summaryrefslogtreecommitdiff
path: root/doc/classes/Vector3.xml
diff options
context:
space:
mode:
Diffstat (limited to 'doc/classes/Vector3.xml')
-rw-r--r--doc/classes/Vector3.xml72
1 files changed, 39 insertions, 33 deletions
diff --git a/doc/classes/Vector3.xml b/doc/classes/Vector3.xml
index 0c861e5ee2..608b976f6f 100644
--- a/doc/classes/Vector3.xml
+++ b/doc/classes/Vector3.xml
@@ -9,7 +9,7 @@
[b]Note:[/b] In a boolean context, a Vector3 will evaluate to [code]false[/code] if it's equal to [code]Vector3(0, 0, 0)[/code]. Otherwise, a Vector3 will always evaluate to [code]true[/code].
</description>
<tutorials>
- <link>https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
+ <link title="Math tutorial index">https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
</tutorials>
<methods>
<method name="Vector3">
@@ -47,7 +47,7 @@
<argument index="0" name="to" type="Vector3">
</argument>
<description>
- Returns the minimum angle to the given vector.
+ Returns the minimum angle to the given vector, in radians.
</description>
</method>
<method name="bounce">
@@ -63,7 +63,7 @@
<return type="Vector3">
</return>
<description>
- Returns a new vector with all components rounded up.
+ Returns a new vector with all components rounded up (towards positive infinity).
</description>
</method>
<method name="cross">
@@ -72,7 +72,7 @@
<argument index="0" name="b" type="Vector3">
</argument>
<description>
- Returns the cross product with [code]b[/code].
+ Returns the cross product of this vector and [code]b[/code].
</description>
</method>
<method name="cubic_interpolate">
@@ -87,7 +87,7 @@
<argument index="3" name="t" type="float">
</argument>
<description>
- Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
+ Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
</description>
</method>
<method name="direction_to">
@@ -105,7 +105,8 @@
<argument index="0" name="b" type="Vector3">
</argument>
<description>
- Returns the squared distance to [code]b[/code]. Prefer this function over [method distance_to] if you need to sort vectors or need the squared distance for some formula.
+ Returns the squared distance between this vector and [code]b[/code].
+ This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="distance_to">
@@ -114,7 +115,7 @@
<argument index="0" name="b" type="Vector3">
</argument>
<description>
- Returns the distance to [code]b[/code].
+ Returns the distance between this vector and [code]b[/code].
</description>
</method>
<method name="dot">
@@ -123,14 +124,17 @@
<argument index="0" name="b" type="Vector3">
</argument>
<description>
- Returns the dot product with [code]b[/code].
+ Returns the dot product of this vector and [code]b[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
+ The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
+ When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
+ [b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
</description>
</method>
<method name="floor">
<return type="Vector3">
</return>
<description>
- Returns a new vector with all components rounded down.
+ Returns a new vector with all components rounded down (towards negative infinity).
</description>
</method>
<method name="inverse">
@@ -153,21 +157,22 @@
<return type="bool">
</return>
<description>
- Returns [code]true[/code] if the vector is normalized.
+ Returns [code]true[/code] if the vector is normalized, and false otherwise.
</description>
</method>
<method name="length">
<return type="float">
</return>
<description>
- Returns the vector's length.
+ Returns the length (magnitude) of this vector.
</description>
</method>
<method name="length_squared">
<return type="float">
</return>
<description>
- Returns the vector's length squared. Prefer this function over [method length] if you need to sort vectors or need the squared length for some formula.
+ Returns the squared length (squared magnitude) of this vector.
+ This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="lerp">
@@ -178,21 +183,21 @@
<argument index="1" name="t" type="float">
</argument>
<description>
- Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation..
+ Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
</description>
</method>
<method name="max_axis">
<return type="int">
</return>
<description>
- Returns the axis of the vector's largest value. See [code]AXIS_*[/code] constants.
+ Returns the axis of the vector's largest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<method name="min_axis">
<return type="int">
</return>
<description>
- Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants.
+ Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Z].
</description>
</method>
<method name="move_toward">
@@ -203,7 +208,7 @@
<argument index="1" name="delta" type="float">
</argument>
<description>
- Moves the vector toward [code]to[/code] by the fixed [code]delta[/code] amount.
+ Moves this vector toward [code]to[/code] by the fixed [code]delta[/code] amount.
</description>
</method>
<method name="normalized">
@@ -228,7 +233,7 @@
<argument index="0" name="mod" type="float">
</argument>
<description>
- Returns a vector composed of the [code]fposmod[/code] of this vector's components and [code]mod[/code].
+ Returns a vector composed of the [method @GDScript.fposmod] of this vector's components and [code]mod[/code].
</description>
</method>
<method name="posmodv">
@@ -237,7 +242,7 @@
<argument index="0" name="modv" type="Vector3">
</argument>
<description>
- Returns a vector composed of the [code]fposmod[/code] of this vector's components and [code]modv[/code]'s components.
+ Returns a vector composed of the [method @GDScript.fposmod] of this vector's components and [code]modv[/code]'s components.
</description>
</method>
<method name="project">
@@ -246,7 +251,7 @@
<argument index="0" name="b" type="Vector3">
</argument>
<description>
- Returns the vector projected onto the vector [code]b[/code].
+ Returns this vector projected onto another vector [code]b[/code].
</description>
</method>
<method name="reflect">
@@ -255,7 +260,7 @@
<argument index="0" name="n" type="Vector3">
</argument>
<description>
- Returns the vector reflected from a plane defined by the given normal.
+ Returns this vector reflected from a plane defined by the given normal.
</description>
</method>
<method name="rotated">
@@ -266,21 +271,21 @@
<argument index="1" name="phi" type="float">
</argument>
<description>
- Rotates the vector around a given axis by [code]phi[/code] radians. The axis must be a normalized vector.
+ Rotates this vector around a given axis by [code]phi[/code] radians. The axis must be a normalized vector.
</description>
</method>
<method name="round">
<return type="Vector3">
</return>
<description>
- Returns the vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
+ Returns this vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
</description>
</method>
<method name="sign">
<return type="Vector3">
</return>
<description>
- Returns the vector with each component set to one or negative one, depending on the signs of the components.
+ Returns a vector with each component set to one or negative one, depending on the signs of this vector's components, or zero if the component is zero, by calling [method @GDScript.sign] on each component.
</description>
</method>
<method name="slerp">
@@ -291,7 +296,7 @@
<argument index="1" name="t" type="float">
</argument>
<description>
- Returns the result of spherical linear interpolation between this vector and [code]b[/code], by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
+ Returns the result of spherical linear interpolation between this vector and [code]b[/code], by amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
[b]Note:[/b] Both vectors must be normalized.
</description>
</method>
@@ -301,7 +306,7 @@
<argument index="0" name="n" type="Vector3">
</argument>
<description>
- Returns the component of the vector along a plane defined by the given normal.
+ Returns this vector slid along a plane defined by the given normal.
</description>
</method>
<method name="snapped">
@@ -310,7 +315,7 @@
<argument index="0" name="by" type="Vector3">
</argument>
<description>
- Returns the vector snapped to a grid with the given size.
+ Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
</description>
</method>
<method name="to_diagonal_matrix">
@@ -318,6 +323,7 @@
</return>
<description>
Returns a diagonal matrix with the vector as main diagonal.
+ This is equivalent to a Basis with no rotation or shearing and this vector's components set as the scale.
</description>
</method>
</methods>
@@ -343,19 +349,19 @@
Enumerated value for the Z axis. Returned by [method max_axis] and [method min_axis].
</constant>
<constant name="ZERO" value="Vector3( 0, 0, 0 )">
- Zero vector.
+ Zero vector, a vector with all components set to [code]0[/code].
</constant>
<constant name="ONE" value="Vector3( 1, 1, 1 )">
- One vector.
+ One vector, a vector with all components set to [code]1[/code].
</constant>
<constant name="INF" value="Vector3( inf, inf, inf )">
- Infinity vector.
+ Infinity vector, a vector with all components set to [constant @GDScript.INF].
</constant>
<constant name="LEFT" value="Vector3( -1, 0, 0 )">
- Left unit vector.
+ Left unit vector. Represents the local direction of left, and the global direction of west.
</constant>
<constant name="RIGHT" value="Vector3( 1, 0, 0 )">
- Right unit vector.
+ Right unit vector. Represents the local direction of right, and the global direction of east.
</constant>
<constant name="UP" value="Vector3( 0, 1, 0 )">
Up unit vector.
@@ -364,10 +370,10 @@
Down unit vector.
</constant>
<constant name="FORWARD" value="Vector3( 0, 0, -1 )">
- Forward unit vector.
+ Forward unit vector. Represents the local direction of forward, and the global direction of north.
</constant>
<constant name="BACK" value="Vector3( 0, 0, 1 )">
- Back unit vector.
+ Back unit vector. Represents the local direction of back, and the global direction of south.
</constant>
</constants>
</class>