diff options
Diffstat (limited to 'doc/classes/Basis.xml')
-rw-r--r-- | doc/classes/Basis.xml | 30 |
1 files changed, 15 insertions, 15 deletions
diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml index 4c9cd5702e..55ae58ee3a 100644 --- a/doc/classes/Basis.xml +++ b/doc/classes/Basis.xml @@ -78,7 +78,7 @@ Constructs a basis matrix from 3 axis vectors (matrix columns). </description> </method> - <method name="determinant"> + <method name="determinant" qualifiers="const"> <return type="float"> </return> <description> @@ -86,7 +86,7 @@ A negative determinant means the basis has a negative scale. A zero determinant means the basis isn't invertible, and is usually considered invalid. </description> </method> - <method name="get_euler"> + <method name="get_euler" qualifiers="const"> <return type="Vector3"> </return> <description> @@ -94,35 +94,35 @@ Consider using the [method get_rotation_quat] method instead, which returns a [Quat] quaternion instead of Euler angles. </description> </method> - <method name="get_orthogonal_index"> + <method name="get_orthogonal_index" qualifiers="const"> <return type="int"> </return> <description> This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1, 0, or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the [GridMap] editor. For further details, refer to the Godot source code. </description> </method> - <method name="get_rotation_quat"> + <method name="get_rotation_quat" qualifiers="const"> <return type="Quat"> </return> <description> Returns the basis's rotation in the form of a quaternion. See [method get_euler] if you need Euler angles, but keep in mind quaternions should generally be preferred to Euler angles. </description> </method> - <method name="get_scale"> + <method name="get_scale" qualifiers="const"> <return type="Vector3"> </return> <description> Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis. </description> </method> - <method name="inverse"> + <method name="inverse" qualifiers="const"> <return type="Basis"> </return> <description> Returns the inverse of the matrix. </description> </method> - <method name="is_equal_approx"> + <method name="is_equal_approx" qualifiers="const"> <return type="bool"> </return> <argument index="0" name="b" type="Basis"> @@ -171,14 +171,14 @@ <description> </description> </method> - <method name="orthonormalized"> + <method name="orthonormalized" qualifiers="const"> <return type="Basis"> </return> <description> Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix. </description> </method> - <method name="rotated"> + <method name="rotated" qualifiers="const"> <return type="Basis"> </return> <argument index="0" name="axis" type="Vector3"> @@ -189,7 +189,7 @@ Introduce an additional rotation around the given axis by phi (radians). The axis must be a normalized vector. </description> </method> - <method name="scaled"> + <method name="scaled" qualifiers="const"> <return type="Basis"> </return> <argument index="0" name="scale" type="Vector3"> @@ -198,7 +198,7 @@ Introduce an additional scaling specified by the given 3D scaling factor. </description> </method> - <method name="slerp"> + <method name="slerp" qualifiers="const"> <return type="Basis"> </return> <argument index="0" name="to" type="Basis"> @@ -209,7 +209,7 @@ Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix. </description> </method> - <method name="tdotx"> + <method name="tdotx" qualifiers="const"> <return type="float"> </return> <argument index="0" name="with" type="Vector3"> @@ -218,7 +218,7 @@ Transposed dot product with the X axis of the matrix. </description> </method> - <method name="tdoty"> + <method name="tdoty" qualifiers="const"> <return type="float"> </return> <argument index="0" name="with" type="Vector3"> @@ -227,7 +227,7 @@ Transposed dot product with the Y axis of the matrix. </description> </method> - <method name="tdotz"> + <method name="tdotz" qualifiers="const"> <return type="float"> </return> <argument index="0" name="with" type="Vector3"> @@ -236,7 +236,7 @@ Transposed dot product with the Z axis of the matrix. </description> </method> - <method name="transposed"> + <method name="transposed" qualifiers="const"> <return type="Basis"> </return> <description> |