summaryrefslogtreecommitdiff
path: root/doc/classes/Geometry2D.xml
diff options
context:
space:
mode:
Diffstat (limited to 'doc/classes/Geometry2D.xml')
-rw-r--r--doc/classes/Geometry2D.xml216
1 files changed, 72 insertions, 144 deletions
diff --git a/doc/classes/Geometry2D.xml b/doc/classes/Geometry2D.xml
index 13354ec19e..157124cded 100644
--- a/doc/classes/Geometry2D.xml
+++ b/doc/classes/Geometry2D.xml
@@ -10,192 +10,139 @@
</tutorials>
<methods>
<method name="clip_polygons">
- <return type="Array">
- </return>
- <argument index="0" name="polygon_a" type="PackedVector2Array">
- </argument>
- <argument index="1" name="polygon_b" type="PackedVector2Array">
- </argument>
+ <return type="Array" />
+ <argument index="0" name="polygon_a" type="PackedVector2Array" />
+ <argument index="1" name="polygon_b" type="PackedVector2Array" />
<description>
Clips [code]polygon_a[/code] against [code]polygon_b[/code] and returns an array of clipped polygons. This performs [constant OPERATION_DIFFERENCE] between polygons. Returns an empty array if [code]polygon_b[/code] completely overlaps [code]polygon_a[/code].
If [code]polygon_b[/code] is enclosed by [code]polygon_a[/code], returns an outer polygon (boundary) and inner polygon (hole) which could be distinguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="clip_polyline_with_polygon">
- <return type="Array">
- </return>
- <argument index="0" name="polyline" type="PackedVector2Array">
- </argument>
- <argument index="1" name="polygon" type="PackedVector2Array">
- </argument>
+ <return type="Array" />
+ <argument index="0" name="polyline" type="PackedVector2Array" />
+ <argument index="1" name="polygon" type="PackedVector2Array" />
<description>
Clips [code]polyline[/code] against [code]polygon[/code] and returns an array of clipped polylines. This performs [constant OPERATION_DIFFERENCE] between the polyline and the polygon. This operation can be thought of as cutting a line with a closed shape.
</description>
</method>
<method name="convex_hull">
- <return type="PackedVector2Array">
- </return>
- <argument index="0" name="points" type="PackedVector2Array">
- </argument>
+ <return type="PackedVector2Array" />
+ <argument index="0" name="points" type="PackedVector2Array" />
<description>
Given an array of [Vector2]s, returns the convex hull as a list of points in counterclockwise order. The last point is the same as the first one.
</description>
</method>
<method name="exclude_polygons">
- <return type="Array">
- </return>
- <argument index="0" name="polygon_a" type="PackedVector2Array">
- </argument>
- <argument index="1" name="polygon_b" type="PackedVector2Array">
- </argument>
+ <return type="Array" />
+ <argument index="0" name="polygon_a" type="PackedVector2Array" />
+ <argument index="1" name="polygon_b" type="PackedVector2Array" />
<description>
Mutually excludes common area defined by intersection of [code]polygon_a[/code] and [code]polygon_b[/code] (see [method intersect_polygons]) and returns an array of excluded polygons. This performs [constant OPERATION_XOR] between polygons. In other words, returns all but common area between polygons.
The operation may result in an outer polygon (boundary) and inner polygon (hole) produced which could be distinguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="get_closest_point_to_segment">
- <return type="Vector2">
- </return>
- <argument index="0" name="point" type="Vector2">
- </argument>
- <argument index="1" name="s1" type="Vector2">
- </argument>
- <argument index="2" name="s2" type="Vector2">
- </argument>
+ <return type="Vector2" />
+ <argument index="0" name="point" type="Vector2" />
+ <argument index="1" name="s1" type="Vector2" />
+ <argument index="2" name="s2" type="Vector2" />
<description>
Returns the 2D point on the 2D segment ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point will always be inside the specified segment.
</description>
</method>
<method name="get_closest_point_to_segment_uncapped">
- <return type="Vector2">
- </return>
- <argument index="0" name="point" type="Vector2">
- </argument>
- <argument index="1" name="s1" type="Vector2">
- </argument>
- <argument index="2" name="s2" type="Vector2">
- </argument>
+ <return type="Vector2" />
+ <argument index="0" name="point" type="Vector2" />
+ <argument index="1" name="s1" type="Vector2" />
+ <argument index="2" name="s2" type="Vector2" />
<description>
Returns the 2D point on the 2D line defined by ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point can be inside the segment ([code]s1[/code], [code]s2[/code]) or outside of it, i.e. somewhere on the line extending from the segment.
</description>
</method>
<method name="get_closest_points_between_segments">
- <return type="PackedVector2Array">
- </return>
- <argument index="0" name="p1" type="Vector2">
- </argument>
- <argument index="1" name="q1" type="Vector2">
- </argument>
- <argument index="2" name="p2" type="Vector2">
- </argument>
- <argument index="3" name="q2" type="Vector2">
- </argument>
+ <return type="PackedVector2Array" />
+ <argument index="0" name="p1" type="Vector2" />
+ <argument index="1" name="q1" type="Vector2" />
+ <argument index="2" name="p2" type="Vector2" />
+ <argument index="3" name="q2" type="Vector2" />
<description>
Given the two 2D segments ([code]p1[/code], [code]q1[/code]) and ([code]p2[/code], [code]q2[/code]), finds those two points on the two segments that are closest to each other. Returns a [PackedVector2Array] that contains this point on ([code]p1[/code], [code]q1[/code]) as well the accompanying point on ([code]p2[/code], [code]q2[/code]).
</description>
</method>
<method name="intersect_polygons">
- <return type="Array">
- </return>
- <argument index="0" name="polygon_a" type="PackedVector2Array">
- </argument>
- <argument index="1" name="polygon_b" type="PackedVector2Array">
- </argument>
+ <return type="Array" />
+ <argument index="0" name="polygon_a" type="PackedVector2Array" />
+ <argument index="1" name="polygon_b" type="PackedVector2Array" />
<description>
Intersects [code]polygon_a[/code] with [code]polygon_b[/code] and returns an array of intersected polygons. This performs [constant OPERATION_INTERSECTION] between polygons. In other words, returns common area shared by polygons. Returns an empty array if no intersection occurs.
The operation may result in an outer polygon (boundary) and inner polygon (hole) produced which could be distinguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="intersect_polyline_with_polygon">
- <return type="Array">
- </return>
- <argument index="0" name="polyline" type="PackedVector2Array">
- </argument>
- <argument index="1" name="polygon" type="PackedVector2Array">
- </argument>
+ <return type="Array" />
+ <argument index="0" name="polyline" type="PackedVector2Array" />
+ <argument index="1" name="polygon" type="PackedVector2Array" />
<description>
Intersects [code]polyline[/code] with [code]polygon[/code] and returns an array of intersected polylines. This performs [constant OPERATION_INTERSECTION] between the polyline and the polygon. This operation can be thought of as chopping a line with a closed shape.
</description>
</method>
<method name="is_point_in_circle">
- <return type="bool">
- </return>
- <argument index="0" name="point" type="Vector2">
- </argument>
- <argument index="1" name="circle_position" type="Vector2">
- </argument>
- <argument index="2" name="circle_radius" type="float">
- </argument>
+ <return type="bool" />
+ <argument index="0" name="point" type="Vector2" />
+ <argument index="1" name="circle_position" type="Vector2" />
+ <argument index="2" name="circle_radius" type="float" />
<description>
Returns [code]true[/code] if [code]point[/code] is inside the circle or if it's located exactly [i]on[/i] the circle's boundary, otherwise returns [code]false[/code].
</description>
</method>
<method name="is_point_in_polygon">
- <return type="bool">
- </return>
- <argument index="0" name="point" type="Vector2">
- </argument>
- <argument index="1" name="polygon" type="PackedVector2Array">
- </argument>
+ <return type="bool" />
+ <argument index="0" name="point" type="Vector2" />
+ <argument index="1" name="polygon" type="PackedVector2Array" />
<description>
Returns [code]true[/code] if [code]point[/code] is inside [code]polygon[/code] or if it's located exactly [i]on[/i] polygon's boundary, otherwise returns [code]false[/code].
</description>
</method>
<method name="is_polygon_clockwise">
- <return type="bool">
- </return>
- <argument index="0" name="polygon" type="PackedVector2Array">
- </argument>
+ <return type="bool" />
+ <argument index="0" name="polygon" type="PackedVector2Array" />
<description>
Returns [code]true[/code] if [code]polygon[/code]'s vertices are ordered in clockwise order, otherwise returns [code]false[/code].
</description>
</method>
<method name="line_intersects_line">
- <return type="Variant">
- </return>
- <argument index="0" name="from_a" type="Vector2">
- </argument>
- <argument index="1" name="dir_a" type="Vector2">
- </argument>
- <argument index="2" name="from_b" type="Vector2">
- </argument>
- <argument index="3" name="dir_b" type="Vector2">
- </argument>
+ <return type="Variant" />
+ <argument index="0" name="from_a" type="Vector2" />
+ <argument index="1" name="dir_a" type="Vector2" />
+ <argument index="2" name="from_b" type="Vector2" />
+ <argument index="3" name="dir_b" type="Vector2" />
<description>
Checks if the two lines ([code]from_a[/code], [code]dir_a[/code]) and ([code]from_b[/code], [code]dir_b[/code]) intersect. If yes, return the point of intersection as [Vector2]. If no intersection takes place, returns an empty [Variant].
[b]Note:[/b] The lines are specified using direction vectors, not end points.
</description>
</method>
<method name="make_atlas">
- <return type="Dictionary">
- </return>
- <argument index="0" name="sizes" type="PackedVector2Array">
- </argument>
+ <return type="Dictionary" />
+ <argument index="0" name="sizes" type="PackedVector2Array" />
<description>
Given an array of [Vector2]s representing tiles, builds an atlas. The returned dictionary has two keys: [code]points[/code] is a vector of [Vector2] that specifies the positions of each tile, [code]size[/code] contains the overall size of the whole atlas as [Vector2].
</description>
</method>
<method name="merge_polygons">
- <return type="Array">
- </return>
- <argument index="0" name="polygon_a" type="PackedVector2Array">
- </argument>
- <argument index="1" name="polygon_b" type="PackedVector2Array">
- </argument>
+ <return type="Array" />
+ <argument index="0" name="polygon_a" type="PackedVector2Array" />
+ <argument index="1" name="polygon_b" type="PackedVector2Array" />
<description>
Merges (combines) [code]polygon_a[/code] and [code]polygon_b[/code] and returns an array of merged polygons. This performs [constant OPERATION_UNION] between polygons.
The operation may result in an outer polygon (boundary) and multiple inner polygons (holes) produced which could be distinguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="offset_polygon">
- <return type="Array">
- </return>
- <argument index="0" name="polygon" type="PackedVector2Array">
- </argument>
- <argument index="1" name="delta" type="float">
- </argument>
- <argument index="2" name="join_type" type="int" enum="Geometry2D.PolyJoinType" default="0">
- </argument>
+ <return type="Array" />
+ <argument index="0" name="polygon" type="PackedVector2Array" />
+ <argument index="1" name="delta" type="float" />
+ <argument index="2" name="join_type" type="int" enum="Geometry2D.PolyJoinType" default="0" />
<description>
Inflates or deflates [code]polygon[/code] by [code]delta[/code] units (pixels). If [code]delta[/code] is positive, makes the polygon grow outward. If [code]delta[/code] is negative, shrinks the polygon inward. Returns an array of polygons because inflating/deflating may result in multiple discrete polygons. Returns an empty array if [code]delta[/code] is negative and the absolute value of it approximately exceeds the minimum bounding rectangle dimensions of the polygon.
Each polygon's vertices will be rounded as determined by [code]join_type[/code], see [enum PolyJoinType].
@@ -219,16 +166,11 @@
</description>
</method>
<method name="offset_polyline">
- <return type="Array">
- </return>
- <argument index="0" name="polyline" type="PackedVector2Array">
- </argument>
- <argument index="1" name="delta" type="float">
- </argument>
- <argument index="2" name="join_type" type="int" enum="Geometry2D.PolyJoinType" default="0">
- </argument>
- <argument index="3" name="end_type" type="int" enum="Geometry2D.PolyEndType" default="3">
- </argument>
+ <return type="Array" />
+ <argument index="0" name="polyline" type="PackedVector2Array" />
+ <argument index="1" name="delta" type="float" />
+ <argument index="2" name="join_type" type="int" enum="Geometry2D.PolyJoinType" default="0" />
+ <argument index="3" name="end_type" type="int" enum="Geometry2D.PolyEndType" default="3" />
<description>
Inflates or deflates [code]polyline[/code] by [code]delta[/code] units (pixels), producing polygons. If [code]delta[/code] is positive, makes the polyline grow outward. Returns an array of polygons because inflating/deflating may result in multiple discrete polygons. If [code]delta[/code] is negative, returns an empty array.
Each polygon's vertices will be rounded as determined by [code]join_type[/code], see [enum PolyJoinType].
@@ -237,49 +179,35 @@
</description>
</method>
<method name="point_is_inside_triangle" qualifiers="const">
- <return type="bool">
- </return>
- <argument index="0" name="point" type="Vector2">
- </argument>
- <argument index="1" name="a" type="Vector2">
- </argument>
- <argument index="2" name="b" type="Vector2">
- </argument>
- <argument index="3" name="c" type="Vector2">
- </argument>
+ <return type="bool" />
+ <argument index="0" name="point" type="Vector2" />
+ <argument index="1" name="a" type="Vector2" />
+ <argument index="2" name="b" type="Vector2" />
+ <argument index="3" name="c" type="Vector2" />
<description>
Returns if [code]point[/code] is inside the triangle specified by [code]a[/code], [code]b[/code] and [code]c[/code].
</description>
</method>
<method name="segment_intersects_segment">
- <return type="Variant">
- </return>
- <argument index="0" name="from_a" type="Vector2">
- </argument>
- <argument index="1" name="to_a" type="Vector2">
- </argument>
- <argument index="2" name="from_b" type="Vector2">
- </argument>
- <argument index="3" name="to_b" type="Vector2">
- </argument>
+ <return type="Variant" />
+ <argument index="0" name="from_a" type="Vector2" />
+ <argument index="1" name="to_a" type="Vector2" />
+ <argument index="2" name="from_b" type="Vector2" />
+ <argument index="3" name="to_b" type="Vector2" />
<description>
Checks if the two segments ([code]from_a[/code], [code]to_a[/code]) and ([code]from_b[/code], [code]to_b[/code]) intersect. If yes, return the point of intersection as [Vector2]. If no intersection takes place, returns an empty [Variant].
</description>
</method>
<method name="triangulate_delaunay">
- <return type="PackedInt32Array">
- </return>
- <argument index="0" name="points" type="PackedVector2Array">
- </argument>
+ <return type="PackedInt32Array" />
+ <argument index="0" name="points" type="PackedVector2Array" />
<description>
Triangulates the area specified by discrete set of [code]points[/code] such that no point is inside the circumcircle of any resulting triangle. Returns a [PackedInt32Array] where each triangle consists of three consecutive point indices into [code]points[/code] (i.e. the returned array will have [code]n * 3[/code] elements, with [code]n[/code] being the number of found triangles). If the triangulation did not succeed, an empty [PackedInt32Array] is returned.
</description>
</method>
<method name="triangulate_polygon">
- <return type="PackedInt32Array">
- </return>
- <argument index="0" name="polygon" type="PackedVector2Array">
- </argument>
+ <return type="PackedInt32Array" />
+ <argument index="0" name="polygon" type="PackedVector2Array" />
<description>
Triangulates the polygon specified by the points in [code]polygon[/code]. Returns a [PackedInt32Array] where each triangle consists of three consecutive point indices into [code]polygon[/code] (i.e. the returned array will have [code]n * 3[/code] elements, with [code]n[/code] being the number of found triangles). If the triangulation did not succeed, an empty [PackedInt32Array] is returned.
</description>