summaryrefslogtreecommitdiff
path: root/core
diff options
context:
space:
mode:
Diffstat (limited to 'core')
-rw-r--r--core/core_bind.h2
-rw-r--r--core/debugger/remote_debugger.cpp4
-rw-r--r--core/math/basis.cpp508
-rw-r--r--core/math/basis.h42
-rw-r--r--core/math/quaternion.cpp4
-rw-r--r--core/object/undo_redo.cpp2
-rw-r--r--core/variant/binder_common.h1
-rw-r--r--core/variant/variant.cpp4
-rw-r--r--core/variant/variant_call.cpp10
-rw-r--r--core/variant/variant_construct.cpp3
-rw-r--r--core/variant/variant_internal.h6
11 files changed, 250 insertions, 336 deletions
diff --git a/core/core_bind.h b/core/core_bind.h
index 4eab085dda..3eb4c914a1 100644
--- a/core/core_bind.h
+++ b/core/core_bind.h
@@ -205,7 +205,7 @@ public:
void delay_usec(int p_usec) const;
void delay_msec(int p_msec) const;
- uint32_t get_ticks_msec() const;
+ uint64_t get_ticks_msec() const;
uint64_t get_ticks_usec() const;
bool can_use_threads() const;
diff --git a/core/debugger/remote_debugger.cpp b/core/debugger/remote_debugger.cpp
index 9967d1e361..4607bd2f3f 100644
--- a/core/debugger/remote_debugger.cpp
+++ b/core/debugger/remote_debugger.cpp
@@ -79,8 +79,8 @@ public:
ERR_FAIL_COND_V(p_buffer.size() == 0, 0);
int total_bandwidth = 0;
- uint32_t timestamp = OS::get_singleton()->get_ticks_msec();
- uint32_t final_timestamp = timestamp - 1000;
+ uint64_t timestamp = OS::get_singleton()->get_ticks_msec();
+ uint64_t final_timestamp = timestamp - 1000;
int i = (p_pointer + p_buffer.size() - 1) % p_buffer.size();
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index a7f89522d7..0030cb1144 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -354,7 +354,7 @@ void Basis::rotate(const Quaternion &p_quaternion) {
*this = rotated(p_quaternion);
}
-Vector3 Basis::get_rotation_euler() const {
+Vector3 Basis::get_euler_normalized(EulerOrder p_order) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
@@ -365,7 +365,7 @@ Vector3 Basis::get_rotation_euler() const {
m.scale(Vector3(-1, -1, -1));
}
- return m.get_euler();
+ return m.get_euler(p_order);
}
Quaternion Basis::get_rotation_quaternion() const {
@@ -424,218 +424,203 @@ void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) cons
p_angle = -p_angle;
}
-// get_euler_xyz returns a vector containing the Euler angles in the format
-// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
-// (following the convention they are commonly defined in the literature).
-//
-// The current implementation uses XYZ convention (Z is the first rotation),
-// so euler.z is the angle of the (first) rotation around Z axis and so on,
-//
-// And thus, assuming the matrix is a rotation matrix, this function returns
-// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
-// around the z-axis by a and so on.
-Vector3 Basis::get_euler_xyz() const {
- // Euler angles in XYZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz -cy*sz sy
- // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
-
- Vector3 euler;
- real_t sy = elements[0][2];
- if (sy < (1.0 - CMP_EPSILON)) {
- if (sy > -(1.0 - CMP_EPSILON)) {
- // is this a pure Y rotation?
- if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = 0;
- euler.y = atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
+Vector3 Basis::get_euler(EulerOrder p_order) const {
+ switch (p_order) {
+ case EULER_ORDER_XYZ: {
+ // Euler angles in XYZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz -cy*sz sy
+ // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
+ // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
+
+ Vector3 euler;
+ real_t sy = elements[0][2];
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
+ // is this a pure Y rotation?
+ if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = 0;
+ euler.y = atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ } else {
+ euler.x = Math::atan2(-elements[1][2], elements[2][2]);
+ euler.y = Math::asin(sy);
+ euler.z = Math::atan2(-elements[0][1], elements[0][0]);
+ }
+ } else {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = -Math_PI / 2.0;
+ euler.z = 0.0;
+ }
} else {
- euler.x = Math::atan2(-elements[1][2], elements[2][2]);
- euler.y = Math::asin(sy);
- euler.z = Math::atan2(-elements[0][1], elements[0][0]);
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = Math_PI / 2.0;
+ euler.z = 0.0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_XZY: {
+ // Euler angles in XZY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy -sz cz*sy
+ // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
+ // cy*sx*sz cz*sx cx*cy+sx*sz*sy
+
+ Vector3 euler;
+ real_t sz = elements[0][1];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = Math::asin(-sz);
+ } else {
+ // It's -1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_YXZ: {
+ // Euler angles in YXZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
+ // cx*sz cx*cz -sx
+ // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
+
+ Vector3 euler;
+
+ real_t m12 = elements[1][2];
+
+ if (m12 < (1 - CMP_EPSILON)) {
+ if (m12 > -(1 - CMP_EPSILON)) {
+ // is this a pure X rotation?
+ if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = atan2(-m12, elements[1][1]);
+ euler.y = 0;
+ euler.z = 0;
+ } else {
+ euler.x = asin(-m12);
+ euler.y = atan2(elements[0][2], elements[2][2]);
+ euler.z = atan2(elements[1][0], elements[1][1]);
+ }
+ } else { // m12 == -1
+ euler.x = Math_PI * 0.5;
+ euler.y = atan2(elements[0][1], elements[0][0]);
+ euler.z = 0;
+ }
+ } else { // m12 == 1
+ euler.x = -Math_PI * 0.5;
+ euler.y = -atan2(elements[0][1], elements[0][0]);
+ euler.z = 0;
}
- } else {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = -Math_PI / 2.0;
- euler.z = 0.0;
- }
- } else {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = Math_PI / 2.0;
- euler.z = 0.0;
- }
- return euler;
-}
-
-// set_euler_xyz expects a vector containing the Euler angles in the format
-// (ax,ay,az), where ax is the angle of rotation around x axis,
-// and similar for other axes.
-// The current implementation uses XYZ convention (Z is the first rotation).
-void Basis::set_euler_xyz(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- //optimizer will optimize away all this anyway
- *this = xmat * (ymat * zmat);
-}
-
-Vector3 Basis::get_euler_xzy() const {
- // Euler angles in XZY convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy -sz cz*sy
- // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
- // cy*sx*sz cz*sx cx*cy+sx*sz*sy
-
- Vector3 euler;
- real_t sz = elements[0][1];
- if (sz < (1.0 - CMP_EPSILON)) {
- if (sz > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
- euler.z = Math::asin(-sz);
- } else {
- // It's -1
- euler.x = -Math::atan2(elements[1][2], elements[2][2]);
- euler.y = 0.0;
- euler.z = Math_PI / 2.0;
- }
- } else {
- // It's 1
- euler.x = -Math::atan2(elements[1][2], elements[2][2]);
- euler.y = 0.0;
- euler.z = -Math_PI / 2.0;
- }
- return euler;
-}
-
-void Basis::set_euler_xzy(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = xmat * zmat * ymat;
-}
-
-Vector3 Basis::get_euler_yzx() const {
- // Euler angles in YZX convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
- // sz cz*cx -cz*sx
- // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
-
- Vector3 euler;
- real_t sz = elements[1][0];
- if (sz < (1.0 - CMP_EPSILON)) {
- if (sz > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::atan2(-elements[1][2], elements[1][1]);
- euler.y = Math::atan2(-elements[2][0], elements[0][0]);
- euler.z = Math::asin(sz);
- } else {
- // It's -1
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
- euler.y = 0.0;
- euler.z = -Math_PI / 2.0;
- }
- } else {
- // It's 1
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
- euler.y = 0.0;
- euler.z = Math_PI / 2.0;
- }
- return euler;
-}
-
-void Basis::set_euler_yzx(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = ymat * zmat * xmat;
-}
-
-// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
-// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
-// as the x, y, and z components of a Vector3 respectively.
-Vector3 Basis::get_euler_yxz() const {
- // Euler angles in YXZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
- // cx*sz cx*cz -sx
- // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
-
- Vector3 euler;
-
- real_t m12 = elements[1][2];
- if (m12 < (1 - CMP_EPSILON)) {
- if (m12 > -(1 - CMP_EPSILON)) {
- // is this a pure X rotation?
- if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = atan2(-m12, elements[1][1]);
- euler.y = 0;
+ return euler;
+ } break;
+ case EULER_ORDER_YZX: {
+ // Euler angles in YZX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
+ // sz cz*cx -cz*sx
+ // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
+
+ Vector3 euler;
+ real_t sz = elements[1][0];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(-elements[1][2], elements[1][1]);
+ euler.y = Math::atan2(-elements[2][0], elements[0][0]);
+ euler.z = Math::asin(sz);
+ } else {
+ // It's -1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_ZXY: {
+ // Euler angles in ZXY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
+ // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
+ // -cx*sy sx cx*cy
+ Vector3 euler;
+ real_t sx = elements[2][1];
+ if (sx < (1.0 - CMP_EPSILON)) {
+ if (sx > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::asin(sx);
+ euler.y = Math::atan2(-elements[2][0], elements[2][2]);
+ euler.z = Math::atan2(-elements[0][1], elements[1][1]);
+ } else {
+ // It's -1
+ euler.x = -Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
euler.z = 0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_ZYX: {
+ // Euler angles in ZYX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
+ // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
+ // -sy cy*sx cy*cx
+ Vector3 euler;
+ real_t sy = elements[2][0];
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = Math::asin(-sy);
+ euler.z = Math::atan2(elements[1][0], elements[0][0]);
+ } else {
+ // It's -1
+ euler.x = 0;
+ euler.y = Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
+ }
} else {
- euler.x = asin(-m12);
- euler.y = atan2(elements[0][2], elements[2][2]);
- euler.z = atan2(elements[1][0], elements[1][1]);
+ // It's 1
+ euler.x = 0;
+ euler.y = -Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
}
- } else { // m12 == -1
- euler.x = Math_PI * 0.5;
- euler.y = atan2(elements[0][1], elements[0][0]);
- euler.z = 0;
+ return euler;
+ } break;
+ default: {
+ ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)");
}
- } else { // m12 == 1
- euler.x = -Math_PI * 0.5;
- euler.y = -atan2(elements[0][1], elements[0][0]);
- euler.z = 0;
}
-
- return euler;
+ return Vector3();
}
-// set_euler_yxz expects a vector containing the Euler angles in the format
-// (ax,ay,az), where ax is the angle of rotation around x axis,
-// and similar for other axes.
-// The current implementation uses YXZ convention (Z is the first rotation).
-void Basis::set_euler_yxz(const Vector3 &p_euler) {
+void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) {
real_t c, s;
c = Math::cos(p_euler.x);
@@ -650,102 +635,29 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) {
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
- //optimizer will optimize away all this anyway
- *this = ymat * xmat * zmat;
-}
-
-Vector3 Basis::get_euler_zxy() const {
- // Euler angles in ZXY convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
- // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
- // -cx*sy sx cx*cy
- Vector3 euler;
- real_t sx = elements[2][1];
- if (sx < (1.0 - CMP_EPSILON)) {
- if (sx > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::asin(sx);
- euler.y = Math::atan2(-elements[2][0], elements[2][2]);
- euler.z = Math::atan2(-elements[0][1], elements[1][1]);
- } else {
- // It's -1
- euler.x = -Math_PI / 2.0;
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
+ switch (p_order) {
+ case EULER_ORDER_XYZ: {
+ *this = xmat * (ymat * zmat);
+ } break;
+ case EULER_ORDER_XZY: {
+ *this = xmat * zmat * ymat;
+ } break;
+ case EULER_ORDER_YXZ: {
+ *this = ymat * xmat * zmat;
+ } break;
+ case EULER_ORDER_YZX: {
+ *this = ymat * zmat * xmat;
+ } break;
+ case EULER_ORDER_ZXY: {
+ *this = zmat * xmat * ymat;
+ } break;
+ case EULER_ORDER_ZYX: {
+ *this = zmat * ymat * xmat;
+ } break;
+ default: {
+ ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)");
}
- } else {
- // It's 1
- euler.x = Math_PI / 2.0;
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
}
- return euler;
-}
-
-void Basis::set_euler_zxy(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = zmat * xmat * ymat;
-}
-
-Vector3 Basis::get_euler_zyx() const {
- // Euler angles in ZYX convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
- // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
- // -sy cy*sx cy*cx
- Vector3 euler;
- real_t sy = elements[2][0];
- if (sy < (1.0 - CMP_EPSILON)) {
- if (sy > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
- euler.y = Math::asin(-sy);
- euler.z = Math::atan2(elements[1][0], elements[0][0]);
- } else {
- // It's -1
- euler.x = 0;
- euler.y = Math_PI / 2.0;
- euler.z = -Math::atan2(elements[0][1], elements[1][1]);
- }
- } else {
- // It's 1
- euler.x = 0;
- euler.y = -Math_PI / 2.0;
- euler.z = -Math::atan2(elements[0][1], elements[1][1]);
- }
- return euler;
-}
-
-void Basis::set_euler_zyx(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = zmat * ymat * xmat;
}
bool Basis::is_equal_approx(const Basis &p_basis) const {
diff --git a/core/math/basis.h b/core/math/basis.h
index eb107d7e4e..617d005f19 100644
--- a/core/math/basis.h
+++ b/core/math/basis.h
@@ -85,40 +85,35 @@ public:
void rotate(const Quaternion &p_quaternion);
Basis rotated(const Quaternion &p_quaternion) const;
- Vector3 get_rotation_euler() const;
+ enum EulerOrder {
+ EULER_ORDER_XYZ,
+ EULER_ORDER_XZY,
+ EULER_ORDER_YXZ,
+ EULER_ORDER_YZX,
+ EULER_ORDER_ZXY,
+ EULER_ORDER_ZYX
+ };
+
+ Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const;
void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
Quaternion get_rotation_quaternion() const;
- Vector3 get_rotation() const { return get_rotation_euler(); };
void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction);
Vector3 rotref_posscale_decomposition(Basis &rotref) const;
- Vector3 get_euler_xyz() const;
- void set_euler_xyz(const Vector3 &p_euler);
-
- Vector3 get_euler_xzy() const;
- void set_euler_xzy(const Vector3 &p_euler);
-
- Vector3 get_euler_yzx() const;
- void set_euler_yzx(const Vector3 &p_euler);
-
- Vector3 get_euler_yxz() const;
- void set_euler_yxz(const Vector3 &p_euler);
-
- Vector3 get_euler_zxy() const;
- void set_euler_zxy(const Vector3 &p_euler);
-
- Vector3 get_euler_zyx() const;
- void set_euler_zyx(const Vector3 &p_euler);
+ Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const;
+ void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ);
+ static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) {
+ Basis b;
+ b.set_euler(p_euler, p_order);
+ return b;
+ }
Quaternion get_quaternion() const;
void set_quaternion(const Quaternion &p_quaternion);
- Vector3 get_euler() const { return get_euler_yxz(); }
- void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
-
void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
void set_axis_angle(const Vector3 &p_axis, real_t p_phi);
@@ -250,9 +245,6 @@ public:
Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
- Basis(const Vector3 &p_euler) { set_euler(p_euler); }
- Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); }
-
Basis(const Vector3 &p_axis, real_t p_phi) { set_axis_angle(p_axis, p_phi); }
Basis(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_phi, p_scale); }
static Basis from_scale(const Vector3 &p_scale);
diff --git a/core/math/quaternion.cpp b/core/math/quaternion.cpp
index a29a70c1f0..944474686a 100644
--- a/core/math/quaternion.cpp
+++ b/core/math/quaternion.cpp
@@ -44,7 +44,7 @@ real_t Quaternion::angle_to(const Quaternion &p_to) const {
// This implementation uses XYZ convention (Z is the first rotation).
Vector3 Quaternion::get_euler_xyz() const {
Basis m(*this);
- return m.get_euler_xyz();
+ return m.get_euler(Basis::EULER_ORDER_XYZ);
}
// get_euler_yxz returns a vector containing the Euler angles in the format
@@ -56,7 +56,7 @@ Vector3 Quaternion::get_euler_yxz() const {
ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
#endif
Basis m(*this);
- return m.get_euler_yxz();
+ return m.get_euler(Basis::EULER_ORDER_YXZ);
}
void Quaternion::operator*=(const Quaternion &p_q) {
diff --git a/core/object/undo_redo.cpp b/core/object/undo_redo.cpp
index 9c84c2add7..07006e7968 100644
--- a/core/object/undo_redo.cpp
+++ b/core/object/undo_redo.cpp
@@ -76,7 +76,7 @@ bool UndoRedo::_redo(bool p_execute) {
}
void UndoRedo::create_action(const String &p_name, MergeMode p_mode) {
- uint32_t ticks = OS::get_singleton()->get_ticks_msec();
+ uint64_t ticks = OS::get_singleton()->get_ticks_msec();
if (action_level == 0) {
_discard_redo();
diff --git a/core/variant/binder_common.h b/core/variant/binder_common.h
index 8592a1dc62..f06d767cf5 100644
--- a/core/variant/binder_common.h
+++ b/core/variant/binder_common.h
@@ -88,6 +88,7 @@ struct VariantCaster<const T &> {
VARIANT_ENUM_CAST(Object::ConnectFlags);
VARIANT_ENUM_CAST(Vector3::Axis);
+VARIANT_ENUM_CAST(Basis::EulerOrder);
VARIANT_ENUM_CAST(Error);
VARIANT_ENUM_CAST(Side);
diff --git a/core/variant/variant.cpp b/core/variant/variant.cpp
index 3214fc125d..81428caca1 100644
--- a/core/variant/variant.cpp
+++ b/core/variant/variant.cpp
@@ -313,7 +313,6 @@ bool Variant::can_convert(Variant::Type p_type_from, Variant::Type p_type_to) {
case BASIS: {
static const Type valid[] = {
QUATERNION,
- VECTOR3,
NIL
};
@@ -620,7 +619,6 @@ bool Variant::can_convert_strict(Variant::Type p_type_from, Variant::Type p_type
case BASIS: {
static const Type valid[] = {
QUATERNION,
- VECTOR3,
NIL
};
@@ -1889,8 +1887,6 @@ Variant::operator Basis() const {
return *_data._basis;
} else if (type == QUATERNION) {
return *reinterpret_cast<const Quaternion *>(_data._mem);
- } else if (type == VECTOR3) {
- return Basis(*reinterpret_cast<const Vector3 *>(_data._mem));
} else if (type == TRANSFORM3D) { // unexposed in Variant::can_convert?
return _data._transform3d->basis;
} else {
diff --git a/core/variant/variant_call.cpp b/core/variant/variant_call.cpp
index 8432ccce85..ec3a6a5ca8 100644
--- a/core/variant/variant_call.cpp
+++ b/core/variant/variant_call.cpp
@@ -1731,7 +1731,7 @@ static void _register_variant_builtin_methods() {
bind_methodv(Basis, rotated, static_cast<Basis (Basis::*)(const Vector3 &, real_t) const>(&Basis::rotated), sarray("axis", "phi"), varray());
bind_method(Basis, scaled, sarray("scale"), varray());
bind_method(Basis, get_scale, sarray(), varray());
- bind_method(Basis, get_euler, sarray(), varray());
+ bind_method(Basis, get_euler, sarray("order"), varray(Basis::EULER_ORDER_YXZ));
bind_method(Basis, tdotx, sarray("with"), varray());
bind_method(Basis, tdoty, sarray("with"), varray());
bind_method(Basis, tdotz, sarray("with"), varray());
@@ -1741,6 +1741,7 @@ static void _register_variant_builtin_methods() {
bind_method(Basis, get_rotation_quaternion, sarray(), varray());
bind_static_method(Basis, looking_at, sarray("target", "up"), varray(Vector3(0, 1, 0)));
bind_static_method(Basis, from_scale, sarray("scale"), varray());
+ bind_static_method(Basis, from_euler, sarray("euler", "order"), varray(Basis::EULER_ORDER_YXZ));
/* AABB */
@@ -2109,6 +2110,13 @@ static void _register_variant_builtin_methods() {
_VariantCall::add_variant_constant(Variant::VECTOR2I, "UP", Vector2i(0, -1));
_VariantCall::add_variant_constant(Variant::VECTOR2I, "DOWN", Vector2i(0, 1));
+ _VariantCall::add_constant(Variant::BASIS, "EULER_ORDER_XYZ", Basis::EULER_ORDER_XYZ);
+ _VariantCall::add_constant(Variant::BASIS, "EULER_ORDER_XZY", Basis::EULER_ORDER_XZY);
+ _VariantCall::add_constant(Variant::BASIS, "EULER_ORDER_YXZ", Basis::EULER_ORDER_YXZ);
+ _VariantCall::add_constant(Variant::BASIS, "EULER_ORDER_YZX", Basis::EULER_ORDER_YZX);
+ _VariantCall::add_constant(Variant::BASIS, "EULER_ORDER_ZXY", Basis::EULER_ORDER_ZXY);
+ _VariantCall::add_constant(Variant::BASIS, "EULER_ORDER_ZYX", Basis::EULER_ORDER_ZYX);
+
_VariantCall::add_variant_constant(Variant::TRANSFORM2D, "IDENTITY", Transform2D());
_VariantCall::add_variant_constant(Variant::TRANSFORM2D, "FLIP_X", Transform2D(-1, 0, 0, 1, 0, 0));
_VariantCall::add_variant_constant(Variant::TRANSFORM2D, "FLIP_Y", Transform2D(1, 0, 0, -1, 0, 0));
diff --git a/core/variant/variant_construct.cpp b/core/variant/variant_construct.cpp
index 6aba7d7d58..5c14f30180 100644
--- a/core/variant/variant_construct.cpp
+++ b/core/variant/variant_construct.cpp
@@ -128,10 +128,10 @@ void Variant::_register_variant_constructors() {
add_constructor<VariantConstructNoArgs<Quaternion>>(sarray());
add_constructor<VariantConstructor<Quaternion, Quaternion>>(sarray("from"));
add_constructor<VariantConstructor<Quaternion, Basis>>(sarray("from"));
- add_constructor<VariantConstructor<Quaternion, Vector3>>(sarray("euler"));
add_constructor<VariantConstructor<Quaternion, Vector3, double>>(sarray("axis", "angle"));
add_constructor<VariantConstructor<Quaternion, Vector3, Vector3>>(sarray("arc_from", "arc_to"));
add_constructor<VariantConstructor<Quaternion, double, double, double, double>>(sarray("x", "y", "z", "w"));
+ add_constructor<VariantConstructor<Quaternion, Vector3>>(sarray("euler_yxz"));
add_constructor<VariantConstructNoArgs<::AABB>>(sarray());
add_constructor<VariantConstructor<::AABB, ::AABB>>(sarray("from"));
@@ -140,7 +140,6 @@ void Variant::_register_variant_constructors() {
add_constructor<VariantConstructNoArgs<Basis>>(sarray());
add_constructor<VariantConstructor<Basis, Basis>>(sarray("from"));
add_constructor<VariantConstructor<Basis, Quaternion>>(sarray("from"));
- add_constructor<VariantConstructor<Basis, Vector3>>(sarray("euler"));
add_constructor<VariantConstructor<Basis, Vector3, double>>(sarray("axis", "phi"));
add_constructor<VariantConstructor<Basis, Vector3, Vector3, Vector3>>(sarray("x_axis", "y_axis", "z_axis"));
diff --git a/core/variant/variant_internal.h b/core/variant/variant_internal.h
index 37383ff2ec..2ba24b5af8 100644
--- a/core/variant/variant_internal.h
+++ b/core/variant/variant_internal.h
@@ -757,6 +757,12 @@ VARIANT_ACCESSOR_NUMBER(Error)
VARIANT_ACCESSOR_NUMBER(Side)
template <>
+struct VariantInternalAccessor<Basis::EulerOrder> {
+ static _FORCE_INLINE_ Basis::EulerOrder get(const Variant *v) { return Basis::EulerOrder(*VariantInternal::get_int(v)); }
+ static _FORCE_INLINE_ void set(Variant *v, Basis::EulerOrder p_value) { *VariantInternal::get_int(v) = p_value; }
+};
+
+template <>
struct VariantInternalAccessor<ObjectID> {
static _FORCE_INLINE_ ObjectID get(const Variant *v) { return ObjectID(*VariantInternal::get_int(v)); }
static _FORCE_INLINE_ void set(Variant *v, ObjectID p_value) { *VariantInternal::get_int(v) = p_value; }