summaryrefslogtreecommitdiff
path: root/doc/classes/Basis.xml
diff options
context:
space:
mode:
Diffstat (limited to 'doc/classes/Basis.xml')
-rw-r--r--doc/classes/Basis.xml95
1 files changed, 42 insertions, 53 deletions
diff --git a/doc/classes/Basis.xml b/doc/classes/Basis.xml
index 0af482d654..acc2fd34dd 100644
--- a/doc/classes/Basis.xml
+++ b/doc/classes/Basis.xml
@@ -27,31 +27,31 @@
</constructor>
<constructor name="Basis">
<return type="Basis" />
- <argument index="0" name="from" type="Basis" />
+ <param index="0" name="from" type="Basis" />
<description>
Constructs a [Basis] as a copy of the given [Basis].
</description>
</constructor>
<constructor name="Basis">
<return type="Basis" />
- <argument index="0" name="axis" type="Vector3" />
- <argument index="1" name="angle" type="float" />
+ <param index="0" name="axis" type="Vector3" />
+ <param index="1" name="angle" type="float" />
<description>
- Constructs a pure rotation basis matrix, rotated around the given [code]axis[/code] by [code]angle[/code] (in radians). The axis must be a normalized vector.
+ Constructs a pure rotation basis matrix, rotated around the given [param axis] by [param angle] (in radians). The axis must be a normalized vector.
</description>
</constructor>
<constructor name="Basis">
<return type="Basis" />
- <argument index="0" name="from" type="Quaternion" />
+ <param index="0" name="from" type="Quaternion" />
<description>
Constructs a pure rotation basis matrix from the given quaternion.
</description>
</constructor>
<constructor name="Basis">
<return type="Basis" />
- <argument index="0" name="x_axis" type="Vector3" />
- <argument index="1" name="y_axis" type="Vector3" />
- <argument index="2" name="z_axis" type="Vector3" />
+ <param index="0" name="x_axis" type="Vector3" />
+ <param index="1" name="y_axis" type="Vector3" />
+ <param index="2" name="z_axis" type="Vector3" />
<description>
Constructs a basis matrix from 3 axis vectors (matrix columns).
</description>
@@ -67,32 +67,27 @@
</method>
<method name="from_euler" qualifiers="static">
<return type="Basis" />
- <argument index="0" name="euler" type="Vector3" />
- <argument index="1" name="order" type="int" default="2" />
+ <param index="0" name="euler" type="Vector3" />
+ <param index="1" name="order" type="int" default="2" />
<description>
+ Constructs a pure rotation Basis matrix from Euler angles in the specified Euler rotation order. By default, use YXZ order (most common). See the [enum EulerOrder] enum for possible values.
</description>
</method>
<method name="from_scale" qualifiers="static">
<return type="Basis" />
- <argument index="0" name="scale" type="Vector3" />
+ <param index="0" name="scale" type="Vector3" />
<description>
Constructs a pure scale basis matrix with no rotation or shearing. The scale values are set as the diagonal of the matrix, and the other parts of the matrix are zero.
</description>
</method>
<method name="get_euler" qualifiers="const">
<return type="Vector3" />
- <argument index="0" name="order" type="int" default="2" />
+ <param index="0" name="order" type="int" default="2" />
<description>
- Returns the basis's rotation in the form of Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last). The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
+ Returns the basis's rotation in the form of Euler angles. The Euler order depends on the [param order] parameter, by default it uses the YXZ convention: when decomposing, first Z, then X, and Y last. The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
Consider using the [method get_rotation_quaternion] method instead, which returns a [Quaternion] quaternion instead of Euler angles.
</description>
</method>
- <method name="get_orthogonal_index" qualifiers="const">
- <return type="int" />
- <description>
- This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1, 0, or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the [GridMap] editor. For further details, refer to the Godot source code.
- </description>
- </method>
<method name="get_rotation_quaternion" qualifiers="const">
<return type="Quaternion" />
<description>
@@ -113,18 +108,24 @@
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
- <argument index="0" name="b" type="Basis" />
+ <param index="0" name="b" type="Basis" />
+ <description>
+ Returns [code]true[/code] if this basis and [param b] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
+ </description>
+ </method>
+ <method name="is_finite" qualifiers="const">
+ <return type="bool" />
<description>
- Returns [code]true[/code] if this basis and [code]b[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
+ Returns [code]true[/code] if this basis is finite, by calling [method @GlobalScope.is_finite] on each component.
</description>
</method>
<method name="looking_at" qualifiers="static">
<return type="Basis" />
- <argument index="0" name="target" type="Vector3" />
- <argument index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" />
+ <param index="0" name="target" type="Vector3" />
+ <param index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" />
<description>
- Creates a Basis with a rotation such that the forward axis (-Z) points towards the [code]target[/code] position.
- The up axis (+Y) points as close to the [code]up[/code] vector as possible while staying perpendicular to the forward axis. The resulting Basis is orthonormalized. The [code]target[/code] and [code]up[/code] vectors cannot be zero, and cannot be parallel to each other.
+ Creates a Basis with a rotation such that the forward axis (-Z) points towards the [param target] position.
+ The up axis (+Y) points as close to the [param up] vector as possible while staying perpendicular to the forward axis. The resulting Basis is orthonormalized. The [param target] and [param up] vectors cannot be zero, and cannot be parallel to each other.
</description>
</method>
<method name="orthonormalized" qualifiers="const">
@@ -135,44 +136,44 @@
</method>
<method name="rotated" qualifiers="const">
<return type="Basis" />
- <argument index="0" name="axis" type="Vector3" />
- <argument index="1" name="angle" type="float" />
+ <param index="0" name="axis" type="Vector3" />
+ <param index="1" name="angle" type="float" />
<description>
- Introduce an additional rotation around the given axis by [code]angle[/code] (in radians). The axis must be a normalized vector.
+ Introduce an additional rotation around the given axis by [param angle] (in radians). The axis must be a normalized vector.
</description>
</method>
<method name="scaled" qualifiers="const">
<return type="Basis" />
- <argument index="0" name="scale" type="Vector3" />
+ <param index="0" name="scale" type="Vector3" />
<description>
Introduce an additional scaling specified by the given 3D scaling factor.
</description>
</method>
<method name="slerp" qualifiers="const">
<return type="Basis" />
- <argument index="0" name="to" type="Basis" />
- <argument index="1" name="weight" type="float" />
+ <param index="0" name="to" type="Basis" />
+ <param index="1" name="weight" type="float" />
<description>
Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
</description>
</method>
<method name="tdotx" qualifiers="const">
<return type="float" />
- <argument index="0" name="with" type="Vector3" />
+ <param index="0" name="with" type="Vector3" />
<description>
Transposed dot product with the X axis of the matrix.
</description>
</method>
<method name="tdoty" qualifiers="const">
<return type="float" />
- <argument index="0" name="with" type="Vector3" />
+ <param index="0" name="with" type="Vector3" />
<description>
Transposed dot product with the Y axis of the matrix.
</description>
</method>
<method name="tdotz" qualifiers="const">
<return type="float" />
- <argument index="0" name="with" type="Vector3" />
+ <param index="0" name="with" type="Vector3" />
<description>
Transposed dot product with the Z axis of the matrix.
</description>
@@ -196,18 +197,6 @@
</member>
</members>
<constants>
- <constant name="EULER_ORDER_XYZ" value="0">
- </constant>
- <constant name="EULER_ORDER_XZY" value="1">
- </constant>
- <constant name="EULER_ORDER_YXZ" value="2">
- </constant>
- <constant name="EULER_ORDER_YZX" value="3">
- </constant>
- <constant name="EULER_ORDER_ZXY" value="4">
- </constant>
- <constant name="EULER_ORDER_ZYX" value="5">
- </constant>
<constant name="IDENTITY" value="Basis(1, 0, 0, 0, 1, 0, 0, 0, 1)">
The identity basis, with no rotation or scaling applied.
This is identical to calling [code]Basis()[/code] without any parameters. This constant can be used to make your code clearer, and for consistency with C#.
@@ -225,7 +214,7 @@
<operators>
<operator name="operator !=">
<return type="bool" />
- <argument index="0" name="right" type="Basis" />
+ <param index="0" name="right" type="Basis" />
<description>
Returns [code]true[/code] if the [Basis] matrices are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
@@ -233,35 +222,35 @@
</operator>
<operator name="operator *">
<return type="Basis" />
- <argument index="0" name="right" type="Basis" />
+ <param index="0" name="right" type="Basis" />
<description>
Composes these two basis matrices by multiplying them together. This has the effect of transforming the second basis (the child) by the first basis (the parent).
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
- <argument index="0" name="right" type="Vector3" />
+ <param index="0" name="right" type="Vector3" />
<description>
Transforms (multiplies) the [Vector3] by the given [Basis] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Basis" />
- <argument index="0" name="right" type="float" />
+ <param index="0" name="right" type="float" />
<description>
This operator multiplies all components of the [Basis], which scales it uniformly.
</description>
</operator>
<operator name="operator *">
<return type="Basis" />
- <argument index="0" name="right" type="int" />
+ <param index="0" name="right" type="int" />
<description>
This operator multiplies all components of the [Basis], which scales it uniformly.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
- <argument index="0" name="right" type="Basis" />
+ <param index="0" name="right" type="Basis" />
<description>
Returns [code]true[/code] if the [Basis] matrices are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
@@ -269,7 +258,7 @@
</operator>
<operator name="operator []">
<return type="Vector3" />
- <argument index="0" name="index" type="int" />
+ <param index="0" name="index" type="int" />
<description>
Access basis components using their index. [code]b[0][/code] is equivalent to [code]b.x[/code], [code]b[1][/code] is equivalent to [code]b.y[/code], and [code]b[2][/code] is equivalent to [code]b.z[/code].
</description>