diff options
Diffstat (limited to 'doc/classes/Basis.xml')
-rw-r--r-- | doc/classes/Basis.xml | 99 |
1 files changed, 68 insertions, 31 deletions
diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml index 42ca3ad24b..4c9cd5702e 100644 --- a/doc/classes/Basis.xml +++ b/doc/classes/Basis.xml @@ -19,26 +19,23 @@ <link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link> </tutorials> <methods> - <method name="Basis"> + <method name="Basis" qualifiers="constructor"> <return type="Basis"> </return> - <argument index="0" name="from" type="Quat"> - </argument> <description> - Constructs a pure rotation basis matrix from the given quaternion. + Constructs a default-initialized [Basis] set to [constant IDENTITY]. </description> </method> - <method name="Basis"> + <method name="Basis" qualifiers="constructor"> <return type="Basis"> </return> - <argument index="0" name="from" type="Vector3"> + <argument index="0" name="from" type="Basis"> </argument> <description> - Constructs a pure rotation basis matrix from the given Euler angles (in the YXZ convention: when *composing*, first Y, then X, and Z last), given in the vector format as (X angle, Y angle, Z angle). - Consider using the [Quat] constructor instead, which uses a quaternion instead of Euler angles. + Constructs a [Basis] as a copy of the given [Basis]. </description> </method> - <method name="Basis"> + <method name="Basis" qualifiers="constructor"> <return type="Basis"> </return> <argument index="0" name="axis" type="Vector3"> @@ -49,7 +46,26 @@ Constructs a pure rotation basis matrix, rotated around the given [code]axis[/code] by [code]phi[/code], in radians. The axis must be a normalized vector. </description> </method> - <method name="Basis"> + <method name="Basis" qualifiers="constructor"> + <return type="Basis"> + </return> + <argument index="0" name="euler" type="Vector3"> + </argument> + <description> + Constructs a pure rotation basis matrix from the given Euler angles (in the YXZ convention: when *composing*, first Y, then X, and Z last), given in the vector format as (X angle, Y angle, Z angle). + Consider using the [Quat] constructor instead, which uses a quaternion instead of Euler angles. + </description> + </method> + <method name="Basis" qualifiers="constructor"> + <return type="Basis"> + </return> + <argument index="0" name="from" type="Quat"> + </argument> + <description> + Constructs a pure rotation basis matrix from the given quaternion. + </description> + </method> + <method name="Basis" qualifiers="constructor"> <return type="Basis"> </return> <argument index="0" name="x_axis" type="Vector3"> @@ -115,6 +131,46 @@ Returns [code]true[/code] if this basis and [code]b[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component. </description> </method> + <method name="operator !=" qualifiers="operator"> + <return type="bool"> + </return> + <argument index="0" name="right" type="Basis"> + </argument> + <description> + </description> + </method> + <method name="operator *" qualifiers="operator"> + <return type="Vector3"> + </return> + <argument index="0" name="right" type="Vector3"> + </argument> + <description> + </description> + </method> + <method name="operator *" qualifiers="operator"> + <return type="Basis"> + </return> + <argument index="0" name="right" type="Basis"> + </argument> + <description> + </description> + </method> + <method name="operator ==" qualifiers="operator"> + <return type="bool"> + </return> + <argument index="0" name="right" type="Basis"> + </argument> + <description> + </description> + </method> + <method name="operator []" qualifiers="operator"> + <return type="Vector3"> + </return> + <argument index="0" name="index" type="int"> + </argument> + <description> + </description> + </method> <method name="orthonormalized"> <return type="Basis"> </return> @@ -145,9 +201,9 @@ <method name="slerp"> <return type="Basis"> </return> - <argument index="0" name="b" type="Basis"> + <argument index="0" name="to" type="Basis"> </argument> - <argument index="1" name="t" type="float"> + <argument index="1" name="weight" type="float"> </argument> <description> Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix. @@ -187,25 +243,6 @@ Returns the transposed version of the matrix. </description> </method> - <method name="xform"> - <return type="Vector3"> - </return> - <argument index="0" name="v" type="Vector3"> - </argument> - <description> - Returns a vector transformed (multiplied) by the matrix. - </description> - </method> - <method name="xform_inv"> - <return type="Vector3"> - </return> - <argument index="0" name="v" type="Vector3"> - </argument> - <description> - Returns a vector transformed (multiplied) by the transposed basis matrix. - [b]Note:[/b] This results in a multiplication by the inverse of the matrix only if it represents a rotation-reflection. - </description> - </method> </methods> <members> <member name="x" type="Vector3" setter="" getter="" default="Vector3( 1, 0, 0 )"> |