summaryrefslogtreecommitdiff
path: root/doc/classes/RandomNumberGenerator.xml
diff options
context:
space:
mode:
Diffstat (limited to 'doc/classes/RandomNumberGenerator.xml')
-rw-r--r--doc/classes/RandomNumberGenerator.xml12
1 files changed, 6 insertions, 6 deletions
diff --git a/doc/classes/RandomNumberGenerator.xml b/doc/classes/RandomNumberGenerator.xml
index 07c9f2a74b..be7bcc9c35 100644
--- a/doc/classes/RandomNumberGenerator.xml
+++ b/doc/classes/RandomNumberGenerator.xml
@@ -1,20 +1,19 @@
<?xml version="1.0" encoding="UTF-8" ?>
<class name="RandomNumberGenerator" inherits="Reference" category="Core" version="3.2">
<brief_description>
- A class for generation pseudo-random numbers.
+ A class for generating pseudo-random numbers.
</brief_description>
<description>
+ RandomNumberGenerator is a class for generating pseudo-random numbers. It currently uses PCG32. The underlying algorithm is an implementation detail. As a result, it should not be depended upon for reproducible random streams across Godot versions.
</description>
<tutorials>
</tutorials>
- <demos>
- </demos>
<methods>
<method name="randf">
<return type="float">
</return>
<description>
- Generates pseudo-random float between '0.0' and '1.0'.
+ Generates pseudo-random float between '0.0' and '1.0', inclusive.
</description>
</method>
<method name="randf_range">
@@ -25,7 +24,7 @@
<argument index="1" name="to" type="float">
</argument>
<description>
- Generates pseudo-random float between [code]from[/code] and [code]to[/code].
+ Generates pseudo-random float between [code]from[/code] and [code]to[/code], inclusive.
</description>
</method>
<method name="randfn">
@@ -43,7 +42,7 @@
<return type="int">
</return>
<description>
- Generates pseudo-random 32-bit unsigned integer between '0' and '4294967295'.
+ Generates pseudo-random 32-bit unsigned integer between '0' and '4294967295', inclusive.
</description>
</method>
<method name="randi_range">
@@ -68,6 +67,7 @@
<members>
<member name="seed" type="int" setter="set_seed" getter="get_seed">
The seed used by the random number generator. A given seed will give a reproducible sequence of pseudo-random numbers.
+ [b]Note:[/b] The RNG does not have an avalanche effect, and can output similar random streams given similar seeds. Consider using a hash function to improve your seed quality if they're sourced externally.
</member>
</members>
<constants>