diff options
Diffstat (limited to 'doc/classes/Basis.xml')
-rw-r--r-- | doc/classes/Basis.xml | 156 |
1 files changed, 52 insertions, 104 deletions
diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml index bd1abe914d..9a4dd15c63 100644 --- a/doc/classes/Basis.xml +++ b/doc/classes/Basis.xml @@ -20,243 +20,191 @@ </tutorials> <methods> <method name="Basis" qualifiers="constructor"> - <return type="Basis"> - </return> + <return type="Basis" /> <description> Constructs a default-initialized [Basis] set to [constant IDENTITY]. </description> </method> <method name="Basis" qualifiers="constructor"> - <return type="Basis"> - </return> - <argument index="0" name="from" type="Basis"> - </argument> + <return type="Basis" /> + <argument index="0" name="from" type="Basis" /> <description> Constructs a [Basis] as a copy of the given [Basis]. </description> </method> <method name="Basis" qualifiers="constructor"> - <return type="Basis"> - </return> - <argument index="0" name="axis" type="Vector3"> - </argument> - <argument index="1" name="phi" type="float"> - </argument> + <return type="Basis" /> + <argument index="0" name="axis" type="Vector3" /> + <argument index="1" name="phi" type="float" /> <description> Constructs a pure rotation basis matrix, rotated around the given [code]axis[/code] by [code]phi[/code], in radians. The axis must be a normalized vector. </description> </method> <method name="Basis" qualifiers="constructor"> - <return type="Basis"> - </return> - <argument index="0" name="euler" type="Vector3"> - </argument> + <return type="Basis" /> + <argument index="0" name="euler" type="Vector3" /> <description> Constructs a pure rotation basis matrix from the given Euler angles (in the YXZ convention: when *composing*, first Y, then X, and Z last), given in the vector format as (X angle, Y angle, Z angle). Consider using the [Quaternion] constructor instead, which uses a quaternion instead of Euler angles. </description> </method> <method name="Basis" qualifiers="constructor"> - <return type="Basis"> - </return> - <argument index="0" name="from" type="Quaternion"> - </argument> + <return type="Basis" /> + <argument index="0" name="from" type="Quaternion" /> <description> Constructs a pure rotation basis matrix from the given quaternion. </description> </method> <method name="Basis" qualifiers="constructor"> - <return type="Basis"> - </return> - <argument index="0" name="x_axis" type="Vector3"> - </argument> - <argument index="1" name="y_axis" type="Vector3"> - </argument> - <argument index="2" name="z_axis" type="Vector3"> - </argument> + <return type="Basis" /> + <argument index="0" name="x_axis" type="Vector3" /> + <argument index="1" name="y_axis" type="Vector3" /> + <argument index="2" name="z_axis" type="Vector3" /> <description> Constructs a basis matrix from 3 axis vectors (matrix columns). </description> </method> <method name="determinant" qualifiers="const"> - <return type="float"> - </return> + <return type="float" /> <description> Returns the determinant of the basis matrix. If the basis is uniformly scaled, its determinant is the square of the scale. A negative determinant means the basis has a negative scale. A zero determinant means the basis isn't invertible, and is usually considered invalid. </description> </method> <method name="get_euler" qualifiers="const"> - <return type="Vector3"> - </return> + <return type="Vector3" /> <description> Returns the basis's rotation in the form of Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last). The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle). Consider using the [method get_rotation_quaternion] method instead, which returns a [Quaternion] quaternion instead of Euler angles. </description> </method> <method name="get_orthogonal_index" qualifiers="const"> - <return type="int"> - </return> + <return type="int" /> <description> This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1, 0, or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the [GridMap] editor. For further details, refer to the Godot source code. </description> </method> <method name="get_rotation_quaternion" qualifiers="const"> - <return type="Quaternion"> - </return> + <return type="Quaternion" /> <description> Returns the basis's rotation in the form of a quaternion. See [method get_euler] if you need Euler angles, but keep in mind quaternions should generally be preferred to Euler angles. </description> </method> <method name="get_scale" qualifiers="const"> - <return type="Vector3"> - </return> + <return type="Vector3" /> <description> Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis. </description> </method> <method name="inverse" qualifiers="const"> - <return type="Basis"> - </return> + <return type="Basis" /> <description> Returns the inverse of the matrix. </description> </method> <method name="is_equal_approx" qualifiers="const"> - <return type="bool"> - </return> - <argument index="0" name="b" type="Basis"> - </argument> + <return type="bool" /> + <argument index="0" name="b" type="Basis" /> <description> Returns [code]true[/code] if this basis and [code]b[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component. </description> </method> <method name="operator !=" qualifiers="operator"> - <return type="bool"> - </return> - <argument index="0" name="right" type="Basis"> - </argument> + <return type="bool" /> + <argument index="0" name="right" type="Basis" /> <description> </description> </method> <method name="operator *" qualifiers="operator"> - <return type="Vector3"> - </return> - <argument index="0" name="right" type="Vector3"> - </argument> + <return type="Vector3" /> + <argument index="0" name="right" type="Vector3" /> <description> </description> </method> <method name="operator *" qualifiers="operator"> - <return type="Basis"> - </return> - <argument index="0" name="right" type="Basis"> - </argument> + <return type="Basis" /> + <argument index="0" name="right" type="Basis" /> <description> </description> </method> <method name="operator *" qualifiers="operator"> - <return type="Basis"> - </return> - <argument index="0" name="right" type="float"> - </argument> + <return type="Basis" /> + <argument index="0" name="right" type="float" /> <description> This operator multiplies all components of the [Basis], which scales it uniformly. </description> </method> <method name="operator *" qualifiers="operator"> - <return type="Basis"> - </return> - <argument index="0" name="right" type="int"> - </argument> + <return type="Basis" /> + <argument index="0" name="right" type="int" /> <description> This operator multiplies all components of the [Basis], which scales it uniformly. </description> </method> <method name="operator ==" qualifiers="operator"> - <return type="bool"> - </return> - <argument index="0" name="right" type="Basis"> - </argument> + <return type="bool" /> + <argument index="0" name="right" type="Basis" /> <description> </description> </method> <method name="operator []" qualifiers="operator"> - <return type="Vector3"> - </return> - <argument index="0" name="index" type="int"> - </argument> + <return type="Vector3" /> + <argument index="0" name="index" type="int" /> <description> </description> </method> <method name="orthonormalized" qualifiers="const"> - <return type="Basis"> - </return> + <return type="Basis" /> <description> Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix. </description> </method> <method name="rotated" qualifiers="const"> - <return type="Basis"> - </return> - <argument index="0" name="axis" type="Vector3"> - </argument> - <argument index="1" name="phi" type="float"> - </argument> + <return type="Basis" /> + <argument index="0" name="axis" type="Vector3" /> + <argument index="1" name="phi" type="float" /> <description> Introduce an additional rotation around the given axis by phi (radians). The axis must be a normalized vector. </description> </method> <method name="scaled" qualifiers="const"> - <return type="Basis"> - </return> - <argument index="0" name="scale" type="Vector3"> - </argument> + <return type="Basis" /> + <argument index="0" name="scale" type="Vector3" /> <description> Introduce an additional scaling specified by the given 3D scaling factor. </description> </method> <method name="slerp" qualifiers="const"> - <return type="Basis"> - </return> - <argument index="0" name="to" type="Basis"> - </argument> - <argument index="1" name="weight" type="float"> - </argument> + <return type="Basis" /> + <argument index="0" name="to" type="Basis" /> + <argument index="1" name="weight" type="float" /> <description> Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix. </description> </method> <method name="tdotx" qualifiers="const"> - <return type="float"> - </return> - <argument index="0" name="with" type="Vector3"> - </argument> + <return type="float" /> + <argument index="0" name="with" type="Vector3" /> <description> Transposed dot product with the X axis of the matrix. </description> </method> <method name="tdoty" qualifiers="const"> - <return type="float"> - </return> - <argument index="0" name="with" type="Vector3"> - </argument> + <return type="float" /> + <argument index="0" name="with" type="Vector3" /> <description> Transposed dot product with the Y axis of the matrix. </description> </method> <method name="tdotz" qualifiers="const"> - <return type="float"> - </return> - <argument index="0" name="with" type="Vector3"> - </argument> + <return type="float" /> + <argument index="0" name="with" type="Vector3" /> <description> Transposed dot product with the Z axis of the matrix. </description> </method> <method name="transposed" qualifiers="const"> - <return type="Basis"> - </return> + <return type="Basis" /> <description> Returns the transposed version of the matrix. </description> |