diff options
Diffstat (limited to 'doc/classes/Basis.xml')
-rw-r--r-- | doc/classes/Basis.xml | 95 |
1 files changed, 42 insertions, 53 deletions
diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml index 0af482d654..acc2fd34dd 100644 --- a/doc/classes/Basis.xml +++ b/doc/classes/Basis.xml @@ -27,31 +27,31 @@ </constructor> <constructor name="Basis"> <return type="Basis" /> - <argument index="0" name="from" type="Basis" /> + <param index="0" name="from" type="Basis" /> <description> Constructs a [Basis] as a copy of the given [Basis]. </description> </constructor> <constructor name="Basis"> <return type="Basis" /> - <argument index="0" name="axis" type="Vector3" /> - <argument index="1" name="angle" type="float" /> + <param index="0" name="axis" type="Vector3" /> + <param index="1" name="angle" type="float" /> <description> - Constructs a pure rotation basis matrix, rotated around the given [code]axis[/code] by [code]angle[/code] (in radians). The axis must be a normalized vector. + Constructs a pure rotation basis matrix, rotated around the given [param axis] by [param angle] (in radians). The axis must be a normalized vector. </description> </constructor> <constructor name="Basis"> <return type="Basis" /> - <argument index="0" name="from" type="Quaternion" /> + <param index="0" name="from" type="Quaternion" /> <description> Constructs a pure rotation basis matrix from the given quaternion. </description> </constructor> <constructor name="Basis"> <return type="Basis" /> - <argument index="0" name="x_axis" type="Vector3" /> - <argument index="1" name="y_axis" type="Vector3" /> - <argument index="2" name="z_axis" type="Vector3" /> + <param index="0" name="x_axis" type="Vector3" /> + <param index="1" name="y_axis" type="Vector3" /> + <param index="2" name="z_axis" type="Vector3" /> <description> Constructs a basis matrix from 3 axis vectors (matrix columns). </description> @@ -67,32 +67,27 @@ </method> <method name="from_euler" qualifiers="static"> <return type="Basis" /> - <argument index="0" name="euler" type="Vector3" /> - <argument index="1" name="order" type="int" default="2" /> + <param index="0" name="euler" type="Vector3" /> + <param index="1" name="order" type="int" default="2" /> <description> + Constructs a pure rotation Basis matrix from Euler angles in the specified Euler rotation order. By default, use YXZ order (most common). See the [enum EulerOrder] enum for possible values. </description> </method> <method name="from_scale" qualifiers="static"> <return type="Basis" /> - <argument index="0" name="scale" type="Vector3" /> + <param index="0" name="scale" type="Vector3" /> <description> Constructs a pure scale basis matrix with no rotation or shearing. The scale values are set as the diagonal of the matrix, and the other parts of the matrix are zero. </description> </method> <method name="get_euler" qualifiers="const"> <return type="Vector3" /> - <argument index="0" name="order" type="int" default="2" /> + <param index="0" name="order" type="int" default="2" /> <description> - Returns the basis's rotation in the form of Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last). The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle). + Returns the basis's rotation in the form of Euler angles. The Euler order depends on the [param order] parameter, by default it uses the YXZ convention: when decomposing, first Z, then X, and Y last. The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle). Consider using the [method get_rotation_quaternion] method instead, which returns a [Quaternion] quaternion instead of Euler angles. </description> </method> - <method name="get_orthogonal_index" qualifiers="const"> - <return type="int" /> - <description> - This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1, 0, or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the [GridMap] editor. For further details, refer to the Godot source code. - </description> - </method> <method name="get_rotation_quaternion" qualifiers="const"> <return type="Quaternion" /> <description> @@ -113,18 +108,24 @@ </method> <method name="is_equal_approx" qualifiers="const"> <return type="bool" /> - <argument index="0" name="b" type="Basis" /> + <param index="0" name="b" type="Basis" /> + <description> + Returns [code]true[/code] if this basis and [param b] are approximately equal, by calling [code]is_equal_approx[/code] on each component. + </description> + </method> + <method name="is_finite" qualifiers="const"> + <return type="bool" /> <description> - Returns [code]true[/code] if this basis and [code]b[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component. + Returns [code]true[/code] if this basis is finite, by calling [method @GlobalScope.is_finite] on each component. </description> </method> <method name="looking_at" qualifiers="static"> <return type="Basis" /> - <argument index="0" name="target" type="Vector3" /> - <argument index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" /> + <param index="0" name="target" type="Vector3" /> + <param index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" /> <description> - Creates a Basis with a rotation such that the forward axis (-Z) points towards the [code]target[/code] position. - The up axis (+Y) points as close to the [code]up[/code] vector as possible while staying perpendicular to the forward axis. The resulting Basis is orthonormalized. The [code]target[/code] and [code]up[/code] vectors cannot be zero, and cannot be parallel to each other. + Creates a Basis with a rotation such that the forward axis (-Z) points towards the [param target] position. + The up axis (+Y) points as close to the [param up] vector as possible while staying perpendicular to the forward axis. The resulting Basis is orthonormalized. The [param target] and [param up] vectors cannot be zero, and cannot be parallel to each other. </description> </method> <method name="orthonormalized" qualifiers="const"> @@ -135,44 +136,44 @@ </method> <method name="rotated" qualifiers="const"> <return type="Basis" /> - <argument index="0" name="axis" type="Vector3" /> - <argument index="1" name="angle" type="float" /> + <param index="0" name="axis" type="Vector3" /> + <param index="1" name="angle" type="float" /> <description> - Introduce an additional rotation around the given axis by [code]angle[/code] (in radians). The axis must be a normalized vector. + Introduce an additional rotation around the given axis by [param angle] (in radians). The axis must be a normalized vector. </description> </method> <method name="scaled" qualifiers="const"> <return type="Basis" /> - <argument index="0" name="scale" type="Vector3" /> + <param index="0" name="scale" type="Vector3" /> <description> Introduce an additional scaling specified by the given 3D scaling factor. </description> </method> <method name="slerp" qualifiers="const"> <return type="Basis" /> - <argument index="0" name="to" type="Basis" /> - <argument index="1" name="weight" type="float" /> + <param index="0" name="to" type="Basis" /> + <param index="1" name="weight" type="float" /> <description> Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix. </description> </method> <method name="tdotx" qualifiers="const"> <return type="float" /> - <argument index="0" name="with" type="Vector3" /> + <param index="0" name="with" type="Vector3" /> <description> Transposed dot product with the X axis of the matrix. </description> </method> <method name="tdoty" qualifiers="const"> <return type="float" /> - <argument index="0" name="with" type="Vector3" /> + <param index="0" name="with" type="Vector3" /> <description> Transposed dot product with the Y axis of the matrix. </description> </method> <method name="tdotz" qualifiers="const"> <return type="float" /> - <argument index="0" name="with" type="Vector3" /> + <param index="0" name="with" type="Vector3" /> <description> Transposed dot product with the Z axis of the matrix. </description> @@ -196,18 +197,6 @@ </member> </members> <constants> - <constant name="EULER_ORDER_XYZ" value="0"> - </constant> - <constant name="EULER_ORDER_XZY" value="1"> - </constant> - <constant name="EULER_ORDER_YXZ" value="2"> - </constant> - <constant name="EULER_ORDER_YZX" value="3"> - </constant> - <constant name="EULER_ORDER_ZXY" value="4"> - </constant> - <constant name="EULER_ORDER_ZYX" value="5"> - </constant> <constant name="IDENTITY" value="Basis(1, 0, 0, 0, 1, 0, 0, 0, 1)"> The identity basis, with no rotation or scaling applied. This is identical to calling [code]Basis()[/code] without any parameters. This constant can be used to make your code clearer, and for consistency with C#. @@ -225,7 +214,7 @@ <operators> <operator name="operator !="> <return type="bool" /> - <argument index="0" name="right" type="Basis" /> + <param index="0" name="right" type="Basis" /> <description> Returns [code]true[/code] if the [Basis] matrices are not equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. @@ -233,35 +222,35 @@ </operator> <operator name="operator *"> <return type="Basis" /> - <argument index="0" name="right" type="Basis" /> + <param index="0" name="right" type="Basis" /> <description> Composes these two basis matrices by multiplying them together. This has the effect of transforming the second basis (the child) by the first basis (the parent). </description> </operator> <operator name="operator *"> <return type="Vector3" /> - <argument index="0" name="right" type="Vector3" /> + <param index="0" name="right" type="Vector3" /> <description> Transforms (multiplies) the [Vector3] by the given [Basis] matrix. </description> </operator> <operator name="operator *"> <return type="Basis" /> - <argument index="0" name="right" type="float" /> + <param index="0" name="right" type="float" /> <description> This operator multiplies all components of the [Basis], which scales it uniformly. </description> </operator> <operator name="operator *"> <return type="Basis" /> - <argument index="0" name="right" type="int" /> + <param index="0" name="right" type="int" /> <description> This operator multiplies all components of the [Basis], which scales it uniformly. </description> </operator> <operator name="operator =="> <return type="bool" /> - <argument index="0" name="right" type="Basis" /> + <param index="0" name="right" type="Basis" /> <description> Returns [code]true[/code] if the [Basis] matrices are exactly equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. @@ -269,7 +258,7 @@ </operator> <operator name="operator []"> <return type="Vector3" /> - <argument index="0" name="index" type="int" /> + <param index="0" name="index" type="int" /> <description> Access basis components using their index. [code]b[0][/code] is equivalent to [code]b.x[/code], [code]b[1][/code] is equivalent to [code]b.y[/code], and [code]b[2][/code] is equivalent to [code]b.z[/code]. </description> |