RGBA_IMAGE); + + VS::get_singleton()->texture_bind(camera_RGBA, 0); + + } else if (feed->get_datatype() == CameraFeed::FEED_YCBCR) { + RID camera_YCbCr = feed->get_texture(CameraServer::FEED_YCBCR_IMAGE); + + VS::get_singleton()->texture_bind(camera_YCbCr, 0); + + storage->shaders.copy.set_conditional(CopyShaderGLES2::YCBCR_TO_RGB, true); + + } else if (feed->get_datatype() == CameraFeed::FEED_YCBCR_SEP) { + RID camera_Y = feed->get_texture(CameraServer::FEED_Y_IMAGE); + RID camera_CbCr = feed->get_texture(CameraServer::FEED_CBCR_IMAGE); + + VS::get_singleton()->texture_bind(camera_Y, 0); + VS::get_singleton()->texture_bind(camera_CbCr, 1); + + storage->shaders.copy.set_conditional(CopyShaderGLES2::SEP_CBCR_TEXTURE, true); + storage->shaders.copy.set_conditional(CopyShaderGLES2::YCBCR_TO_RGB, true); + }; + + storage->shaders.copy.bind(); + storage->shaders.copy.set_uniform(CopyShaderGLES2::DISPLAY_TRANSFORM, feed->get_transform()); + + storage->bind_quad_array(); + glDrawArrays(GL_TRIANGLE_FAN, 0, 4); + glDisableVertexAttribArray(GD_VS::ARRAY_VERTEX); + glDisableVertexAttribArray(GD_VS::ARRAY_TEX_UV); + glBindBuffer(GL_ARRAY_BUFFER, 0); + + // turn off everything used + storage->shaders.copy.set_conditional(CopyShaderGLES2::SEP_CBCR_TEXTURE, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::YCBCR_TO_RGB, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_NO_ALPHA, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_DISPLAY_TRANSFORM, false); + + //restore + glEnable(GL_BLEND); + glDepthMask(GL_TRUE); + glEnable(GL_DEPTH_TEST); + glEnable(GL_CULL_FACE); + } else { + // don't have a feed, just show greenscreen :) + clear_color = Color(0.0, 1.0, 0.0, 1.0); + } + } break; + case GD_VS::ENV_BG_CANVAS: { + // use screen copy as background + _copy_texture_to_buffer(storage->frame.current_rt->copy_screen_effect.color, current_fb); + } break; + default: { + } break; + } + } + + if (probe_interior) { + env_radiance_tex = 0; //do not use radiance texture on interiors + state.default_ambient = Color(0, 0, 0, 1); //black as default ambient for interior + state.default_bg = Color(0, 0, 0, 1); //black as default background for interior + } + + // render opaque things first + render_list.sort_by_key(false); + _render_render_list(render_list.elements, render_list.element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, false, false); + + // then draw the sky after + if (env && env->bg_mode == GD_VS::ENV_BG_SKY && (!storage->frame.current_rt || !storage->frame.current_rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT])) { + if (sky && sky->panorama.is_valid()) { + _draw_sky(sky, p_cam_projection, cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation); + } + } + + if (storage->frame.current_rt && state.used_screen_texture) { + //copy screen texture + + if (storage->frame.current_rt->multisample_active) { + // Resolve framebuffer to front buffer before copying +#ifdef GLES_OVER_GL + + glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo); + glReadBuffer(GL_COLOR_ATTACHMENT0); + glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo); + glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); + + glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); + glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); +#elif IPHONE_ENABLED + + glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo); + glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo); + glResolveMultisampleFramebufferAPPLE(); + + glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); + glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); +#elif ANDROID_ENABLED + + // In GLES2 AndroidBlit is not available, so just copy color texture manually + _copy_texture_to_buffer(storage->frame.current_rt->multisample_color, storage->frame.current_rt->fbo); +#endif + } + + storage->canvas->_copy_screen(Rect2()); + + if (storage->frame.current_rt && storage->frame.current_rt->multisample_active) { + // Rebind the current framebuffer + glBindFramebuffer(GL_FRAMEBUFFER, current_fb); + glViewport(0, 0, viewport_width, viewport_height); + } + } + // alpha pass + + glBlendEquation(GL_FUNC_ADD); + glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); + + render_list.sort_by_reverse_depth_and_priority(true); + + _render_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, true, false); + + if (p_reflection_probe.is_valid()) { + // Rendering to a probe so no need for post_processing + return; + } + + //post process + _post_process(env, p_cam_projection); + + //#define GLES2_SHADOW_ATLAS_DEBUG_VIEW + +#ifdef GLES2_SHADOW_ATLAS_DEBUG_VIEW + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); + if (shadow_atlas) { + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); + + glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false); + storage->shaders.copy.bind(); + + storage->_copy_screen(); + } +#endif + + //#define GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW + +#ifdef GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW + if (true) { + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); + + glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false); + storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false); + storage->shaders.copy.bind(); + + storage->_copy_screen(); + } +#endif +} + +void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) { + state.render_no_shadows = false; + + LightInstance *light_instance = light_instance_owner.getornull(p_light); + ERR_FAIL_COND(!light_instance); + + RasterizerStorageGLES2::Light *light = light_instance->light_ptr; + ERR_FAIL_COND(!light); + + uint32_t x; + uint32_t y; + uint32_t width; + uint32_t height; + + float zfar = 0; + bool flip_facing = false; + int custom_vp_size = 0; + GLuint fbo = 0; + state.shadow_is_dual_parabolloid = false; + state.dual_parbolloid_direction = 0.0; + + int current_cubemap = -1; + float bias = 0; + float normal_bias = 0; + + CameraMatrix light_projection; + Transform3D light_transform; + + // TODO directional light + + if (light->type == GD_VS::LIGHT_DIRECTIONAL) { + // set pssm stuff + + // TODO set this only when changed + + light_instance->light_directional_index = directional_shadow.current_light; + light_instance->last_scene_shadow_pass = scene_pass; + + directional_shadow.current_light++; + + if (directional_shadow.light_count == 1) { + light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size); + } else if (directional_shadow.light_count == 2) { + light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2); + if (light_instance->light_directional_index == 1) { + light_instance->directional_rect.position.x += light_instance->directional_rect.size.x; + } + } else { //3 and 4 + light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2); + if (light_instance->light_directional_index & 1) { + light_instance->directional_rect.position.x += light_instance->directional_rect.size.x; + } + if (light_instance->light_directional_index / 2) { + light_instance->directional_rect.position.y += light_instance->directional_rect.size.y; + } + } + + light_projection = light_instance->shadow_transform[p_pass].camera; + light_transform = light_instance->shadow_transform[p_pass].transform; + + x = light_instance->directional_rect.position.x; + y = light_instance->directional_rect.position.y; + width = light_instance->directional_rect.size.width; + height = light_instance->directional_rect.size.height; + + if (light->directional_shadow_mode == GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { + width /= 2; + height /= 2; + + if (p_pass == 1) { + x += width; + } else if (p_pass == 2) { + y += height; + } else if (p_pass == 3) { + x += width; + y += height; + } + + } else if (light->directional_shadow_mode == GD_VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { + height /= 2; + + if (p_pass == 0) { + } else { + y += height; + } + } + + float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE]); + zfar = light->param[VS::LIGHT_PARAM_RANGE]; + bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS] * bias_mult; + normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult; + + fbo = directional_shadow.fbo; + } else { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); + ERR_FAIL_COND(!shadow_atlas); + ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); + + fbo = shadow_atlas->fbo; + + uint32_t key = shadow_atlas->shadow_owners[p_light]; + + uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; + uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; + + ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size()); + + uint32_t quadrant_size = shadow_atlas->size >> 1; + + x = (quadrant & 1) * quadrant_size; + y = (quadrant >> 1) * quadrant_size; + + uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); + x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + + width = shadow_size; + height = shadow_size; + + if (light->type == GD_VS::LIGHT_OMNI) { + // cubemap only + if (light->omni_shadow_mode == GD_VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) { + int cubemap_index = shadow_cubemaps.size() - 1; + + // find an appropriate cubemap to render to + for (int i = shadow_cubemaps.size() - 1; i >= 0; i--) { + if (shadow_cubemaps[i].size > shadow_size * 2) { + break; + } + + cubemap_index = i; + } + + fbo = shadow_cubemaps[cubemap_index].fbo[p_pass]; + light_projection = light_instance->shadow_transform[0].camera; + light_transform = light_instance->shadow_transform[0].transform; + + custom_vp_size = shadow_cubemaps[cubemap_index].size; + zfar = light->param[VS::LIGHT_PARAM_RANGE]; + + current_cubemap = cubemap_index; + } else { + //dual parabolloid + state.shadow_is_dual_parabolloid = true; + light_projection = light_instance->shadow_transform[0].camera; + light_transform = light_instance->shadow_transform[0].transform; + + if (light->omni_shadow_detail == GD_VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { + height /= 2; + y += p_pass * height; + } else { + width /= 2; + x += p_pass * width; + } + + state.dual_parbolloid_direction = p_pass == 0 ? 1.0 : -1.0; + flip_facing = (p_pass == 1); + zfar = light->param[VS::LIGHT_PARAM_RANGE]; + bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS]; + + state.dual_parbolloid_zfar = zfar; + + state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, true); + } + + } else if (light->type == GD_VS::LIGHT_SPOT) { + light_projection = light_instance->shadow_transform[0].camera; + light_transform = light_instance->shadow_transform[0].transform; + + flip_facing = false; + zfar = light->param[VS::LIGHT_PARAM_RANGE]; + bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS]; + normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS]; + } + } + + render_list.clear(); + + _fill_render_list(p_cull_result, p_cull_count, true, true); + + render_list.sort_by_depth(false); + + glDisable(GL_BLEND); + glDisable(GL_DITHER); + glEnable(GL_DEPTH_TEST); + + glBindFramebuffer(GL_FRAMEBUFFER, fbo); + + glDepthMask(GL_TRUE); + if (!storage->config.use_rgba_3d_shadows) { + glColorMask(0, 0, 0, 0); + } + + if (custom_vp_size) { + glViewport(0, 0, custom_vp_size, custom_vp_size); + glScissor(0, 0, custom_vp_size, custom_vp_size); + } else { + glViewport(x, y, width, height); + glScissor(x, y, width, height); + } + + glEnable(GL_SCISSOR_TEST); + glClearDepth(1.0f); + glClear(GL_DEPTH_BUFFER_BIT); + if (storage->config.use_rgba_3d_shadows) { + glClearColor(1.0, 1.0, 1.0, 1.0); + glClear(GL_COLOR_BUFFER_BIT); + } + glDisable(GL_SCISSOR_TEST); + + if (light->reverse_cull) { + flip_facing = !flip_facing; + } + + state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, true); + + _render_render_list(render_list.elements, render_list.element_count, light_transform, light_projection, RID(), NULL, 0, bias, normal_bias, flip_facing, false, true); + + state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, false); + state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, false); + + // convert cubemap to dual paraboloid if needed + if (light->type == GD_VS::LIGHT_OMNI && (light->omni_shadow_mode == GD_VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) && p_pass == 5) { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); + + glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo); + state.cube_to_dp_shader.bind(); + + glActiveTexture(GL_TEXTURE0); + glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_cubemaps[current_cubemap].cubemap); + + glDisable(GL_CULL_FACE); + + for (int i = 0; i < 2; i++) { + state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FLIP, i == 1); + state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_NEAR, light_projection.get_z_near()); + state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FAR, light_projection.get_z_far()); + state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::BIAS, light->param[VS::LIGHT_PARAM_SHADOW_BIAS]); + + uint32_t local_width = width; + uint32_t local_height = height; + uint32_t local_x = x; + uint32_t local_y = y; + + if (light->omni_shadow_detail == GD_VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { + local_height /= 2; + local_y += i * local_height; + } else { + local_width /= 2; + local_x += i * local_width; + } + + glViewport(local_x, local_y, local_width, local_height); + glScissor(local_x, local_y, local_width, local_height); + + glEnable(GL_SCISSOR_TEST); + + glClearDepth(1.0f); + + glClear(GL_DEPTH_BUFFER_BIT); + glDisable(GL_SCISSOR_TEST); + + glDisable(GL_BLEND); + + storage->_copy_screen(); + } + } + + if (storage->frame.current_rt) { + glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); + } + if (!storage->config.use_rgba_3d_shadows) { + glColorMask(1, 1, 1, 1); + } +} + +void RasterizerSceneGLES2::set_scene_pass(uint64_t p_pass) { + scene_pass = p_pass; +} + +bool RasterizerSceneGLES2::free(RID p_rid) { + if (light_instance_owner.owns(p_rid)) { + LightInstance *light_instance = light_instance_owner.getptr(p_rid); + + //remove from shadow atlases.. + for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get()); + ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); + uint32_t key = shadow_atlas->shadow_owners[p_rid]; + uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; + uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; + + shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); + shadow_atlas->shadow_owners.erase(p_rid); + } + + light_instance_owner.free(p_rid); + memdelete(light_instance); + + } else if (shadow_atlas_owner.owns(p_rid)) { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid); + shadow_atlas_set_size(p_rid, 0); + shadow_atlas_owner.free(p_rid); + memdelete(shadow_atlas); + } else if (reflection_probe_instance_owner.owns(p_rid)) { + ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid); + + for (int i = 0; i < 6; i++) { + glDeleteFramebuffers(1, &reflection_instance->fbo[i]); + glDeleteTextures(1, &reflection_instance->color[i]); + } + + if (reflection_instance->cubemap != 0) { + glDeleteTextures(1, &reflection_instance->cubemap); + } + glDeleteRenderbuffers(1, &reflection_instance->depth); + + reflection_probe_release_atlas_index(p_rid); + reflection_probe_instance_owner.free(p_rid); + memdelete(reflection_instance); + + } else { + return false; + } + + return true; +} + +void RasterizerSceneGLES2::set_debug_draw_mode(GD_VS::ViewportDebugDraw p_debug_draw) { +} + +void RasterizerSceneGLES2::initialize() { + state.scene_shader.init(); + + state.scene_shader.set_conditional(SceneShaderGLES2::USE_RGBA_SHADOWS, storage->config.use_rgba_3d_shadows); + state.cube_to_dp_shader.init(); + state.effect_blur_shader.init(); + state.tonemap_shader.init(); + + render_list.init(); + + render_pass = 1; + + shadow_atlas_realloc_tolerance_msec = 500; + + { + //default material and shader + + default_shader = storage->shader_create(); + storage->shader_set_code(default_shader, "shader_type spatial;\n"); + default_material = storage->material_create(); + storage->material_set_shader(default_material, default_shader); + + default_shader_twosided = storage->shader_create(); + default_material_twosided = storage->material_create(); + storage->shader_set_code(default_shader_twosided, "shader_type spatial; render_mode cull_disabled;\n"); + storage->material_set_shader(default_material_twosided, default_shader_twosided); + } + + { + default_worldcoord_shader = storage->shader_create(); + storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n"); + default_worldcoord_material = storage->material_create(); + storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader); + + default_worldcoord_shader_twosided = storage->shader_create(); + default_worldcoord_material_twosided = storage->material_create(); + storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n"); + storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided); + } + + { + //default material and shader + + default_overdraw_shader = storage->shader_create(); + storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }"); + default_overdraw_material = storage->material_create(); + storage->material_set_shader(default_overdraw_material, default_overdraw_shader); + } + + { + glGenBuffers(1, &state.sky_verts); + glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts); + glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, NULL, GL_DYNAMIC_DRAW); + glBindBuffer(GL_ARRAY_BUFFER, 0); + } + + { + uint32_t immediate_buffer_size = GLOBAL_DEF("rendering/limits/buffers/immediate_buffer_size_kb", 2048); + ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/immediate_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/immediate_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater")); + + glGenBuffers(1, &state.immediate_buffer); + glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer); + glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size * 1024, NULL, GL_DYNAMIC_DRAW); + glBindBuffer(GL_ARRAY_BUFFER, 0); + } + + // cubemaps for shadows + if (storage->config.support_shadow_cubemaps) { //not going to be used + int max_shadow_cubemap_sampler_size = 512; + + int cube_size = max_shadow_cubemap_sampler_size; + + glActiveTexture(GL_TEXTURE0); + + while (cube_size >= 32) { + ShadowCubeMap cube; + + cube.size = cube_size; + + glGenTextures(1, &cube.cubemap); + glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap); + + for (int i = 0; i < 6; i++) { + glTexImage2D(_cube_side_enum[i], 0, storage->config.depth_internalformat, cube_size, cube_size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL); + } + + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST); + + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + + glGenFramebuffers(6, cube.fbo); + for (int i = 0; i < 6; i++) { + glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo[i]); + glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, _cube_side_enum[i], cube.cubemap, 0); + } + + shadow_cubemaps.push_back(cube); + + cube_size >>= 1; + } + } + + { + // directional shadows + + directional_shadow.light_count = 0; + directional_shadow.size = next_power_of_2(GLOBAL_GET("rendering/quality/directional_shadow/size")); + + glGenFramebuffers(1, &directional_shadow.fbo); + glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo); + + if (storage->config.use_rgba_3d_shadows) { + //maximum compatibility, renderbuffer and RGBA shadow + glGenRenderbuffers(1, &directional_shadow.depth); + glBindRenderbuffer(GL_RENDERBUFFER, directional_shadow.depth); + glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_buffer_internalformat, directional_shadow.size, directional_shadow.size); + glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, directional_shadow.depth); + + glGenTextures(1, &directional_shadow.color); + glBindTexture(GL_TEXTURE_2D, directional_shadow.color); + glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, directional_shadow.size, directional_shadow.size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, directional_shadow.color, 0); + } else { + //just a depth buffer + glGenTextures(1, &directional_shadow.depth); + glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); + + glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL); + + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + + glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0); + } + + GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); + if (status != GL_FRAMEBUFFER_COMPLETE) { + ERR_PRINT("Directional shadow framebuffer status invalid"); + } + } + + shadow_filter_mode = SHADOW_FILTER_NEAREST; + + glFrontFace(GL_CW); +} + +void RasterizerSceneGLES2::iteration() { + shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode"))); +} + +void RasterizerSceneGLES2::finalize() { +} + +RasterizerSceneGLES2::RasterizerSceneGLES2() { +} + +#endif // godot 3 + +#endif // GLES2_BACKEND_ENABLED |