summaryrefslogtreecommitdiff
path: root/core
diff options
context:
space:
mode:
Diffstat (limited to 'core')
-rw-r--r--core/math/a_star.cpp18
-rw-r--r--core/math/a_star.h8
-rw-r--r--core/math/bsp_tree.cpp30
-rw-r--r--core/math/bsp_tree.h8
-rw-r--r--core/math/camera_matrix.cpp64
-rw-r--r--core/math/camera_matrix.h24
-rw-r--r--core/math/face3.cpp56
-rw-r--r--core/math/face3.h22
-rw-r--r--core/math/geometry.cpp22
-rw-r--r--core/math/geometry.h120
-rw-r--r--core/math/math_2d.cpp6
-rw-r--r--core/math/math_funcs.cpp60
-rw-r--r--core/math/math_funcs.h224
-rw-r--r--core/math/matrix3.cpp20
-rw-r--r--core/math/octree.h2
-rw-r--r--core/math/plane.h2
-rw-r--r--core/math/quat.cpp18
-rw-r--r--core/math/quat.h4
-rw-r--r--core/math/quick_hull.cpp6
-rw-r--r--core/math/rect3.cpp10
-rw-r--r--core/math/rect3.h24
-rw-r--r--core/math/triangle_mesh.cpp4
-rw-r--r--core/math/triangulate.cpp24
-rw-r--r--core/math/triangulate.h10
-rw-r--r--core/math/vector3.cpp74
-rw-r--r--core/math/vector3.h16
26 files changed, 402 insertions, 474 deletions
diff --git a/core/math/a_star.cpp b/core/math/a_star.cpp
index 2c45009a60..a1f471ebe3 100644
--- a/core/math/a_star.cpp
+++ b/core/math/a_star.cpp
@@ -39,7 +39,7 @@ int AStar::get_available_point_id() const {
return points.back()->key()+1;
}
-void AStar::add_point(int p_id, const Vector3 &p_pos, float p_weight_scale) {
+void AStar::add_point(int p_id, const Vector3 &p_pos, real_t p_weight_scale) {
ERR_FAIL_COND(p_id<0);
if (!points.has(p_id)) {
Point *pt = memnew( Point );
@@ -62,7 +62,7 @@ Vector3 AStar::get_point_pos(int p_id) const{
return points[p_id]->pos;
}
-float AStar::get_point_weight_scale(int p_id) const{
+real_t AStar::get_point_weight_scale(int p_id) const{
ERR_FAIL_COND_V(!points.has(p_id),0);
@@ -145,11 +145,11 @@ void AStar::clear(){
int AStar::get_closest_point(const Vector3& p_point) const{
int closest_id=-1;
- float closest_dist=1e20;
+ real_t closest_dist=1e20;
for (const Map<int,Point*>::Element *E=points.front();E;E=E->next()) {
- float d = p_point.distance_squared_to(E->get()->pos);
+ real_t d = p_point.distance_squared_to(E->get()->pos);
if (closest_id<0 || d<closest_dist) {
closest_dist=d;
closest_id=E->key();
@@ -162,7 +162,7 @@ int AStar::get_closest_point(const Vector3& p_point) const{
}
Vector3 AStar::get_closest_pos_in_segment(const Vector3& p_point) const {
- float closest_dist = 1e20;
+ real_t closest_dist = 1e20;
bool found=false;
Vector3 closest_point;
@@ -175,7 +175,7 @@ Vector3 AStar::get_closest_pos_in_segment(const Vector3& p_point) const {
};
Vector3 p = Geometry::get_closest_point_to_segment(p_point,segment);
- float d = p_point.distance_squared_to(p);
+ real_t d = p_point.distance_squared_to(p);
if (!found || d<closest_dist) {
closest_point=p;
@@ -220,14 +220,14 @@ bool AStar::_solve(Point* begin_point, Point* end_point) {
//check open list
SelfList<Point> *least_cost_point=NULL;
- float least_cost=1e30;
+ real_t least_cost=1e30;
//this could be faster (cache previous results)
for (SelfList<Point> *E=open_list.first();E;E=E->next()) {
Point *p=E->self();
- float cost=p->distance;
+ real_t cost=p->distance;
cost+=p->pos.distance_to(end_point->pos);
cost*=p->weight_scale;
@@ -249,7 +249,7 @@ bool AStar::_solve(Point* begin_point, Point* end_point) {
Point* e=p->neighbours[i];
- float distance = p->pos.distance_to(e->pos) + p->distance;
+ real_t distance = p->pos.distance_to(e->pos) + p->distance;
distance*=e->weight_scale;
diff --git a/core/math/a_star.h b/core/math/a_star.h
index 35e6ead226..c4c955ed2d 100644
--- a/core/math/a_star.h
+++ b/core/math/a_star.h
@@ -48,14 +48,14 @@ class AStar: public Reference {
int id;
Vector3 pos;
- float weight_scale;
+ real_t weight_scale;
uint64_t last_pass;
Vector<Point*> neighbours;
//used for pathfinding
Point *prev_point;
- float distance;
+ real_t distance;
Point() : list(this) {}
};
@@ -98,9 +98,9 @@ public:
int get_available_point_id() const;
- void add_point(int p_id,const Vector3& p_pos,float p_weight_scale=1);
+ void add_point(int p_id,const Vector3& p_pos,real_t p_weight_scale=1);
Vector3 get_point_pos(int p_id) const;
- float get_point_weight_scale(int p_id) const;
+ real_t get_point_weight_scale(int p_id) const;
void remove_point(int p_id);
void connect_points(int p_id,int p_with_id);
diff --git a/core/math/bsp_tree.cpp b/core/math/bsp_tree.cpp
index e2526f5134..1ca6385032 100644
--- a/core/math/bsp_tree.cpp
+++ b/core/math/bsp_tree.cpp
@@ -87,8 +87,8 @@ int BSP_Tree::_get_points_inside(int p_node,const Vector3* p_points,int *p_indic
max+=p_center;
min+=p_center;
- float dist_min = p.distance_to(min);
- float dist_max = p.distance_to(max);
+ real_t dist_min = p.distance_to(min);
+ real_t dist_max = p.distance_to(max);
if ((dist_min * dist_max) < CMP_EPSILON ) { //intersection, test point by point
@@ -290,13 +290,13 @@ bool BSP_Tree::point_is_inside(const Vector3& p_point) const {
}
-static int _bsp_find_best_half_plane(const Face3* p_faces,const Vector<int>& p_indices,float p_tolerance) {
+static int _bsp_find_best_half_plane(const Face3* p_faces,const Vector<int>& p_indices,real_t p_tolerance) {
int ic = p_indices.size();
const int*indices=p_indices.ptr();
int best_plane = -1;
- float best_plane_cost = 1e20;
+ real_t best_plane_cost = 1e20;
// Loop to find the polygon that best divides the set.
@@ -317,7 +317,7 @@ static int _bsp_find_best_half_plane(const Face3* p_faces,const Vector<int>& p_i
for(int k=0;k<3;k++) {
- float d = p.distance_to(g.vertex[j]);
+ real_t d = p.distance_to(g.vertex[j]);
if (Math::abs(d)>p_tolerance) {
@@ -340,13 +340,13 @@ static int _bsp_find_best_half_plane(const Face3* p_faces,const Vector<int>& p_i
- //double split_cost = num_spanning / (double) face_count;
- double relation = Math::abs(num_over-num_under) / (double) ic;
+ //real_t split_cost = num_spanning / (real_t) face_count;
+ real_t relation = Math::abs(num_over-num_under) / (real_t) ic;
// being honest, i never found a way to add split cost to the mix in a meaninguful way
// in this engine, also, will likely be ignored anyway
- double plane_cost = /*split_cost +*/ relation;
+ real_t plane_cost = /*split_cost +*/ relation;
//printf("plane %i, %i over, %i under, %i spanning, cost is %g\n",i,num_over,num_under,num_spanning,plane_cost);
if (plane_cost<best_plane_cost) {
@@ -362,7 +362,7 @@ static int _bsp_find_best_half_plane(const Face3* p_faces,const Vector<int>& p_i
}
-static int _bsp_create_node(const Face3 *p_faces,const Vector<int>& p_indices,Vector<Plane> &p_planes, Vector<BSP_Tree::Node> &p_nodes,float p_tolerance) {
+static int _bsp_create_node(const Face3 *p_faces,const Vector<int>& p_indices,Vector<Plane> &p_planes, Vector<BSP_Tree::Node> &p_nodes,real_t p_tolerance) {
ERR_FAIL_COND_V( p_nodes.size() == BSP_Tree::MAX_NODES, -1 );
@@ -400,7 +400,7 @@ static int _bsp_create_node(const Face3 *p_faces,const Vector<int>& p_indices,Ve
for(int j=0;j<3;j++) {
- float d = divisor_plane.distance_to(f.vertex[j]);
+ real_t d = divisor_plane.distance_to(f.vertex[j]);
if (Math::abs(d)>p_tolerance) {
if (d > 0)
@@ -473,7 +473,7 @@ BSP_Tree::operator Variant() const {
Dictionary d;
d["error_radius"]=error_radius;
- Vector<float> plane_values;
+ Vector<real_t> plane_values;
plane_values.resize(planes.size()*4);
for(int i=0;i<planes.size();i++) {
@@ -522,13 +522,13 @@ BSP_Tree::BSP_Tree(const Variant& p_variant) {
if (d["planes"].get_type()==Variant::POOL_REAL_ARRAY) {
- PoolVector<float> src_planes=d["planes"];
+ PoolVector<real_t> src_planes=d["planes"];
int plane_count=src_planes.size();
ERR_FAIL_COND(plane_count%4);
planes.resize(plane_count/4);
if (plane_count) {
- PoolVector<float>::Read r = src_planes.read();
+ PoolVector<real_t>::Read r = src_planes.read();
for(int i=0;i<plane_count/4;i++) {
planes[i].normal.x=r[i*4+0];
@@ -562,7 +562,7 @@ BSP_Tree::BSP_Tree(const Variant& p_variant) {
}
-BSP_Tree::BSP_Tree(const PoolVector<Face3>& p_faces,float p_error_radius) {
+BSP_Tree::BSP_Tree(const PoolVector<Face3>& p_faces,real_t p_error_radius) {
// compute aabb
@@ -615,7 +615,7 @@ BSP_Tree::BSP_Tree(const PoolVector<Face3>& p_faces,float p_error_radius) {
error_radius=p_error_radius;
}
-BSP_Tree::BSP_Tree(const Vector<Node> &p_nodes, const Vector<Plane> &p_planes, const Rect3& p_aabb,float p_error_radius) {
+BSP_Tree::BSP_Tree(const Vector<Node> &p_nodes, const Vector<Plane> &p_planes, const Rect3& p_aabb,real_t p_error_radius) {
nodes=p_nodes;
planes=p_planes;
diff --git a/core/math/bsp_tree.h b/core/math/bsp_tree.h
index a64fffcb78..c0071438db 100644
--- a/core/math/bsp_tree.h
+++ b/core/math/bsp_tree.h
@@ -66,7 +66,7 @@ private:
Vector<Node> nodes;
Vector<Plane> planes;
Rect3 aabb;
- float error_radius;
+ real_t error_radius;
int _get_points_inside(int p_node,const Vector3* p_points,int *p_indices, const Vector3& p_center,const Vector3& p_half_extents,int p_indices_count) const;
@@ -91,8 +91,8 @@ public:
BSP_Tree();
BSP_Tree(const Variant& p_variant);
- BSP_Tree(const PoolVector<Face3>& p_faces,float p_error_radius=0);
- BSP_Tree(const Vector<Node> &p_nodes, const Vector<Plane> &p_planes, const Rect3& p_aabb,float p_error_radius=0);
+ BSP_Tree(const PoolVector<Face3>& p_faces,real_t p_error_radius=0);
+ BSP_Tree(const Vector<Node> &p_nodes, const Vector<Plane> &p_planes, const Rect3& p_aabb,real_t p_error_radius=0);
~BSP_Tree();
};
@@ -110,7 +110,7 @@ bool BSP_Tree::_test_convex(const Node* p_nodes, const Plane* p_planes,int p_cur
const Plane& p=p_planes[n.plane];
- float min,max;
+ real_t min,max;
p_convex.project_range(p.normal,min,max);
bool go_under = min < p.d;
diff --git a/core/math/camera_matrix.cpp b/core/math/camera_matrix.cpp
index 7669356f5e..3b47a75c65 100644
--- a/core/math/camera_matrix.cpp
+++ b/core/math/camera_matrix.cpp
@@ -65,15 +65,15 @@ Plane CameraMatrix::xform4(const Plane& p_vec4) const {
return ret;
}
-void CameraMatrix::set_perspective(float p_fovy_degrees, float p_aspect, float p_z_near, float p_z_far,bool p_flip_fov) {
+void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far,bool p_flip_fov) {
if (p_flip_fov) {
p_fovy_degrees=get_fovy(p_fovy_degrees,1.0/p_aspect);
}
- float sine, cotangent, deltaZ;
- float radians = p_fovy_degrees / 2.0 * Math_PI / 180.0;
+ real_t sine, cotangent, deltaZ;
+ real_t radians = p_fovy_degrees / 2.0 * Math_PI / 180.0;
deltaZ = p_z_far - p_z_near;
sine = Math::sin(radians);
@@ -94,7 +94,7 @@ void CameraMatrix::set_perspective(float p_fovy_degrees, float p_aspect, float p
}
-void CameraMatrix::set_orthogonal(float p_left, float p_right, float p_bottom, float p_top, float p_znear, float p_zfar) {
+void CameraMatrix::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
set_identity();
@@ -109,7 +109,7 @@ void CameraMatrix::set_orthogonal(float p_left, float p_right, float p_bottom, f
}
-void CameraMatrix::set_orthogonal(float p_size, float p_aspect, float p_znear, float p_zfar,bool p_flip_fov) {
+void CameraMatrix::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar,bool p_flip_fov) {
if (!p_flip_fov) {
p_size*=p_aspect;
@@ -120,7 +120,7 @@ void CameraMatrix::set_orthogonal(float p_size, float p_aspect, float p_znear, f
-void CameraMatrix::set_frustum(float p_left, float p_right, float p_bottom, float p_top, float p_near, float p_far) {
+void CameraMatrix::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) {
#if 0
///@TODO, give a check to this. I'm not sure if it's working.
set_identity();
@@ -134,14 +134,14 @@ void CameraMatrix::set_frustum(float p_left, float p_right, float p_bottom, floa
matrix[3][2]=-1;
matrix[3][3]=0;
#else
- float *te = &matrix[0][0];
- float x = 2 * p_near / ( p_right - p_left );
- float y = 2 * p_near / ( p_top - p_bottom );
+ real_t *te = &matrix[0][0];
+ real_t x = 2 * p_near / ( p_right - p_left );
+ real_t y = 2 * p_near / ( p_top - p_bottom );
- float a = ( p_right + p_left ) / ( p_right - p_left );
- float b = ( p_top + p_bottom ) / ( p_top - p_bottom );
- float c = - ( p_far + p_near ) / ( p_far - p_near );
- float d = - 2 * p_far * p_near / ( p_far - p_near );
+ real_t a = ( p_right + p_left ) / ( p_right - p_left );
+ real_t b = ( p_top + p_bottom ) / ( p_top - p_bottom );
+ real_t c = - ( p_far + p_near ) / ( p_far - p_near );
+ real_t d = - 2 * p_far * p_near / ( p_far - p_near );
te[0] = x;
te[1] = 0;
@@ -166,9 +166,9 @@ void CameraMatrix::set_frustum(float p_left, float p_right, float p_bottom, floa
-float CameraMatrix::get_z_far() const {
+real_t CameraMatrix::get_z_far() const {
- const float * matrix = (const float*)this->matrix;
+ const real_t * matrix = (const real_t*)this->matrix;
Plane new_plane=Plane(matrix[ 3] - matrix[ 2],
matrix[ 7] - matrix[ 6],
matrix[11] - matrix[10],
@@ -179,9 +179,9 @@ float CameraMatrix::get_z_far() const {
return new_plane.d;
}
-float CameraMatrix::get_z_near() const {
+real_t CameraMatrix::get_z_near() const {
- const float * matrix = (const float*)this->matrix;
+ const real_t * matrix = (const real_t*)this->matrix;
Plane new_plane=Plane(matrix[ 3] + matrix[ 2],
matrix[ 7] + matrix[ 6],
matrix[11] + matrix[10],
@@ -191,9 +191,9 @@ float CameraMatrix::get_z_near() const {
return new_plane.d;
}
-void CameraMatrix::get_viewport_size(float& r_width, float& r_height) const {
+void CameraMatrix::get_viewport_size(real_t& r_width, real_t& r_height) const {
- const float * matrix = (const float*)this->matrix;
+ const real_t * matrix = (const real_t*)this->matrix;
///////--- Near Plane ---///////
Plane near_plane=Plane(matrix[ 3] + matrix[ 2],
matrix[ 7] + matrix[ 6],
@@ -223,7 +223,7 @@ void CameraMatrix::get_viewport_size(float& r_width, float& r_height) const {
bool CameraMatrix::get_endpoints(const Transform& p_transform, Vector3 *p_8points) const {
- const float * matrix = (const float*)this->matrix;
+ const real_t * matrix = (const real_t*)this->matrix;
///////--- Near Plane ---///////
Plane near_plane=Plane(matrix[ 3] + matrix[ 2],
@@ -284,7 +284,7 @@ Vector<Plane> CameraMatrix::get_projection_planes(const Transform& p_transform)
Vector<Plane> planes;
- const float * matrix = (const float*)this->matrix;
+ const real_t * matrix = (const real_t*)this->matrix;
Plane new_plane;
@@ -377,9 +377,9 @@ void CameraMatrix::invert() {
int i,j,k;
int pvt_i[4], pvt_j[4]; /* Locations of pivot matrix */
- float pvt_val; /* Value of current pivot element */
- float hold; /* Temporary storage */
- float determinat; /* Determinant */
+ real_t pvt_val; /* Value of current pivot element */
+ real_t hold; /* Temporary storage */
+ real_t determinat; /* Determinant */
determinat = 1.0;
for (k=0; k<4; k++) {
@@ -492,7 +492,7 @@ CameraMatrix CameraMatrix::operator*(const CameraMatrix& p_matrix) const {
void CameraMatrix::set_light_bias() {
- float *m=&matrix[0][0];
+ real_t *m=&matrix[0][0];
m[0]=0.5,
m[1]=0.0,
@@ -515,7 +515,7 @@ void CameraMatrix::set_light_bias() {
void CameraMatrix::set_light_atlas_rect(const Rect2& p_rect) {
- float *m=&matrix[0][0];
+ real_t *m=&matrix[0][0];
m[0]=p_rect.size.width,
m[1]=0.0,
@@ -545,9 +545,9 @@ CameraMatrix::operator String() const {
return str;
}
-float CameraMatrix::get_aspect() const {
+real_t CameraMatrix::get_aspect() const {
- float w,h;
+ real_t w,h;
get_viewport_size(w,h);
return w/h;
}
@@ -561,8 +561,8 @@ int CameraMatrix::get_pixels_per_meter(int p_for_pixel_width) const {
}
-float CameraMatrix::get_fov() const {
- const float * matrix = (const float*)this->matrix;
+real_t CameraMatrix::get_fov() const {
+ const real_t * matrix = (const real_t*)this->matrix;
Plane right_plane=Plane(matrix[ 3] - matrix[ 0],
matrix[ 7] - matrix[ 4],
@@ -613,7 +613,7 @@ void CameraMatrix::scale_translate_to_fit(const Rect3& p_aabb) {
CameraMatrix::operator Transform() const {
Transform tr;
- const float *m=&matrix[0][0];
+ const real_t *m=&matrix[0][0];
tr.basis.elements[0][0]=m[0];
tr.basis.elements[1][0]=m[1];
@@ -637,7 +637,7 @@ CameraMatrix::operator Transform() const {
CameraMatrix::CameraMatrix(const Transform& p_transform) {
const Transform &tr = p_transform;
- float *m=&matrix[0][0];
+ real_t *m=&matrix[0][0];
m[0]=tr.basis.elements[0][0];
m[1]=tr.basis.elements[1][0];
diff --git a/core/math/camera_matrix.h b/core/math/camera_matrix.h
index 952f1e8fb2..c96f8259b5 100644
--- a/core/math/camera_matrix.h
+++ b/core/math/camera_matrix.h
@@ -48,32 +48,32 @@ struct CameraMatrix {
PLANE_BOTTOM
};
- float matrix[4][4];
+ real_t matrix[4][4];
void set_identity();
void set_zero();
void set_light_bias();
void set_light_atlas_rect(const Rect2& p_rect);
- void set_perspective(float p_fovy_degrees, float p_aspect, float p_z_near, float p_z_far,bool p_flip_fov=false);
- void set_orthogonal(float p_left, float p_right, float p_bottom, float p_top, float p_znear, float p_zfar);
- void set_orthogonal(float p_size, float p_aspect, float p_znear, float p_zfar,bool p_flip_fov=false);
- void set_frustum(float p_left, float p_right, float p_bottom, float p_top, float p_near, float p_far);
+ void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far,bool p_flip_fov=false);
+ void set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar);
+ void set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar,bool p_flip_fov=false);
+ void set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far);
- static float get_fovy(float p_fovx,float p_aspect) {
+ static real_t get_fovy(real_t p_fovx,real_t p_aspect) {
return Math::rad2deg(Math::atan(p_aspect * Math::tan(Math::deg2rad(p_fovx) * 0.5))*2.0);
}
- float get_z_far() const;
- float get_z_near() const;
- float get_aspect() const;
- float get_fov() const;
+ real_t get_z_far() const;
+ real_t get_z_near() const;
+ real_t get_aspect() const;
+ real_t get_fov() const;
Vector<Plane> get_projection_planes(const Transform& p_transform) const;
bool get_endpoints(const Transform& p_transform,Vector3 *p_8points) const;
- void get_viewport_size(float& r_width, float& r_height) const;
+ void get_viewport_size(real_t& r_width, real_t& r_height) const;
void invert();
CameraMatrix inverse() const;
@@ -102,7 +102,7 @@ Vector3 CameraMatrix::xform(const Vector3& p_vec3) const {
ret.x = matrix[0][0] * p_vec3.x + matrix[1][0] * p_vec3.y + matrix[2][0] * p_vec3.z + matrix[3][0];
ret.y = matrix[0][1] * p_vec3.x + matrix[1][1] * p_vec3.y + matrix[2][1] * p_vec3.z + matrix[3][1];
ret.z = matrix[0][2] * p_vec3.x + matrix[1][2] * p_vec3.y + matrix[2][2] * p_vec3.z + matrix[3][2];
- float w = matrix[0][3] * p_vec3.x + matrix[1][3] * p_vec3.y + matrix[2][3] * p_vec3.z + matrix[3][3];
+ real_t w = matrix[0][3] * p_vec3.x + matrix[1][3] * p_vec3.y + matrix[2][3] * p_vec3.z + matrix[3][3];
return ret/w;
}
diff --git a/core/math/face3.cpp b/core/math/face3.cpp
index faf124593e..60fab6748a 100644
--- a/core/math/face3.cpp
+++ b/core/math/face3.cpp
@@ -168,8 +168,8 @@ Face3::Side Face3::get_side_of(const Face3& p_face,ClockDirection p_clock_dir) c
Vector3 Face3::get_random_point_inside() const {
- float a=Math::random(0,1);
- float b=Math::random(0,1);
+ real_t a=Math::random(0,1);
+ real_t b=Math::random(0,1);
if (a>b) {
SWAP(a,b);
}
@@ -215,9 +215,9 @@ bool Face3::intersects_aabb(const Rect3& p_aabb) const {
#define TEST_AXIS(m_ax)\
{\
- float aabb_min=p_aabb.pos.m_ax;\
- float aabb_max=p_aabb.pos.m_ax+p_aabb.size.m_ax;\
- float tri_min,tri_max;\
+ real_t aabb_min=p_aabb.pos.m_ax;\
+ real_t aabb_max=p_aabb.pos.m_ax+p_aabb.size.m_ax;\
+ real_t tri_min,tri_max;\
for (int i=0;i<3;i++) {\
if (i==0 || vertex[i].m_ax > tri_max)\
tri_max=vertex[i].m_ax;\
@@ -255,7 +255,7 @@ bool Face3::intersects_aabb(const Rect3& p_aabb) const {
continue; // coplanar
axis.normalize();
- float minA,maxA,minB,maxB;
+ real_t minA,maxA,minB,maxB;
p_aabb.project_range_in_plane(Plane(axis,0),minA,maxA);
project_range(axis,Transform(),minB,maxB);
@@ -272,12 +272,12 @@ Face3::operator String() const {
return String()+vertex[0]+", "+vertex[1]+", "+vertex[2];
}
-void Face3::project_range(const Vector3& p_normal,const Transform& p_transform,float& r_min, float& r_max) const {
+void Face3::project_range(const Vector3& p_normal,const Transform& p_transform,real_t& r_min, real_t& r_max) const {
for (int i=0;i<3;i++) {
Vector3 v=p_transform.xform(vertex[i]);
- float d=p_normal.dot(v);
+ real_t d=p_normal.dot(v);
if (i==0 || d > r_max)
r_max=d;
@@ -316,11 +316,11 @@ void Face3::get_support(const Vector3& p_normal,const Transform& p_transform,Vec
/** FIND SUPPORT VERTEX **/
int vert_support_idx=-1;
- float support_max;
+ real_t support_max;
for (int i=0;i<3;i++) {
- float d=n.dot(vertex[i]);
+ real_t d=n.dot(vertex[i]);
if (i==0 || d > support_max) {
support_max=d;
@@ -336,7 +336,7 @@ void Face3::get_support(const Vector3& p_normal,const Transform& p_transform,Vec
continue;
// check if edge is valid as a support
- float dot=(vertex[i]-vertex[(i+1)%3]).normalized().dot(n);
+ real_t dot=(vertex[i]-vertex[(i+1)%3]).normalized().dot(n);
dot=ABS(dot);
if (dot < _EDGE_IS_VALID_SUPPORT_TRESHOLD) {
@@ -362,15 +362,15 @@ Vector3 Face3::get_closest_point_to(const Vector3& p_point) const {
Vector3 edge1 = vertex[2] - vertex[0];
Vector3 v0 = vertex[0] - p_point;
- float a = edge0.dot( edge0 );
- float b = edge0.dot( edge1 );
- float c = edge1.dot( edge1 );
- float d = edge0.dot( v0 );
- float e = edge1.dot( v0 );
+ real_t a = edge0.dot( edge0 );
+ real_t b = edge0.dot( edge1 );
+ real_t c = edge1.dot( edge1 );
+ real_t d = edge0.dot( v0 );
+ real_t e = edge1.dot( v0 );
- float det = a*c - b*b;
- float s = b*e - c*d;
- float t = b*d - a*e;
+ real_t det = a*c - b*b;
+ real_t s = b*e - c*d;
+ real_t t = b*d - a*e;
if ( s + t < det )
{
@@ -402,7 +402,7 @@ Vector3 Face3::get_closest_point_to(const Vector3& p_point) const {
}
else
{
- float invDet = 1.f / det;
+ real_t invDet = 1.f / det;
s *= invDet;
t *= invDet;
}
@@ -411,12 +411,12 @@ Vector3 Face3::get_closest_point_to(const Vector3& p_point) const {
{
if ( s < 0.f )
{
- float tmp0 = b+d;
- float tmp1 = c+e;
+ real_t tmp0 = b+d;
+ real_t tmp1 = c+e;
if ( tmp1 > tmp0 )
{
- float numer = tmp1 - tmp0;
- float denom = a-2*b+c;
+ real_t numer = tmp1 - tmp0;
+ real_t denom = a-2*b+c;
s = CLAMP( numer/denom, 0.f, 1.f );
t = 1-s;
}
@@ -430,8 +430,8 @@ Vector3 Face3::get_closest_point_to(const Vector3& p_point) const {
{
if ( a+d > b+e )
{
- float numer = c+e-b-d;
- float denom = a-2*b+c;
+ real_t numer = c+e-b-d;
+ real_t denom = a-2*b+c;
s = CLAMP( numer/denom, 0.f, 1.f );
t = 1-s;
}
@@ -443,8 +443,8 @@ Vector3 Face3::get_closest_point_to(const Vector3& p_point) const {
}
else
{
- float numer = c+e-b-d;
- float denom = a-2*b+c;
+ real_t numer = c+e-b-d;
+ real_t denom = a-2*b+c;
s = CLAMP( numer/denom, 0.f, 1.f );
t = 1.f - s;
}
diff --git a/core/math/face3.h b/core/math/face3.h
index e957f64320..a0da588ea5 100644
--- a/core/math/face3.h
+++ b/core/math/face3.h
@@ -76,7 +76,7 @@ public:
ClockDirection get_clock_dir() const; ///< todo, test if this is returning the proper clockwisity
void get_support(const Vector3& p_normal,const Transform& p_transform,Vector3 *p_vertices,int* p_count,int p_max) const;
- void project_range(const Vector3& p_normal,const Transform& p_transform,float& r_min, float& r_max) const;
+ void project_range(const Vector3& p_normal,const Transform& p_transform,real_t& r_min, real_t& r_max) const;
Rect3 get_aabb() const {
@@ -109,9 +109,9 @@ bool Face3::intersects_aabb2(const Rect3& p_aabb) const {
(perp.z>0) ? -half_extents.z : half_extents.z
);
- float d = perp.dot(vertex[0]);
- float dist_a = perp.dot(ofs+sup)-d;
- float dist_b = perp.dot(ofs-sup)-d;
+ real_t d = perp.dot(vertex[0]);
+ real_t dist_a = perp.dot(ofs+sup)-d;
+ real_t dist_b = perp.dot(ofs-sup)-d;
if (dist_a*dist_b > 0)
return false; //does not intersect the plane
@@ -119,9 +119,9 @@ bool Face3::intersects_aabb2(const Rect3& p_aabb) const {
#define TEST_AXIS(m_ax)\
{\
- float aabb_min=p_aabb.pos.m_ax;\
- float aabb_max=p_aabb.pos.m_ax+p_aabb.size.m_ax;\
- float tri_min,tri_max;\
+ real_t aabb_min=p_aabb.pos.m_ax;\
+ real_t aabb_max=p_aabb.pos.m_ax+p_aabb.size.m_ax;\
+ real_t tri_min,tri_max;\
for (int i=0;i<3;i++) {\
if (i==0 || vertex[i].m_ax > tri_max)\
tri_max=vertex[i].m_ax;\
@@ -236,16 +236,16 @@ bool Face3::intersects_aabb2(const Rect3& p_aabb) const {
(axis.z>0) ? -half_extents.z : half_extents.z
);
- float maxB = axis.dot(ofs+sup2);
- float minB = axis.dot(ofs-sup2);
+ real_t maxB = axis.dot(ofs+sup2);
+ real_t minB = axis.dot(ofs-sup2);
if (minB>maxB) {
SWAP(maxB,minB);
}
- float minT=1e20,maxT=-1e20;
+ real_t minT=1e20,maxT=-1e20;
for (int k=0;k<3;k++) {
- float d=axis.dot(vertex[k]);
+ real_t d=axis.dot(vertex[k]);
if (d > maxT)
maxT=d;
diff --git a/core/math/geometry.cpp b/core/math/geometry.cpp
index bf3364a052..6570dfe672 100644
--- a/core/math/geometry.cpp
+++ b/core/math/geometry.cpp
@@ -580,7 +580,7 @@ static inline void _build_faces(uint8_t*** p_cell_status,int x,int y,int z,int l
}
-PoolVector< Face3 > Geometry::wrap_geometry( PoolVector< Face3 > p_array,float *p_error ) {
+PoolVector< Face3 > Geometry::wrap_geometry( PoolVector< Face3 > p_array,real_t *p_error ) {
#define _MIN_SIZE 1.0
#define _MAX_LENGTH 20
@@ -755,7 +755,7 @@ Geometry::MeshData Geometry::build_convex_mesh(const PoolVector<Plane> &p_planes
#define SUBPLANE_SIZE 1024.0
- float subplane_size = 1024.0; // should compute this from the actual plane
+ real_t subplane_size = 1024.0; // should compute this from the actual plane
for (int i=0;i<p_planes.size();i++) {
Plane p =p_planes[i];
@@ -910,7 +910,7 @@ PoolVector<Plane> Geometry::build_box_planes(const Vector3& p_extents) {
return planes;
}
-PoolVector<Plane> Geometry::build_cylinder_planes(float p_radius, float p_height, int p_sides, Vector3::Axis p_axis) {
+PoolVector<Plane> Geometry::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) {
PoolVector<Plane> planes;
@@ -933,7 +933,7 @@ PoolVector<Plane> Geometry::build_cylinder_planes(float p_radius, float p_height
}
-PoolVector<Plane> Geometry::build_sphere_planes(float p_radius, int p_lats,int p_lons, Vector3::Axis p_axis) {
+PoolVector<Plane> Geometry::build_sphere_planes(real_t p_radius, int p_lats,int p_lons, Vector3::Axis p_axis) {
PoolVector<Plane> planes;
@@ -957,7 +957,7 @@ PoolVector<Plane> Geometry::build_sphere_planes(float p_radius, int p_lats,int p
for (int j=1;j<=p_lats;j++) {
//todo this is stupid, fix
- Vector3 angle = normal.linear_interpolate(axis,j/(float)p_lats).normalized();
+ Vector3 angle = normal.linear_interpolate(axis,j/(real_t)p_lats).normalized();
Vector3 pos = angle*p_radius;
planes.push_back( Plane( pos, angle ) );
planes.push_back( Plane( pos * axis_neg, angle * axis_neg) );
@@ -969,7 +969,7 @@ PoolVector<Plane> Geometry::build_sphere_planes(float p_radius, int p_lats,int p
}
-PoolVector<Plane> Geometry::build_capsule_planes(float p_radius, float p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
+PoolVector<Plane> Geometry::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
PoolVector<Plane> planes;
@@ -991,7 +991,7 @@ PoolVector<Plane> Geometry::build_capsule_planes(float p_radius, float p_height,
for (int j=1;j<=p_lats;j++) {
- Vector3 angle = normal.linear_interpolate(axis,j/(float)p_lats).normalized();
+ Vector3 angle = normal.linear_interpolate(axis,j/(real_t)p_lats).normalized();
Vector3 pos = axis*p_height*0.5 + angle*p_radius;
planes.push_back( Plane( pos, angle ) );
planes.push_back( Plane( pos * axis_neg, angle * axis_neg) );
@@ -1108,13 +1108,13 @@ void Geometry::make_atlas(const Vector<Size2i>& p_rects,Vector<Point2i>& r_resul
//find the result with the best aspect ratio
int best=-1;
- float best_aspect=1e20;
+ real_t best_aspect=1e20;
for(int i=0;i<results.size();i++) {
- float h = nearest_power_of_2(results[i].max_h);
- float w = nearest_power_of_2(results[i].max_w);
- float aspect = h>w ? h/w : w/h;
+ real_t h = nearest_power_of_2(results[i].max_h);
+ real_t w = nearest_power_of_2(results[i].max_w);
+ real_t aspect = h>w ? h/w : w/h;
if (aspect < best_aspect) {
best=i;
best_aspect=aspect;
diff --git a/core/math/geometry.h b/core/math/geometry.h
index 25f5e11fcf..13cbbdce6f 100644
--- a/core/math/geometry.h
+++ b/core/math/geometry.h
@@ -48,15 +48,15 @@ public:
- static float get_closest_points_between_segments( const Vector2& p1,const Vector2& q1, const Vector2& p2,const Vector2& q2, Vector2& c1, Vector2& c2) {
+ static real_t get_closest_points_between_segments( const Vector2& p1,const Vector2& q1, const Vector2& p2,const Vector2& q2, Vector2& c1, Vector2& c2) {
Vector2 d1 = q1 - p1; // Direction vector of segment S1
Vector2 d2 = q2 - p2; // Direction vector of segment S2
Vector2 r = p1 - p2;
- float a = d1.dot(d1); // Squared length of segment S1, always nonnegative
- float e = d2.dot(d2); // Squared length of segment S2, always nonnegative
- float f = d2.dot(r);
- float s,t;
+ real_t a = d1.dot(d1); // Squared length of segment S1, always nonnegative
+ real_t e = d2.dot(d2); // Squared length of segment S2, always nonnegative
+ real_t f = d2.dot(r);
+ real_t s,t;
// Check if either or both segments degenerate into points
if (a <= CMP_EPSILON && e <= CMP_EPSILON) {
// Both segments degenerate into points
@@ -66,25 +66,25 @@ public:
}
if (a <= CMP_EPSILON) {
// First segment degenerates into a point
- s = 0.0f;
+ s = 0.0;
t = f / e; // s = 0 => t = (b*s + f) / e = f / e
- t = CLAMP(t, 0.0f, 1.0f);
+ t = CLAMP(t, 0.0, 1.0);
} else {
- float c = d1.dot(r);
+ real_t c = d1.dot(r);
if (e <= CMP_EPSILON) {
// Second segment degenerates into a point
- t = 0.0f;
- s = CLAMP(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a
+ t = 0.0;
+ s = CLAMP(-c / a, 0.0, 1.0); // t = 0 => s = (b*t - c) / a = -c / a
} else {
// The general nondegenerate case starts here
- float b = d1.dot(d2);
- float denom = a*e-b*b; // Always nonnegative
+ real_t b = d1.dot(d2);
+ real_t denom = a*e-b*b; // Always nonnegative
// If segments not parallel, compute closest point on L1 to L2 and
// clamp to segment S1. Else pick arbitrary s (here 0)
- if (denom != 0.0f) {
- s = CLAMP((b*f - c*e) / denom, 0.0f, 1.0f);
+ if (denom != 0.0) {
+ s = CLAMP((b*f - c*e) / denom, 0.0, 1.0);
} else
- s = 0.0f;
+ s = 0.0;
// Compute point on L2 closest to S1(s) using
// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
t = (b*s + f) / e;
@@ -92,12 +92,12 @@ public:
//If t in [0,1] done. Else clamp t, recompute s for the new value
// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
// and clamp s to [0, 1]
- if (t < 0.0f) {
- t = 0.0f;
- s = CLAMP(-c / a, 0.0f, 1.0f);
- } else if (t > 1.0f) {
- t = 1.0f;
- s = CLAMP((b - c) / a, 0.0f, 1.0f);
+ if (t < 0.0) {
+ t = 0.0;
+ s = CLAMP(-c / a, 0.0, 1.0);
+ } else if (t > 1.0) {
+ t = 1.0;
+ s = CLAMP((b - c) / a, 0.0, 1.0);
}
}
}
@@ -113,8 +113,8 @@ public:
#define d_of(m,n,o,p) ( (m.x - n.x) * (o.x - p.x) + (m.y - n.y) * (o.y - p.y) + (m.z - n.z) * (o.z - p.z) )
//caluclate the parpametric position on the 2 curves, mua and mub
- float mua = ( d_of(p1,q1,q2,q1) * d_of(q2,q1,p2,p1) - d_of(p1,q1,p2,p1) * d_of(q2,q1,q2,q1) ) / ( d_of(p2,p1,p2,p1) * d_of(q2,q1,q2,q1) - d_of(q2,q1,p2,p1) * d_of(q2,q1,p2,p1) );
- float mub = ( d_of(p1,q1,q2,q1) + mua * d_of(q2,q1,p2,p1) ) / d_of(q2,q1,q2,q1);
+ real_t mua = ( d_of(p1,q1,q2,q1) * d_of(q2,q1,p2,p1) - d_of(p1,q1,p2,p1) * d_of(q2,q1,q2,q1) ) / ( d_of(p2,p1,p2,p1) * d_of(q2,q1,q2,q1) - d_of(q2,q1,p2,p1) * d_of(q2,q1,p2,p1) );
+ real_t mub = ( d_of(p1,q1,q2,q1) + mua * d_of(q2,q1,p2,p1) ) / d_of(q2,q1,q2,q1);
//clip the value between [0..1] constraining the solution to lie on the original curves
if (mua < 0) mua = 0;
@@ -125,7 +125,7 @@ public:
c2 = q1.linear_interpolate(q2,mub);
}
- static float get_closest_distance_between_segments( const Vector3& p_from_a,const Vector3& p_to_a, const Vector3& p_from_b,const Vector3& p_to_b) {
+ static real_t get_closest_distance_between_segments( const Vector3& p_from_a,const Vector3& p_to_a, const Vector3& p_from_b,const Vector3& p_to_b) {
Vector3 u = p_to_a - p_from_a;
Vector3 v = p_to_b - p_from_b;
Vector3 w = p_from_a - p_to_a;
@@ -273,22 +273,22 @@ public:
Vector3 sphere_pos=p_sphere_pos-p_from;
Vector3 rel=(p_to-p_from);
- float rel_l=rel.length();
+ real_t rel_l=rel.length();
if (rel_l<CMP_EPSILON)
return false; // both points are the same
Vector3 normal=rel/rel_l;
- float sphere_d=normal.dot(sphere_pos);
+ real_t sphere_d=normal.dot(sphere_pos);
//Vector3 ray_closest=normal*sphere_d;
- float ray_distance=sphere_pos.distance_to(normal*sphere_d);
+ real_t ray_distance=sphere_pos.distance_to(normal*sphere_d);
if (ray_distance>=p_sphere_radius)
return false;
- float inters_d2=p_sphere_radius*p_sphere_radius - ray_distance*ray_distance;
- float inters_d=sphere_d;
+ real_t inters_d2=p_sphere_radius*p_sphere_radius - ray_distance*ray_distance;
+ real_t inters_d=sphere_d;
if (inters_d2>=CMP_EPSILON)
inters_d-=Math::sqrt(inters_d2);
@@ -307,17 +307,17 @@ public:
return true;
}
- static inline bool segment_intersects_cylinder( const Vector3& p_from, const Vector3& p_to, float p_height,float p_radius,Vector3* r_res=0,Vector3 *r_norm=0) {
+ static inline bool segment_intersects_cylinder( const Vector3& p_from, const Vector3& p_to, real_t p_height,real_t p_radius,Vector3* r_res=0,Vector3 *r_norm=0) {
Vector3 rel=(p_to-p_from);
- float rel_l=rel.length();
+ real_t rel_l=rel.length();
if (rel_l<CMP_EPSILON)
return false; // both points are the same
// first check if they are parallel
Vector3 normal=(rel/rel_l);
Vector3 crs = normal.cross(Vector3(0,0,1));
- float crs_l=crs.length();
+ real_t crs_l=crs.length();
Vector3 z_dir;
@@ -328,13 +328,13 @@ public:
z_dir=crs/crs_l;
}
- float dist=z_dir.dot(p_from);
+ real_t dist=z_dir.dot(p_from);
if (dist>=p_radius)
return false; // too far away
// convert to 2D
- float w2=p_radius*p_radius-dist*dist;
+ real_t w2=p_radius*p_radius-dist*dist;
if (w2<CMP_EPSILON)
return false; //avoid numerical error
Size2 size(Math::sqrt(w2),p_height*0.5);
@@ -344,7 +344,7 @@ public:
Vector2 from2D(x_dir.dot(p_from),p_from.z);
Vector2 to2D(x_dir.dot(p_to),p_to.z);
- float min=0,max=1;
+ real_t min=0,max=1;
int axis=-1;
@@ -464,12 +464,12 @@ public:
Vector3 p=p_point-p_segment[0];
Vector3 n=p_segment[1]-p_segment[0];
- float l =n.length();
+ real_t l =n.length();
if (l<1e-10)
return p_segment[0]; // both points are the same, just give any
n/=l;
- float d=n.dot(p);
+ real_t d=n.dot(p);
if (d<=0.0)
return p_segment[0]; // before first point
@@ -483,12 +483,12 @@ public:
Vector3 p=p_point-p_segment[0];
Vector3 n=p_segment[1]-p_segment[0];
- float l =n.length();
+ real_t l =n.length();
if (l<1e-10)
return p_segment[0]; // both points are the same, just give any
n/=l;
- float d=n.dot(p);
+ real_t d=n.dot(p);
return p_segment[0]+n*d; // inside
}
@@ -497,12 +497,12 @@ public:
Vector2 p=p_point-p_segment[0];
Vector2 n=p_segment[1]-p_segment[0];
- float l =n.length();
+ real_t l =n.length();
if (l<1e-10)
return p_segment[0]; // both points are the same, just give any
n/=l;
- float d=n.dot(p);
+ real_t d=n.dot(p);
if (d<=0.0)
return p_segment[0]; // before first point
@@ -529,12 +529,12 @@ public:
Vector2 p=p_point-p_segment[0];
Vector2 n=p_segment[1]-p_segment[0];
- float l =n.length();
+ real_t l =n.length();
if (l<1e-10)
return p_segment[0]; // both points are the same, just give any
n/=l;
- float d=n.dot(p);
+ real_t d=n.dot(p);
return p_segment[0]+n*d; // inside
}
@@ -555,7 +555,7 @@ public:
if ((C.y<0 && D.y<0) || (C.y>=0 && D.y>=0))
return false;
- float ABpos=D.x+(C.x-D.x)*D.y/(D.y-C.y);
+ real_t ABpos=D.x+(C.x-D.x)*D.y/(D.y-C.y);
// Fail if segment C-D crosses line A-B outside of segment A-B.
if (ABpos<0 || ABpos>1.0)
@@ -595,7 +595,7 @@ public:
static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle,const Vector3& p_normal,const Vector3& p_sphere_pos, real_t p_sphere_radius,Vector3& r_triangle_contact,Vector3& r_sphere_contact) {
- float d=p_normal.dot(p_sphere_pos)-p_normal.dot(p_triangle[0]);
+ real_t d=p_normal.dot(p_sphere_pos)-p_normal.dot(p_triangle[0]);
if (d > p_sphere_radius || d < -p_sphere_radius) // not touching the plane of the face, return
return false;
@@ -629,7 +629,7 @@ public:
Vector3 axis =n1.cross(n2).cross(n1);
axis.normalize(); // ugh
- float ad=axis.dot(n2);
+ real_t ad=axis.dot(n2);
if (ABS(ad)>p_sphere_radius) {
// no chance with this edge, too far away
@@ -639,7 +639,7 @@ public:
// check point within edge capsule cylinder
/** 4th TEST INSIDE EDGE POINTS **/
- float sphere_at = n1.dot(n2);
+ real_t sphere_at = n1.dot(n2);
if (sphere_at>=0 && sphere_at<n1.dot(n1)) {
@@ -650,7 +650,7 @@ public:
return true;
}
- float r2=p_sphere_radius*p_sphere_radius;
+ real_t r2=p_sphere_radius*p_sphere_radius;
if (n2.length_squared()<r2) {
@@ -726,8 +726,8 @@ public:
int outside_count = 0;
for (int a = 0; a < polygon.size(); a++) {
- //float p_plane.d = (*this) * polygon[a];
- float dist = p_plane.distance_to(polygon[a]);
+ //real_t p_plane.d = (*this) * polygon[a];
+ real_t dist = p_plane.distance_to(polygon[a]);
if (dist <-CMP_POINT_IN_PLANE_EPSILON) {
location_cache[a] = LOC_INSIDE;
inside_count++;
@@ -761,8 +761,8 @@ public:
const Vector3& v2 = polygon[index];
Vector3 segment= v1 - v2;
- double den=p_plane.normal.dot( segment );
- double dist=p_plane.distance_to( v1 ) / den;
+ real_t den=p_plane.normal.dot( segment );
+ real_t dist=p_plane.distance_to( v1 ) / den;
dist=-dist;
clipped.push_back( v1 + segment * dist );
}
@@ -771,8 +771,8 @@ public:
if ((loc == LOC_INSIDE) && (location_cache[previous] == LOC_OUTSIDE)) {
const Vector3& v2 = polygon[previous];
Vector3 segment= v1 - v2;
- double den=p_plane.normal.dot( segment );
- double dist=p_plane.distance_to( v1 ) / den;
+ real_t den=p_plane.normal.dot( segment );
+ real_t dist=p_plane.distance_to( v1 ) / den;
dist=-dist;
clipped.push_back( v1 + segment * dist );
}
@@ -808,7 +808,7 @@ public:
static PoolVector< PoolVector< Face3 > > separate_objects( PoolVector< Face3 > p_array );
- static PoolVector< Face3 > wrap_geometry( PoolVector< Face3 > p_array, float *p_error=NULL ); ///< create a "wrap" that encloses the given geometry
+ static PoolVector< Face3 > wrap_geometry( PoolVector< Face3 > p_array, real_t *p_error=NULL ); ///< create a "wrap" that encloses the given geometry
struct MeshData {
@@ -884,9 +884,9 @@ public:
}
- static double vec2_cross(const Point2 &O, const Point2 &A, const Point2 &B)
+ static real_t vec2_cross(const Point2 &O, const Point2 &A, const Point2 &B)
{
- return (double)(A.x - O.x) * (B.y - O.y) - (double)(A.y - O.y) * (B.x - O.x);
+ return (real_t)(A.x - O.x) * (B.y - O.y) - (real_t)(A.y - O.y) * (B.x - O.x);
}
// Returns a list of points on the convex hull in counter-clockwise order.
@@ -918,10 +918,10 @@ public:
}
static MeshData build_convex_mesh(const PoolVector<Plane> &p_planes);
- static PoolVector<Plane> build_sphere_planes(float p_radius, int p_lats, int p_lons, Vector3::Axis p_axis=Vector3::AXIS_Z);
+ static PoolVector<Plane> build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis=Vector3::AXIS_Z);
static PoolVector<Plane> build_box_planes(const Vector3& p_extents);
- static PoolVector<Plane> build_cylinder_planes(float p_radius, float p_height, int p_sides, Vector3::Axis p_axis=Vector3::AXIS_Z);
- static PoolVector<Plane> build_capsule_planes(float p_radius, float p_height, int p_sides, int p_lats, Vector3::Axis p_axis=Vector3::AXIS_Z);
+ static PoolVector<Plane> build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis=Vector3::AXIS_Z);
+ static PoolVector<Plane> build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis=Vector3::AXIS_Z);
static void make_atlas(const Vector<Size2i>& p_rects,Vector<Point2i>& r_result, Size2i& r_size);
diff --git a/core/math/math_2d.cpp b/core/math/math_2d.cpp
index c6860ba2e8..76eeece688 100644
--- a/core/math/math_2d.cpp
+++ b/core/math/math_2d.cpp
@@ -239,10 +239,10 @@ Vector2 Vector2::cubic_interpolate(const Vector2& p_b,const Vector2& p_pre_a, co
real_t t3 = t2 * t;
Vector2 out;
- out = 0.5f * ( ( p1 * 2.0f) +
+ out = 0.5 * ( ( p1 * 2.0) +
( -p0 + p2 ) * t +
- ( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
- ( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
+ ( 2.0 * p0 - 5.0 * p1 + 4 * p2 - p3 ) * t2 +
+ ( -p0 + 3.0 * p1 - 3.0 * p2 + p3 ) * t3 );
return out;
/*
diff --git a/core/math/math_funcs.cpp b/core/math/math_funcs.cpp
index 70b1f303a5..c730b4fa30 100644
--- a/core/math/math_funcs.cpp
+++ b/core/math/math_funcs.cpp
@@ -59,35 +59,8 @@ uint32_t Math::rand() {
return pcg32_random_r(&default_pcg);
}
-double Math::randf() {
-
- return (double)rand() / (double)Math::RANDOM_MAX;
-}
-
-
-double Math::round(double p_val) {
-
- if (p_val>=0) {
- return ::floor(p_val+0.5);
- } else {
- p_val=-p_val;
- return -::floor(p_val+0.5);
- }
-}
-
-double Math::dectime(double p_value,double p_amount, double p_step) {
-
- float sgn = p_value < 0 ? -1.0 : 1.0;
- float val = absf(p_value);
- val-=p_amount*p_step;
- if (val<0.0)
- val=0.0;
- return val*sgn;
-}
-
int Math::step_decimals(double p_step) {
-
static const int maxn=9;
static const double sd[maxn]={
0.9999, // somehow compensate for floating point error
@@ -101,7 +74,7 @@ int Math::step_decimals(double p_step) {
0.000000009999
};
- double as=absf(p_step);
+ double as=Math::abs(p_step);
for(int i=0;i<maxn;i++) {
if (as>=sd[i]) {
return i;
@@ -111,8 +84,16 @@ int Math::step_decimals(double p_step) {
return maxn;
}
-double Math::ease(double p_x, double p_c) {
+double Math::dectime(double p_value,double p_amount, double p_step) {
+ double sgn = p_value < 0 ? -1.0 : 1.0;
+ double val = Math::abs(p_value);
+ val-=p_amount*p_step;
+ if (val<0.0)
+ val=0.0;
+ return val*sgn;
+}
+double Math::ease(double p_x, double p_c) {
if (p_x<0)
p_x=0;
else if (p_x>1.0)
@@ -133,20 +114,16 @@ double Math::ease(double p_x, double p_c) {
}
} else
return 0; // no ease (raw)
-
}
double Math::stepify(double p_value,double p_step) {
-
if (p_step!=0) {
-
- p_value=floor( p_value / p_step + 0.5 ) * p_step;
+ p_value=Math::floor( p_value / p_step + 0.5 ) * p_step;
}
return p_value;
}
-
uint32_t Math::larger_prime(uint32_t p_val) {
static const uint32_t primes[] = {
@@ -195,22 +172,15 @@ uint32_t Math::larger_prime(uint32_t p_val) {
}
double Math::random(double from, double to) {
-
unsigned int r = Math::rand();
double ret = (double)r/(double)RANDOM_MAX;
return (ret)*(to-from) + from;
}
-double Math::pow(double x, double y) {
-
- return ::pow(x,y);
+float Math::random(float from, float to) {
+ unsigned int r = Math::rand();
+ float ret = (float)r/(float)RANDOM_MAX;
+ return (ret)*(to-from) + from;
}
-double Math::log(double x) {
-
- return ::log(x);
-}
-double Math::exp(double x) {
- return ::exp(x);
-}
diff --git a/core/math/math_funcs.h b/core/math/math_funcs.h
index 665182afcf..511af91835 100644
--- a/core/math/math_funcs.h
+++ b/core/math/math_funcs.h
@@ -38,6 +38,7 @@
#define Math_PI 3.14159265358979323846
#define Math_SQRT12 0.7071067811865475244008443621048490
+#define Math_LN2 0.693147180559945309417
class Math {
@@ -51,149 +52,122 @@ public:
};
- static _ALWAYS_INLINE_ double sin(double p_x) {
+ static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); }
+ static _ALWAYS_INLINE_ float sin(float p_x) { return ::sinf(p_x); }
- return ::sin(p_x);
+ static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); }
+ static _ALWAYS_INLINE_ float cos(float p_x) { return ::cosf(p_x); }
- }
-
- static _ALWAYS_INLINE_ double cos(double p_x) {
-
- return ::cos(p_x);
-
- }
-
- static _ALWAYS_INLINE_ double tan(double p_x) {
-
- return ::tan(p_x);
-
- }
- static _ALWAYS_INLINE_ double sinh(double p_x) {
-
- return ::sinh(p_x);
- }
+ static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); }
+ static _ALWAYS_INLINE_ float tan(float p_x) { return ::tanf(p_x); }
- static _ALWAYS_INLINE_ double cosh(double p_x) {
-
- return ::cosh(p_x);
- }
-
- static _ALWAYS_INLINE_ double tanh(double p_x) {
-
- return ::tanh(p_x);
- }
+ static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); }
+ static _ALWAYS_INLINE_ float sinh(float p_x) { return ::sinhf(p_x); }
+ static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
+ static _ALWAYS_INLINE_ float cosh(float p_x) { return ::coshf(p_x); }
- static _ALWAYS_INLINE_ double asin(double p_x) {
+ static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); }
+ static _ALWAYS_INLINE_ float tanh(float p_x) { return ::tanhf(p_x); }
- return ::asin(p_x);
+ static _ALWAYS_INLINE_ double asin(double p_x) { return ::asin(p_x); }
+ static _ALWAYS_INLINE_ float asin(float p_x) { return ::asinf(p_x); }
- }
+ static _ALWAYS_INLINE_ double acos(double p_x) { return ::acos(p_x); }
+ static _ALWAYS_INLINE_ float acos(float p_x) { return ::acosf(p_x); }
- static _ALWAYS_INLINE_ double acos(double p_x) {
-
- return ::acos(p_x);
- }
-
- static _ALWAYS_INLINE_ double atan(double p_x) {
-
- return ::atan(p_x);
- }
+ static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); }
+ static _ALWAYS_INLINE_ float atan(float p_x) { return ::atanf(p_x); }
- static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) {
+ static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y,p_x); }
+ static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) { return ::atan2f(p_y,p_x); }
- return ::atan2(p_y,p_x);
+ static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); }
+ static _ALWAYS_INLINE_ float sqrt(float p_x) { return ::sqrtf(p_x); }
- }
+ static _ALWAYS_INLINE_ double fmod(double p_x,double p_y) { return ::fmod(p_x,p_y); }
+ static _ALWAYS_INLINE_ float fmod(float p_x,float p_y) { return ::fmodf(p_x,p_y); }
- static _ALWAYS_INLINE_ double deg2rad(double p_y) {
+ static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); }
+ static _ALWAYS_INLINE_ float floor(float p_x) { return ::floorf(p_x); }
- return p_y*Math_PI/180.0;
- }
+ static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); }
+ static _ALWAYS_INLINE_ float ceil(float p_x) { return ::ceilf(p_x); }
- static _ALWAYS_INLINE_ double rad2deg(double p_y) {
+ static _ALWAYS_INLINE_ double pow(double p_x, double p_y) { return ::pow(p_x,p_y); }
+ static _ALWAYS_INLINE_ float pow(float p_x, float p_y) { return ::powf(p_x,p_y); }
- return p_y*180.0/Math_PI;
- }
+ static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); }
+ static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); }
+ static _ALWAYS_INLINE_ double exp(double p_x) { return ::exp(p_x); }
+ static _ALWAYS_INLINE_ float exp(float p_x) { return ::expf(p_x); }
- static _ALWAYS_INLINE_ double sqrt(double p_x) {
+ static _ALWAYS_INLINE_ bool is_nan(double p_val) { return (p_val!=p_val); }
+ static _ALWAYS_INLINE_ bool is_nan(float p_val) { return (p_val!=p_val); }
- return ::sqrt(p_x);
+ static _ALWAYS_INLINE_ bool is_inf(double p_val) {
+ #ifdef _MSC_VER
+ return !_finite(p_val);
+ #else
+ return isinf(p_val);
+ #endif
}
-
- static _ALWAYS_INLINE_ double fmod(double p_x,double p_y) {
-
- return ::fmod(p_x,p_y);
+
+ static _ALWAYS_INLINE_ bool is_inf(float p_val) {
+ #ifdef _MSC_VER
+ return !_finite(p_val);
+ #else
+ return isinf(p_val);
+ #endif
}
+
+ static _ALWAYS_INLINE_ double abs(double g) { return absd(g); }
+ static _ALWAYS_INLINE_ float abs(float g) { return absf(g); }
+ static _ALWAYS_INLINE_ int abs(int g) { return g > 0 ? g : -g; }
- static _ALWAYS_INLINE_ double fposmod(double p_x,double p_y) {
-
- if (p_x>=0) {
-
- return fmod(p_x,p_y);
-
- } else {
-
- return p_y-fmod(-p_x,p_y);
- }
+ static _ALWAYS_INLINE_ double fposmod(double p_x,double p_y) { return (p_x>=0) ? Math::fmod(p_x,p_y) : p_y-Math::fmod(-p_x,p_y); }
+ static _ALWAYS_INLINE_ float fposmod(float p_x,float p_y) { return (p_x>=0) ? Math::fmod(p_x,p_y) : p_y-Math::fmod(-p_x,p_y); }
- }
- static _ALWAYS_INLINE_ double floor(double p_x) {
+ static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y*Math_PI/180.0; }
+ static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y*Math_PI/180.0; }
- return ::floor(p_x);
- }
+ static _ALWAYS_INLINE_ double rad2deg(double p_y) { return p_y*180.0/Math_PI; }
+ static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y*180.0/Math_PI; }
- static _ALWAYS_INLINE_ double ceil(double p_x) {
+ static _ALWAYS_INLINE_ double lerp(double a, double b, double c) { return a+(b-a)*c; }
+ static _ALWAYS_INLINE_ float lerp(float a, float b, float c) { return a+(b-a)*c; }
- return ::ceil(p_x);
- }
+ static _ALWAYS_INLINE_ double linear2db(double p_linear) { return Math::log( p_linear ) * 8.6858896380650365530225783783321; }
+ static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log( p_linear ) * 8.6858896380650365530225783783321; }
+ static _ALWAYS_INLINE_ double db2linear(double p_db) { return Math::exp( p_db * 0.11512925464970228420089957273422 ); }
+ static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp( p_db * 0.11512925464970228420089957273422 ); }
- static uint32_t rand_from_seed(uint64_t *seed);
+ static _ALWAYS_INLINE_ double round(double p_val) { return (p_val>=0) ? Math::floor(p_val+0.5) : -Math::floor(-p_val+0.5); }
+ static _ALWAYS_INLINE_ float round(float p_val) { return (p_val>=0) ? Math::floor(p_val+0.5) : -Math::floor(-p_val+0.5); }
+ // double only, as these functions are mainly used by the editor and not performance-critical,
static double ease(double p_x, double p_c);
static int step_decimals(double p_step);
static double stepify(double p_value,double p_step);
- static void seed(uint64_t x=0);
- static void randomize();
- static uint32_t larger_prime(uint32_t p_val);
static double dectime(double p_value,double p_amount, double p_step);
+ static uint32_t larger_prime(uint32_t p_val);
- static inline double linear2db(double p_linear) {
-
- return Math::log( p_linear ) * 8.6858896380650365530225783783321;
- }
-
- static inline double db2linear(double p_db) {
-
- return Math::exp( p_db * 0.11512925464970228420089957273422 );
- }
-
- static _ALWAYS_INLINE_ bool is_nan(double p_val) {
-
- return (p_val!=p_val);
- }
-
- static _ALWAYS_INLINE_ bool is_inf(double p_val) {
-
- #ifdef _MSC_VER
- return !_finite(p_val);
- #else
- return isinf(p_val);
- #endif
-
- }
-
+ static void seed(uint64_t x=0);
+ static void randomize();
+ static uint32_t rand_from_seed(uint64_t *seed);
static uint32_t rand();
- static double randf();
-
- static double round(double p_val);
+ static _ALWAYS_INLINE_ double randf() { return (double)rand() / (double)Math::RANDOM_MAX; }
+ static _ALWAYS_INLINE_ float randd() { return (float)rand() / (float)Math::RANDOM_MAX; }
static double random(double from, double to);
+ static float random(float from, float to);
+ static real_t random(int from, int to) { return (real_t)random((real_t)from, (real_t)to); }
+
- static _FORCE_INLINE_ bool isequal_approx(real_t a, real_t b) {
+ static _ALWAYS_INLINE_ bool isequal_approx(real_t a, real_t b) {
// TODO: Comparing floats for approximate-equality is non-trivial.
// Using epsilon should cover the typical cases in Godot (where a == b is used to compare two reals), such as matrix and vector comparison operators.
// A proper implementation in terms of ULPs should eventually replace the contents of this function.
@@ -203,18 +177,7 @@ public:
}
- static _FORCE_INLINE_ real_t abs(real_t g) {
-
-#ifdef REAL_T_IS_DOUBLE
-
- return absd(g);
-#else
-
- return absf(g);
-#endif
- }
-
- static _FORCE_INLINE_ float absf(float g) {
+ static _ALWAYS_INLINE_ float absf(float g) {
union {
float f;
@@ -226,7 +189,7 @@ public:
return u.f;
}
- static _FORCE_INLINE_ double absd(double g) {
+ static _ALWAYS_INLINE_ double absd(double g) {
union {
double d;
@@ -238,12 +201,12 @@ public:
}
//this function should be as fast as possible and rounding mode should not matter
- static _FORCE_INLINE_ int fast_ftoi(float a) {
+ static _ALWAYS_INLINE_ int fast_ftoi(float a) {
static int b;
#if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
- b = (int)((a>0.0f) ? (a + 0.5f):(a -0.5f));
+ b = (int)((a>0.0) ? (a + 0.5):(a -0.5));
#elif defined(_MSC_VER) && _MSC_VER < 1800
__asm fld a
@@ -266,23 +229,16 @@ public:
#if defined(__GNUC__)
- static _FORCE_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
+ static _ALWAYS_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
+ static _ALWAYS_INLINE_ int64_t dtoll(float p_float) { return (int64_t)p_float; } ///@TODO OPTIMIZE and rename
#else
- static _FORCE_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
+ static _ALWAYS_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
+ static _ALWAYS_INLINE_ int64_t dtoll(float p_float) { return (int64_t)p_float; } ///@TODO OPTIMIZE and rename
#endif
- static _FORCE_INLINE_ float lerp(float a, float b, float c) {
-
- return a+(b-a)*c;
- }
-
- static double pow(double x, double y);
- static double log(double x);
- static double exp(double x);
-
- static _FORCE_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h)
+ static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h)
{
uint16_t h_exp, h_sig;
uint32_t f_sgn, f_exp, f_sig;
@@ -314,7 +270,7 @@ public:
}
}
- static _FORCE_INLINE_ float halfptr_to_float(const uint16_t *h) {
+ static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) {
union {
uint32_t u32;
@@ -325,7 +281,7 @@ public:
return u.f32;
}
- static _FORCE_INLINE_ uint16_t make_half_float(float f) {
+ static _ALWAYS_INLINE_ uint16_t make_half_float(float f) {
union {
float fv;
diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp
index e9c3442582..1fabfbbd4c 100644
--- a/core/math/matrix3.cpp
+++ b/core/math/matrix3.cpp
@@ -504,9 +504,9 @@ void Basis::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const {
ERR_FAIL_COND(is_rotation() == false);
- double angle,x,y,z; // variables for result
- double epsilon = 0.01; // margin to allow for rounding errors
- double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
+ real_t angle,x,y,z; // variables for result
+ real_t epsilon = 0.01; // margin to allow for rounding errors
+ real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
if ( (Math::abs(elements[1][0]-elements[0][1])< epsilon)
&& (Math::abs(elements[2][0]-elements[0][2])< epsilon)
@@ -525,12 +525,12 @@ void Basis::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const {
}
// otherwise this singularity is angle = 180
angle = Math_PI;
- double xx = (elements[0][0]+1)/2;
- double yy = (elements[1][1]+1)/2;
- double zz = (elements[2][2]+1)/2;
- double xy = (elements[1][0]+elements[0][1])/4;
- double xz = (elements[2][0]+elements[0][2])/4;
- double yz = (elements[2][1]+elements[1][2])/4;
+ real_t xx = (elements[0][0]+1)/2;
+ real_t yy = (elements[1][1]+1)/2;
+ real_t zz = (elements[2][2]+1)/2;
+ real_t xy = (elements[1][0]+elements[0][1])/4;
+ real_t xz = (elements[2][0]+elements[0][2])/4;
+ real_t yz = (elements[2][1]+elements[1][2])/4;
if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
if (xx< epsilon) {
x = 0;
@@ -567,7 +567,7 @@ void Basis::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const {
return;
}
// as we have reached here there are no singularities so we can handle normally
- double s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1])
+ real_t s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1])
+(elements[2][0] - elements[0][2])*(elements[2][0] - elements[0][2])
+(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise
diff --git a/core/math/octree.h b/core/math/octree.h
index 3630922d10..e566df6a4f 100644
--- a/core/math/octree.h
+++ b/core/math/octree.h
@@ -435,7 +435,7 @@ int Octree<T,use_pairs,AL>::get_subindex(OctreeElementID p_id) const {
template<class T,bool use_pairs,class AL>
void Octree<T,use_pairs,AL>::_insert_element(Element *p_element,Octant *p_octant) {
- float element_size = p_element->aabb.get_longest_axis_size() * 1.01; // avoid precision issues
+ real_t element_size = p_element->aabb.get_longest_axis_size() * 1.01; // avoid precision issues
if (p_octant->aabb.size.x/OCTREE_DIVISOR < element_size) {
//if (p_octant->aabb.size.x*0.5 < element_size) {
diff --git a/core/math/plane.h b/core/math/plane.h
index f746ea2067..8235c59135 100644
--- a/core/math/plane.h
+++ b/core/math/plane.h
@@ -99,7 +99,7 @@ real_t Plane::distance_to(const Vector3 &p_point) const {
bool Plane::has_point(const Vector3 &p_point,real_t _epsilon) const {
- float dist=normal.dot(p_point) - d;
+ real_t dist=normal.dot(p_point) - d;
dist=ABS(dist);
return ( dist <= _epsilon);
diff --git a/core/math/quat.cpp b/core/math/quat.cpp
index 055e2b7c35..4085f9b84a 100644
--- a/core/math/quat.cpp
+++ b/core/math/quat.cpp
@@ -124,8 +124,8 @@ Quat Quat::slerp(const Quat& q, const real_t& t) const {
// Standard case (slerp)
real_t sine = Math::sqrt(1 - cosine*cosine);
real_t angle = Math::atan2(sine, cosine);
- real_t inv_sine = 1.0f / sine;
- real_t coeff_0 = Math::sin((1.0f - t) * angle) * inv_sine;
+ real_t inv_sine = 1.0 / sine;
+ real_t coeff_0 = Math::sin((1.0 - t) * angle) * inv_sine;
real_t coeff_1 = Math::sin(t * angle) * inv_sine;
Quat ret= src * coeff_0 + dst * coeff_1;
@@ -137,7 +137,7 @@ Quat Quat::slerp(const Quat& q, const real_t& t) const {
// 2. "rkP" and "q" are almost invedste of each other (cosine ~= -1), there
// are an infinite number of possibilities interpolation. but we haven't
// have method to fix this case, so just use linear interpolation here.
- Quat ret = src * (1.0f - t) + dst *t;
+ Quat ret = src * (1.0 - t) + dst *t;
// taking the complement requires renormalisation
ret.normalize();
return ret;
@@ -194,14 +194,14 @@ Quat Quat::slerpni(const Quat& q, const real_t& t) const {
const Quat &from = *this;
- float dot = from.dot(q);
+ real_t dot = from.dot(q);
- if (Math::absf(dot) > 0.9999f) return from;
+ if (Math::absf(dot) > 0.9999) return from;
- float theta = Math::acos(dot),
- sinT = 1.0f / Math::sin(theta),
+ real_t theta = Math::acos(dot),
+ sinT = 1.0 / Math::sin(theta),
newFactor = Math::sin(t * theta) * sinT,
- invFactor = Math::sin((1.0f - t) * theta) * sinT;
+ invFactor = Math::sin((1.0 - t) * theta) * sinT;
return Quat(invFactor * from.x + newFactor * q.x,
invFactor * from.y + newFactor * q.y,
@@ -259,7 +259,7 @@ Quat Quat::slerpni(const Quat& q, const real_t& t) const {
Quat Quat::cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const {
//the only way to do slerp :|
- float t2 = (1.0-t)*t*2;
+ real_t t2 = (1.0-t)*t*2;
Quat sp = this->slerp(q,t);
Quat sq = prep.slerpni(postq,t);
return sp.slerpni(sq,t2);
diff --git a/core/math/quat.h b/core/math/quat.h
index 43c2cab9e6..d3a50343a3 100644
--- a/core/math/quat.h
+++ b/core/math/quat.h
@@ -119,8 +119,8 @@ public:
w=0;
} else {
- real_t s = Math::sqrt((1.0f + d) * 2.0f);
- real_t rs = 1.0f / s;
+ real_t s = Math::sqrt((1.0 + d) * 2.0);
+ real_t rs = 1.0 / s;
x=c.x*rs;
y=c.y*rs;
diff --git a/core/math/quick_hull.cpp b/core/math/quick_hull.cpp
index 756e48d0b4..32fc0e01e8 100644
--- a/core/math/quick_hull.cpp
+++ b/core/math/quick_hull.cpp
@@ -86,7 +86,7 @@ Error QuickHull::build(const Vector<Vector3>& p_points, Geometry::MeshData &r_me
if (!valid_points[i])
continue;
- float d = p_points[i][longest_axis];
+ real_t d = p_points[i][longest_axis];
if (i==0 || d < min) {
simplex[0]=i;
@@ -105,7 +105,7 @@ Error QuickHull::build(const Vector<Vector3>& p_points, Geometry::MeshData &r_me
{
- float maxd;
+ real_t maxd;
Vector3 rel12 = p_points[simplex[0]] - p_points[simplex[1]];
for(int i=0;i<p_points.size();i++) {
@@ -127,7 +127,7 @@ Error QuickHull::build(const Vector<Vector3>& p_points, Geometry::MeshData &r_me
//fourth vertex is the one most further away from the plane
{
- float maxd;
+ real_t maxd;
Plane p(p_points[simplex[0]],p_points[simplex[1]],p_points[simplex[2]]);
for(int i=0;i<p_points.size();i++) {
diff --git a/core/math/rect3.cpp b/core/math/rect3.cpp
index e0b0646505..d3f95b89e8 100644
--- a/core/math/rect3.cpp
+++ b/core/math/rect3.cpp
@@ -30,7 +30,7 @@
#include "print_string.h"
-float Rect3::get_area() const {
+real_t Rect3::get_area() const {
return size.x*size.y*size.z;
@@ -114,8 +114,8 @@ bool Rect3::intersects_ray(const Vector3& p_from, const Vector3& p_dir,Vector3*
Vector3 c1, c2;
Vector3 end = pos+size;
- float near=-1e20;
- float far=1e20;
+ real_t near=-1e20;
+ real_t far=1e20;
int axis=0;
for (int i=0;i<3;i++){
@@ -159,7 +159,7 @@ bool Rect3::intersects_segment(const Vector3& p_from, const Vector3& p_to,Vector
real_t min=0,max=1;
int axis=0;
- float sign=0;
+ real_t sign=0;
for(int i=0;i<3;i++) {
real_t seg_from=p_from[i];
@@ -167,7 +167,7 @@ bool Rect3::intersects_segment(const Vector3& p_from, const Vector3& p_to,Vector
real_t box_begin=pos[i];
real_t box_end=box_begin+size[i];
real_t cmin,cmax;
- float csign;
+ real_t csign;
if (seg_from < seg_to) {
diff --git a/core/math/rect3.h b/core/math/rect3.h
index 80c67200f4..902592b02c 100644
--- a/core/math/rect3.h
+++ b/core/math/rect3.h
@@ -33,6 +33,8 @@
#include "vector3.h"
#include "plane.h"
+#include "math_defs.h"
+
/**
* AABB / AABB (Axis Aligned Bounding Box)
* This is implemented by a point (pos) and the box size
@@ -45,7 +47,7 @@ public:
Vector3 pos;
Vector3 size;
- float get_area() const; /// get area
+ real_t get_area() const; /// get area
_FORCE_INLINE_ bool has_no_area() const {
return (size.x<=CMP_EPSILON || size.y<=CMP_EPSILON || size.z<=CMP_EPSILON);
@@ -74,7 +76,7 @@ public:
Rect3 intersection(const Rect3& p_aabb) const; ///get box where two intersect, empty if no intersection occurs
bool intersects_segment(const Vector3& p_from, const Vector3& p_to,Vector3* r_clip=NULL,Vector3* r_normal=NULL) const;
bool intersects_ray(const Vector3& p_from, const Vector3& p_dir,Vector3* r_clip=NULL,Vector3* r_normal=NULL) const;
- _FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &from,const Vector3& p_dir, float t0, float t1) const;
+ _FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &from,const Vector3& p_dir, real_t t0, real_t t1) const;
_FORCE_INLINE_ bool intersects_convex_shape(const Plane *p_plane, int p_plane_count) const;
bool intersects_plane(const Plane &p_plane) const;
@@ -98,7 +100,7 @@ public:
_FORCE_INLINE_ Vector3 get_endpoint(int p_point) const;
Rect3 expand(const Vector3& p_vector) const;
- _FORCE_INLINE_ void project_range_in_plane(const Plane& p_plane,float &r_min,float& r_max) const;
+ _FORCE_INLINE_ void project_range_in_plane(const Plane& p_plane,real_t &r_min,real_t& r_max) const;
_FORCE_INLINE_ void expand_to(const Vector3& p_vector); /** expand to contain a point if necesary */
operator String() const;
@@ -293,13 +295,13 @@ inline void Rect3::expand_to(const Vector3& p_vector) {
size=end-begin;
}
-void Rect3::project_range_in_plane(const Plane& p_plane,float &r_min,float& r_max) const {
+void Rect3::project_range_in_plane(const Plane& p_plane,real_t &r_min,real_t& r_max) const {
Vector3 half_extents( size.x * 0.5, size.y * 0.5, size.z * 0.5 );
Vector3 center( pos.x + half_extents.x, pos.y + half_extents.y, pos.z + half_extents.z );
- float length = p_plane.normal.abs().dot(half_extents);
- float distance = p_plane.distance_to( center );
+ real_t length = p_plane.normal.abs().dot(half_extents);
+ real_t distance = p_plane.distance_to( center );
r_min = distance - length;
r_max = distance + length;
}
@@ -334,14 +336,14 @@ inline real_t Rect3::get_shortest_axis_size() const {
return max_size;
}
-bool Rect3::smits_intersect_ray(const Vector3 &from,const Vector3& dir, float t0, float t1) const {
+bool Rect3::smits_intersect_ray(const Vector3 &from,const Vector3& dir, real_t t0, real_t t1) const {
- float divx=1.0/dir.x;
- float divy=1.0/dir.y;
- float divz=1.0/dir.z;
+ real_t divx=1.0/dir.x;
+ real_t divy=1.0/dir.y;
+ real_t divz=1.0/dir.z;
Vector3 upbound=pos+size;
- float tmin, tmax, tymin, tymax, tzmin, tzmax;
+ real_t tmin, tmax, tymin, tymax, tzmin, tzmax;
if (dir.x >= 0) {
tmin = (pos.x - from.x) * divx;
tmax = (upbound.x - from.x) * divx;
diff --git a/core/math/triangle_mesh.cpp b/core/math/triangle_mesh.cpp
index 86f8bf29e7..247cb90a48 100644
--- a/core/math/triangle_mesh.cpp
+++ b/core/math/triangle_mesh.cpp
@@ -340,7 +340,7 @@ bool TriangleMesh::intersect_segment(const Vector3& p_begin,const Vector3& p_end
if (f3.intersects_segment(p_begin,p_end,&res)) {
- float nd = n.dot(res);
+ real_t nd = n.dot(res);
if (nd<d) {
d=nd;
@@ -462,7 +462,7 @@ bool TriangleMesh::intersect_ray(const Vector3& p_begin,const Vector3& p_dir,Vec
if (f3.intersects_ray(p_begin,p_dir,&res)) {
- float nd = n.dot(res);
+ real_t nd = n.dot(res);
if (nd<d) {
d=nd;
diff --git a/core/math/triangulate.cpp b/core/math/triangulate.cpp
index 82b49be7f3..128b6ca331 100644
--- a/core/math/triangulate.cpp
+++ b/core/math/triangulate.cpp
@@ -28,19 +28,19 @@
/*************************************************************************/
#include "triangulate.h"
-float Triangulate::get_area(const Vector<Vector2> &contour)
+real_t Triangulate::get_area(const Vector<Vector2> &contour)
{
int n = contour.size();
const Vector2 *c=&contour[0];
- float A=0.0f;
+ real_t A=0.0;
for(int p=n-1,q=0; q<n; p=q++)
{
A+= c[p].cross(c[q]);
}
- return A*0.5f;
+ return A*0.5;
}
/*
@@ -48,14 +48,14 @@ float Triangulate::get_area(const Vector<Vector2> &contour)
defined by A, B, C.
*/
-bool Triangulate::is_inside_triangle(float Ax, float Ay,
- float Bx, float By,
- float Cx, float Cy,
- float Px, float Py)
+bool Triangulate::is_inside_triangle(real_t Ax, real_t Ay,
+ real_t Bx, real_t By,
+ real_t Cx, real_t Cy,
+ real_t Px, real_t Py)
{
- float ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
- float cCROSSap, bCROSScp, aCROSSbp;
+ real_t ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
+ real_t cCROSSap, bCROSScp, aCROSSbp;
ax = Cx - Bx; ay = Cy - By;
bx = Ax - Cx; by = Ay - Cy;
@@ -68,13 +68,13 @@ bool Triangulate::is_inside_triangle(float Ax, float Ay,
cCROSSap = cx*apy - cy*apx;
bCROSScp = bx*cpy - by*cpx;
- return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
+ return ((aCROSSbp >= 0.0) && (bCROSScp >= 0.0) && (cCROSSap >= 0.0));
};
bool Triangulate::snip(const Vector<Vector2> &p_contour,int u,int v,int w,int n,const Vector<int>& V)
{
int p;
- float Ax, Ay, Bx, By, Cx, Cy, Px, Py;
+ real_t Ax, Ay, Bx, By, Cx, Cy, Px, Py;
const Vector2 *contour=&p_contour[0];
Ax = contour[V[u]].x;
@@ -112,7 +112,7 @@ bool Triangulate::triangulate(const Vector<Vector2> &contour,Vector<int> &result
/* we want a counter-clockwise polygon in V */
- if ( 0.0f < get_area(contour) )
+ if ( 0.0 < get_area(contour) )
for (int v=0; v<n; v++) V[v] = v;
else
for(int v=0; v<n; v++) V[v] = (n-1)-v;
diff --git a/core/math/triangulate.h b/core/math/triangulate.h
index d22677a8b8..ce77334519 100644
--- a/core/math/triangulate.h
+++ b/core/math/triangulate.h
@@ -45,14 +45,14 @@ public:
static bool triangulate(const Vector< Vector2 > &contour, Vector<int> &result);
// compute area of a contour/polygon
- static float get_area(const Vector< Vector2 > &contour);
+ static real_t get_area(const Vector< Vector2 > &contour);
// decide if point Px/Py is inside triangle defined by
// (Ax,Ay) (Bx,By) (Cx,Cy)
- static bool is_inside_triangle(float Ax, float Ay,
- float Bx, float By,
- float Cx, float Cy,
- float Px, float Py);
+ static bool is_inside_triangle(real_t Ax, real_t Ay,
+ real_t Bx, real_t By,
+ real_t Cx, real_t Cy,
+ real_t Px, real_t Py);
private:
diff --git a/core/math/vector3.cpp b/core/math/vector3.cpp
index 3eb978333d..2ab5fa0465 100644
--- a/core/math/vector3.cpp
+++ b/core/math/vector3.cpp
@@ -30,12 +30,12 @@
#include "matrix3.h"
-void Vector3::rotate(const Vector3& p_axis,float p_phi) {
+void Vector3::rotate(const Vector3& p_axis,real_t p_phi) {
*this=Basis(p_axis,p_phi).xform(*this);
}
-Vector3 Vector3::rotated(const Vector3& p_axis,float p_phi) const {
+Vector3 Vector3::rotated(const Vector3& p_axis,real_t p_phi) const {
Vector3 r = *this;
r.rotate(p_axis,p_phi);
@@ -63,13 +63,13 @@ int Vector3::max_axis() const {
}
-void Vector3::snap(float p_val) {
+void Vector3::snap(real_t p_val) {
x=Math::stepify(x,p_val);
y=Math::stepify(y,p_val);
z=Math::stepify(z,p_val);
}
-Vector3 Vector3::snapped(float p_val) const {
+Vector3 Vector3::snapped(real_t p_val) const {
Vector3 v=*this;
v.snap(p_val);
@@ -77,7 +77,7 @@ Vector3 Vector3::snapped(float p_val) const {
}
-Vector3 Vector3::cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
+Vector3 Vector3::cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,real_t p_t) const {
Vector3 p0=p_pre_a;
Vector3 p1=*this;
@@ -87,9 +87,9 @@ Vector3 Vector3::cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, c
{
//normalize
- float ab = p0.distance_to(p1);
- float bc = p1.distance_to(p2);
- float cd = p2.distance_to(p3);
+ real_t ab = p0.distance_to(p1);
+ real_t bc = p1.distance_to(p2);
+ real_t cd = p2.distance_to(p3);
if (ab>0)
p0 = p1+(p0-p1)*(bc/ab);
@@ -98,41 +98,41 @@ Vector3 Vector3::cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, c
}
- float t = p_t;
- float t2 = t * t;
- float t3 = t2 * t;
+ real_t t = p_t;
+ real_t t2 = t * t;
+ real_t t3 = t2 * t;
Vector3 out;
- out = 0.5f * ( ( p1 * 2.0f) +
+ out = 0.5 * ( ( p1 * 2.0) +
( -p0 + p2 ) * t +
- ( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
- ( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
+ ( 2.0 * p0 - 5.0 * p1 + 4 * p2 - p3 ) * t2 +
+ ( -p0 + 3.0 * p1 - 3.0 * p2 + p3 ) * t3 );
return out;
}
-Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
+Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,real_t p_t) const {
Vector3 p0=p_pre_a;
Vector3 p1=*this;
Vector3 p2=p_b;
Vector3 p3=p_post_b;
- float t = p_t;
- float t2 = t * t;
- float t3 = t2 * t;
+ real_t t = p_t;
+ real_t t2 = t * t;
+ real_t t3 = t2 * t;
Vector3 out;
- out = 0.5f * ( ( p1 * 2.0f) +
+ out = 0.5 * ( ( p1 * 2.0) +
( -p0 + p2 ) * t +
- ( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
- ( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
+ ( 2.0 * p0 - 5.0 * p1 + 4 * p2 - p3 ) * t2 +
+ ( -p0 + 3.0 * p1 - 3.0 * p2 + p3 ) * t3 );
return out;
}
#if 0
-Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const {
+Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,real_t p_t) const {
Vector3 p0=p_pre_a;
Vector3 p1=*this;
@@ -141,9 +141,9 @@ Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, co
if (true) {
- float ab = p0.distance_to(p1);
- float bc = p1.distance_to(p2);
- float cd = p2.distance_to(p3);
+ real_t ab = p0.distance_to(p1);
+ real_t bc = p1.distance_to(p2);
+ real_t cd = p2.distance_to(p3);
//if (ab>bc) {
if (ab>0)
@@ -156,23 +156,23 @@ Vector3 Vector3::cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, co
//}
}
- float t = p_t;
- float t2 = t * t;
- float t3 = t2 * t;
+ real_t t = p_t;
+ real_t t2 = t * t;
+ real_t t3 = t2 * t;
Vector3 out;
- out.x = 0.5f * ( ( 2.0f * p1.x ) +
+ out.x = 0.5 * ( ( 2.0 * p1.x ) +
( -p0.x + p2.x ) * t +
- ( 2.0f * p0.x - 5.0f * p1.x + 4 * p2.x - p3.x ) * t2 +
- ( -p0.x + 3.0f * p1.x - 3.0f * p2.x + p3.x ) * t3 );
- out.y = 0.5f * ( ( 2.0f * p1.y ) +
+ ( 2.0 * p0.x - 5.0 * p1.x + 4 * p2.x - p3.x ) * t2 +
+ ( -p0.x + 3.0 * p1.x - 3.0 * p2.x + p3.x ) * t3 );
+ out.y = 0.5 * ( ( 2.0 * p1.y ) +
( -p0.y + p2.y ) * t +
- ( 2.0f * p0.y - 5.0f * p1.y + 4 * p2.y - p3.y ) * t2 +
- ( -p0.y + 3.0f * p1.y - 3.0f * p2.y + p3.y ) * t3 );
- out.z = 0.5f * ( ( 2.0f * p1.z ) +
+ ( 2.0 * p0.y - 5.0 * p1.y + 4 * p2.y - p3.y ) * t2 +
+ ( -p0.y + 3.0 * p1.y - 3.0 * p2.y + p3.y ) * t3 );
+ out.z = 0.5 * ( ( 2.0 * p1.z ) +
( -p0.z + p2.z ) * t +
- ( 2.0f * p0.z - 5.0f * p1.z + 4 * p2.z - p3.z ) * t2 +
- ( -p0.z + 3.0f * p1.z - 3.0f * p2.z + p3.z ) * t3 );
+ ( 2.0 * p0.z - 5.0 * p1.z + 4 * p2.z - p3.z ) * t2 +
+ ( -p0.z + 3.0 * p1.z - 3.0 * p2.z + p3.z ) * t3 );
return out;
}
# endif
diff --git a/core/math/vector3.h b/core/math/vector3.h
index 9ae9b69dfa..a289f9bf4c 100644
--- a/core/math/vector3.h
+++ b/core/math/vector3.h
@@ -79,17 +79,17 @@ struct Vector3 {
_FORCE_INLINE_ void zero();
- void snap(float p_val);
- Vector3 snapped(float p_val) const;
+ void snap(real_t p_val);
+ Vector3 snapped(real_t p_val) const;
- void rotate(const Vector3& p_axis,float p_phi);
- Vector3 rotated(const Vector3& p_axis,float p_phi) const;
+ void rotate(const Vector3& p_axis,real_t p_phi);
+ Vector3 rotated(const Vector3& p_axis,real_t p_phi) const;
/* Static Methods between 2 vector3s */
- _FORCE_INLINE_ Vector3 linear_interpolate(const Vector3& p_b,float p_t) const;
- Vector3 cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const;
- Vector3 cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,float p_t) const;
+ _FORCE_INLINE_ Vector3 linear_interpolate(const Vector3& p_b,real_t p_t) const;
+ Vector3 cubic_interpolate(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,real_t p_t) const;
+ Vector3 cubic_interpolaten(const Vector3& p_b,const Vector3& p_pre_a, const Vector3& p_post_b,real_t p_t) const;
_FORCE_INLINE_ Vector3 cross(const Vector3& p_b) const;
_FORCE_INLINE_ real_t dot(const Vector3& p_b) const;
@@ -195,7 +195,7 @@ Vector3 Vector3::ceil() const {
return Vector3( Math::ceil(x), Math::ceil(y), Math::ceil(z) );
}
-Vector3 Vector3::linear_interpolate(const Vector3& p_b,float p_t) const {
+Vector3 Vector3::linear_interpolate(const Vector3& p_b,real_t p_t) const {
return Vector3(
x+(p_t * (p_b.x-x)),