summaryrefslogtreecommitdiff
path: root/doc/classes/Basis.xml
diff options
context:
space:
mode:
Diffstat (limited to 'doc/classes/Basis.xml')
-rw-r--r--doc/classes/Basis.xml30
1 files changed, 15 insertions, 15 deletions
diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml
index 4c9cd5702e..55ae58ee3a 100644
--- a/doc/classes/Basis.xml
+++ b/doc/classes/Basis.xml
@@ -78,7 +78,7 @@
Constructs a basis matrix from 3 axis vectors (matrix columns).
</description>
</method>
- <method name="determinant">
+ <method name="determinant" qualifiers="const">
<return type="float">
</return>
<description>
@@ -86,7 +86,7 @@
A negative determinant means the basis has a negative scale. A zero determinant means the basis isn't invertible, and is usually considered invalid.
</description>
</method>
- <method name="get_euler">
+ <method name="get_euler" qualifiers="const">
<return type="Vector3">
</return>
<description>
@@ -94,35 +94,35 @@
Consider using the [method get_rotation_quat] method instead, which returns a [Quat] quaternion instead of Euler angles.
</description>
</method>
- <method name="get_orthogonal_index">
+ <method name="get_orthogonal_index" qualifiers="const">
<return type="int">
</return>
<description>
This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1, 0, or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the [GridMap] editor. For further details, refer to the Godot source code.
</description>
</method>
- <method name="get_rotation_quat">
+ <method name="get_rotation_quat" qualifiers="const">
<return type="Quat">
</return>
<description>
Returns the basis's rotation in the form of a quaternion. See [method get_euler] if you need Euler angles, but keep in mind quaternions should generally be preferred to Euler angles.
</description>
</method>
- <method name="get_scale">
+ <method name="get_scale" qualifiers="const">
<return type="Vector3">
</return>
<description>
Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis.
</description>
</method>
- <method name="inverse">
+ <method name="inverse" qualifiers="const">
<return type="Basis">
</return>
<description>
Returns the inverse of the matrix.
</description>
</method>
- <method name="is_equal_approx">
+ <method name="is_equal_approx" qualifiers="const">
<return type="bool">
</return>
<argument index="0" name="b" type="Basis">
@@ -171,14 +171,14 @@
<description>
</description>
</method>
- <method name="orthonormalized">
+ <method name="orthonormalized" qualifiers="const">
<return type="Basis">
</return>
<description>
Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
</description>
</method>
- <method name="rotated">
+ <method name="rotated" qualifiers="const">
<return type="Basis">
</return>
<argument index="0" name="axis" type="Vector3">
@@ -189,7 +189,7 @@
Introduce an additional rotation around the given axis by phi (radians). The axis must be a normalized vector.
</description>
</method>
- <method name="scaled">
+ <method name="scaled" qualifiers="const">
<return type="Basis">
</return>
<argument index="0" name="scale" type="Vector3">
@@ -198,7 +198,7 @@
Introduce an additional scaling specified by the given 3D scaling factor.
</description>
</method>
- <method name="slerp">
+ <method name="slerp" qualifiers="const">
<return type="Basis">
</return>
<argument index="0" name="to" type="Basis">
@@ -209,7 +209,7 @@
Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
</description>
</method>
- <method name="tdotx">
+ <method name="tdotx" qualifiers="const">
<return type="float">
</return>
<argument index="0" name="with" type="Vector3">
@@ -218,7 +218,7 @@
Transposed dot product with the X axis of the matrix.
</description>
</method>
- <method name="tdoty">
+ <method name="tdoty" qualifiers="const">
<return type="float">
</return>
<argument index="0" name="with" type="Vector3">
@@ -227,7 +227,7 @@
Transposed dot product with the Y axis of the matrix.
</description>
</method>
- <method name="tdotz">
+ <method name="tdotz" qualifiers="const">
<return type="float">
</return>
<argument index="0" name="with" type="Vector3">
@@ -236,7 +236,7 @@
Transposed dot product with the Z axis of the matrix.
</description>
</method>
- <method name="transposed">
+ <method name="transposed" qualifiers="const">
<return type="Basis">
</return>
<description>