summaryrefslogtreecommitdiff
path: root/doc/html/tutorial01/tutorial.html
diff options
context:
space:
mode:
Diffstat (limited to 'doc/html/tutorial01/tutorial.html')
-rw-r--r--doc/html/tutorial01/tutorial.html902
1 files changed, 0 insertions, 902 deletions
diff --git a/doc/html/tutorial01/tutorial.html b/doc/html/tutorial01/tutorial.html
deleted file mode 100644
index 45c0258709..0000000000
--- a/doc/html/tutorial01/tutorial.html
+++ /dev/null
@@ -1,902 +0,0 @@
-<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
- "http://www.w3.org/TR/html4/loose.dtd">
-<html >
-<head><title></title>
-<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
-<meta name="generator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
-<meta name="originator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
-<!-- html -->
-<meta name="src" content="tutorial.tex">
-<meta name="date" content="2009-10-07 00:28:00">
-<link rel="stylesheet" type="text/css" href="tutorial.css">
-</head><body
->
- <h3 class="sectionHead"><span class="titlemark">1 </span> <a
- id="x1-10001"></a>Introduction to 3D Math</h3>
-<!--l. 27--><p class="noindent" >
- <h4 class="subsectionHead"><span class="titlemark">1.1 </span> <a
- id="x1-20001.1"></a>Introduction</h4>
-<!--l. 29--><p class="noindent" >There are many approaches to understanding the type of 3D math used in video
-games, modelling, ray-tracing, etc. The usual is through vector algebra, matrices, and
-linear transformations and, while they are not completely necesary to understand
-most of the aspects of 3D game programming (from the theorical point of view), they
-provide a common language to communicate with other programmers or
-engineers.
-<!--l. 36--><p class="indent" > This tutorial will focus on explaining all the basic concepts needed for a
-programmer to understand how to develop 3D games without getting too deep into
-algebra. Instead of a math-oriented language, code examples will be given instead
-when possible. The reason for this is that. while programmers may have
-different backgrounds or experience (be it scientific, engineering or self taught),
-code is the most familiar language and the lowest common denominator for
-understanding.
-<!--l. 45--><p class="noindent" >
- <h4 class="subsectionHead"><span class="titlemark">1.2 </span> <a
- id="x1-30001.2"></a>Vectors</h4>
-<!--l. 48--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.2.1 </span> <a
- id="x1-40001.2.1"></a>Brief Introduction</h5>
-<!--l. 50--><p class="noindent" >When writing 2D games, interfaces and other applications, the typical convention is
-to define coordinates as an <span
-class="ecti-1000">x,y </span>pair, <span
-class="ecti-1000">x </span>representing the horizontal offset and <span
-class="ecti-1000">y </span>the
-vertical one. In most cases, the unit for both is <span
-class="ecti-1000">pixels</span>. This makes sense given the
-screen is just a rectangle in two dimensions.
-<!--l. 56--><p class="indent" > An <span
-class="ecti-1000">x,y </span>pair can be used for two purposes. It can be an absolute position (screen
-cordinate in the previous case), or a relative direction, if we trace an arrow from the
-origin (0,0 coordinates) to it&#8217;s position.
-<div class="center"
->
-<!--l. 60--><p class="noindent" >
-
-<div class="tabular">
- <table id="TBL-1" class="tabular"
-cellspacing="0" cellpadding="0"
-><colgroup id="TBL-1-1g"><col
-id="TBL-1-1"><col
-id="TBL-1-2"><col
-id="TBL-1-3"></colgroup><tr
- style="vertical-align:baseline;" id="TBL-1-1-"><td style="white-space:nowrap; text-align:center;" id="TBL-1-1-1"
-class="td11"><img
-src="tutorial0x.png" alt="PIC" class="graphics" width="100.375pt" height="100.375pt" ><!--tex4ht:graphics
-name="tutorial0x.png" src="0_home_red_coding_godot_doc_math_position.eps"
---></td><td style="white-space:nowrap; text-align:center;" id="TBL-1-1-2"
-class="td11"></td><td style="white-space:nowrap; text-align:center;" id="TBL-1-1-3"
-class="td11"><img
-src="tutorial1x.png" alt="PIC" class="graphics" width="100.375pt" height="100.375pt" ><!--tex4ht:graphics
-name="tutorial1x.png" src="1_home_red_coding_godot_doc_math_direction.eps"
---></td>
-</tr><tr
- style="vertical-align:baseline;" id="TBL-1-2-"><td style="white-space:nowrap; text-align:center;" id="TBL-1-2-1"
-class="td11"> <span
-class="ecti-0700">Position </span></td><td style="white-space:nowrap; text-align:center;" id="TBL-1-2-2"
-class="td11"></td><td style="white-space:nowrap; text-align:center;" id="TBL-1-2-3"
-class="td11"> <span
-class="ecti-0700">Direction </span></td>
-</tr><tr
- style="vertical-align:baseline;" id="TBL-1-3-"><td style="white-space:nowrap; text-align:center;" id="TBL-1-3-1"
-class="td11"> </td>
-</tr></table></div>
-</div>
-<!--l. 67--><p class="indent" > When used as a direction, this pair is called a <span
-class="ecti-1000">vector</span>, and two properties can be
-observed: The first is the <span
-class="ecti-1000">magnitude </span>or <span
-class="ecti-1000">length </span>, and the second is the direction. In
-two dimensions, direction can be an angle. The <span
-class="ecti-1000">magnitude </span>or <span
-class="ecti-1000">length </span>can be computed
-by simply using Pithagoras theorem:
-<div class="center"
->
-<!--l. 73--><p class="noindent" >
-<div class="tabular"> <table id="TBL-2" class="tabular"
-cellspacing="0" cellpadding="0"
-><colgroup id="TBL-2-1g"><col
-id="TBL-2-1"><col
-id="TBL-2-2"></colgroup><tr
- style="vertical-align:baseline;" id="TBL-2-1-"><td style="white-space:nowrap; text-align:center;" id="TBL-2-1-1"
-class="td11"><img
-src="tutorial2x.png" alt="&#x2218;x2-+-y2-" class="sqrt" ></td><td style="white-space:nowrap; text-align:center;" id="TBL-2-1-2"
-class="td11"><img
-src="tutorial3x.png" alt="&#x2218;x2-+-y2 +-z2" class="sqrt" ></td>
-</tr><tr
- style="vertical-align:baseline;" id="TBL-2-2-"><td style="white-space:nowrap; text-align:center;" id="TBL-2-2-1"
-class="td11"> <span
-class="ecti-0700">2D </span></td><td style="white-space:nowrap; text-align:center;" id="TBL-2-2-2"
-class="td11"> <span
-class="ecti-0700">3D </span></td>
-</tr><tr
- style="vertical-align:baseline;" id="TBL-2-3-"><td style="white-space:nowrap; text-align:center;" id="TBL-2-3-1"
-class="td11"> </td>
-</tr></table></div>
-</div>
-<!--l. 80--><p class="indent" > The direction can be an arbitrary angle from either the <span
-class="ecti-1000">x </span>or <span
-class="ecti-1000">y </span>axis, and could be
-computed by using trigonometry, or just using the usual <span
-class="ecti-1000">atan2 </span>function present in
-most math libraries. However, when dealing with 3D, the direction can&#8217;t be described
-as an angle. To separate magnitude and direction, 3D uses the concept of <span
-class="ecti-1000">normal</span>
-<span
-class="ecti-1000">vectors.</span>
-<!--l. 88--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.2.2 </span> <a
- id="x1-50001.2.2"></a>Implementation</h5>
-<!--l. 90--><p class="noindent" >Vectors are implemented in Godot Engine as a class named <span
-class="ecti-1000">Vector3 </span>for 3D, and as
-both <span
-class="ecti-1000">Vector2</span>, <span
-class="ecti-1000">Point2 </span>or <span
-class="ecti-1000">Size2 </span>in 2D (they are all aliases). They are used for any
-purpose where a pair of 2D or 3D values (described as <span
-class="ecti-1000">x,y </span>or <span
-class="ecti-1000">x,y,z) </span>is needed. This is
-somewhat a standard in most libraries or engines. In the script API, they can be
-instanced like this:
- <!--l. 98-->
- <div class="lstlisting"><span class="label"><a
- id="x1-5001r1"></a></span>a&#x00A0;=&#x00A0;Vector3()&#x00A0;<br /><span class="label"><a
- id="x1-5002r2"></a></span>a&#x00A0;=&#x00A0;Vector2(&#x00A0;2.0,&#x00A0;3.4&#x00A0;)
- </div>
-
-<!--l. 104--><p class="indent" > Vectors also support the common operators <span
-class="ecti-1000">+, -, / and * </span>for addition,
-substraction, multiplication and division.
- <!--l. 108-->
- <div class="lstlisting"><span class="label"><a
- id="x1-5003r1"></a></span>a&#x00A0;=&#x00A0;Vector3(1,2,3)&#x00A0;<br /><span class="label"><a
- id="x1-5004r2"></a></span>b&#x00A0;=&#x00A0;Vector3(4,5,6)&#x00A0;<br /><span class="label"><a
- id="x1-5005r3"></a></span>c&#x00A0;=&#x00A0;Vector3()&#x00A0;<br /><span class="label"><a
- id="x1-5006r4"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-5007r5"></a></span>//&#x00A0;writing&#x00A0;<br /><span class="label"><a
- id="x1-5008r6"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-5009r7"></a></span>c&#x00A0;=&#x00A0;a&#x00A0;+&#x00A0;b&#x00A0;<br /><span class="label"><a
- id="x1-5010r8"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-5011r9"></a></span>//&#x00A0;is&#x00A0;the&#x00A0;same&#x00A0;as&#x00A0;writing&#x00A0;<br /><span class="label"><a
- id="x1-5012r10"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-5013r11"></a></span>c.x&#x00A0;=&#x00A0;a.x&#x00A0;+&#x00A0;b.x&#x00A0;<br /><span class="label"><a
- id="x1-5014r12"></a></span>c.y&#x00A0;=&#x00A0;a.y&#x00A0;+&#x00A0;b.y&#x00A0;<br /><span class="label"><a
- id="x1-5015r13"></a></span>c.z&#x00A0;=&#x00A0;a.z&#x00A0;+&#x00A0;b.z&#x00A0;<br /><span class="label"><a
- id="x1-5016r14"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-5017r15"></a></span>//&#x00A0;both&#x00A0;will&#x00A0;result&#x00A0;in&#x00A0;a&#x00A0;vector&#x00A0;containing&#x00A0;(5,7,9).&#x00A0;<br /><span class="label"><a
- id="x1-5018r16"></a></span>//&#x00A0;the&#x00A0;same&#x00A0;happens&#x00A0;for&#x00A0;the&#x00A0;rest&#x00A0;of&#x00A0;the&#x00A0;operators.
- </div>
-<!--l. 128--><p class="indent" > Vectors also can perform a wide variety of built-in functions, their most common
-usages will be explored next.
-<!--l. 132--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.2.3 </span> <a
- id="x1-60001.2.3"></a>Normal Vectors</h5>
-<!--l. 134--><p class="noindent" >Two points ago, it was mentioned that 3D vectors can&#8217;t describe their direction as an
-agle (as 2D vectors can). Because of this, <span
-class="ecti-1000">normal vectors </span>become important for
-separating a vector between <span
-class="ecti-1000">direction </span>and <span
-class="ecti-1000">magnitude.</span>
-<!--l. 139--><p class="indent" > A <span
-class="ecti-1000">normal vector </span>is a vector with a <span
-class="ecti-1000">magnitude </span>of <span
-class="ecti-1000">1. </span>This means, no matter where
-the vector is pointing to, it&#8217;s length is always <span
-class="ecti-1000">1</span>.
- <div class="tabular">
- <table id="TBL-3" class="tabular"
-cellspacing="0" cellpadding="0"
-><colgroup id="TBL-3-1g"><col
-id="TBL-3-1"></colgroup><tr
- style="vertical-align:baseline;" id="TBL-3-1-"><td style="white-space:nowrap; text-align:center;" id="TBL-3-1-1"
-class="td11"><img
-src="tutorial4x.png" alt="PIC" class="graphics" width="100.375pt" height="100.375pt" ><!--tex4ht:graphics
-name="tutorial4x.png" src="2_home_red_coding_godot_doc_math_normals.eps"
---></td>
-</tr><tr
- style="vertical-align:baseline;" id="TBL-3-2-"><td style="white-space:nowrap; text-align:center;" id="TBL-3-2-1"
-class="td11"> <span
-class="ecrm-0700">Normal vectors aroud the origin. </span></td>
-</tr><tr
- style="vertical-align:baseline;" id="TBL-3-3-"><td style="white-space:nowrap; text-align:center;" id="TBL-3-3-1"
-class="td11"> </td> </tr></table>
-</div>
-<!--l. 148--><p class="indent" > Normal vectors have endless uses in 3D graphics programming, so it&#8217;s
-recommended to get familiar with them as much as possible.
-<!--l. 152--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.2.4 </span> <a
- id="x1-70001.2.4"></a>Normalization</h5>
-<!--l. 154--><p class="noindent" >Normalization is the process through which normal vectors are obtained
-from regular vectors. In other words, normalization is used to reduce the
-<span
-class="ecti-1000">magnitude </span>of any vector to <span
-class="ecti-1000">1</span>. (except of course, unless the vector is (0,0,0)
-).
-<!--l. 159--><p class="indent" > To normalize a vector, it must be divided by its magnitude (which should be
-greater than zero):
- <!--l. 163-->
- <div class="lstlisting"><span class="label"><a
- id="x1-7001r1"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">a</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">custom</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">vector</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">is</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">created</span>&#x00A0;<br /><span class="label"><a
- id="x1-7002r2"></a></span>a&#x00A0;=&#x00A0;Vector3(4,5,6)&#x00A0;<br /><span class="label"><a
- id="x1-7003r3"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">&#8217;</span><span
-class="ecti-1000">l</span><span
-class="ecti-1000">&#8217;</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">is</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">a</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">single</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">real</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">number</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">(</span><span
-class="ecti-1000">or</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">scalar</span><span
-class="ecti-1000">)</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">containight</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">the</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">length</span>&#x00A0;<br /><span class="label"><a
- id="x1-7004r4"></a></span>l&#x00A0;=&#x00A0;Math.sqrt(&#x00A0;a.x<span
-class="cmsy-10">*</span>a.x&#x00A0;+&#x00A0;a.y<span
-class="cmsy-10">*</span>a.y&#x00A0;+&#x00A0;a.z<span
-class="cmsy-10">*</span>a.z&#x00A0;)&#x00A0;<br /><span class="label"><a
- id="x1-7005r5"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">the</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">vector</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">&#8217;</span><span
-class="ecti-1000">a</span><span
-class="ecti-1000">&#8217;</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">is</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">divided</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">by</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">its</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">length</span><span
-class="ecti-1000">,</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">by</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">performing</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">scalar</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">divide</span>&#x00A0;<br /><span class="label"><a
- id="x1-7006r6"></a></span>a&#x00A0;=&#x00A0;a&#x00A0;/&#x00A0;l&#x00A0;<br /><span class="label"><a
- id="x1-7007r7"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">which</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">is</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">the</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">same</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">as</span>&#x00A0;<br /><span class="label"><a
- id="x1-7008r8"></a></span>a.x&#x00A0;=&#x00A0;a.x&#x00A0;/&#x00A0;l&#x00A0;<br /><span class="label"><a
- id="x1-7009r9"></a></span>a.y&#x00A0;=&#x00A0;a.y&#x00A0;/&#x00A0;l&#x00A0;<br /><span class="label"><a
- id="x1-7010r10"></a></span>a.z&#x00A0;=&#x00A0;a.z&#x00A0;/&#x00A0;l
-
- </div>
-<!--l. 177--><p class="indent" > Vector3 contains two built in functions for normalization:
- <!--l. 180-->
- <div class="lstlisting"><span class="label"><a
- id="x1-7011r1"></a></span>a&#x00A0;=&#x00A0;Vector3(4,5,6)&#x00A0;<br /><span class="label"><a
- id="x1-7012r2"></a></span>a.normalize()&#x00A0;<span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">in</span><span
-class="cmsy-10">-</span><span
-class="ecti-1000">place</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">normalization</span>&#x00A0;<br /><span class="label"><a
- id="x1-7013r3"></a></span>b&#x00A0;=&#x00A0;a.normalized()&#x00A0;<span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">returns</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">a</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">copy</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">of</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">a</span><span
-class="ecti-1000">,</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">normalized</span>
- </div>
-<!--l. 188--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.2.5 </span> <a
- id="x1-80001.2.5"></a>Dot Product</h5>
-<!--l. 190--><p class="noindent" >The dot product is, pheraps, the most useful operation that can be applied to 3D
-vectors. In the surface, it&#8217;s multiple usages are not very obvious, but in depth it can
-provide very useful information between two vectors (be it direction or just points in
-space).
-<!--l. 195--><p class="indent" > The dot product takes two vectors (<span
-class="ecti-1000">a </span>and <span
-class="ecti-1000">b </span>in the example) and returns a scalar
-(single real number):
-<div class="center"
->
-<!--l. 198--><p class="noindent" >
-<!--l. 199--><p class="noindent" ><span
-class="cmmi-10">a</span><sub><span
-class="cmmi-7">x</span></sub><span
-class="cmmi-10">b</span><sub><span
-class="cmmi-7">x</span></sub> <span
-class="cmr-10">+ </span><span
-class="cmmi-10">a</span><sub><span
-class="cmmi-7">y</span></sub><span
-class="cmmi-10">b</span><sub><span
-class="cmmi-7">y</span></sub> <span
-class="cmr-10">+ </span><span
-class="cmmi-10">a</span><sub><span
-class="cmmi-7">z</span></sub><span
-class="cmmi-10">b</span><sub><span
-class="cmmi-7">z</span></sub>
-</div>
-<!--l. 202--><p class="indent" > The same expressed in code:
- <!--l. 205-->
- <div class="lstlisting"><span class="label"><a
- id="x1-8001r1"></a></span>a&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
- id="x1-8002r2"></a></span>b&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
- id="x1-8003r3"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-8004r4"></a></span>c&#x00A0;=&#x00A0;a.x<span
-class="cmsy-10">*</span>b.x&#x00A0;+&#x00A0;a.y<span
-class="cmsy-10">*</span>b.y&#x00A0;+&#x00A0;a.z<span
-class="cmsy-10">*</span>b.z&#x00A0;<br /><span class="label"><a
- id="x1-8005r5"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-8006r6"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">using</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">built</span><span
-class="cmsy-10">-</span><span
-class="ecti-1000">in</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">dot</span><span
-class="ecti-1000">()</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">function</span>&#x00A0;<br /><span class="label"><a
- id="x1-8007r7"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-8008r8"></a></span>c&#x00A0;=&#x00A0;a.dot(b)
- </div>
-<!--l. 218--><p class="indent" > The dot product presents several useful properties:
- <ul class="itemize1">
- <li class="itemize">If both <span
-class="ecti-1000">a </span>and <span
-class="ecti-1000">b </span>parameters to a <span
-class="ecti-1000">dot product </span>are direction vectors, dot
- product will return positive if both point towards the same direction,
- negative if both point towards opposite directions, and zero if they are
- orthogonal (one is perpendicular to the other).
- </li>
- <li class="itemize">If both <span
-class="ecti-1000">a </span>and <span
-class="ecti-1000">b </span>parameters to a <span
-class="ecti-1000">dot product </span>are <span
-class="ecti-1000">normalized </span>direction
- vectors, then the dot product will return the cosine of the angle between
- them (ranging from 1 if they are equal, 0 if they are orthogonal, and -1 if
- they are opposed (a == -b)).
- </li>
- <li class="itemize">If <span
-class="ecti-1000">a </span>is a <span
-class="ecti-1000">normalized </span>direction vector and <span
-class="ecti-1000">b </span>is a point, the dot product will
- return the distance from <span
-class="ecti-1000">b </span>to the plane passing through the origin, with
- normal <span
-class="ecti-1000">a (see item about planes)</span>
-
- </li>
- <li class="itemize">More uses will be presented later in this tutorial.</li></ul>
-<!--l. 236--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.2.6 </span> <a
- id="x1-90001.2.6"></a>Cross Product</h5>
-<!--l. 238--><p class="noindent" >The <span
-class="ecti-1000">cross product </span>also takes two vectors <span
-class="ecti-1000">a </span>and <span
-class="ecti-1000">b</span>, but returns another vector <span
-class="ecti-1000">c </span>that is
-orthogonal to the two previous ones.
-<div class="center"
->
-<!--l. 242--><p class="noindent" >
-<!--l. 243--><p class="noindent" ><span
-class="cmmi-10">c</span><sub><span
-class="cmmi-7">x</span></sub> <span
-class="cmr-10">= </span><span
-class="cmmi-10">a</span><sub><span
-class="cmmi-7">x</span></sub><span
-class="cmmi-10">b</span><sub><span
-class="cmmi-7">z</span></sub> <span
-class="cmsy-10">- </span><span
-class="cmmi-10">a</span><sub><span
-class="cmmi-7">z</span></sub><span
-class="cmmi-10">b</span><sub><span
-class="cmmi-7">y</span></sub>
-</div>
-<div class="center"
->
-<!--l. 246--><p class="noindent" >
-<!--l. 247--><p class="noindent" ><span
-class="cmmi-10">c</span><sub><span
-class="cmmi-7">y</span></sub> <span
-class="cmr-10">= </span><span
-class="cmmi-10">a</span><sub><span
-class="cmmi-7">z</span></sub><span
-class="cmmi-10">b</span><sub><span
-class="cmmi-7">x</span></sub> <span
-class="cmsy-10">- </span><span
-class="cmmi-10">a</span><sub><span
-class="cmmi-7">x</span></sub><span
-class="cmmi-10">b</span><sub><span
-class="cmmi-7">z</span></sub>
-</div>
-<div class="center"
->
-<!--l. 250--><p class="noindent" >
-<!--l. 251--><p class="noindent" ><span
-class="cmmi-10">c</span><sub><span
-class="cmmi-7">z</span></sub> <span
-class="cmr-10">= </span><span
-class="cmmi-10">a</span><sub><span
-class="cmmi-7">x</span></sub><span
-class="cmmi-10">b</span><sub><span
-class="cmmi-7">y</span></sub> <span
-class="cmsy-10">- </span><span
-class="cmmi-10">a</span><sub><span
-class="cmmi-7">y</span></sub><span
-class="cmmi-10">b</span><sub><span
-class="cmmi-7">x</span></sub>
-</div>
-<!--l. 254--><p class="indent" > The same in code:
- <!--l. 257-->
- <div class="lstlisting"><span class="label"><a
- id="x1-9001r1"></a></span>a&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
- id="x1-9002r2"></a></span>b&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
- id="x1-9003r3"></a></span>c&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
- id="x1-9004r4"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-9005r5"></a></span>c.x&#x00A0;=&#x00A0;a.x<span
-class="cmsy-10">*</span>b.z&#x00A0;<span
-class="cmsy-10">-</span>&#x00A0;a.z<span
-class="cmsy-10">*</span>b.y&#x00A0;<br /><span class="label"><a
- id="x1-9006r6"></a></span>c.y&#x00A0;=&#x00A0;a.z<span
-class="cmsy-10">*</span>b.x&#x00A0;<span
-class="cmsy-10">-</span>&#x00A0;a.x<span
-class="cmsy-10">*</span>b.z&#x00A0;<br /><span class="label"><a
- id="x1-9007r7"></a></span>c.z&#x00A0;=&#x00A0;a.x<span
-class="cmsy-10">*</span>b.y&#x00A0;<span
-class="cmsy-10">-</span>&#x00A0;a.y<span
-class="cmsy-10">*</span>b.x&#x00A0;<br /><span class="label"><a
- id="x1-9008r8"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-9009r9"></a></span>//&#x00A0;or&#x00A0;using&#x00A0;the&#x00A0;built<span
-class="cmsy-10">-</span>in&#x00A0;function&#x00A0;<br /><span class="label"><a
- id="x1-9010r10"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-9011r11"></a></span>c&#x00A0;=&#x00A0;a.cross(b)
- </div>
-<!--l. 273--><p class="indent" > The <span
-class="ecti-1000">cross product </span>also presents several useful properties:
- <ul class="itemize1">
- <li class="itemize">As mentioned, the resulting vector <span
-class="ecti-1000">c </span>is orthogonal to the input vectors <span
-class="ecti-1000">a</span>
- and <span
-class="ecti-1000">b.</span>
- </li>
- <li class="itemize">Since the <span
-class="ecti-1000">cross product </span>is anticommutative, swapping <span
-class="ecti-1000">a </span>and <span
-class="ecti-1000">b </span>will result
- in a negated vector <span
-class="ecti-1000">c.</span>
-
- </li>
- <li class="itemize">if <span
-class="ecti-1000">a </span>and <span
-class="ecti-1000">b </span>are taken from two of the segmets <span
-class="ecti-1000">AB</span>, <span
-class="ecti-1000">BC </span>or <span
-class="ecti-1000">CA </span>that form a
- 3D triangle, the magnitude of the resulting vector divided by 2 is the area
- of that triangle.
- </li>
- <li class="itemize">The direction of the resulting vector <span
-class="ecti-1000">c </span>in the previous triangle example
- determines wether the points A,B and C are arranged in clocwise or
- counter-clockwise order.</li></ul>
-<!--l. 287--><p class="noindent" >
- <h4 class="subsectionHead"><span class="titlemark">1.3 </span> <a
- id="x1-100001.3"></a>Plane</h4>
-<!--l. 290--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.3.1 </span> <a
- id="x1-110001.3.1"></a>Theory</h5>
-<!--l. 292--><p class="noindent" >A plane can be considered as an infinite, flat surface that splits space in two halves,
-usually one named positive and one named negative. In regular mathematics, a plane
-formula is described as:
-<div class="center"
->
-<!--l. 296--><p class="noindent" >
-<!--l. 297--><p class="noindent" ><span
-class="cmmi-10">ax </span><span
-class="cmr-10">+ </span><span
-class="cmmi-10">by </span><span
-class="cmr-10">+ </span><span
-class="cmmi-10">cz </span><span
-class="cmr-10">+ </span><span
-class="cmmi-10">d</span>
-</div>
-<!--l. 300--><p class="indent" > However, in 3D programming, this form alone is often of little use. For planes to
-become useful, they must be in normalized form.
-<!--l. 303--><p class="indent" > A normalized plane consists of a <span
-class="ecti-1000">normal vector n </span>and a <span
-class="ecti-1000">distance d. </span>To normalize
-a plane, a vector <span
-class="ecti-1000">n </span>and distance <span
-class="ecti-1000">d&#8217; </span>are created this way:
-<!--l. 307--><p class="indent" > <span
-class="cmmi-10">n</span><sub><span
-class="cmmi-7">x</span></sub> <span
-class="cmr-10">= </span><span
-class="cmmi-10">a</span>
-<!--l. 309--><p class="indent" > <span
-class="cmmi-10">n</span><sub><span
-class="cmmi-7">y</span></sub> <span
-class="cmr-10">= </span><span
-class="cmmi-10">b</span>
-<!--l. 311--><p class="indent" > <span
-class="cmmi-10">n</span><sub><span
-class="cmmi-7">z</span></sub> <span
-class="cmr-10">= </span><span
-class="cmmi-10">c</span>
-<!--l. 313--><p class="indent" > <span
-class="cmmi-10">d</span><span
-class="cmsy-10">&#x2032; </span><span
-class="cmr-10">= </span><span
-class="cmmi-10">d</span>
-<!--l. 315--><p class="indent" > Finally, both <span
-class="ecti-1000">n </span>and <span
-class="ecti-1000">d&#8217; </span>are both divided by the magnitude of n.
-<!--l. 318--><p class="indent" > In any case, normalizing planes is not often needed (this was mostly for
-explanation purposes), and normalized planes are useful because they can be created
-and used easily.
-<!--l. 322--><p class="indent" > A normalized plane could be visualized as a plane pointing towards normal <span
-class="ecti-1000">n,</span>
-offseted by <span
-class="ecti-1000">d </span>in the direction of <span
-class="ecti-1000">n</span>.
-<!--l. 325--><p class="indent" > In other words, take <span
-class="ecti-1000">n</span>, multiply it by scalar <span
-class="ecti-1000">d </span>and the resulting point will be part
-of the plane. This may need some thinking, so an example with a 2D normal vector
-(z is 0, so plane is orthogonal to it) is provided:
-<!--l. 330--><p class="indent" > Some operations can be done with normalized planes:
-
- <ul class="itemize1">
- <li class="itemize">Given any point <span
-class="ecti-1000">p</span>, the distance from it to a plane can be computed by
- doing: n.dot(p) - d
- </li>
- <li class="itemize">If the resulting distance in the previous point is negative, the point is
- below the plane.
- </li>
- <li class="itemize">Convex polygonal shapes can be defined by enclosing them in planes (the
- physics engine uses this property)</li></ul>
-<!--l. 340--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.3.2 </span> <a
- id="x1-120001.3.2"></a>Implementation</h5>
-<!--l. 342--><p class="noindent" >Godot Engine implements normalized planes by using the <span
-class="ecti-1000">Plane </span>class.
- <!--l. 346-->
- <div class="lstlisting"><span class="label"><a
- id="x1-12001r1"></a></span>//creates&#x00A0;a&#x00A0;plane&#x00A0;with&#x00A0;normal&#x00A0;(0,1,0)&#x00A0;and&#x00A0;distance&#x00A0;5&#x00A0;<br /><span class="label"><a
- id="x1-12002r2"></a></span>p&#x00A0;=&#x00A0;Plane(&#x00A0;Vector3(0,1,0),&#x00A0;5&#x00A0;)&#x00A0;<br /><span class="label"><a
- id="x1-12003r3"></a></span>//&#x00A0;get&#x00A0;the&#x00A0;distance&#x00A0;to&#x00A0;a&#x00A0;point&#x00A0;<br /><span class="label"><a
- id="x1-12004r4"></a></span>d&#x00A0;=&#x00A0;p.distance(&#x00A0;Vector3(4,5,6)&#x00A0;)
- </div>
-<!--l. 355--><p class="noindent" >
- <h4 class="subsectionHead"><span class="titlemark">1.4 </span> <a
- id="x1-130001.4"></a>Matrices, Quaternions and Coordinate Systems</h4>
-<!--l. 357--><p class="noindent" >It is very often needed to store the location/rotation of something. In 2D, it is often
-enough to store an <span
-class="ecti-1000">x,y </span>location and maybe an angle as the rotation, as that should
-be enough to represent any posible position.
-<!--l. 362--><p class="indent" > In 3D this becomes a little more difficult, as there is nothing as simple as an angle
-to store a 3-axis rotation.
-<!--l. 365--><p class="indent" > The first think that may come to mind is to use 3 angles, one for x, one for y and
-one for z. However this suffers from the problem that it becomes very cumbersome to
-use, as the individual rotations in each axis need to be performed one after another
-(they can&#8217;t be performed at the same time), leading to a problem called &#8220;gimbal
-lock&#8221;. Also, it becomes impossible to accumulate rotations (add a rotation to an
-existing one).
-<!--l. 373--><p class="indent" > To solve this, there are two known diferent approaches that aid in solving
-rotation, <span
-class="ecti-1000">Quaternions </span>and <span
-class="ecti-1000">Oriented Coordinate Systems.</span>
-<!--l. 378--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.4.1 </span> <a
- id="x1-140001.4.1"></a>Oriented Coordinate Systems</h5>
-<!--l. 380--><p class="noindent" ><span
-class="ecti-1000">Oriented Coordinate Systems </span>(<span
-class="ecti-1000">OCS</span>) are a way of representing a coordinate system
-inside the cartesian coordinate system. They are mainly composed of 3 Vectors, one
-for each axis. The first vector is the <span
-class="ecti-1000">x </span>axis, the second the <span
-class="ecti-1000">y </span>axis, and the third is the
-
-<span
-class="ecti-1000">z </span>axis. The OCS vectors can be rotated around freely as long as they are kept the
-same length (as changing the length of an axis changes its cale), and as long as they
-remain orthogonal to eachother (as in, the same as the default cartesian system,
-with <span
-class="ecti-1000">y </span>pointing up, <span
-class="ecti-1000">x </span>pointing left and <span
-class="ecti-1000">z </span>pointing front, but all rotated
-together).
-<!--l. 391--><p class="indent" > <span
-class="ecti-1000">Oriented Coordinate Systems </span>are represented in 3D programming as a 3x3 matrix,
-where each row (or column, depending on the implementation) contains one of the
-axis vectors. Transforming a Vector by a rotated OCS Matrix results in the rotation
-being applied to the resulting vector. OCS Matrices can also be multiplied to
-accumulate their transformations.
-<!--l. 397--><p class="indent" > Godot Engine implements OCS Matrices in the <span
-class="ecti-1000">Matrix3 </span>class:
- <!--l. 400-->
- <div class="lstlisting"><span class="label"><a
- id="x1-14001r1"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">create</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">a</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">3</span><span
-class="ecti-1000">x3</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">matrix</span>&#x00A0;<br /><span class="label"><a
- id="x1-14002r2"></a></span>m&#x00A0;=&#x00A0;Matrix3()&#x00A0;<br /><span class="label"><a
- id="x1-14003r3"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">rotate</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">the</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">matrix</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">in</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">the</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">y</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">axis</span><span
-class="ecti-1000">,</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">by</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">45</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">degrees</span>&#x00A0;<br /><span class="label"><a
- id="x1-14004r4"></a></span>m.rotate(&#x00A0;Vector3(0,1,0),&#x00A0;Math.deg2rad(45)&#x00A0;)&#x00A0;<br /><span class="label"><a
- id="x1-14005r5"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">transform</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">a</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">vector</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">v</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">(</span><span
-class="ecti-1000">xform</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">method</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">is</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">used</span><span
-class="ecti-1000">)</span>&#x00A0;<br /><span class="label"><a
- id="x1-14006r6"></a></span>v&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
- id="x1-14007r7"></a></span>result&#x00A0;=&#x00A0;m.xform(&#x00A0;v&#x00A0;)
- </div>
-<!--l. 412--><p class="indent" > However, in most usage cases, one wants to store a translation together with the
-rotation. For this, an <span
-class="ecti-1000">origin </span>vector must be added to the OCS, thus transforming it
-into a 3x4 (or 4x3, depending on preference) matrix. Godot engine implements this
-functionality in the <span
-class="ecti-1000">Transform </span>class:
- <!--l. 419-->
- <div class="lstlisting"><span class="label"><a
- id="x1-14010r1"></a></span>t&#x00A0;=&#x00A0;Transform()&#x00A0;<br /><span class="label"><a
- id="x1-14011r2"></a></span>//rotate&#x00A0;the&#x00A0;transform&#x00A0;in&#x00A0;the&#x00A0;y&#x00A0;axis,&#x00A0;by&#x00A0;45&#x00A0;degrees&#x00A0;<br /><span class="label"><a
- id="x1-14012r3"></a></span>t.rotate(&#x00A0;Vector3(0,1,0),&#x00A0;Math.deg2rad(45)&#x00A0;)&#x00A0;<br /><span class="label"><a
- id="x1-14013r4"></a></span>//translate&#x00A0;the&#x00A0;transform&#x00A0;by&#x00A0;5&#x00A0;in&#x00A0;the&#x00A0;z&#x00A0;axis&#x00A0;<br /><span class="label"><a
- id="x1-14014r5"></a></span>t.translate(&#x00A0;Vector3(&#x00A0;0,0,5&#x00A0;)&#x00A0;)&#x00A0;<br /><span class="label"><a
- id="x1-14015r6"></a></span>//transform&#x00A0;a&#x00A0;vector&#x00A0;v&#x00A0;(xform&#x00A0;method&#x00A0;is&#x00A0;used)&#x00A0;<br /><span class="label"><a
- id="x1-14016r7"></a></span>v&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
- id="x1-14017r8"></a></span>result&#x00A0;=&#x00A0;t.xform(&#x00A0;v&#x00A0;)
- </div>
-<!--l. 431--><p class="indent" > Transform contains internally a Matrix3 &#8220;basis&#8221; and a Vector3 &#8220;origin&#8221; (which can
-be modified individually).
-<!--l. 435--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.4.2 </span> <a
- id="x1-150001.4.2"></a>Transform Internals</h5>
-<!--l. 437--><p class="noindent" >Internally, the xform() process is quite simple, to apply a 3x3 transform to a vector,
-the transposed axis vectors are used (as using the regular axis vectors will result on
-an inverse of the desired transform):
- <!--l. 442-->
- <div class="lstlisting"><span class="label"><a
- id="x1-15001r1"></a></span>m&#x00A0;=&#x00A0;Matrix3(...)&#x00A0;<br /><span class="label"><a
- id="x1-15002r2"></a></span>v&#x00A0;=&#x00A0;Vector3(..)&#x00A0;<br /><span class="label"><a
- id="x1-15003r3"></a></span>result&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
- id="x1-15004r4"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-15005r5"></a></span>x_axis&#x00A0;=&#x00A0;m.get_axis(0)&#x00A0;<br /><span class="label"><a
- id="x1-15006r6"></a></span>y_axis&#x00A0;=&#x00A0;m.get_axis(1)&#x00A0;<br /><span class="label"><a
- id="x1-15007r7"></a></span>z_axis&#x00A0;=&#x00A0;m.get_axis(2)&#x00A0;<br /><span class="label"><a
- id="x1-15008r8"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-15009r9"></a></span>result.x&#x00A0;=&#x00A0;Vector3(x_axis.x,&#x00A0;y_axis.x,&#x00A0;z_axis.x).dot(v)&#x00A0;<br /><span class="label"><a
- id="x1-15010r10"></a></span>result.y&#x00A0;=&#x00A0;Vector3(x_axis.y,&#x00A0;y_axis.y,&#x00A0;z_axis.y).dot(v)&#x00A0;<br /><span class="label"><a
- id="x1-15011r11"></a></span>result.z&#x00A0;=&#x00A0;Vector3(x_axis.z,&#x00A0;y_axis.z,&#x00A0;z_axis.z).dot(v)&#x00A0;<br /><span class="label"><a
- id="x1-15012r12"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-15013r13"></a></span>//&#x00A0;is&#x00A0;the&#x00A0;same&#x00A0;as&#x00A0;doing&#x00A0;<br /><span class="label"><a
- id="x1-15014r14"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-15015r15"></a></span>result&#x00A0;=&#x00A0;m.xform(v)&#x00A0;<br /><span class="label"><a
- id="x1-15016r16"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-15017r17"></a></span>//&#x00A0;if&#x00A0;m&#x00A0;this&#x00A0;was&#x00A0;a&#x00A0;Transform(),&#x00A0;the&#x00A0;origin&#x00A0;would&#x00A0;be&#x00A0;added&#x00A0;<br /><span class="label"><a
- id="x1-15018r18"></a></span>//&#x00A0;like&#x00A0;this:&#x00A0;<br /><span class="label"><a
- id="x1-15019r19"></a></span>&#x00A0;<br /><span class="label"><a
- id="x1-15020r20"></a></span>result&#x00A0;=&#x00A0;result&#x00A0;+&#x00A0;t.get_origin()
- </div>
-<!--l. 468--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.4.3 </span> <a
- id="x1-160001.4.3"></a>Using The Transform</h5>
-<!--l. 470--><p class="noindent" >So, it is often desired apply sucessive operations to a transformation. For example,
-let&#8217;s a assume that there is a turtle sitting at the origin (the turtle is a logo reference,
-
-for those familiar with it). The <span
-class="ecti-1000">y </span>axis is up, and the the turtle&#8217;s nose is pointing
-towards the <span
-class="ecti-1000">z </span>axis.
-<!--l. 476--><p class="indent" > The turtle (like many other animals, or vehicles!) can only walk towards the
-direction it&#8217;s looking at. So, moving the turtle around a little should be something
-like this:
- <!--l. 481-->
- <div class="lstlisting"><span class="label"><a
- id="x1-16001r1"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">turtle</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">at</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">the</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">origin</span>&#x00A0;<br /><span class="label"><a
- id="x1-16002r2"></a></span>turtle&#x00A0;=&#x00A0;Transform()&#x00A0;<br /><span class="label"><a
- id="x1-16003r3"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">turtle</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">will</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">walk</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">5</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">units</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">in</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">z</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">axis</span>&#x00A0;<br /><span class="label"><a
- id="x1-16004r4"></a></span>turtle.translate(&#x00A0;Vector3(0,0,5)&#x00A0;)&#x00A0;<br /><span class="label"><a
- id="x1-16005r5"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">turtle</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">eyes</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">a</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">lettuce</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">3</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">units</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">away</span><span
-class="ecti-1000">,</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">will</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">rotate</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">45</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">degrees</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">right</span>&#x00A0;<br /><span class="label"><a
- id="x1-16006r6"></a></span>turtle.rotate(&#x00A0;Vector3(0,1,0),&#x00A0;Math.deg2rad(45)&#x00A0;)&#x00A0;<br /><span class="label"><a
- id="x1-16007r7"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">turtle</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">approaches</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">the</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">lettuce</span>&#x00A0;<br /><span class="label"><a
- id="x1-16008r8"></a></span>turtle.translate(&#x00A0;Vector3(0,0,5)&#x00A0;)&#x00A0;<br /><span class="label"><a
- id="x1-16009r9"></a></span><span
-class="ecti-1000">//</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">happy</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">turtle</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">over</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">lettuce</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">is</span><span
-class="ecti-1000">&#x00A0;</span><span
-class="ecti-1000">at</span>&#x00A0;<br /><span class="label"><a
- id="x1-16010r10"></a></span>print(turtle.get_origin())
- </div>
-<!--l. 496--><p class="indent" > As can be seen, every new action the turtle takes is based on the previous one it
-took. Had the order of actions been different and the turtle would have never reached
-the lettuce.
-<!--l. 500--><p class="indent" > Transforms are just that, a mean of &#8220;accumulating&#8221; rotation, translation, scale,
-etc.
-<!--l. 504--><p class="noindent" >
- <h5 class="subsubsectionHead"><span class="titlemark">1.4.4 </span> <a
- id="x1-170001.4.4"></a>A Warning about Numerical Precision</h5>
-<!--l. 506--><p class="noindent" >Performing several actions over a transform will slowly and gradually lead to
-precision loss (objects that draw according to a transform may get jittery, bigger,
-smaller, skewed, etc). This happens due to the nature of floating point numbers. if
-transforms/matrices are created from other kind of values (like a position and
-some angular rotation) this is not needed, but if has been accumulating
-transformations and was never recreated, it can be normalized by calling the
-.orthonormalize() built-in function. This function has little cost and calling it every
-now and then will avoid the effects from precision loss to become visible.
-
-</body></html>
-
-
-