diff options
Diffstat (limited to 'doc/classes/Quat.xml')
-rw-r--r-- | doc/classes/Quat.xml | 211 |
1 files changed, 0 insertions, 211 deletions
diff --git a/doc/classes/Quat.xml b/doc/classes/Quat.xml deleted file mode 100644 index 6c95e303b8..0000000000 --- a/doc/classes/Quat.xml +++ /dev/null @@ -1,211 +0,0 @@ -<?xml version="1.0" encoding="UTF-8" ?> -<class name="Quat" version="4.0"> - <brief_description> - Quaternion. - </brief_description> - <description> - A unit quaternion used for representing 3D rotations. Quaternions need to be normalized to be used for rotation. - It is similar to Basis, which implements matrix representation of rotations, and can be parametrized using both an axis-angle pair or Euler angles. Basis stores rotation, scale, and shearing, while Quat only stores rotation. - Due to its compactness and the way it is stored in memory, certain operations (obtaining axis-angle and performing SLERP, in particular) are more efficient and robust against floating-point errors. - </description> - <tutorials> - <link title="Using 3D transforms">https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html#interpolating-with-quaternions</link> - <link title="Third Person Shooter Demo">https://godotengine.org/asset-library/asset/678</link> - </tutorials> - <methods> - <method name="Quat"> - <return type="Quat"> - </return> - <argument index="0" name="from" type="Basis"> - </argument> - <description> - Constructs a quaternion from the given [Basis]. - </description> - </method> - <method name="Quat"> - <return type="Quat"> - </return> - <argument index="0" name="euler" type="Vector3"> - </argument> - <description> - Constructs a quaternion that will perform a rotation specified by Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle). - </description> - </method> - <method name="Quat"> - <return type="Quat"> - </return> - <argument index="0" name="axis" type="Vector3"> - </argument> - <argument index="1" name="angle" type="float"> - </argument> - <description> - Constructs a quaternion that will rotate around the given axis by the specified angle. The axis must be a normalized vector. - </description> - </method> - <method name="Quat"> - <return type="Quat"> - </return> - <argument index="0" name="x" type="float"> - </argument> - <argument index="1" name="y" type="float"> - </argument> - <argument index="2" name="z" type="float"> - </argument> - <argument index="3" name="w" type="float"> - </argument> - <description> - Constructs a quaternion defined by the given values. - </description> - </method> - <method name="cubic_slerp"> - <return type="Quat"> - </return> - <argument index="0" name="b" type="Quat"> - </argument> - <argument index="1" name="pre_a" type="Quat"> - </argument> - <argument index="2" name="post_b" type="Quat"> - </argument> - <argument index="3" name="t" type="float"> - </argument> - <description> - Performs a cubic spherical interpolation between quaternions [code]preA[/code], this vector, [code]b[/code], and [code]postB[/code], by the given amount [code]t[/code]. - </description> - </method> - <method name="dot"> - <return type="float"> - </return> - <argument index="0" name="b" type="Quat"> - </argument> - <description> - Returns the dot product of two quaternions. - </description> - </method> - <method name="get_euler"> - <return type="Vector3"> - </return> - <description> - Returns Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last) corresponding to the rotation represented by the unit quaternion. Returned vector contains the rotation angles in the format (X angle, Y angle, Z angle). - </description> - </method> - <method name="inverse"> - <return type="Quat"> - </return> - <description> - Returns the inverse of the quaternion. - </description> - </method> - <method name="is_equal_approx"> - <return type="bool"> - </return> - <argument index="0" name="quat" type="Quat"> - </argument> - <description> - Returns [code]true[/code] if this quaterion and [code]quat[/code] are approximately equal, by running [method @GDScript.is_equal_approx] on each component. - </description> - </method> - <method name="is_normalized"> - <return type="bool"> - </return> - <description> - Returns whether the quaternion is normalized or not. - </description> - </method> - <method name="length"> - <return type="float"> - </return> - <description> - Returns the length of the quaternion. - </description> - </method> - <method name="length_squared"> - <return type="float"> - </return> - <description> - Returns the length of the quaternion, squared. - </description> - </method> - <method name="normalized"> - <return type="Quat"> - </return> - <description> - Returns a copy of the quaternion, normalized to unit length. - </description> - </method> - <method name="set_axis_angle"> - <return type="void"> - </return> - <argument index="0" name="axis" type="Vector3"> - </argument> - <argument index="1" name="angle" type="float"> - </argument> - <description> - Sets the quaternion to a rotation which rotates around axis by the specified angle, in radians. The axis must be a normalized vector. - </description> - </method> - <method name="set_euler"> - <return type="void"> - </return> - <argument index="0" name="euler" type="Vector3"> - </argument> - <description> - Sets the quaternion to a rotation specified by Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle). - </description> - </method> - <method name="slerp"> - <return type="Quat"> - </return> - <argument index="0" name="b" type="Quat"> - </argument> - <argument index="1" name="t" type="float"> - </argument> - <description> - Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code]. - [b]Note:[/b] Both quaternions must be normalized. - </description> - </method> - <method name="slerpni"> - <return type="Quat"> - </return> - <argument index="0" name="b" type="Quat"> - </argument> - <argument index="1" name="t" type="float"> - </argument> - <description> - Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code], but without checking if the rotation path is not bigger than 90 degrees. - </description> - </method> - <method name="xform"> - <return type="Vector3"> - </return> - <argument index="0" name="v" type="Vector3"> - </argument> - <description> - Returns a vector transformed (multiplied) by this quaternion. - </description> - </method> - </methods> - <members> - <member name="w" type="float" setter="" getter="" default="1.0"> - W component of the quaternion (real part). - Quaternion components should usually not be manipulated directly. - </member> - <member name="x" type="float" setter="" getter="" default="0.0"> - X component of the quaternion (imaginary [code]i[/code] axis part). - Quaternion components should usually not be manipulated directly. - </member> - <member name="y" type="float" setter="" getter="" default="0.0"> - Y component of the quaternion (imaginary [code]j[/code] axis part). - Quaternion components should usually not be manipulated directly. - </member> - <member name="z" type="float" setter="" getter="" default="0.0"> - Z component of the quaternion (imaginary [code]k[/code] axis part). - Quaternion components should usually not be manipulated directly. - </member> - </members> - <constants> - <constant name="IDENTITY" value="Quat( 0, 0, 0, 1 )"> - The identity quaternion, representing no rotation. Equivalent to an identity [Basis] matrix. If a vector is transformed by an identity quaternion, it will not change. - </constant> - </constants> -</class> |