diff options
Diffstat (limited to 'core')
-rw-r--r-- | core/bind/core_bind.cpp | 7 | ||||
-rw-r--r-- | core/bind/core_bind.h | 2 | ||||
-rw-r--r-- | core/dvector.h | 17 | ||||
-rw-r--r-- | core/math/geometry.h | 14 | ||||
-rw-r--r-- | core/math/triangulator.cpp | 1543 | ||||
-rw-r--r-- | core/math/triangulator.h | 309 |
6 files changed, 1892 insertions, 0 deletions
diff --git a/core/bind/core_bind.cpp b/core/bind/core_bind.cpp index 0c5d21b4f6..a03fd7fe4a 100644 --- a/core/bind/core_bind.cpp +++ b/core/bind/core_bind.cpp @@ -838,6 +838,12 @@ Variant _Geometry::segment_intersects_triangle( const Vector3& p_from, const Vec return Variant(); } + +bool _Geometry::point_is_inside_triangle(const Vector2& s, const Vector2& a, const Vector2& b, const Vector2& c) const { + + return Geometry::is_point_in_triangle(s,a,b,c); +} + DVector<Vector3> _Geometry::segment_intersects_sphere( const Vector3& p_from, const Vector3& p_to, const Vector3& p_sphere_pos,real_t p_sphere_radius) { DVector<Vector3> r; @@ -938,6 +944,7 @@ void _Geometry::_bind_methods() { ObjectTypeDB::bind_method(_MD("segment_intersects_sphere","from","to","spos","sradius"),&_Geometry::segment_intersects_sphere); ObjectTypeDB::bind_method(_MD("segment_intersects_cylinder","from","to","height","radius"),&_Geometry::segment_intersects_cylinder); ObjectTypeDB::bind_method(_MD("segment_intersects_convex","from","to","planes"),&_Geometry::segment_intersects_convex); + ObjectTypeDB::bind_method(_MD("point_is_inside_triangle","point","a","b","c"),&_Geometry::point_is_inside_triangle); ObjectTypeDB::bind_method(_MD("triangulate_polygon","polygon"),&_Geometry::triangulate_polygon); diff --git a/core/bind/core_bind.h b/core/bind/core_bind.h index 12a4ae86eb..f5043ba71f 100644 --- a/core/bind/core_bind.h +++ b/core/bind/core_bind.h @@ -248,6 +248,8 @@ public: Vector3 get_closest_point_to_segment(const Vector3& p_point, const Vector3& p_a,const Vector3& p_b); Variant ray_intersects_triangle( const Vector3& p_from, const Vector3& p_dir, const Vector3& p_v0,const Vector3& p_v1,const Vector3& p_v2); Variant segment_intersects_triangle( const Vector3& p_from, const Vector3& p_to, const Vector3& p_v0,const Vector3& p_v1,const Vector3& p_v2); + bool point_is_inside_triangle(const Vector2& s, const Vector2& a, const Vector2& b, const Vector2& c) const; + DVector<Vector3> segment_intersects_sphere( const Vector3& p_from, const Vector3& p_to, const Vector3& p_sphere_pos,real_t p_sphere_radius); DVector<Vector3> segment_intersects_cylinder( const Vector3& p_from, const Vector3& p_to, float p_height,float p_radius); DVector<Vector3> segment_intersects_convex(const Vector3& p_from, const Vector3& p_to,const Vector<Plane>& p_planes); diff --git a/core/dvector.h b/core/dvector.h index 72661882cd..29be417844 100644 --- a/core/dvector.h +++ b/core/dvector.h @@ -262,6 +262,23 @@ public: w[bs+i]=r[i]; } + + Error insert(int p_pos,const T& p_val) { + + int s=size(); + ERR_FAIL_INDEX_V(p_pos,s+1,ERR_INVALID_PARAMETER); + resize(s+1); + { + Write w = write(); + for (int i=s;i>p_pos;i--) + w[i]=w[i-1]; + w[p_pos]=p_val; + } + + return OK; + } + + bool is_locked() const { return mem.is_locked(); } inline const T operator[](int p_index) const; diff --git a/core/math/geometry.h b/core/math/geometry.h index 81530e30c0..7e0cc01a22 100644 --- a/core/math/geometry.h +++ b/core/math/geometry.h @@ -511,6 +511,20 @@ public: else return p_segment[0]+n*d; // inside } + + static bool is_point_in_triangle(const Vector2& s, const Vector2& a, const Vector2& b, const Vector2& c) + { + int as_x = s.x-a.x; + int as_y = s.y-a.y; + + bool s_ab = (b.x-a.x)*as_y-(b.y-a.y)*as_x > 0; + + if((c.x-a.x)*as_y-(c.y-a.y)*as_x > 0 == s_ab) return false; + + if((c.x-b.x)*(s.y-b.y)-(c.y-b.y)*(s.x-b.x) > 0 != s_ab) return false; + + return true; + } static Vector2 get_closest_point_to_segment_uncapped_2d(const Vector2& p_point, const Vector2 *p_segment) { Vector2 p=p_point-p_segment[0]; diff --git a/core/math/triangulator.cpp b/core/math/triangulator.cpp new file mode 100644 index 0000000000..6be1cdb330 --- /dev/null +++ b/core/math/triangulator.cpp @@ -0,0 +1,1543 @@ +//Copyright (C) 2011 by Ivan Fratric +// +//Permission is hereby granted, free of charge, to any person obtaining a copy +//of this software and associated documentation files (the "Software"), to deal +//in the Software without restriction, including without limitation the rights +//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +//copies of the Software, and to permit persons to whom the Software is +//furnished to do so, subject to the following conditions: +// +//The above copyright notice and this permission notice shall be included in +//all copies or substantial portions of the Software. +// +//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +//THE SOFTWARE. + + +#include <stdio.h> +#include <string.h> +#include <math.h> +#include <algorithm> +#include "triangulator.h" +using namespace std; + +#define TRIANGULATOR_VERTEXTYPE_REGULAR 0 +#define TRIANGULATOR_VERTEXTYPE_START 1 +#define TRIANGULATOR_VERTEXTYPE_END 2 +#define TRIANGULATOR_VERTEXTYPE_SPLIT 3 +#define TRIANGULATOR_VERTEXTYPE_MERGE 4 + +TriangulatorPoly::TriangulatorPoly() { + hole = false; + numpoints = 0; + points = NULL; +} + +TriangulatorPoly::~TriangulatorPoly() { + if(points) delete [] points; +} + +void TriangulatorPoly::Clear() { + if(points) delete [] points; + hole = false; + numpoints = 0; + points = NULL; +} + +void TriangulatorPoly::Init(long numpoints) { + Clear(); + this->numpoints = numpoints; + points = new Vector2[numpoints]; +} + +void TriangulatorPoly::Triangle(Vector2 &p1, Vector2 &p2, Vector2 &p3) { + Init(3); + points[0] = p1; + points[1] = p2; + points[2] = p3; +} + +TriangulatorPoly::TriangulatorPoly(const TriangulatorPoly &src) { + hole = src.hole; + numpoints = src.numpoints; + points = new Vector2[numpoints]; + memcpy(points, src.points, numpoints*sizeof(Vector2)); +} + +TriangulatorPoly& TriangulatorPoly::operator=(const TriangulatorPoly &src) { + Clear(); + hole = src.hole; + numpoints = src.numpoints; + points = new Vector2[numpoints]; + memcpy(points, src.points, numpoints*sizeof(Vector2)); + return *this; +} + +int TriangulatorPoly::GetOrientation() { + long i1,i2; + real_t area = 0; + for(i1=0; i1<numpoints; i1++) { + i2 = i1+1; + if(i2 == numpoints) i2 = 0; + area += points[i1].x * points[i2].y - points[i1].y * points[i2].x; + } + if(area>0) return TRIANGULATOR_CCW; + if(area<0) return TRIANGULATOR_CW; + return 0; +} + +void TriangulatorPoly::SetOrientation(int orientation) { + int polyorientation = GetOrientation(); + if(polyorientation&&(polyorientation!=orientation)) { + Invert(); + } +} + +void TriangulatorPoly::Invert() { + long i; + Vector2 *invpoints; + + invpoints = new Vector2[numpoints]; + for(i=0;i<numpoints;i++) { + invpoints[i] = points[numpoints-i-1]; + } + + delete [] points; + points = invpoints; +} + +Vector2 TriangulatorPartition::Normalize(const Vector2 &p) { + Vector2 r; + real_t n = sqrt(p.x*p.x + p.y*p.y); + if(n!=0) { + r = p/n; + } else { + r.x = 0; + r.y = 0; + } + return r; +} + +real_t TriangulatorPartition::Distance(const Vector2 &p1, const Vector2 &p2) { + real_t dx,dy; + dx = p2.x - p1.x; + dy = p2.y - p1.y; + return(sqrt(dx*dx + dy*dy)); +} + +//checks if two lines intersect +int TriangulatorPartition::Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21, Vector2 &p22) { + if((p11.x == p21.x)&&(p11.y == p21.y)) return 0; + if((p11.x == p22.x)&&(p11.y == p22.y)) return 0; + if((p12.x == p21.x)&&(p12.y == p21.y)) return 0; + if((p12.x == p22.x)&&(p12.y == p22.y)) return 0; + + Vector2 v1ort,v2ort,v; + real_t dot11,dot12,dot21,dot22; + + v1ort.x = p12.y-p11.y; + v1ort.y = p11.x-p12.x; + + v2ort.x = p22.y-p21.y; + v2ort.y = p21.x-p22.x; + + v = p21-p11; + dot21 = v.x*v1ort.x + v.y*v1ort.y; + v = p22-p11; + dot22 = v.x*v1ort.x + v.y*v1ort.y; + + v = p11-p21; + dot11 = v.x*v2ort.x + v.y*v2ort.y; + v = p12-p21; + dot12 = v.x*v2ort.x + v.y*v2ort.y; + + if(dot11*dot12>0) return 0; + if(dot21*dot22>0) return 0; + + return 1; +} + +//removes holes from inpolys by merging them with non-holes +int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *outpolys) { + list<TriangulatorPoly> polys; + list<TriangulatorPoly>::iterator holeiter,polyiter,iter,iter2; + long i,i2,holepointindex,polypointindex; + Vector2 holepoint,polypoint,bestpolypoint; + Vector2 linep1,linep2; + Vector2 v1,v2; + TriangulatorPoly newpoly; + bool hasholes; + bool pointvisible; + bool pointfound; + + //check for trivial case (no holes) + hasholes = false; + for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) { + if(iter->IsHole()) { + hasholes = true; + break; + } + } + if(!hasholes) { + for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) { + outpolys->push_back(*iter); + } + return 1; + } + + polys = *inpolys; + + while(1) { + //find the hole point with the largest x + hasholes = false; + for(iter = polys.begin(); iter!=polys.end(); iter++) { + if(!iter->IsHole()) continue; + + if(!hasholes) { + hasholes = true; + holeiter = iter; + holepointindex = 0; + } + + for(i=0; i < iter->GetNumPoints(); i++) { + if(iter->GetPoint(i).x > holeiter->GetPoint(holepointindex).x) { + holeiter = iter; + holepointindex = i; + } + } + } + if(!hasholes) break; + holepoint = holeiter->GetPoint(holepointindex); + + pointfound = false; + for(iter = polys.begin(); iter!=polys.end(); iter++) { + if(iter->IsHole()) continue; + for(i=0; i < iter->GetNumPoints(); i++) { + if(iter->GetPoint(i).x <= holepoint.x) continue; + if(!InCone(iter->GetPoint((i+iter->GetNumPoints()-1)%(iter->GetNumPoints())), + iter->GetPoint(i), + iter->GetPoint((i+1)%(iter->GetNumPoints())), + holepoint)) + continue; + polypoint = iter->GetPoint(i); + if(pointfound) { + v1 = Normalize(polypoint-holepoint); + v2 = Normalize(bestpolypoint-holepoint); + if(v2.x > v1.x) continue; + } + pointvisible = true; + for(iter2 = polys.begin(); iter2!=polys.end(); iter2++) { + if(iter2->IsHole()) continue; + for(i2=0; i2 < iter2->GetNumPoints(); i2++) { + linep1 = iter2->GetPoint(i2); + linep2 = iter2->GetPoint((i2+1)%(iter2->GetNumPoints())); + if(Intersects(holepoint,polypoint,linep1,linep2)) { + pointvisible = false; + break; + } + } + if(!pointvisible) break; + } + if(pointvisible) { + pointfound = true; + bestpolypoint = polypoint; + polyiter = iter; + polypointindex = i; + } + } + } + + if(!pointfound) return 0; + + newpoly.Init(holeiter->GetNumPoints() + polyiter->GetNumPoints() + 2); + i2 = 0; + for(i=0;i<=polypointindex;i++) { + newpoly[i2] = polyiter->GetPoint(i); + i2++; + } + for(i=0;i<=holeiter->GetNumPoints();i++) { + newpoly[i2] = holeiter->GetPoint((i+holepointindex)%holeiter->GetNumPoints()); + i2++; + } + for(i=polypointindex;i<polyiter->GetNumPoints();i++) { + newpoly[i2] = polyiter->GetPoint(i); + i2++; + } + + polys.erase(holeiter); + polys.erase(polyiter); + polys.push_back(newpoly); + } + + for(iter = polys.begin(); iter!=polys.end(); iter++) { + outpolys->push_back(*iter); + } + + return 1; +} + +bool TriangulatorPartition::IsConvex(Vector2& p1, Vector2& p2, Vector2& p3) { + real_t tmp; + tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y); + if(tmp>0) return 1; + else return 0; +} + +bool TriangulatorPartition::IsReflex(Vector2& p1, Vector2& p2, Vector2& p3) { + real_t tmp; + tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y); + if(tmp<0) return 1; + else return 0; +} + +bool TriangulatorPartition::IsInside(Vector2& p1, Vector2& p2, Vector2& p3, Vector2 &p) { + if(IsConvex(p1,p,p2)) return false; + if(IsConvex(p2,p,p3)) return false; + if(IsConvex(p3,p,p1)) return false; + return true; +} + +bool TriangulatorPartition::InCone(Vector2 &p1, Vector2 &p2, Vector2 &p3, Vector2 &p) { + bool convex; + + convex = IsConvex(p1,p2,p3); + + if(convex) { + if(!IsConvex(p1,p2,p)) return false; + if(!IsConvex(p2,p3,p)) return false; + return true; + } else { + if(IsConvex(p1,p2,p)) return true; + if(IsConvex(p2,p3,p)) return true; + return false; + } +} + +bool TriangulatorPartition::InCone(PartitionVertex *v, Vector2 &p) { + Vector2 p1,p2,p3; + + p1 = v->previous->p; + p2 = v->p; + p3 = v->next->p; + + return InCone(p1,p2,p3,p); +} + +void TriangulatorPartition::UpdateVertexReflexity(PartitionVertex *v) { + PartitionVertex *v1,*v3; + v1 = v->previous; + v3 = v->next; + v->isConvex = !IsReflex(v1->p,v->p,v3->p); +} + +void TriangulatorPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices) { + long i; + PartitionVertex *v1,*v3; + Vector2 vec1,vec3; + + v1 = v->previous; + v3 = v->next; + + v->isConvex = IsConvex(v1->p,v->p,v3->p); + + vec1 = Normalize(v1->p - v->p); + vec3 = Normalize(v3->p - v->p); + v->angle = vec1.x*vec3.x + vec1.y*vec3.y; + + if(v->isConvex) { + v->isEar = true; + for(i=0;i<numvertices;i++) { + if((vertices[i].p.x==v->p.x)&&(vertices[i].p.y==v->p.y)) continue; + if((vertices[i].p.x==v1->p.x)&&(vertices[i].p.y==v1->p.y)) continue; + if((vertices[i].p.x==v3->p.x)&&(vertices[i].p.y==v3->p.y)) continue; + if(IsInside(v1->p,v->p,v3->p,vertices[i].p)) { + v->isEar = false; + break; + } + } + } else { + v->isEar = false; + } +} + +//triangulation by ear removal +int TriangulatorPartition::Triangulate_EC(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) { + long numvertices; + PartitionVertex *vertices; + PartitionVertex *ear; + TriangulatorPoly triangle; + long i,j; + bool earfound; + + if(poly->GetNumPoints() < 3) return 0; + if(poly->GetNumPoints() == 3) { + triangles->push_back(*poly); + return 1; + } + + numvertices = poly->GetNumPoints(); + + vertices = new PartitionVertex[numvertices]; + for(i=0;i<numvertices;i++) { + vertices[i].isActive = true; + vertices[i].p = poly->GetPoint(i); + if(i==(numvertices-1)) vertices[i].next=&(vertices[0]); + else vertices[i].next=&(vertices[i+1]); + if(i==0) vertices[i].previous = &(vertices[numvertices-1]); + else vertices[i].previous = &(vertices[i-1]); + } + for(i=0;i<numvertices;i++) { + UpdateVertex(&vertices[i],vertices,numvertices); + } + + for(i=0;i<numvertices-3;i++) { + earfound = false; + //find the most extruded ear + for(j=0;j<numvertices;j++) { + if(!vertices[j].isActive) continue; + if(!vertices[j].isEar) continue; + if(!earfound) { + earfound = true; + ear = &(vertices[j]); + } else { + if(vertices[j].angle > ear->angle) { + ear = &(vertices[j]); + } + } + } + if(!earfound) { + delete [] vertices; + return 0; + } + + triangle.Triangle(ear->previous->p,ear->p,ear->next->p); + triangles->push_back(triangle); + + ear->isActive = false; + ear->previous->next = ear->next; + ear->next->previous = ear->previous; + + if(i==numvertices-4) break; + + UpdateVertex(ear->previous,vertices,numvertices); + UpdateVertex(ear->next,vertices,numvertices); + } + for(i=0;i<numvertices;i++) { + if(vertices[i].isActive) { + triangle.Triangle(vertices[i].previous->p,vertices[i].p,vertices[i].next->p); + triangles->push_back(triangle); + break; + } + } + + delete [] vertices; + + return 1; +} + +int TriangulatorPartition::Triangulate_EC(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *triangles) { + list<TriangulatorPoly> outpolys; + list<TriangulatorPoly>::iterator iter; + + if(!RemoveHoles(inpolys,&outpolys)) return 0; + for(iter=outpolys.begin();iter!=outpolys.end();iter++) { + if(!Triangulate_EC(&(*iter),triangles)) return 0; + } + return 1; +} + +int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, list<TriangulatorPoly> *parts) { + list<TriangulatorPoly> triangles; + list<TriangulatorPoly>::iterator iter1,iter2; + TriangulatorPoly *poly1,*poly2; + TriangulatorPoly newpoly; + Vector2 d1,d2,p1,p2,p3; + long i11,i12,i21,i22,i13,i23,j,k; + bool isdiagonal; + long numreflex; + + //check if the poly is already convex + numreflex = 0; + for(i11=0;i11<poly->GetNumPoints();i11++) { + if(i11==0) i12 = poly->GetNumPoints()-1; + else i12=i11-1; + if(i11==(poly->GetNumPoints()-1)) i13=0; + else i13=i11+1; + if(IsReflex(poly->GetPoint(i12),poly->GetPoint(i11),poly->GetPoint(i13))) { + numreflex = 1; + break; + } + } + if(numreflex == 0) { + parts->push_back(*poly); + return 1; + } + + if(!Triangulate_EC(poly,&triangles)) return 0; + + for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) { + poly1 = &(*iter1); + for(i11=0;i11<poly1->GetNumPoints();i11++) { + d1 = poly1->GetPoint(i11); + i12 = (i11+1)%(poly1->GetNumPoints()); + d2 = poly1->GetPoint(i12); + + isdiagonal = false; + for(iter2 = iter1; iter2 != triangles.end(); iter2++) { + if(iter1 == iter2) continue; + poly2 = &(*iter2); + + for(i21=0;i21<poly2->GetNumPoints();i21++) { + if((d2.x != poly2->GetPoint(i21).x)||(d2.y != poly2->GetPoint(i21).y)) continue; + i22 = (i21+1)%(poly2->GetNumPoints()); + if((d1.x != poly2->GetPoint(i22).x)||(d1.y != poly2->GetPoint(i22).y)) continue; + isdiagonal = true; + break; + } + if(isdiagonal) break; + } + + if(!isdiagonal) continue; + + p2 = poly1->GetPoint(i11); + if(i11 == 0) i13 = poly1->GetNumPoints()-1; + else i13 = i11-1; + p1 = poly1->GetPoint(i13); + if(i22 == (poly2->GetNumPoints()-1)) i23 = 0; + else i23 = i22+1; + p3 = poly2->GetPoint(i23); + + if(!IsConvex(p1,p2,p3)) continue; + + p2 = poly1->GetPoint(i12); + if(i12 == (poly1->GetNumPoints()-1)) i13 = 0; + else i13 = i12+1; + p3 = poly1->GetPoint(i13); + if(i21 == 0) i23 = poly2->GetNumPoints()-1; + else i23 = i21-1; + p1 = poly2->GetPoint(i23); + + if(!IsConvex(p1,p2,p3)) continue; + + newpoly.Init(poly1->GetNumPoints()+poly2->GetNumPoints()-2); + k = 0; + for(j=i12;j!=i11;j=(j+1)%(poly1->GetNumPoints())) { + newpoly[k] = poly1->GetPoint(j); + k++; + } + for(j=i22;j!=i21;j=(j+1)%(poly2->GetNumPoints())) { + newpoly[k] = poly2->GetPoint(j); + k++; + } + + triangles.erase(iter2); + *iter1 = newpoly; + poly1 = &(*iter1); + i11 = -1; + + continue; + } + } + + for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) { + parts->push_back(*iter1); + } + + return 1; +} + +int TriangulatorPartition::ConvexPartition_HM(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *parts) { + list<TriangulatorPoly> outpolys; + list<TriangulatorPoly>::iterator iter; + + if(!RemoveHoles(inpolys,&outpolys)) return 0; + for(iter=outpolys.begin();iter!=outpolys.end();iter++) { + if(!ConvexPartition_HM(&(*iter),parts)) return 0; + } + return 1; +} + +//minimum-weight polygon triangulation by dynamic programming +//O(n^3) time complexity +//O(n^2) space complexity +int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) { + long i,j,k,gap,n; + DPState **dpstates; + Vector2 p1,p2,p3,p4; + long bestvertex; + real_t weight,minweight,d1,d2; + Diagonal diagonal,newdiagonal; + list<Diagonal> diagonals; + TriangulatorPoly triangle; + int ret = 1; + + n = poly->GetNumPoints(); + dpstates = new DPState *[n]; + for(i=1;i<n;i++) { + dpstates[i] = new DPState[i]; + } + + //init states and visibility + for(i=0;i<(n-1);i++) { + p1 = poly->GetPoint(i); + for(j=i+1;j<n;j++) { + dpstates[j][i].visible = true; + dpstates[j][i].weight = 0; + dpstates[j][i].bestvertex = -1; + if(j!=(i+1)) { + p2 = poly->GetPoint(j); + + //visibility check + if(i==0) p3 = poly->GetPoint(n-1); + else p3 = poly->GetPoint(i-1); + if(i==(n-1)) p4 = poly->GetPoint(0); + else p4 = poly->GetPoint(i+1); + if(!InCone(p3,p1,p4,p2)) { + dpstates[j][i].visible = false; + continue; + } + + if(j==0) p3 = poly->GetPoint(n-1); + else p3 = poly->GetPoint(j-1); + if(j==(n-1)) p4 = poly->GetPoint(0); + else p4 = poly->GetPoint(j+1); + if(!InCone(p3,p2,p4,p1)) { + dpstates[j][i].visible = false; + continue; + } + + for(k=0;k<n;k++) { + p3 = poly->GetPoint(k); + if(k==(n-1)) p4 = poly->GetPoint(0); + else p4 = poly->GetPoint(k+1); + if(Intersects(p1,p2,p3,p4)) { + dpstates[j][i].visible = false; + break; + } + } + } + } + } + dpstates[n-1][0].visible = true; + dpstates[n-1][0].weight = 0; + dpstates[n-1][0].bestvertex = -1; + + for(gap = 2; gap<n; gap++) { + for(i=0; i<(n-gap); i++) { + j = i+gap; + if(!dpstates[j][i].visible) continue; + bestvertex = -1; + for(k=(i+1);k<j;k++) { + if(!dpstates[k][i].visible) continue; + if(!dpstates[j][k].visible) continue; + + if(k<=(i+1)) d1=0; + else d1 = Distance(poly->GetPoint(i),poly->GetPoint(k)); + if(j<=(k+1)) d2=0; + else d2 = Distance(poly->GetPoint(k),poly->GetPoint(j)); + + weight = dpstates[k][i].weight + dpstates[j][k].weight + d1 + d2; + + if((bestvertex == -1)||(weight<minweight)) { + bestvertex = k; + minweight = weight; + } + } + if(bestvertex == -1) { + for(i=1;i<n;i++) { + delete [] dpstates[i]; + } + delete [] dpstates; + + return 0; + } + + dpstates[j][i].bestvertex = bestvertex; + dpstates[j][i].weight = minweight; + } + } + + newdiagonal.index1 = 0; + newdiagonal.index2 = n-1; + diagonals.push_back(newdiagonal); + while(!diagonals.empty()) { + diagonal = *(diagonals.begin()); + diagonals.pop_front(); + bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex; + if(bestvertex == -1) { + ret = 0; + break; + } + triangle.Triangle(poly->GetPoint(diagonal.index1),poly->GetPoint(bestvertex),poly->GetPoint(diagonal.index2)); + triangles->push_back(triangle); + if(bestvertex > (diagonal.index1+1)) { + newdiagonal.index1 = diagonal.index1; + newdiagonal.index2 = bestvertex; + diagonals.push_back(newdiagonal); + } + if(diagonal.index2 > (bestvertex+1)) { + newdiagonal.index1 = bestvertex; + newdiagonal.index2 = diagonal.index2; + diagonals.push_back(newdiagonal); + } + } + + for(i=1;i<n;i++) { + delete [] dpstates[i]; + } + delete [] dpstates; + + return ret; +} + +void TriangulatorPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) { + Diagonal newdiagonal; + list<Diagonal> *pairs; + long w2; + + w2 = dpstates[a][b].weight; + if(w>w2) return; + + pairs = &(dpstates[a][b].pairs); + newdiagonal.index1 = i; + newdiagonal.index2 = j; + + if(w<w2) { + pairs->clear(); + pairs->push_front(newdiagonal); + dpstates[a][b].weight = w; + } else { + if((!pairs->empty())&&(i <= pairs->begin()->index1)) return; + while((!pairs->empty())&&(pairs->begin()->index2 >= j)) pairs->pop_front(); + pairs->push_front(newdiagonal); + } +} + +void TriangulatorPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) { + list<Diagonal> *pairs; + list<Diagonal>::iterator iter,lastiter; + long top; + long w; + + if(!dpstates[i][j].visible) return; + top = j; + w = dpstates[i][j].weight; + if(k-j > 1) { + if (!dpstates[j][k].visible) return; + w += dpstates[j][k].weight + 1; + } + if(j-i > 1) { + pairs = &(dpstates[i][j].pairs); + iter = pairs->end(); + lastiter = pairs->end(); + while(iter!=pairs->begin()) { + iter--; + if(!IsReflex(vertices[iter->index2].p,vertices[j].p,vertices[k].p)) lastiter = iter; + else break; + } + if(lastiter == pairs->end()) w++; + else { + if(IsReflex(vertices[k].p,vertices[i].p,vertices[lastiter->index1].p)) w++; + else top = lastiter->index1; + } + } + UpdateState(i,k,w,top,j,dpstates); +} + +void TriangulatorPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) { + list<Diagonal> *pairs; + list<Diagonal>::iterator iter,lastiter; + long top; + long w; + + if(!dpstates[j][k].visible) return; + top = j; + w = dpstates[j][k].weight; + + if (j-i > 1) { + if (!dpstates[i][j].visible) return; + w += dpstates[i][j].weight + 1; + } + if (k-j > 1) { + pairs = &(dpstates[j][k].pairs); + + iter = pairs->begin(); + if((!pairs->empty())&&(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p))) { + lastiter = iter; + while(iter!=pairs->end()) { + if(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p)) { + lastiter = iter; + iter++; + } + else break; + } + if(IsReflex(vertices[lastiter->index2].p,vertices[k].p,vertices[i].p)) w++; + else top = lastiter->index2; + } else w++; + } + UpdateState(i,k,w,j,top,dpstates); +} + +int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<TriangulatorPoly> *parts) { + Vector2 p1,p2,p3,p4; + PartitionVertex *vertices; + DPState2 **dpstates; + long i,j,k,n,gap; + list<Diagonal> diagonals,diagonals2; + Diagonal diagonal,newdiagonal; + list<Diagonal> *pairs,*pairs2; + list<Diagonal>::iterator iter,iter2; + int ret; + TriangulatorPoly newpoly; + list<long> indices; + list<long>::iterator iiter; + bool ijreal,jkreal; + + n = poly->GetNumPoints(); + vertices = new PartitionVertex[n]; + + dpstates = new DPState2 *[n]; + for(i=0;i<n;i++) { + dpstates[i] = new DPState2[n]; + } + + //init vertex information + for(i=0;i<n;i++) { + vertices[i].p = poly->GetPoint(i); + vertices[i].isActive = true; + if(i==0) vertices[i].previous = &(vertices[n-1]); + else vertices[i].previous = &(vertices[i-1]); + if(i==(poly->GetNumPoints()-1)) vertices[i].next = &(vertices[0]); + else vertices[i].next = &(vertices[i+1]); + } + for(i=1;i<n;i++) { + UpdateVertexReflexity(&(vertices[i])); + } + + //init states and visibility + for(i=0;i<(n-1);i++) { + p1 = poly->GetPoint(i); + for(j=i+1;j<n;j++) { + dpstates[i][j].visible = true; + if(j==i+1) { + dpstates[i][j].weight = 0; + } else { + dpstates[i][j].weight = 2147483647; + } + if(j!=(i+1)) { + p2 = poly->GetPoint(j); + + //visibility check + if(!InCone(&vertices[i],p2)) { + dpstates[i][j].visible = false; + continue; + } + if(!InCone(&vertices[j],p1)) { + dpstates[i][j].visible = false; + continue; + } + + for(k=0;k<n;k++) { + p3 = poly->GetPoint(k); + if(k==(n-1)) p4 = poly->GetPoint(0); + else p4 = poly->GetPoint(k+1); + if(Intersects(p1,p2,p3,p4)) { + dpstates[i][j].visible = false; + break; + } + } + } + } + } + for(i=0;i<(n-2);i++) { + j = i+2; + if(dpstates[i][j].visible) { + dpstates[i][j].weight = 0; + newdiagonal.index1 = i+1; + newdiagonal.index2 = i+1; + dpstates[i][j].pairs.push_back(newdiagonal); + } + } + + dpstates[0][n-1].visible = true; + vertices[0].isConvex = false; //by convention + + for(gap=3; gap<n; gap++) { + for(i=0;i<n-gap;i++) { + if(vertices[i].isConvex) continue; + k = i+gap; + if(dpstates[i][k].visible) { + if(!vertices[k].isConvex) { + for(j=i+1;j<k;j++) TypeA(i,j,k,vertices,dpstates); + } else { + for(j=i+1;j<(k-1);j++) { + if(vertices[j].isConvex) continue; + TypeA(i,j,k,vertices,dpstates); + } + TypeA(i,k-1,k,vertices,dpstates); + } + } + } + for(k=gap;k<n;k++) { + if(vertices[k].isConvex) continue; + i = k-gap; + if((vertices[i].isConvex)&&(dpstates[i][k].visible)) { + TypeB(i,i+1,k,vertices,dpstates); + for(j=i+2;j<k;j++) { + if(vertices[j].isConvex) continue; + TypeB(i,j,k,vertices,dpstates); + } + } + } + } + + + //recover solution + ret = 1; + newdiagonal.index1 = 0; + newdiagonal.index2 = n-1; + diagonals.push_front(newdiagonal); + while(!diagonals.empty()) { + diagonal = *(diagonals.begin()); + diagonals.pop_front(); + if((diagonal.index2 - diagonal.index1) <=1) continue; + pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs); + if(pairs->empty()) { + ret = 0; + break; + } + if(!vertices[diagonal.index1].isConvex) { + iter = pairs->end(); + iter--; + j = iter->index2; + newdiagonal.index1 = j; + newdiagonal.index2 = diagonal.index2; + diagonals.push_front(newdiagonal); + if((j - diagonal.index1)>1) { + if(iter->index1 != iter->index2) { + pairs2 = &(dpstates[diagonal.index1][j].pairs); + while(1) { + if(pairs2->empty()) { + ret = 0; + break; + } + iter2 = pairs2->end(); + iter2--; + if(iter->index1 != iter2->index1) pairs2->pop_back(); + else break; + } + if(ret == 0) break; + } + newdiagonal.index1 = diagonal.index1; + newdiagonal.index2 = j; + diagonals.push_front(newdiagonal); + } + } else { + iter = pairs->begin(); + j = iter->index1; + newdiagonal.index1 = diagonal.index1; + newdiagonal.index2 = j; + diagonals.push_front(newdiagonal); + if((diagonal.index2 - j) > 1) { + if(iter->index1 != iter->index2) { + pairs2 = &(dpstates[j][diagonal.index2].pairs); + while(1) { + if(pairs2->empty()) { + ret = 0; + break; + } + iter2 = pairs2->begin(); + if(iter->index2 != iter2->index2) pairs2->pop_front(); + else break; + } + if(ret == 0) break; + } + newdiagonal.index1 = j; + newdiagonal.index2 = diagonal.index2; + diagonals.push_front(newdiagonal); + } + } + } + + if(ret == 0) { + for(i=0;i<n;i++) { + delete [] dpstates[i]; + } + delete [] dpstates; + delete [] vertices; + + return ret; + } + + newdiagonal.index1 = 0; + newdiagonal.index2 = n-1; + diagonals.push_front(newdiagonal); + while(!diagonals.empty()) { + diagonal = *(diagonals.begin()); + diagonals.pop_front(); + if((diagonal.index2 - diagonal.index1) <= 1) continue; + + indices.clear(); + diagonals2.clear(); + indices.push_back(diagonal.index1); + indices.push_back(diagonal.index2); + diagonals2.push_front(diagonal); + + while(!diagonals2.empty()) { + diagonal = *(diagonals2.begin()); + diagonals2.pop_front(); + if((diagonal.index2 - diagonal.index1) <= 1) continue; + ijreal = true; + jkreal = true; + pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs); + if(!vertices[diagonal.index1].isConvex) { + iter = pairs->end(); + iter--; + j = iter->index2; + if(iter->index1 != iter->index2) ijreal = false; + } else { + iter = pairs->begin(); + j = iter->index1; + if(iter->index1 != iter->index2) jkreal = false; + } + + newdiagonal.index1 = diagonal.index1; + newdiagonal.index2 = j; + if(ijreal) { + diagonals.push_back(newdiagonal); + } else { + diagonals2.push_back(newdiagonal); + } + + newdiagonal.index1 = j; + newdiagonal.index2 = diagonal.index2; + if(jkreal) { + diagonals.push_back(newdiagonal); + } else { + diagonals2.push_back(newdiagonal); + } + + indices.push_back(j); + } + + indices.sort(); + newpoly.Init((long)indices.size()); + k=0; + for(iiter = indices.begin();iiter!=indices.end();iiter++) { + newpoly[k] = vertices[*iiter].p; + k++; + } + parts->push_back(newpoly); + } + + for(i=0;i<n;i++) { + delete [] dpstates[i]; + } + delete [] dpstates; + delete [] vertices; + + return ret; +} + +//triangulates a set of polygons by first partitioning them into monotone polygons +//O(n*log(n)) time complexity, O(n) space complexity +//the algorithm used here is outlined in the book +//"Computational Geometry: Algorithms and Applications" +//by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars +int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *monotonePolys) { + list<TriangulatorPoly>::iterator iter; + MonotoneVertex *vertices; + long i,numvertices,vindex,vindex2,newnumvertices,maxnumvertices; + long polystartindex, polyendindex; + TriangulatorPoly *poly; + MonotoneVertex *v,*v2,*vprev,*vnext; + ScanLineEdge newedge; + bool error = false; + + numvertices = 0; + for(iter = inpolys->begin(); iter != inpolys->end(); iter++) { + numvertices += iter->GetNumPoints(); + } + + maxnumvertices = numvertices*3; + vertices = new MonotoneVertex[maxnumvertices]; + newnumvertices = numvertices; + + polystartindex = 0; + for(iter = inpolys->begin(); iter != inpolys->end(); iter++) { + poly = &(*iter); + polyendindex = polystartindex + poly->GetNumPoints()-1; + for(i=0;i<poly->GetNumPoints();i++) { + vertices[i+polystartindex].p = poly->GetPoint(i); + if(i==0) vertices[i+polystartindex].previous = polyendindex; + else vertices[i+polystartindex].previous = i+polystartindex-1; + if(i==(poly->GetNumPoints()-1)) vertices[i+polystartindex].next = polystartindex; + else vertices[i+polystartindex].next = i+polystartindex+1; + } + polystartindex = polyendindex+1; + } + + //construct the priority queue + long *priority = new long [numvertices]; + for(i=0;i<numvertices;i++) priority[i] = i; + std::sort(priority,&(priority[numvertices]),VertexSorter(vertices)); + + //determine vertex types + char *vertextypes = new char[maxnumvertices]; + for(i=0;i<numvertices;i++) { + v = &(vertices[i]); + vprev = &(vertices[v->previous]); + vnext = &(vertices[v->next]); + + if(Below(vprev->p,v->p)&&Below(vnext->p,v->p)) { + if(IsConvex(vnext->p,vprev->p,v->p)) { + vertextypes[i] = TRIANGULATOR_VERTEXTYPE_START; + } else { + vertextypes[i] = TRIANGULATOR_VERTEXTYPE_SPLIT; + } + } else if(Below(v->p,vprev->p)&&Below(v->p,vnext->p)) { + if(IsConvex(vnext->p,vprev->p,v->p)) + { + vertextypes[i] = TRIANGULATOR_VERTEXTYPE_END; + } else { + vertextypes[i] = TRIANGULATOR_VERTEXTYPE_MERGE; + } + } else { + vertextypes[i] = TRIANGULATOR_VERTEXTYPE_REGULAR; + } + } + + //helpers + long *helpers = new long[maxnumvertices]; + + //binary search tree that holds edges intersecting the scanline + //note that while set doesn't actually have to be implemented as a tree + //complexity requirements for operations are the same as for the balanced binary search tree + set<ScanLineEdge> edgeTree; + //store iterators to the edge tree elements + //this makes deleting existing edges much faster + set<ScanLineEdge>::iterator *edgeTreeIterators,edgeIter; + edgeTreeIterators = new set<ScanLineEdge>::iterator[maxnumvertices]; + pair<set<ScanLineEdge>::iterator,bool> edgeTreeRet; + for(i = 0; i<numvertices; i++) edgeTreeIterators[i] = edgeTree.end(); + + //for each vertex + for(i=0;i<numvertices;i++) { + vindex = priority[i]; + v = &(vertices[vindex]); + vindex2 = vindex; + v2 = v; + + //depending on the vertex type, do the appropriate action + //comments in the following sections are copied from "Computational Geometry: Algorithms and Applications" + switch(vertextypes[vindex]) { + case TRIANGULATOR_VERTEXTYPE_START: + //Insert ei in T and set helper(ei) to vi. + newedge.p1 = v->p; + newedge.p2 = vertices[v->next].p; + newedge.index = vindex; + edgeTreeRet = edgeTree.insert(newedge); + edgeTreeIterators[vindex] = edgeTreeRet.first; + helpers[vindex] = vindex; + break; + + case TRIANGULATOR_VERTEXTYPE_END: + //if helper(ei-1) is a merge vertex + if(vertextypes[helpers[v->previous]]==TRIANGULATOR_VERTEXTYPE_MERGE) { + //Insert the diagonal connecting vi to helper(ei-1) in D. + AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous], + vertextypes, edgeTreeIterators, &edgeTree, helpers); + } + //Delete ei-1 from T + edgeTree.erase(edgeTreeIterators[v->previous]); + break; + + case TRIANGULATOR_VERTEXTYPE_SPLIT: + //Search in T to find the edge e j directly left of vi. + newedge.p1 = v->p; + newedge.p2 = v->p; + edgeIter = edgeTree.lower_bound(newedge); + if(edgeIter == edgeTree.begin()) { + error = true; + break; + } + edgeIter--; + //Insert the diagonal connecting vi to helper(ej) in D. + AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index], + vertextypes, edgeTreeIterators, &edgeTree, helpers); + vindex2 = newnumvertices-2; + v2 = &(vertices[vindex2]); + //helper(e j)�vi + helpers[edgeIter->index] = vindex; + //Insert ei in T and set helper(ei) to vi. + newedge.p1 = v2->p; + newedge.p2 = vertices[v2->next].p; + newedge.index = vindex2; + edgeTreeRet = edgeTree.insert(newedge); + edgeTreeIterators[vindex2] = edgeTreeRet.first; + helpers[vindex2] = vindex2; + break; + + case TRIANGULATOR_VERTEXTYPE_MERGE: + //if helper(ei-1) is a merge vertex + if(vertextypes[helpers[v->previous]]==TRIANGULATOR_VERTEXTYPE_MERGE) { + //Insert the diagonal connecting vi to helper(ei-1) in D. + AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous], + vertextypes, edgeTreeIterators, &edgeTree, helpers); + vindex2 = newnumvertices-2; + v2 = &(vertices[vindex2]); + } + //Delete ei-1 from T. + edgeTree.erase(edgeTreeIterators[v->previous]); + //Search in T to find the edge e j directly left of vi. + newedge.p1 = v->p; + newedge.p2 = v->p; + edgeIter = edgeTree.lower_bound(newedge); + if(edgeIter == edgeTree.begin()) { + error = true; + break; + } + edgeIter--; + //if helper(ej) is a merge vertex + if(vertextypes[helpers[edgeIter->index]]==TRIANGULATOR_VERTEXTYPE_MERGE) { + //Insert the diagonal connecting vi to helper(e j) in D. + AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->index], + vertextypes, edgeTreeIterators, &edgeTree, helpers); + } + //helper(e j)�vi + helpers[edgeIter->index] = vindex2; + break; + + case TRIANGULATOR_VERTEXTYPE_REGULAR: + //if the interior of P lies to the right of vi + if(Below(v->p,vertices[v->previous].p)) { + //if helper(ei-1) is a merge vertex + if(vertextypes[helpers[v->previous]]==TRIANGULATOR_VERTEXTYPE_MERGE) { + //Insert the diagonal connecting vi to helper(ei-1) in D. + AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous], + vertextypes, edgeTreeIterators, &edgeTree, helpers); + vindex2 = newnumvertices-2; + v2 = &(vertices[vindex2]); + } + //Delete ei-1 from T. + edgeTree.erase(edgeTreeIterators[v->previous]); + //Insert ei in T and set helper(ei) to vi. + newedge.p1 = v2->p; + newedge.p2 = vertices[v2->next].p; + newedge.index = vindex2; + edgeTreeRet = edgeTree.insert(newedge); + edgeTreeIterators[vindex2] = edgeTreeRet.first; + helpers[vindex2] = vindex; + } else { + //Search in T to find the edge ej directly left of vi. + newedge.p1 = v->p; + newedge.p2 = v->p; + edgeIter = edgeTree.lower_bound(newedge); + if(edgeIter == edgeTree.begin()) { + error = true; + break; + } + edgeIter--; + //if helper(ej) is a merge vertex + if(vertextypes[helpers[edgeIter->index]]==TRIANGULATOR_VERTEXTYPE_MERGE) { + //Insert the diagonal connecting vi to helper(e j) in D. + AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index], + vertextypes, edgeTreeIterators, &edgeTree, helpers); + } + //helper(e j)�vi + helpers[edgeIter->index] = vindex; + } + break; + } + + if(error) break; + } + + char *used = new char[newnumvertices]; + memset(used,0,newnumvertices*sizeof(char)); + + if(!error) { + //return result + long size; + TriangulatorPoly mpoly; + for(i=0;i<newnumvertices;i++) { + if(used[i]) continue; + v = &(vertices[i]); + vnext = &(vertices[v->next]); + size = 1; + while(vnext!=v) { + vnext = &(vertices[vnext->next]); + size++; + } + mpoly.Init(size); + v = &(vertices[i]); + mpoly[0] = v->p; + vnext = &(vertices[v->next]); + size = 1; + used[i] = 1; + used[v->next] = 1; + while(vnext!=v) { + mpoly[size] = vnext->p; + used[vnext->next] = 1; + vnext = &(vertices[vnext->next]); + size++; + } + monotonePolys->push_back(mpoly); + } + } + + //cleanup + delete [] vertices; + delete [] priority; + delete [] vertextypes; + delete [] edgeTreeIterators; + delete [] helpers; + delete [] used; + + if(error) { + return 0; + } else { + return 1; + } +} + +//adds a diagonal to the doubly-connected list of vertices +void TriangulatorPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2, + char *vertextypes, set<ScanLineEdge>::iterator *edgeTreeIterators, + set<ScanLineEdge> *edgeTree, long *helpers) +{ + long newindex1,newindex2; + + newindex1 = *numvertices; + (*numvertices)++; + newindex2 = *numvertices; + (*numvertices)++; + + vertices[newindex1].p = vertices[index1].p; + vertices[newindex2].p = vertices[index2].p; + + vertices[newindex2].next = vertices[index2].next; + vertices[newindex1].next = vertices[index1].next; + + vertices[vertices[index2].next].previous = newindex2; + vertices[vertices[index1].next].previous = newindex1; + + vertices[index1].next = newindex2; + vertices[newindex2].previous = index1; + + vertices[index2].next = newindex1; + vertices[newindex1].previous = index2; + + //update all relevant structures + vertextypes[newindex1] = vertextypes[index1]; + edgeTreeIterators[newindex1] = edgeTreeIterators[index1]; + helpers[newindex1] = helpers[index1]; + if(edgeTreeIterators[newindex1] != edgeTree->end()) + edgeTreeIterators[newindex1]->index = newindex1; + vertextypes[newindex2] = vertextypes[index2]; + edgeTreeIterators[newindex2] = edgeTreeIterators[index2]; + helpers[newindex2] = helpers[index2]; + if(edgeTreeIterators[newindex2] != edgeTree->end()) + edgeTreeIterators[newindex2]->index = newindex2; +} + +bool TriangulatorPartition::Below(Vector2 &p1, Vector2 &p2) { + if(p1.y < p2.y) return true; + else if(p1.y == p2.y) { + if(p1.x < p2.x) return true; + } + return false; +} + +//sorts in the falling order of y values, if y is equal, x is used instead +bool TriangulatorPartition::VertexSorter::operator() (long index1, long index2) { + if(vertices[index1].p.y > vertices[index2].p.y) return true; + else if(vertices[index1].p.y == vertices[index2].p.y) { + if(vertices[index1].p.x > vertices[index2].p.x) return true; + } + return false; +} + +bool TriangulatorPartition::ScanLineEdge::IsConvex(const Vector2& p1, const Vector2& p2, const Vector2& p3) const { + real_t tmp; + tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y); + if(tmp>0) return 1; + else return 0; +} + +bool TriangulatorPartition::ScanLineEdge::operator < (const ScanLineEdge & other) const { + if(other.p1.y == other.p2.y) { + if(p1.y == p2.y) { + if(p1.y < other.p1.y) return true; + else return false; + } + if(IsConvex(p1,p2,other.p1)) return true; + else return false; + } else if(p1.y == p2.y) { + if(IsConvex(other.p1,other.p2,p1)) return false; + else return true; + } else if(p1.y < other.p1.y) { + if(IsConvex(other.p1,other.p2,p1)) return false; + else return true; + } else { + if(IsConvex(p1,p2,other.p1)) return true; + else return false; + } +} + +//triangulates monotone polygon +//O(n) time, O(n) space complexity +int TriangulatorPartition::TriangulateMonotone(TriangulatorPoly *inPoly, list<TriangulatorPoly> *triangles) { + long i,i2,j,topindex,bottomindex,leftindex,rightindex,vindex; + Vector2 *points; + long numpoints; + TriangulatorPoly triangle; + + numpoints = inPoly->GetNumPoints(); + points = inPoly->GetPoints(); + + //trivial calses + if(numpoints < 3) return 0; + if(numpoints == 3) { + triangles->push_back(*inPoly); + } + + topindex = 0; bottomindex=0; + for(i=1;i<numpoints;i++) { + if(Below(points[i],points[bottomindex])) bottomindex = i; + if(Below(points[topindex],points[i])) topindex = i; + } + + //check if the poly is really monotone + i = topindex; + while(i!=bottomindex) { + i2 = i+1; if(i2>=numpoints) i2 = 0; + if(!Below(points[i2],points[i])) return 0; + i = i2; + } + i = bottomindex; + while(i!=topindex) { + i2 = i+1; if(i2>=numpoints) i2 = 0; + if(!Below(points[i],points[i2])) return 0; + i = i2; + } + + char *vertextypes = new char[numpoints]; + long *priority = new long[numpoints]; + + //merge left and right vertex chains + priority[0] = topindex; + vertextypes[topindex] = 0; + leftindex = topindex+1; if(leftindex>=numpoints) leftindex = 0; + rightindex = topindex-1; if(rightindex<0) rightindex = numpoints-1; + for(i=1;i<(numpoints-1);i++) { + if(leftindex==bottomindex) { + priority[i] = rightindex; + rightindex--; if(rightindex<0) rightindex = numpoints-1; + vertextypes[priority[i]] = -1; + } else if(rightindex==bottomindex) { + priority[i] = leftindex; + leftindex++; if(leftindex>=numpoints) leftindex = 0; + vertextypes[priority[i]] = 1; + } else { + if(Below(points[leftindex],points[rightindex])) { + priority[i] = rightindex; + rightindex--; if(rightindex<0) rightindex = numpoints-1; + vertextypes[priority[i]] = -1; + } else { + priority[i] = leftindex; + leftindex++; if(leftindex>=numpoints) leftindex = 0; + vertextypes[priority[i]] = 1; + } + } + } + priority[i] = bottomindex; + vertextypes[bottomindex] = 0; + + long *stack = new long[numpoints]; + long stackptr = 0; + + stack[0] = priority[0]; + stack[1] = priority[1]; + stackptr = 2; + + //for each vertex from top to bottom trim as many triangles as possible + for(i=2;i<(numpoints-1);i++) { + vindex = priority[i]; + if(vertextypes[vindex]!=vertextypes[stack[stackptr-1]]) { + for(j=0;j<(stackptr-1);j++) { + if(vertextypes[vindex]==1) { + triangle.Triangle(points[stack[j+1]],points[stack[j]],points[vindex]); + } else { + triangle.Triangle(points[stack[j]],points[stack[j+1]],points[vindex]); + } + triangles->push_back(triangle); + } + stack[0] = priority[i-1]; + stack[1] = priority[i]; + stackptr = 2; + } else { + stackptr--; + while(stackptr>0) { + if(vertextypes[vindex]==1) { + if(IsConvex(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]])) { + triangle.Triangle(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]]); + triangles->push_back(triangle); + stackptr--; + } else { + break; + } + } else { + if(IsConvex(points[vindex],points[stack[stackptr]],points[stack[stackptr-1]])) { + triangle.Triangle(points[vindex],points[stack[stackptr]],points[stack[stackptr-1]]); + triangles->push_back(triangle); + stackptr--; + } else { + break; + } + } + } + stackptr++; + stack[stackptr] = vindex; + stackptr++; + } + } + vindex = priority[i]; + for(j=0;j<(stackptr-1);j++) { + if(vertextypes[stack[j+1]]==1) { + triangle.Triangle(points[stack[j]],points[stack[j+1]],points[vindex]); + } else { + triangle.Triangle(points[stack[j+1]],points[stack[j]],points[vindex]); + } + triangles->push_back(triangle); + } + + delete [] priority; + delete [] vertextypes; + delete [] stack; + + return 1; +} + +int TriangulatorPartition::Triangulate_MONO(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *triangles) { + list<TriangulatorPoly> monotone; + list<TriangulatorPoly>::iterator iter; + + if(!MonotonePartition(inpolys,&monotone)) return 0; + for(iter = monotone.begin(); iter!=monotone.end();iter++) { + if(!TriangulateMonotone(&(*iter),triangles)) return 0; + } + return 1; +} + +int TriangulatorPartition::Triangulate_MONO(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) { + list<TriangulatorPoly> polys; + polys.push_back(*poly); + + return Triangulate_MONO(&polys, triangles); +} diff --git a/core/math/triangulator.h b/core/math/triangulator.h new file mode 100644 index 0000000000..c34c445892 --- /dev/null +++ b/core/math/triangulator.h @@ -0,0 +1,309 @@ +//Copyright (C) 2011 by Ivan Fratric +// +//Permission is hereby granted, free of charge, to any person obtaining a copy +//of this software and associated documentation files (the "Software"), to deal +//in the Software without restriction, including without limitation the rights +//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +//copies of the Software, and to permit persons to whom the Software is +//furnished to do so, subject to the following conditions: +// +//The above copyright notice and this permission notice shall be included in +//all copies or substantial portions of the Software. +// +//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +//THE SOFTWARE. + +#ifndef TRIANGULATOR_H +#define TRIANGULATOR_H + +#include "math_2d.h" +#include <list> +#include <set> + +//2D point structure + + +#define TRIANGULATOR_CCW 1 +#define TRIANGULATOR_CW -1 +//Polygon implemented as an array of points with a 'hole' flag +class TriangulatorPoly { +protected: + + + + Vector2 *points; + long numpoints; + bool hole; + +public: + + //constructors/destructors + TriangulatorPoly(); + ~TriangulatorPoly(); + + TriangulatorPoly(const TriangulatorPoly &src); + TriangulatorPoly& operator=(const TriangulatorPoly &src); + + //getters and setters + long GetNumPoints() { + return numpoints; + } + + bool IsHole() { + return hole; + } + + void SetHole(bool hole) { + this->hole = hole; + } + + Vector2 &GetPoint(long i) { + return points[i]; + } + + Vector2 *GetPoints() { + return points; + } + + Vector2& operator[] (int i) { + return points[i]; + } + + //clears the polygon points + void Clear(); + + //inits the polygon with numpoints vertices + void Init(long numpoints); + + //creates a triangle with points p1,p2,p3 + void Triangle(Vector2 &p1, Vector2 &p2, Vector2 &p3); + + //inverts the orfer of vertices + void Invert(); + + //returns the orientation of the polygon + //possible values: + // Triangulator_CCW : polygon vertices are in counter-clockwise order + // Triangulator_CW : polygon vertices are in clockwise order + // 0 : the polygon has no (measurable) area + int GetOrientation(); + + //sets the polygon orientation + //orientation can be + // Triangulator_CCW : sets vertices in counter-clockwise order + // Triangulator_CW : sets vertices in clockwise order + void SetOrientation(int orientation); +}; + +class TriangulatorPartition { +protected: + struct PartitionVertex { + bool isActive; + bool isConvex; + bool isEar; + + Vector2 p; + real_t angle; + PartitionVertex *previous; + PartitionVertex *next; + }; + + struct MonotoneVertex { + Vector2 p; + long previous; + long next; + }; + + class VertexSorter{ + MonotoneVertex *vertices; + public: + VertexSorter(MonotoneVertex *v) : vertices(v) {} + bool operator() (long index1, long index2); + }; + + struct Diagonal { + long index1; + long index2; + }; + + //dynamic programming state for minimum-weight triangulation + struct DPState { + bool visible; + real_t weight; + long bestvertex; + }; + + //dynamic programming state for convex partitioning + struct DPState2 { + bool visible; + long weight; + std::list<Diagonal> pairs; + }; + + //edge that intersects the scanline + struct ScanLineEdge { + mutable long index; + Vector2 p1; + Vector2 p2; + + //determines if the edge is to the left of another edge + bool operator< (const ScanLineEdge & other) const; + + bool IsConvex(const Vector2& p1, const Vector2& p2, const Vector2& p3) const; + }; + + //standard helper functions + bool IsConvex(Vector2& p1, Vector2& p2, Vector2& p3); + bool IsReflex(Vector2& p1, Vector2& p2, Vector2& p3); + bool IsInside(Vector2& p1, Vector2& p2, Vector2& p3, Vector2 &p); + + bool InCone(Vector2 &p1, Vector2 &p2, Vector2 &p3, Vector2 &p); + bool InCone(PartitionVertex *v, Vector2 &p); + + int Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21, Vector2 &p22); + + Vector2 Normalize(const Vector2 &p); + real_t Distance(const Vector2 &p1, const Vector2 &p2); + + //helper functions for Triangulate_EC + void UpdateVertexReflexity(PartitionVertex *v); + void UpdateVertex(PartitionVertex *v,PartitionVertex *vertices, long numvertices); + + //helper functions for ConvexPartition_OPT + void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates); + void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates); + void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates); + + //helper functions for MonotonePartition + bool Below(Vector2 &p1, Vector2 &p2); + void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2, + char *vertextypes, std::set<ScanLineEdge>::iterator *edgeTreeIterators, + std::set<ScanLineEdge> *edgeTree, long *helpers); + + //triangulates a monotone polygon, used in Triangulate_MONO + int TriangulateMonotone(TriangulatorPoly *inPoly, std::list<TriangulatorPoly> *triangles); + +public: + + //simple heuristic procedure for removing holes from a list of polygons + //works by creating a diagonal from the rightmost hole vertex to some visible vertex + //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : a list of polygons that can contain holes + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // outpolys : a list of polygons without holes + //returns 1 on success, 0 on failure + int RemoveHoles(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *outpolys); + + //triangulates a polygon by ear clipping + //time complexity O(n^2), n is the number of vertices + //space complexity: O(n) + //params: + // poly : an input polygon to be triangulated + // vertices have to be in counter-clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_EC(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles); + + //triangulates a list of polygons that may contain holes by ear clipping algorithm + //first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon + //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : a list of polygons to be triangulated (can contain holes) + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_EC(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *triangles); + + //creates an optimal polygon triangulation in terms of minimal edge length + //time complexity: O(n^3), n is the number of vertices + //space complexity: O(n^2) + //params: + // poly : an input polygon to be triangulated + // vertices have to be in counter-clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_OPT(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles); + + //triangulates a polygons by firstly partitioning it into monotone polygons + //time complexity: O(n*log(n)), n is the number of vertices + //space complexity: O(n) + //params: + // poly : an input polygon to be triangulated + // vertices have to be in counter-clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_MONO(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles); + + //triangulates a list of polygons by firstly partitioning them into monotone polygons + //time complexity: O(n*log(n)), n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : a list of polygons to be triangulated (can contain holes) + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // triangles : a list of triangles (result) + //returns 1 on success, 0 on failure + int Triangulate_MONO(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *triangles); + + //creates a monotone partition of a list of polygons that can contain holes + //time complexity: O(n*log(n)), n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : a list of polygons to be triangulated (can contain holes) + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // monotonePolys : a list of monotone polygons (result) + //returns 1 on success, 0 on failure + int MonotonePartition(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *monotonePolys); + + //partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm + //the algorithm gives at most four times the number of parts as the optimal algorithm + //however, in practice it works much better than that and often gives optimal partition + //uses triangulation obtained by ear clipping as intermediate result + //time complexity O(n^2), n is the number of vertices + //space complexity: O(n) + //params: + // poly : an input polygon to be partitioned + // vertices have to be in counter-clockwise order + // parts : resulting list of convex polygons + //returns 1 on success, 0 on failure + int ConvexPartition_HM(TriangulatorPoly *poly, std::list<TriangulatorPoly> *parts); + + //partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm + //the algorithm gives at most four times the number of parts as the optimal algorithm + //however, in practice it works much better than that and often gives optimal partition + //uses triangulation obtained by ear clipping as intermediate result + //time complexity O(n^2), n is the number of vertices + //space complexity: O(n) + //params: + // inpolys : an input list of polygons to be partitioned + // vertices of all non-hole polys have to be in counter-clockwise order + // vertices of all hole polys have to be in clockwise order + // parts : resulting list of convex polygons + //returns 1 on success, 0 on failure + int ConvexPartition_HM(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *parts); + + //optimal convex partitioning (in terms of number of resulting convex polygons) + //using the Keil-Snoeyink algorithm + //M. Keil, J. Snoeyink, "On the time bound for convex decomposition of simple polygons", 1998 + //time complexity O(n^3), n is the number of vertices + //space complexity: O(n^3) + // poly : an input polygon to be partitioned + // vertices have to be in counter-clockwise order + // parts : resulting list of convex polygons + //returns 1 on success, 0 on failure + int ConvexPartition_OPT(TriangulatorPoly *poly, std::list<TriangulatorPoly> *parts); +}; + + +#endif |