diff options
Diffstat (limited to 'doc/classes/Quat.xml')
-rw-r--r-- | doc/classes/Quat.xml | 185 |
1 files changed, 141 insertions, 44 deletions
diff --git a/doc/classes/Quat.xml b/doc/classes/Quat.xml index 6c95e303b8..1c0a3e37c0 100644 --- a/doc/classes/Quat.xml +++ b/doc/classes/Quat.xml @@ -13,25 +13,33 @@ <link title="Third Person Shooter Demo">https://godotengine.org/asset-library/asset/678</link> </tutorials> <methods> - <method name="Quat"> + <method name="Quat" qualifiers="constructor"> <return type="Quat"> </return> - <argument index="0" name="from" type="Basis"> + <description> + Constructs a default-initialized quaternion with all components set to [code]0[/code]. + </description> + </method> + <method name="Quat" qualifiers="constructor"> + <return type="Quat"> + </return> + <argument index="0" name="from" type="Quat"> </argument> <description> - Constructs a quaternion from the given [Basis]. + Constructs a [Quat] as a copy of the given [Quat]. </description> </method> - <method name="Quat"> + <method name="Quat" qualifiers="constructor"> <return type="Quat"> </return> - <argument index="0" name="euler" type="Vector3"> + <argument index="0" name="arc_from" type="Vector3"> + </argument> + <argument index="1" name="arc_to" type="Vector3"> </argument> <description> - Constructs a quaternion that will perform a rotation specified by Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle). </description> </method> - <method name="Quat"> + <method name="Quat" qualifiers="constructor"> <return type="Quat"> </return> <argument index="0" name="axis" type="Vector3"> @@ -42,7 +50,25 @@ Constructs a quaternion that will rotate around the given axis by the specified angle. The axis must be a normalized vector. </description> </method> - <method name="Quat"> + <method name="Quat" qualifiers="constructor"> + <return type="Quat"> + </return> + <argument index="0" name="euler" type="Vector3"> + </argument> + <description> + Constructs a quaternion that will perform a rotation specified by Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle). + </description> + </method> + <method name="Quat" qualifiers="constructor"> + <return type="Quat"> + </return> + <argument index="0" name="from" type="Basis"> + </argument> + <description> + Constructs a quaternion from the given [Basis]. + </description> + </method> + <method name="Quat" qualifiers="constructor"> <return type="Quat"> </return> <argument index="0" name="x" type="float"> @@ -57,7 +83,7 @@ Constructs a quaternion defined by the given values. </description> </method> - <method name="cubic_slerp"> + <method name="cubic_slerp" qualifiers="const"> <return type="Quat"> </return> <argument index="0" name="b" type="Quat"> @@ -66,122 +92,193 @@ </argument> <argument index="2" name="post_b" type="Quat"> </argument> - <argument index="3" name="t" type="float"> + <argument index="3" name="weight" type="float"> </argument> <description> - Performs a cubic spherical interpolation between quaternions [code]preA[/code], this vector, [code]b[/code], and [code]postB[/code], by the given amount [code]t[/code]. + Performs a cubic spherical interpolation between quaternions [code]pre_a[/code], this vector, [code]b[/code], and [code]post_b[/code], by the given amount [code]weight[/code]. </description> </method> - <method name="dot"> + <method name="dot" qualifiers="const"> <return type="float"> </return> - <argument index="0" name="b" type="Quat"> + <argument index="0" name="with" type="Quat"> </argument> <description> Returns the dot product of two quaternions. </description> </method> - <method name="get_euler"> + <method name="get_euler" qualifiers="const"> <return type="Vector3"> </return> <description> Returns Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last) corresponding to the rotation represented by the unit quaternion. Returned vector contains the rotation angles in the format (X angle, Y angle, Z angle). </description> </method> - <method name="inverse"> + <method name="inverse" qualifiers="const"> <return type="Quat"> </return> <description> Returns the inverse of the quaternion. </description> </method> - <method name="is_equal_approx"> + <method name="is_equal_approx" qualifiers="const"> <return type="bool"> </return> - <argument index="0" name="quat" type="Quat"> + <argument index="0" name="to" type="Quat"> </argument> <description> - Returns [code]true[/code] if this quaterion and [code]quat[/code] are approximately equal, by running [method @GDScript.is_equal_approx] on each component. + Returns [code]true[/code] if this quaternion and [code]quat[/code] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component. </description> </method> - <method name="is_normalized"> + <method name="is_normalized" qualifiers="const"> <return type="bool"> </return> <description> Returns whether the quaternion is normalized or not. </description> </method> - <method name="length"> + <method name="length" qualifiers="const"> <return type="float"> </return> <description> Returns the length of the quaternion. </description> </method> - <method name="length_squared"> + <method name="length_squared" qualifiers="const"> <return type="float"> </return> <description> Returns the length of the quaternion, squared. </description> </method> - <method name="normalized"> + <method name="normalized" qualifiers="const"> <return type="Quat"> </return> <description> Returns a copy of the quaternion, normalized to unit length. </description> </method> - <method name="set_axis_angle"> - <return type="void"> + <method name="operator !=" qualifiers="operator"> + <return type="bool"> </return> - <argument index="0" name="axis" type="Vector3"> + <argument index="0" name="right" type="Quat"> </argument> - <argument index="1" name="angle" type="float"> + <description> + </description> + </method> + <method name="operator *" qualifiers="operator"> + <return type="Quat"> + </return> + <argument index="0" name="right" type="Quat"> </argument> <description> - Sets the quaternion to a rotation which rotates around axis by the specified angle, in radians. The axis must be a normalized vector. </description> </method> - <method name="set_euler"> - <return type="void"> + <method name="operator *" qualifiers="operator"> + <return type="Vector3"> </return> - <argument index="0" name="euler" type="Vector3"> + <argument index="0" name="right" type="Vector3"> </argument> <description> - Sets the quaternion to a rotation specified by Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle). </description> </method> - <method name="slerp"> + <method name="operator *" qualifiers="operator"> <return type="Quat"> </return> - <argument index="0" name="b" type="Quat"> + <argument index="0" name="right" type="float"> </argument> - <argument index="1" name="t" type="float"> + <description> + </description> + </method> + <method name="operator *" qualifiers="operator"> + <return type="Quat"> + </return> + <argument index="0" name="right" type="int"> </argument> <description> - Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code]. - [b]Note:[/b] Both quaternions must be normalized. </description> </method> - <method name="slerpni"> + <method name="operator +" qualifiers="operator"> <return type="Quat"> </return> - <argument index="0" name="b" type="Quat"> + <description> + </description> + </method> + <method name="operator +" qualifiers="operator"> + <return type="Quat"> + </return> + <argument index="0" name="right" type="Quat"> </argument> - <argument index="1" name="t" type="float"> + <description> + </description> + </method> + <method name="operator -" qualifiers="operator"> + <return type="Quat"> + </return> + <description> + </description> + </method> + <method name="operator -" qualifiers="operator"> + <return type="Quat"> + </return> + <argument index="0" name="right" type="Quat"> </argument> <description> - Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code], but without checking if the rotation path is not bigger than 90 degrees. </description> </method> - <method name="xform"> - <return type="Vector3"> + <method name="operator /" qualifiers="operator"> + <return type="Quat"> + </return> + <argument index="0" name="right" type="float"> + </argument> + <description> + </description> + </method> + <method name="operator /" qualifiers="operator"> + <return type="Quat"> </return> - <argument index="0" name="v" type="Vector3"> + <argument index="0" name="right" type="int"> </argument> <description> - Returns a vector transformed (multiplied) by this quaternion. + </description> + </method> + <method name="operator ==" qualifiers="operator"> + <return type="bool"> + </return> + <argument index="0" name="right" type="Quat"> + </argument> + <description> + </description> + </method> + <method name="operator []" qualifiers="operator"> + <return type="float"> + </return> + <argument index="0" name="index" type="int"> + </argument> + <description> + </description> + </method> + <method name="slerp" qualifiers="const"> + <return type="Quat"> + </return> + <argument index="0" name="to" type="Quat"> + </argument> + <argument index="1" name="weight" type="float"> + </argument> + <description> + Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code]. + [b]Note:[/b] Both quaternions must be normalized. + </description> + </method> + <method name="slerpni" qualifiers="const"> + <return type="Quat"> + </return> + <argument index="0" name="to" type="Quat"> + </argument> + <argument index="1" name="weight" type="float"> + </argument> + <description> + Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code], but without checking if the rotation path is not bigger than 90 degrees. </description> </method> </methods> |