diff options
Diffstat (limited to 'doc/classes/Basis.xml')
-rw-r--r-- | doc/classes/Basis.xml | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml index cee3035eab..ae7a3ff323 100644 --- a/doc/classes/Basis.xml +++ b/doc/classes/Basis.xml @@ -57,7 +57,7 @@ <return type="float"> </return> <description> - Return the determinant of the matrix. + Returns the determinant of the matrix. </description> </method> <method name="get_euler"> @@ -91,7 +91,7 @@ <return type="Basis"> </return> <description> - Return the inverse of the matrix. + Returns the inverse of the matrix. </description> </method> <method name="is_equal_approx"> @@ -108,7 +108,7 @@ <return type="Basis"> </return> <description> - Return the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix. + Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix. </description> </method> <method name="rotated"> @@ -173,7 +173,7 @@ <return type="Basis"> </return> <description> - Return the transposed version of the matrix. + Returns the transposed version of the matrix. </description> </method> <method name="xform"> @@ -182,7 +182,7 @@ <argument index="0" name="v" type="Vector3"> </argument> <description> - Return a vector transformed (multiplied) by the matrix. + Returns a vector transformed (multiplied) by the matrix. </description> </method> <method name="xform_inv"> @@ -191,7 +191,7 @@ <argument index="0" name="v" type="Vector3"> </argument> <description> - Return a vector transformed (multiplied) by the transposed matrix. Note that this results in a multiplication by the inverse of the matrix only if it represents a rotation-reflection. + Returns a vector transformed (multiplied) by the transposed matrix. Note that this results in a multiplication by the inverse of the matrix only if it represents a rotation-reflection. </description> </method> </methods> |