summaryrefslogtreecommitdiff
path: root/doc/classes/Basis.xml
diff options
context:
space:
mode:
Diffstat (limited to 'doc/classes/Basis.xml')
-rw-r--r--doc/classes/Basis.xml99
1 files changed, 68 insertions, 31 deletions
diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml
index 42ca3ad24b..4c9cd5702e 100644
--- a/doc/classes/Basis.xml
+++ b/doc/classes/Basis.xml
@@ -19,26 +19,23 @@
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<methods>
- <method name="Basis">
+ <method name="Basis" qualifiers="constructor">
<return type="Basis">
</return>
- <argument index="0" name="from" type="Quat">
- </argument>
<description>
- Constructs a pure rotation basis matrix from the given quaternion.
+ Constructs a default-initialized [Basis] set to [constant IDENTITY].
</description>
</method>
- <method name="Basis">
+ <method name="Basis" qualifiers="constructor">
<return type="Basis">
</return>
- <argument index="0" name="from" type="Vector3">
+ <argument index="0" name="from" type="Basis">
</argument>
<description>
- Constructs a pure rotation basis matrix from the given Euler angles (in the YXZ convention: when *composing*, first Y, then X, and Z last), given in the vector format as (X angle, Y angle, Z angle).
- Consider using the [Quat] constructor instead, which uses a quaternion instead of Euler angles.
+ Constructs a [Basis] as a copy of the given [Basis].
</description>
</method>
- <method name="Basis">
+ <method name="Basis" qualifiers="constructor">
<return type="Basis">
</return>
<argument index="0" name="axis" type="Vector3">
@@ -49,7 +46,26 @@
Constructs a pure rotation basis matrix, rotated around the given [code]axis[/code] by [code]phi[/code], in radians. The axis must be a normalized vector.
</description>
</method>
- <method name="Basis">
+ <method name="Basis" qualifiers="constructor">
+ <return type="Basis">
+ </return>
+ <argument index="0" name="euler" type="Vector3">
+ </argument>
+ <description>
+ Constructs a pure rotation basis matrix from the given Euler angles (in the YXZ convention: when *composing*, first Y, then X, and Z last), given in the vector format as (X angle, Y angle, Z angle).
+ Consider using the [Quat] constructor instead, which uses a quaternion instead of Euler angles.
+ </description>
+ </method>
+ <method name="Basis" qualifiers="constructor">
+ <return type="Basis">
+ </return>
+ <argument index="0" name="from" type="Quat">
+ </argument>
+ <description>
+ Constructs a pure rotation basis matrix from the given quaternion.
+ </description>
+ </method>
+ <method name="Basis" qualifiers="constructor">
<return type="Basis">
</return>
<argument index="0" name="x_axis" type="Vector3">
@@ -115,6 +131,46 @@
Returns [code]true[/code] if this basis and [code]b[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
+ <method name="operator !=" qualifiers="operator">
+ <return type="bool">
+ </return>
+ <argument index="0" name="right" type="Basis">
+ </argument>
+ <description>
+ </description>
+ </method>
+ <method name="operator *" qualifiers="operator">
+ <return type="Vector3">
+ </return>
+ <argument index="0" name="right" type="Vector3">
+ </argument>
+ <description>
+ </description>
+ </method>
+ <method name="operator *" qualifiers="operator">
+ <return type="Basis">
+ </return>
+ <argument index="0" name="right" type="Basis">
+ </argument>
+ <description>
+ </description>
+ </method>
+ <method name="operator ==" qualifiers="operator">
+ <return type="bool">
+ </return>
+ <argument index="0" name="right" type="Basis">
+ </argument>
+ <description>
+ </description>
+ </method>
+ <method name="operator []" qualifiers="operator">
+ <return type="Vector3">
+ </return>
+ <argument index="0" name="index" type="int">
+ </argument>
+ <description>
+ </description>
+ </method>
<method name="orthonormalized">
<return type="Basis">
</return>
@@ -145,9 +201,9 @@
<method name="slerp">
<return type="Basis">
</return>
- <argument index="0" name="b" type="Basis">
+ <argument index="0" name="to" type="Basis">
</argument>
- <argument index="1" name="t" type="float">
+ <argument index="1" name="weight" type="float">
</argument>
<description>
Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
@@ -187,25 +243,6 @@
Returns the transposed version of the matrix.
</description>
</method>
- <method name="xform">
- <return type="Vector3">
- </return>
- <argument index="0" name="v" type="Vector3">
- </argument>
- <description>
- Returns a vector transformed (multiplied) by the matrix.
- </description>
- </method>
- <method name="xform_inv">
- <return type="Vector3">
- </return>
- <argument index="0" name="v" type="Vector3">
- </argument>
- <description>
- Returns a vector transformed (multiplied) by the transposed basis matrix.
- [b]Note:[/b] This results in a multiplication by the inverse of the matrix only if it represents a rotation-reflection.
- </description>
- </method>
</methods>
<members>
<member name="x" type="Vector3" setter="" getter="" default="Vector3( 1, 0, 0 )">