summaryrefslogtreecommitdiff
path: root/core
diff options
context:
space:
mode:
Diffstat (limited to 'core')
-rw-r--r--core/bind/core_bind.cpp7
-rw-r--r--core/bind/core_bind.h2
-rw-r--r--core/dvector.h17
-rw-r--r--core/math/geometry.h14
-rw-r--r--core/math/triangulator.cpp1543
-rw-r--r--core/math/triangulator.h309
6 files changed, 1892 insertions, 0 deletions
diff --git a/core/bind/core_bind.cpp b/core/bind/core_bind.cpp
index 0c5d21b4f6..a03fd7fe4a 100644
--- a/core/bind/core_bind.cpp
+++ b/core/bind/core_bind.cpp
@@ -838,6 +838,12 @@ Variant _Geometry::segment_intersects_triangle( const Vector3& p_from, const Vec
return Variant();
}
+
+bool _Geometry::point_is_inside_triangle(const Vector2& s, const Vector2& a, const Vector2& b, const Vector2& c) const {
+
+ return Geometry::is_point_in_triangle(s,a,b,c);
+}
+
DVector<Vector3> _Geometry::segment_intersects_sphere( const Vector3& p_from, const Vector3& p_to, const Vector3& p_sphere_pos,real_t p_sphere_radius) {
DVector<Vector3> r;
@@ -938,6 +944,7 @@ void _Geometry::_bind_methods() {
ObjectTypeDB::bind_method(_MD("segment_intersects_sphere","from","to","spos","sradius"),&_Geometry::segment_intersects_sphere);
ObjectTypeDB::bind_method(_MD("segment_intersects_cylinder","from","to","height","radius"),&_Geometry::segment_intersects_cylinder);
ObjectTypeDB::bind_method(_MD("segment_intersects_convex","from","to","planes"),&_Geometry::segment_intersects_convex);
+ ObjectTypeDB::bind_method(_MD("point_is_inside_triangle","point","a","b","c"),&_Geometry::point_is_inside_triangle);
ObjectTypeDB::bind_method(_MD("triangulate_polygon","polygon"),&_Geometry::triangulate_polygon);
diff --git a/core/bind/core_bind.h b/core/bind/core_bind.h
index 12a4ae86eb..f5043ba71f 100644
--- a/core/bind/core_bind.h
+++ b/core/bind/core_bind.h
@@ -248,6 +248,8 @@ public:
Vector3 get_closest_point_to_segment(const Vector3& p_point, const Vector3& p_a,const Vector3& p_b);
Variant ray_intersects_triangle( const Vector3& p_from, const Vector3& p_dir, const Vector3& p_v0,const Vector3& p_v1,const Vector3& p_v2);
Variant segment_intersects_triangle( const Vector3& p_from, const Vector3& p_to, const Vector3& p_v0,const Vector3& p_v1,const Vector3& p_v2);
+ bool point_is_inside_triangle(const Vector2& s, const Vector2& a, const Vector2& b, const Vector2& c) const;
+
DVector<Vector3> segment_intersects_sphere( const Vector3& p_from, const Vector3& p_to, const Vector3& p_sphere_pos,real_t p_sphere_radius);
DVector<Vector3> segment_intersects_cylinder( const Vector3& p_from, const Vector3& p_to, float p_height,float p_radius);
DVector<Vector3> segment_intersects_convex(const Vector3& p_from, const Vector3& p_to,const Vector<Plane>& p_planes);
diff --git a/core/dvector.h b/core/dvector.h
index 72661882cd..29be417844 100644
--- a/core/dvector.h
+++ b/core/dvector.h
@@ -262,6 +262,23 @@ public:
w[bs+i]=r[i];
}
+
+ Error insert(int p_pos,const T& p_val) {
+
+ int s=size();
+ ERR_FAIL_INDEX_V(p_pos,s+1,ERR_INVALID_PARAMETER);
+ resize(s+1);
+ {
+ Write w = write();
+ for (int i=s;i>p_pos;i--)
+ w[i]=w[i-1];
+ w[p_pos]=p_val;
+ }
+
+ return OK;
+ }
+
+
bool is_locked() const { return mem.is_locked(); }
inline const T operator[](int p_index) const;
diff --git a/core/math/geometry.h b/core/math/geometry.h
index 81530e30c0..7e0cc01a22 100644
--- a/core/math/geometry.h
+++ b/core/math/geometry.h
@@ -511,6 +511,20 @@ public:
else
return p_segment[0]+n*d; // inside
}
+
+ static bool is_point_in_triangle(const Vector2& s, const Vector2& a, const Vector2& b, const Vector2& c)
+ {
+ int as_x = s.x-a.x;
+ int as_y = s.y-a.y;
+
+ bool s_ab = (b.x-a.x)*as_y-(b.y-a.y)*as_x > 0;
+
+ if((c.x-a.x)*as_y-(c.y-a.y)*as_x > 0 == s_ab) return false;
+
+ if((c.x-b.x)*(s.y-b.y)-(c.y-b.y)*(s.x-b.x) > 0 != s_ab) return false;
+
+ return true;
+ }
static Vector2 get_closest_point_to_segment_uncapped_2d(const Vector2& p_point, const Vector2 *p_segment) {
Vector2 p=p_point-p_segment[0];
diff --git a/core/math/triangulator.cpp b/core/math/triangulator.cpp
new file mode 100644
index 0000000000..6be1cdb330
--- /dev/null
+++ b/core/math/triangulator.cpp
@@ -0,0 +1,1543 @@
+//Copyright (C) 2011 by Ivan Fratric
+//
+//Permission is hereby granted, free of charge, to any person obtaining a copy
+//of this software and associated documentation files (the "Software"), to deal
+//in the Software without restriction, including without limitation the rights
+//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+//copies of the Software, and to permit persons to whom the Software is
+//furnished to do so, subject to the following conditions:
+//
+//The above copyright notice and this permission notice shall be included in
+//all copies or substantial portions of the Software.
+//
+//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+//THE SOFTWARE.
+
+
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+#include <algorithm>
+#include "triangulator.h"
+using namespace std;
+
+#define TRIANGULATOR_VERTEXTYPE_REGULAR 0
+#define TRIANGULATOR_VERTEXTYPE_START 1
+#define TRIANGULATOR_VERTEXTYPE_END 2
+#define TRIANGULATOR_VERTEXTYPE_SPLIT 3
+#define TRIANGULATOR_VERTEXTYPE_MERGE 4
+
+TriangulatorPoly::TriangulatorPoly() {
+ hole = false;
+ numpoints = 0;
+ points = NULL;
+}
+
+TriangulatorPoly::~TriangulatorPoly() {
+ if(points) delete [] points;
+}
+
+void TriangulatorPoly::Clear() {
+ if(points) delete [] points;
+ hole = false;
+ numpoints = 0;
+ points = NULL;
+}
+
+void TriangulatorPoly::Init(long numpoints) {
+ Clear();
+ this->numpoints = numpoints;
+ points = new Vector2[numpoints];
+}
+
+void TriangulatorPoly::Triangle(Vector2 &p1, Vector2 &p2, Vector2 &p3) {
+ Init(3);
+ points[0] = p1;
+ points[1] = p2;
+ points[2] = p3;
+}
+
+TriangulatorPoly::TriangulatorPoly(const TriangulatorPoly &src) {
+ hole = src.hole;
+ numpoints = src.numpoints;
+ points = new Vector2[numpoints];
+ memcpy(points, src.points, numpoints*sizeof(Vector2));
+}
+
+TriangulatorPoly& TriangulatorPoly::operator=(const TriangulatorPoly &src) {
+ Clear();
+ hole = src.hole;
+ numpoints = src.numpoints;
+ points = new Vector2[numpoints];
+ memcpy(points, src.points, numpoints*sizeof(Vector2));
+ return *this;
+}
+
+int TriangulatorPoly::GetOrientation() {
+ long i1,i2;
+ real_t area = 0;
+ for(i1=0; i1<numpoints; i1++) {
+ i2 = i1+1;
+ if(i2 == numpoints) i2 = 0;
+ area += points[i1].x * points[i2].y - points[i1].y * points[i2].x;
+ }
+ if(area>0) return TRIANGULATOR_CCW;
+ if(area<0) return TRIANGULATOR_CW;
+ return 0;
+}
+
+void TriangulatorPoly::SetOrientation(int orientation) {
+ int polyorientation = GetOrientation();
+ if(polyorientation&&(polyorientation!=orientation)) {
+ Invert();
+ }
+}
+
+void TriangulatorPoly::Invert() {
+ long i;
+ Vector2 *invpoints;
+
+ invpoints = new Vector2[numpoints];
+ for(i=0;i<numpoints;i++) {
+ invpoints[i] = points[numpoints-i-1];
+ }
+
+ delete [] points;
+ points = invpoints;
+}
+
+Vector2 TriangulatorPartition::Normalize(const Vector2 &p) {
+ Vector2 r;
+ real_t n = sqrt(p.x*p.x + p.y*p.y);
+ if(n!=0) {
+ r = p/n;
+ } else {
+ r.x = 0;
+ r.y = 0;
+ }
+ return r;
+}
+
+real_t TriangulatorPartition::Distance(const Vector2 &p1, const Vector2 &p2) {
+ real_t dx,dy;
+ dx = p2.x - p1.x;
+ dy = p2.y - p1.y;
+ return(sqrt(dx*dx + dy*dy));
+}
+
+//checks if two lines intersect
+int TriangulatorPartition::Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21, Vector2 &p22) {
+ if((p11.x == p21.x)&&(p11.y == p21.y)) return 0;
+ if((p11.x == p22.x)&&(p11.y == p22.y)) return 0;
+ if((p12.x == p21.x)&&(p12.y == p21.y)) return 0;
+ if((p12.x == p22.x)&&(p12.y == p22.y)) return 0;
+
+ Vector2 v1ort,v2ort,v;
+ real_t dot11,dot12,dot21,dot22;
+
+ v1ort.x = p12.y-p11.y;
+ v1ort.y = p11.x-p12.x;
+
+ v2ort.x = p22.y-p21.y;
+ v2ort.y = p21.x-p22.x;
+
+ v = p21-p11;
+ dot21 = v.x*v1ort.x + v.y*v1ort.y;
+ v = p22-p11;
+ dot22 = v.x*v1ort.x + v.y*v1ort.y;
+
+ v = p11-p21;
+ dot11 = v.x*v2ort.x + v.y*v2ort.y;
+ v = p12-p21;
+ dot12 = v.x*v2ort.x + v.y*v2ort.y;
+
+ if(dot11*dot12>0) return 0;
+ if(dot21*dot22>0) return 0;
+
+ return 1;
+}
+
+//removes holes from inpolys by merging them with non-holes
+int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *outpolys) {
+ list<TriangulatorPoly> polys;
+ list<TriangulatorPoly>::iterator holeiter,polyiter,iter,iter2;
+ long i,i2,holepointindex,polypointindex;
+ Vector2 holepoint,polypoint,bestpolypoint;
+ Vector2 linep1,linep2;
+ Vector2 v1,v2;
+ TriangulatorPoly newpoly;
+ bool hasholes;
+ bool pointvisible;
+ bool pointfound;
+
+ //check for trivial case (no holes)
+ hasholes = false;
+ for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
+ if(iter->IsHole()) {
+ hasholes = true;
+ break;
+ }
+ }
+ if(!hasholes) {
+ for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
+ outpolys->push_back(*iter);
+ }
+ return 1;
+ }
+
+ polys = *inpolys;
+
+ while(1) {
+ //find the hole point with the largest x
+ hasholes = false;
+ for(iter = polys.begin(); iter!=polys.end(); iter++) {
+ if(!iter->IsHole()) continue;
+
+ if(!hasholes) {
+ hasholes = true;
+ holeiter = iter;
+ holepointindex = 0;
+ }
+
+ for(i=0; i < iter->GetNumPoints(); i++) {
+ if(iter->GetPoint(i).x > holeiter->GetPoint(holepointindex).x) {
+ holeiter = iter;
+ holepointindex = i;
+ }
+ }
+ }
+ if(!hasholes) break;
+ holepoint = holeiter->GetPoint(holepointindex);
+
+ pointfound = false;
+ for(iter = polys.begin(); iter!=polys.end(); iter++) {
+ if(iter->IsHole()) continue;
+ for(i=0; i < iter->GetNumPoints(); i++) {
+ if(iter->GetPoint(i).x <= holepoint.x) continue;
+ if(!InCone(iter->GetPoint((i+iter->GetNumPoints()-1)%(iter->GetNumPoints())),
+ iter->GetPoint(i),
+ iter->GetPoint((i+1)%(iter->GetNumPoints())),
+ holepoint))
+ continue;
+ polypoint = iter->GetPoint(i);
+ if(pointfound) {
+ v1 = Normalize(polypoint-holepoint);
+ v2 = Normalize(bestpolypoint-holepoint);
+ if(v2.x > v1.x) continue;
+ }
+ pointvisible = true;
+ for(iter2 = polys.begin(); iter2!=polys.end(); iter2++) {
+ if(iter2->IsHole()) continue;
+ for(i2=0; i2 < iter2->GetNumPoints(); i2++) {
+ linep1 = iter2->GetPoint(i2);
+ linep2 = iter2->GetPoint((i2+1)%(iter2->GetNumPoints()));
+ if(Intersects(holepoint,polypoint,linep1,linep2)) {
+ pointvisible = false;
+ break;
+ }
+ }
+ if(!pointvisible) break;
+ }
+ if(pointvisible) {
+ pointfound = true;
+ bestpolypoint = polypoint;
+ polyiter = iter;
+ polypointindex = i;
+ }
+ }
+ }
+
+ if(!pointfound) return 0;
+
+ newpoly.Init(holeiter->GetNumPoints() + polyiter->GetNumPoints() + 2);
+ i2 = 0;
+ for(i=0;i<=polypointindex;i++) {
+ newpoly[i2] = polyiter->GetPoint(i);
+ i2++;
+ }
+ for(i=0;i<=holeiter->GetNumPoints();i++) {
+ newpoly[i2] = holeiter->GetPoint((i+holepointindex)%holeiter->GetNumPoints());
+ i2++;
+ }
+ for(i=polypointindex;i<polyiter->GetNumPoints();i++) {
+ newpoly[i2] = polyiter->GetPoint(i);
+ i2++;
+ }
+
+ polys.erase(holeiter);
+ polys.erase(polyiter);
+ polys.push_back(newpoly);
+ }
+
+ for(iter = polys.begin(); iter!=polys.end(); iter++) {
+ outpolys->push_back(*iter);
+ }
+
+ return 1;
+}
+
+bool TriangulatorPartition::IsConvex(Vector2& p1, Vector2& p2, Vector2& p3) {
+ real_t tmp;
+ tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y);
+ if(tmp>0) return 1;
+ else return 0;
+}
+
+bool TriangulatorPartition::IsReflex(Vector2& p1, Vector2& p2, Vector2& p3) {
+ real_t tmp;
+ tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y);
+ if(tmp<0) return 1;
+ else return 0;
+}
+
+bool TriangulatorPartition::IsInside(Vector2& p1, Vector2& p2, Vector2& p3, Vector2 &p) {
+ if(IsConvex(p1,p,p2)) return false;
+ if(IsConvex(p2,p,p3)) return false;
+ if(IsConvex(p3,p,p1)) return false;
+ return true;
+}
+
+bool TriangulatorPartition::InCone(Vector2 &p1, Vector2 &p2, Vector2 &p3, Vector2 &p) {
+ bool convex;
+
+ convex = IsConvex(p1,p2,p3);
+
+ if(convex) {
+ if(!IsConvex(p1,p2,p)) return false;
+ if(!IsConvex(p2,p3,p)) return false;
+ return true;
+ } else {
+ if(IsConvex(p1,p2,p)) return true;
+ if(IsConvex(p2,p3,p)) return true;
+ return false;
+ }
+}
+
+bool TriangulatorPartition::InCone(PartitionVertex *v, Vector2 &p) {
+ Vector2 p1,p2,p3;
+
+ p1 = v->previous->p;
+ p2 = v->p;
+ p3 = v->next->p;
+
+ return InCone(p1,p2,p3,p);
+}
+
+void TriangulatorPartition::UpdateVertexReflexity(PartitionVertex *v) {
+ PartitionVertex *v1,*v3;
+ v1 = v->previous;
+ v3 = v->next;
+ v->isConvex = !IsReflex(v1->p,v->p,v3->p);
+}
+
+void TriangulatorPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices) {
+ long i;
+ PartitionVertex *v1,*v3;
+ Vector2 vec1,vec3;
+
+ v1 = v->previous;
+ v3 = v->next;
+
+ v->isConvex = IsConvex(v1->p,v->p,v3->p);
+
+ vec1 = Normalize(v1->p - v->p);
+ vec3 = Normalize(v3->p - v->p);
+ v->angle = vec1.x*vec3.x + vec1.y*vec3.y;
+
+ if(v->isConvex) {
+ v->isEar = true;
+ for(i=0;i<numvertices;i++) {
+ if((vertices[i].p.x==v->p.x)&&(vertices[i].p.y==v->p.y)) continue;
+ if((vertices[i].p.x==v1->p.x)&&(vertices[i].p.y==v1->p.y)) continue;
+ if((vertices[i].p.x==v3->p.x)&&(vertices[i].p.y==v3->p.y)) continue;
+ if(IsInside(v1->p,v->p,v3->p,vertices[i].p)) {
+ v->isEar = false;
+ break;
+ }
+ }
+ } else {
+ v->isEar = false;
+ }
+}
+
+//triangulation by ear removal
+int TriangulatorPartition::Triangulate_EC(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) {
+ long numvertices;
+ PartitionVertex *vertices;
+ PartitionVertex *ear;
+ TriangulatorPoly triangle;
+ long i,j;
+ bool earfound;
+
+ if(poly->GetNumPoints() < 3) return 0;
+ if(poly->GetNumPoints() == 3) {
+ triangles->push_back(*poly);
+ return 1;
+ }
+
+ numvertices = poly->GetNumPoints();
+
+ vertices = new PartitionVertex[numvertices];
+ for(i=0;i<numvertices;i++) {
+ vertices[i].isActive = true;
+ vertices[i].p = poly->GetPoint(i);
+ if(i==(numvertices-1)) vertices[i].next=&(vertices[0]);
+ else vertices[i].next=&(vertices[i+1]);
+ if(i==0) vertices[i].previous = &(vertices[numvertices-1]);
+ else vertices[i].previous = &(vertices[i-1]);
+ }
+ for(i=0;i<numvertices;i++) {
+ UpdateVertex(&vertices[i],vertices,numvertices);
+ }
+
+ for(i=0;i<numvertices-3;i++) {
+ earfound = false;
+ //find the most extruded ear
+ for(j=0;j<numvertices;j++) {
+ if(!vertices[j].isActive) continue;
+ if(!vertices[j].isEar) continue;
+ if(!earfound) {
+ earfound = true;
+ ear = &(vertices[j]);
+ } else {
+ if(vertices[j].angle > ear->angle) {
+ ear = &(vertices[j]);
+ }
+ }
+ }
+ if(!earfound) {
+ delete [] vertices;
+ return 0;
+ }
+
+ triangle.Triangle(ear->previous->p,ear->p,ear->next->p);
+ triangles->push_back(triangle);
+
+ ear->isActive = false;
+ ear->previous->next = ear->next;
+ ear->next->previous = ear->previous;
+
+ if(i==numvertices-4) break;
+
+ UpdateVertex(ear->previous,vertices,numvertices);
+ UpdateVertex(ear->next,vertices,numvertices);
+ }
+ for(i=0;i<numvertices;i++) {
+ if(vertices[i].isActive) {
+ triangle.Triangle(vertices[i].previous->p,vertices[i].p,vertices[i].next->p);
+ triangles->push_back(triangle);
+ break;
+ }
+ }
+
+ delete [] vertices;
+
+ return 1;
+}
+
+int TriangulatorPartition::Triangulate_EC(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *triangles) {
+ list<TriangulatorPoly> outpolys;
+ list<TriangulatorPoly>::iterator iter;
+
+ if(!RemoveHoles(inpolys,&outpolys)) return 0;
+ for(iter=outpolys.begin();iter!=outpolys.end();iter++) {
+ if(!Triangulate_EC(&(*iter),triangles)) return 0;
+ }
+ return 1;
+}
+
+int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, list<TriangulatorPoly> *parts) {
+ list<TriangulatorPoly> triangles;
+ list<TriangulatorPoly>::iterator iter1,iter2;
+ TriangulatorPoly *poly1,*poly2;
+ TriangulatorPoly newpoly;
+ Vector2 d1,d2,p1,p2,p3;
+ long i11,i12,i21,i22,i13,i23,j,k;
+ bool isdiagonal;
+ long numreflex;
+
+ //check if the poly is already convex
+ numreflex = 0;
+ for(i11=0;i11<poly->GetNumPoints();i11++) {
+ if(i11==0) i12 = poly->GetNumPoints()-1;
+ else i12=i11-1;
+ if(i11==(poly->GetNumPoints()-1)) i13=0;
+ else i13=i11+1;
+ if(IsReflex(poly->GetPoint(i12),poly->GetPoint(i11),poly->GetPoint(i13))) {
+ numreflex = 1;
+ break;
+ }
+ }
+ if(numreflex == 0) {
+ parts->push_back(*poly);
+ return 1;
+ }
+
+ if(!Triangulate_EC(poly,&triangles)) return 0;
+
+ for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
+ poly1 = &(*iter1);
+ for(i11=0;i11<poly1->GetNumPoints();i11++) {
+ d1 = poly1->GetPoint(i11);
+ i12 = (i11+1)%(poly1->GetNumPoints());
+ d2 = poly1->GetPoint(i12);
+
+ isdiagonal = false;
+ for(iter2 = iter1; iter2 != triangles.end(); iter2++) {
+ if(iter1 == iter2) continue;
+ poly2 = &(*iter2);
+
+ for(i21=0;i21<poly2->GetNumPoints();i21++) {
+ if((d2.x != poly2->GetPoint(i21).x)||(d2.y != poly2->GetPoint(i21).y)) continue;
+ i22 = (i21+1)%(poly2->GetNumPoints());
+ if((d1.x != poly2->GetPoint(i22).x)||(d1.y != poly2->GetPoint(i22).y)) continue;
+ isdiagonal = true;
+ break;
+ }
+ if(isdiagonal) break;
+ }
+
+ if(!isdiagonal) continue;
+
+ p2 = poly1->GetPoint(i11);
+ if(i11 == 0) i13 = poly1->GetNumPoints()-1;
+ else i13 = i11-1;
+ p1 = poly1->GetPoint(i13);
+ if(i22 == (poly2->GetNumPoints()-1)) i23 = 0;
+ else i23 = i22+1;
+ p3 = poly2->GetPoint(i23);
+
+ if(!IsConvex(p1,p2,p3)) continue;
+
+ p2 = poly1->GetPoint(i12);
+ if(i12 == (poly1->GetNumPoints()-1)) i13 = 0;
+ else i13 = i12+1;
+ p3 = poly1->GetPoint(i13);
+ if(i21 == 0) i23 = poly2->GetNumPoints()-1;
+ else i23 = i21-1;
+ p1 = poly2->GetPoint(i23);
+
+ if(!IsConvex(p1,p2,p3)) continue;
+
+ newpoly.Init(poly1->GetNumPoints()+poly2->GetNumPoints()-2);
+ k = 0;
+ for(j=i12;j!=i11;j=(j+1)%(poly1->GetNumPoints())) {
+ newpoly[k] = poly1->GetPoint(j);
+ k++;
+ }
+ for(j=i22;j!=i21;j=(j+1)%(poly2->GetNumPoints())) {
+ newpoly[k] = poly2->GetPoint(j);
+ k++;
+ }
+
+ triangles.erase(iter2);
+ *iter1 = newpoly;
+ poly1 = &(*iter1);
+ i11 = -1;
+
+ continue;
+ }
+ }
+
+ for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
+ parts->push_back(*iter1);
+ }
+
+ return 1;
+}
+
+int TriangulatorPartition::ConvexPartition_HM(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *parts) {
+ list<TriangulatorPoly> outpolys;
+ list<TriangulatorPoly>::iterator iter;
+
+ if(!RemoveHoles(inpolys,&outpolys)) return 0;
+ for(iter=outpolys.begin();iter!=outpolys.end();iter++) {
+ if(!ConvexPartition_HM(&(*iter),parts)) return 0;
+ }
+ return 1;
+}
+
+//minimum-weight polygon triangulation by dynamic programming
+//O(n^3) time complexity
+//O(n^2) space complexity
+int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) {
+ long i,j,k,gap,n;
+ DPState **dpstates;
+ Vector2 p1,p2,p3,p4;
+ long bestvertex;
+ real_t weight,minweight,d1,d2;
+ Diagonal diagonal,newdiagonal;
+ list<Diagonal> diagonals;
+ TriangulatorPoly triangle;
+ int ret = 1;
+
+ n = poly->GetNumPoints();
+ dpstates = new DPState *[n];
+ for(i=1;i<n;i++) {
+ dpstates[i] = new DPState[i];
+ }
+
+ //init states and visibility
+ for(i=0;i<(n-1);i++) {
+ p1 = poly->GetPoint(i);
+ for(j=i+1;j<n;j++) {
+ dpstates[j][i].visible = true;
+ dpstates[j][i].weight = 0;
+ dpstates[j][i].bestvertex = -1;
+ if(j!=(i+1)) {
+ p2 = poly->GetPoint(j);
+
+ //visibility check
+ if(i==0) p3 = poly->GetPoint(n-1);
+ else p3 = poly->GetPoint(i-1);
+ if(i==(n-1)) p4 = poly->GetPoint(0);
+ else p4 = poly->GetPoint(i+1);
+ if(!InCone(p3,p1,p4,p2)) {
+ dpstates[j][i].visible = false;
+ continue;
+ }
+
+ if(j==0) p3 = poly->GetPoint(n-1);
+ else p3 = poly->GetPoint(j-1);
+ if(j==(n-1)) p4 = poly->GetPoint(0);
+ else p4 = poly->GetPoint(j+1);
+ if(!InCone(p3,p2,p4,p1)) {
+ dpstates[j][i].visible = false;
+ continue;
+ }
+
+ for(k=0;k<n;k++) {
+ p3 = poly->GetPoint(k);
+ if(k==(n-1)) p4 = poly->GetPoint(0);
+ else p4 = poly->GetPoint(k+1);
+ if(Intersects(p1,p2,p3,p4)) {
+ dpstates[j][i].visible = false;
+ break;
+ }
+ }
+ }
+ }
+ }
+ dpstates[n-1][0].visible = true;
+ dpstates[n-1][0].weight = 0;
+ dpstates[n-1][0].bestvertex = -1;
+
+ for(gap = 2; gap<n; gap++) {
+ for(i=0; i<(n-gap); i++) {
+ j = i+gap;
+ if(!dpstates[j][i].visible) continue;
+ bestvertex = -1;
+ for(k=(i+1);k<j;k++) {
+ if(!dpstates[k][i].visible) continue;
+ if(!dpstates[j][k].visible) continue;
+
+ if(k<=(i+1)) d1=0;
+ else d1 = Distance(poly->GetPoint(i),poly->GetPoint(k));
+ if(j<=(k+1)) d2=0;
+ else d2 = Distance(poly->GetPoint(k),poly->GetPoint(j));
+
+ weight = dpstates[k][i].weight + dpstates[j][k].weight + d1 + d2;
+
+ if((bestvertex == -1)||(weight<minweight)) {
+ bestvertex = k;
+ minweight = weight;
+ }
+ }
+ if(bestvertex == -1) {
+ for(i=1;i<n;i++) {
+ delete [] dpstates[i];
+ }
+ delete [] dpstates;
+
+ return 0;
+ }
+
+ dpstates[j][i].bestvertex = bestvertex;
+ dpstates[j][i].weight = minweight;
+ }
+ }
+
+ newdiagonal.index1 = 0;
+ newdiagonal.index2 = n-1;
+ diagonals.push_back(newdiagonal);
+ while(!diagonals.empty()) {
+ diagonal = *(diagonals.begin());
+ diagonals.pop_front();
+ bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex;
+ if(bestvertex == -1) {
+ ret = 0;
+ break;
+ }
+ triangle.Triangle(poly->GetPoint(diagonal.index1),poly->GetPoint(bestvertex),poly->GetPoint(diagonal.index2));
+ triangles->push_back(triangle);
+ if(bestvertex > (diagonal.index1+1)) {
+ newdiagonal.index1 = diagonal.index1;
+ newdiagonal.index2 = bestvertex;
+ diagonals.push_back(newdiagonal);
+ }
+ if(diagonal.index2 > (bestvertex+1)) {
+ newdiagonal.index1 = bestvertex;
+ newdiagonal.index2 = diagonal.index2;
+ diagonals.push_back(newdiagonal);
+ }
+ }
+
+ for(i=1;i<n;i++) {
+ delete [] dpstates[i];
+ }
+ delete [] dpstates;
+
+ return ret;
+}
+
+void TriangulatorPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) {
+ Diagonal newdiagonal;
+ list<Diagonal> *pairs;
+ long w2;
+
+ w2 = dpstates[a][b].weight;
+ if(w>w2) return;
+
+ pairs = &(dpstates[a][b].pairs);
+ newdiagonal.index1 = i;
+ newdiagonal.index2 = j;
+
+ if(w<w2) {
+ pairs->clear();
+ pairs->push_front(newdiagonal);
+ dpstates[a][b].weight = w;
+ } else {
+ if((!pairs->empty())&&(i <= pairs->begin()->index1)) return;
+ while((!pairs->empty())&&(pairs->begin()->index2 >= j)) pairs->pop_front();
+ pairs->push_front(newdiagonal);
+ }
+}
+
+void TriangulatorPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
+ list<Diagonal> *pairs;
+ list<Diagonal>::iterator iter,lastiter;
+ long top;
+ long w;
+
+ if(!dpstates[i][j].visible) return;
+ top = j;
+ w = dpstates[i][j].weight;
+ if(k-j > 1) {
+ if (!dpstates[j][k].visible) return;
+ w += dpstates[j][k].weight + 1;
+ }
+ if(j-i > 1) {
+ pairs = &(dpstates[i][j].pairs);
+ iter = pairs->end();
+ lastiter = pairs->end();
+ while(iter!=pairs->begin()) {
+ iter--;
+ if(!IsReflex(vertices[iter->index2].p,vertices[j].p,vertices[k].p)) lastiter = iter;
+ else break;
+ }
+ if(lastiter == pairs->end()) w++;
+ else {
+ if(IsReflex(vertices[k].p,vertices[i].p,vertices[lastiter->index1].p)) w++;
+ else top = lastiter->index1;
+ }
+ }
+ UpdateState(i,k,w,top,j,dpstates);
+}
+
+void TriangulatorPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
+ list<Diagonal> *pairs;
+ list<Diagonal>::iterator iter,lastiter;
+ long top;
+ long w;
+
+ if(!dpstates[j][k].visible) return;
+ top = j;
+ w = dpstates[j][k].weight;
+
+ if (j-i > 1) {
+ if (!dpstates[i][j].visible) return;
+ w += dpstates[i][j].weight + 1;
+ }
+ if (k-j > 1) {
+ pairs = &(dpstates[j][k].pairs);
+
+ iter = pairs->begin();
+ if((!pairs->empty())&&(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p))) {
+ lastiter = iter;
+ while(iter!=pairs->end()) {
+ if(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p)) {
+ lastiter = iter;
+ iter++;
+ }
+ else break;
+ }
+ if(IsReflex(vertices[lastiter->index2].p,vertices[k].p,vertices[i].p)) w++;
+ else top = lastiter->index2;
+ } else w++;
+ }
+ UpdateState(i,k,w,j,top,dpstates);
+}
+
+int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<TriangulatorPoly> *parts) {
+ Vector2 p1,p2,p3,p4;
+ PartitionVertex *vertices;
+ DPState2 **dpstates;
+ long i,j,k,n,gap;
+ list<Diagonal> diagonals,diagonals2;
+ Diagonal diagonal,newdiagonal;
+ list<Diagonal> *pairs,*pairs2;
+ list<Diagonal>::iterator iter,iter2;
+ int ret;
+ TriangulatorPoly newpoly;
+ list<long> indices;
+ list<long>::iterator iiter;
+ bool ijreal,jkreal;
+
+ n = poly->GetNumPoints();
+ vertices = new PartitionVertex[n];
+
+ dpstates = new DPState2 *[n];
+ for(i=0;i<n;i++) {
+ dpstates[i] = new DPState2[n];
+ }
+
+ //init vertex information
+ for(i=0;i<n;i++) {
+ vertices[i].p = poly->GetPoint(i);
+ vertices[i].isActive = true;
+ if(i==0) vertices[i].previous = &(vertices[n-1]);
+ else vertices[i].previous = &(vertices[i-1]);
+ if(i==(poly->GetNumPoints()-1)) vertices[i].next = &(vertices[0]);
+ else vertices[i].next = &(vertices[i+1]);
+ }
+ for(i=1;i<n;i++) {
+ UpdateVertexReflexity(&(vertices[i]));
+ }
+
+ //init states and visibility
+ for(i=0;i<(n-1);i++) {
+ p1 = poly->GetPoint(i);
+ for(j=i+1;j<n;j++) {
+ dpstates[i][j].visible = true;
+ if(j==i+1) {
+ dpstates[i][j].weight = 0;
+ } else {
+ dpstates[i][j].weight = 2147483647;
+ }
+ if(j!=(i+1)) {
+ p2 = poly->GetPoint(j);
+
+ //visibility check
+ if(!InCone(&vertices[i],p2)) {
+ dpstates[i][j].visible = false;
+ continue;
+ }
+ if(!InCone(&vertices[j],p1)) {
+ dpstates[i][j].visible = false;
+ continue;
+ }
+
+ for(k=0;k<n;k++) {
+ p3 = poly->GetPoint(k);
+ if(k==(n-1)) p4 = poly->GetPoint(0);
+ else p4 = poly->GetPoint(k+1);
+ if(Intersects(p1,p2,p3,p4)) {
+ dpstates[i][j].visible = false;
+ break;
+ }
+ }
+ }
+ }
+ }
+ for(i=0;i<(n-2);i++) {
+ j = i+2;
+ if(dpstates[i][j].visible) {
+ dpstates[i][j].weight = 0;
+ newdiagonal.index1 = i+1;
+ newdiagonal.index2 = i+1;
+ dpstates[i][j].pairs.push_back(newdiagonal);
+ }
+ }
+
+ dpstates[0][n-1].visible = true;
+ vertices[0].isConvex = false; //by convention
+
+ for(gap=3; gap<n; gap++) {
+ for(i=0;i<n-gap;i++) {
+ if(vertices[i].isConvex) continue;
+ k = i+gap;
+ if(dpstates[i][k].visible) {
+ if(!vertices[k].isConvex) {
+ for(j=i+1;j<k;j++) TypeA(i,j,k,vertices,dpstates);
+ } else {
+ for(j=i+1;j<(k-1);j++) {
+ if(vertices[j].isConvex) continue;
+ TypeA(i,j,k,vertices,dpstates);
+ }
+ TypeA(i,k-1,k,vertices,dpstates);
+ }
+ }
+ }
+ for(k=gap;k<n;k++) {
+ if(vertices[k].isConvex) continue;
+ i = k-gap;
+ if((vertices[i].isConvex)&&(dpstates[i][k].visible)) {
+ TypeB(i,i+1,k,vertices,dpstates);
+ for(j=i+2;j<k;j++) {
+ if(vertices[j].isConvex) continue;
+ TypeB(i,j,k,vertices,dpstates);
+ }
+ }
+ }
+ }
+
+
+ //recover solution
+ ret = 1;
+ newdiagonal.index1 = 0;
+ newdiagonal.index2 = n-1;
+ diagonals.push_front(newdiagonal);
+ while(!diagonals.empty()) {
+ diagonal = *(diagonals.begin());
+ diagonals.pop_front();
+ if((diagonal.index2 - diagonal.index1) <=1) continue;
+ pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
+ if(pairs->empty()) {
+ ret = 0;
+ break;
+ }
+ if(!vertices[diagonal.index1].isConvex) {
+ iter = pairs->end();
+ iter--;
+ j = iter->index2;
+ newdiagonal.index1 = j;
+ newdiagonal.index2 = diagonal.index2;
+ diagonals.push_front(newdiagonal);
+ if((j - diagonal.index1)>1) {
+ if(iter->index1 != iter->index2) {
+ pairs2 = &(dpstates[diagonal.index1][j].pairs);
+ while(1) {
+ if(pairs2->empty()) {
+ ret = 0;
+ break;
+ }
+ iter2 = pairs2->end();
+ iter2--;
+ if(iter->index1 != iter2->index1) pairs2->pop_back();
+ else break;
+ }
+ if(ret == 0) break;
+ }
+ newdiagonal.index1 = diagonal.index1;
+ newdiagonal.index2 = j;
+ diagonals.push_front(newdiagonal);
+ }
+ } else {
+ iter = pairs->begin();
+ j = iter->index1;
+ newdiagonal.index1 = diagonal.index1;
+ newdiagonal.index2 = j;
+ diagonals.push_front(newdiagonal);
+ if((diagonal.index2 - j) > 1) {
+ if(iter->index1 != iter->index2) {
+ pairs2 = &(dpstates[j][diagonal.index2].pairs);
+ while(1) {
+ if(pairs2->empty()) {
+ ret = 0;
+ break;
+ }
+ iter2 = pairs2->begin();
+ if(iter->index2 != iter2->index2) pairs2->pop_front();
+ else break;
+ }
+ if(ret == 0) break;
+ }
+ newdiagonal.index1 = j;
+ newdiagonal.index2 = diagonal.index2;
+ diagonals.push_front(newdiagonal);
+ }
+ }
+ }
+
+ if(ret == 0) {
+ for(i=0;i<n;i++) {
+ delete [] dpstates[i];
+ }
+ delete [] dpstates;
+ delete [] vertices;
+
+ return ret;
+ }
+
+ newdiagonal.index1 = 0;
+ newdiagonal.index2 = n-1;
+ diagonals.push_front(newdiagonal);
+ while(!diagonals.empty()) {
+ diagonal = *(diagonals.begin());
+ diagonals.pop_front();
+ if((diagonal.index2 - diagonal.index1) <= 1) continue;
+
+ indices.clear();
+ diagonals2.clear();
+ indices.push_back(diagonal.index1);
+ indices.push_back(diagonal.index2);
+ diagonals2.push_front(diagonal);
+
+ while(!diagonals2.empty()) {
+ diagonal = *(diagonals2.begin());
+ diagonals2.pop_front();
+ if((diagonal.index2 - diagonal.index1) <= 1) continue;
+ ijreal = true;
+ jkreal = true;
+ pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
+ if(!vertices[diagonal.index1].isConvex) {
+ iter = pairs->end();
+ iter--;
+ j = iter->index2;
+ if(iter->index1 != iter->index2) ijreal = false;
+ } else {
+ iter = pairs->begin();
+ j = iter->index1;
+ if(iter->index1 != iter->index2) jkreal = false;
+ }
+
+ newdiagonal.index1 = diagonal.index1;
+ newdiagonal.index2 = j;
+ if(ijreal) {
+ diagonals.push_back(newdiagonal);
+ } else {
+ diagonals2.push_back(newdiagonal);
+ }
+
+ newdiagonal.index1 = j;
+ newdiagonal.index2 = diagonal.index2;
+ if(jkreal) {
+ diagonals.push_back(newdiagonal);
+ } else {
+ diagonals2.push_back(newdiagonal);
+ }
+
+ indices.push_back(j);
+ }
+
+ indices.sort();
+ newpoly.Init((long)indices.size());
+ k=0;
+ for(iiter = indices.begin();iiter!=indices.end();iiter++) {
+ newpoly[k] = vertices[*iiter].p;
+ k++;
+ }
+ parts->push_back(newpoly);
+ }
+
+ for(i=0;i<n;i++) {
+ delete [] dpstates[i];
+ }
+ delete [] dpstates;
+ delete [] vertices;
+
+ return ret;
+}
+
+//triangulates a set of polygons by first partitioning them into monotone polygons
+//O(n*log(n)) time complexity, O(n) space complexity
+//the algorithm used here is outlined in the book
+//"Computational Geometry: Algorithms and Applications"
+//by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars
+int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *monotonePolys) {
+ list<TriangulatorPoly>::iterator iter;
+ MonotoneVertex *vertices;
+ long i,numvertices,vindex,vindex2,newnumvertices,maxnumvertices;
+ long polystartindex, polyendindex;
+ TriangulatorPoly *poly;
+ MonotoneVertex *v,*v2,*vprev,*vnext;
+ ScanLineEdge newedge;
+ bool error = false;
+
+ numvertices = 0;
+ for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
+ numvertices += iter->GetNumPoints();
+ }
+
+ maxnumvertices = numvertices*3;
+ vertices = new MonotoneVertex[maxnumvertices];
+ newnumvertices = numvertices;
+
+ polystartindex = 0;
+ for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
+ poly = &(*iter);
+ polyendindex = polystartindex + poly->GetNumPoints()-1;
+ for(i=0;i<poly->GetNumPoints();i++) {
+ vertices[i+polystartindex].p = poly->GetPoint(i);
+ if(i==0) vertices[i+polystartindex].previous = polyendindex;
+ else vertices[i+polystartindex].previous = i+polystartindex-1;
+ if(i==(poly->GetNumPoints()-1)) vertices[i+polystartindex].next = polystartindex;
+ else vertices[i+polystartindex].next = i+polystartindex+1;
+ }
+ polystartindex = polyendindex+1;
+ }
+
+ //construct the priority queue
+ long *priority = new long [numvertices];
+ for(i=0;i<numvertices;i++) priority[i] = i;
+ std::sort(priority,&(priority[numvertices]),VertexSorter(vertices));
+
+ //determine vertex types
+ char *vertextypes = new char[maxnumvertices];
+ for(i=0;i<numvertices;i++) {
+ v = &(vertices[i]);
+ vprev = &(vertices[v->previous]);
+ vnext = &(vertices[v->next]);
+
+ if(Below(vprev->p,v->p)&&Below(vnext->p,v->p)) {
+ if(IsConvex(vnext->p,vprev->p,v->p)) {
+ vertextypes[i] = TRIANGULATOR_VERTEXTYPE_START;
+ } else {
+ vertextypes[i] = TRIANGULATOR_VERTEXTYPE_SPLIT;
+ }
+ } else if(Below(v->p,vprev->p)&&Below(v->p,vnext->p)) {
+ if(IsConvex(vnext->p,vprev->p,v->p))
+ {
+ vertextypes[i] = TRIANGULATOR_VERTEXTYPE_END;
+ } else {
+ vertextypes[i] = TRIANGULATOR_VERTEXTYPE_MERGE;
+ }
+ } else {
+ vertextypes[i] = TRIANGULATOR_VERTEXTYPE_REGULAR;
+ }
+ }
+
+ //helpers
+ long *helpers = new long[maxnumvertices];
+
+ //binary search tree that holds edges intersecting the scanline
+ //note that while set doesn't actually have to be implemented as a tree
+ //complexity requirements for operations are the same as for the balanced binary search tree
+ set<ScanLineEdge> edgeTree;
+ //store iterators to the edge tree elements
+ //this makes deleting existing edges much faster
+ set<ScanLineEdge>::iterator *edgeTreeIterators,edgeIter;
+ edgeTreeIterators = new set<ScanLineEdge>::iterator[maxnumvertices];
+ pair<set<ScanLineEdge>::iterator,bool> edgeTreeRet;
+ for(i = 0; i<numvertices; i++) edgeTreeIterators[i] = edgeTree.end();
+
+ //for each vertex
+ for(i=0;i<numvertices;i++) {
+ vindex = priority[i];
+ v = &(vertices[vindex]);
+ vindex2 = vindex;
+ v2 = v;
+
+ //depending on the vertex type, do the appropriate action
+ //comments in the following sections are copied from "Computational Geometry: Algorithms and Applications"
+ switch(vertextypes[vindex]) {
+ case TRIANGULATOR_VERTEXTYPE_START:
+ //Insert ei in T and set helper(ei) to vi.
+ newedge.p1 = v->p;
+ newedge.p2 = vertices[v->next].p;
+ newedge.index = vindex;
+ edgeTreeRet = edgeTree.insert(newedge);
+ edgeTreeIterators[vindex] = edgeTreeRet.first;
+ helpers[vindex] = vindex;
+ break;
+
+ case TRIANGULATOR_VERTEXTYPE_END:
+ //if helper(ei-1) is a merge vertex
+ if(vertextypes[helpers[v->previous]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
+ //Insert the diagonal connecting vi to helper(ei-1) in D.
+ AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ }
+ //Delete ei-1 from T
+ edgeTree.erase(edgeTreeIterators[v->previous]);
+ break;
+
+ case TRIANGULATOR_VERTEXTYPE_SPLIT:
+ //Search in T to find the edge e j directly left of vi.
+ newedge.p1 = v->p;
+ newedge.p2 = v->p;
+ edgeIter = edgeTree.lower_bound(newedge);
+ if(edgeIter == edgeTree.begin()) {
+ error = true;
+ break;
+ }
+ edgeIter--;
+ //Insert the diagonal connecting vi to helper(ej) in D.
+ AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ vindex2 = newnumvertices-2;
+ v2 = &(vertices[vindex2]);
+ //helper(e j)�vi
+ helpers[edgeIter->index] = vindex;
+ //Insert ei in T and set helper(ei) to vi.
+ newedge.p1 = v2->p;
+ newedge.p2 = vertices[v2->next].p;
+ newedge.index = vindex2;
+ edgeTreeRet = edgeTree.insert(newedge);
+ edgeTreeIterators[vindex2] = edgeTreeRet.first;
+ helpers[vindex2] = vindex2;
+ break;
+
+ case TRIANGULATOR_VERTEXTYPE_MERGE:
+ //if helper(ei-1) is a merge vertex
+ if(vertextypes[helpers[v->previous]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
+ //Insert the diagonal connecting vi to helper(ei-1) in D.
+ AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ vindex2 = newnumvertices-2;
+ v2 = &(vertices[vindex2]);
+ }
+ //Delete ei-1 from T.
+ edgeTree.erase(edgeTreeIterators[v->previous]);
+ //Search in T to find the edge e j directly left of vi.
+ newedge.p1 = v->p;
+ newedge.p2 = v->p;
+ edgeIter = edgeTree.lower_bound(newedge);
+ if(edgeIter == edgeTree.begin()) {
+ error = true;
+ break;
+ }
+ edgeIter--;
+ //if helper(ej) is a merge vertex
+ if(vertextypes[helpers[edgeIter->index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
+ //Insert the diagonal connecting vi to helper(e j) in D.
+ AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->index],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ }
+ //helper(e j)�vi
+ helpers[edgeIter->index] = vindex2;
+ break;
+
+ case TRIANGULATOR_VERTEXTYPE_REGULAR:
+ //if the interior of P lies to the right of vi
+ if(Below(v->p,vertices[v->previous].p)) {
+ //if helper(ei-1) is a merge vertex
+ if(vertextypes[helpers[v->previous]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
+ //Insert the diagonal connecting vi to helper(ei-1) in D.
+ AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ vindex2 = newnumvertices-2;
+ v2 = &(vertices[vindex2]);
+ }
+ //Delete ei-1 from T.
+ edgeTree.erase(edgeTreeIterators[v->previous]);
+ //Insert ei in T and set helper(ei) to vi.
+ newedge.p1 = v2->p;
+ newedge.p2 = vertices[v2->next].p;
+ newedge.index = vindex2;
+ edgeTreeRet = edgeTree.insert(newedge);
+ edgeTreeIterators[vindex2] = edgeTreeRet.first;
+ helpers[vindex2] = vindex;
+ } else {
+ //Search in T to find the edge ej directly left of vi.
+ newedge.p1 = v->p;
+ newedge.p2 = v->p;
+ edgeIter = edgeTree.lower_bound(newedge);
+ if(edgeIter == edgeTree.begin()) {
+ error = true;
+ break;
+ }
+ edgeIter--;
+ //if helper(ej) is a merge vertex
+ if(vertextypes[helpers[edgeIter->index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
+ //Insert the diagonal connecting vi to helper(e j) in D.
+ AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index],
+ vertextypes, edgeTreeIterators, &edgeTree, helpers);
+ }
+ //helper(e j)�vi
+ helpers[edgeIter->index] = vindex;
+ }
+ break;
+ }
+
+ if(error) break;
+ }
+
+ char *used = new char[newnumvertices];
+ memset(used,0,newnumvertices*sizeof(char));
+
+ if(!error) {
+ //return result
+ long size;
+ TriangulatorPoly mpoly;
+ for(i=0;i<newnumvertices;i++) {
+ if(used[i]) continue;
+ v = &(vertices[i]);
+ vnext = &(vertices[v->next]);
+ size = 1;
+ while(vnext!=v) {
+ vnext = &(vertices[vnext->next]);
+ size++;
+ }
+ mpoly.Init(size);
+ v = &(vertices[i]);
+ mpoly[0] = v->p;
+ vnext = &(vertices[v->next]);
+ size = 1;
+ used[i] = 1;
+ used[v->next] = 1;
+ while(vnext!=v) {
+ mpoly[size] = vnext->p;
+ used[vnext->next] = 1;
+ vnext = &(vertices[vnext->next]);
+ size++;
+ }
+ monotonePolys->push_back(mpoly);
+ }
+ }
+
+ //cleanup
+ delete [] vertices;
+ delete [] priority;
+ delete [] vertextypes;
+ delete [] edgeTreeIterators;
+ delete [] helpers;
+ delete [] used;
+
+ if(error) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+//adds a diagonal to the doubly-connected list of vertices
+void TriangulatorPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
+ char *vertextypes, set<ScanLineEdge>::iterator *edgeTreeIterators,
+ set<ScanLineEdge> *edgeTree, long *helpers)
+{
+ long newindex1,newindex2;
+
+ newindex1 = *numvertices;
+ (*numvertices)++;
+ newindex2 = *numvertices;
+ (*numvertices)++;
+
+ vertices[newindex1].p = vertices[index1].p;
+ vertices[newindex2].p = vertices[index2].p;
+
+ vertices[newindex2].next = vertices[index2].next;
+ vertices[newindex1].next = vertices[index1].next;
+
+ vertices[vertices[index2].next].previous = newindex2;
+ vertices[vertices[index1].next].previous = newindex1;
+
+ vertices[index1].next = newindex2;
+ vertices[newindex2].previous = index1;
+
+ vertices[index2].next = newindex1;
+ vertices[newindex1].previous = index2;
+
+ //update all relevant structures
+ vertextypes[newindex1] = vertextypes[index1];
+ edgeTreeIterators[newindex1] = edgeTreeIterators[index1];
+ helpers[newindex1] = helpers[index1];
+ if(edgeTreeIterators[newindex1] != edgeTree->end())
+ edgeTreeIterators[newindex1]->index = newindex1;
+ vertextypes[newindex2] = vertextypes[index2];
+ edgeTreeIterators[newindex2] = edgeTreeIterators[index2];
+ helpers[newindex2] = helpers[index2];
+ if(edgeTreeIterators[newindex2] != edgeTree->end())
+ edgeTreeIterators[newindex2]->index = newindex2;
+}
+
+bool TriangulatorPartition::Below(Vector2 &p1, Vector2 &p2) {
+ if(p1.y < p2.y) return true;
+ else if(p1.y == p2.y) {
+ if(p1.x < p2.x) return true;
+ }
+ return false;
+}
+
+//sorts in the falling order of y values, if y is equal, x is used instead
+bool TriangulatorPartition::VertexSorter::operator() (long index1, long index2) {
+ if(vertices[index1].p.y > vertices[index2].p.y) return true;
+ else if(vertices[index1].p.y == vertices[index2].p.y) {
+ if(vertices[index1].p.x > vertices[index2].p.x) return true;
+ }
+ return false;
+}
+
+bool TriangulatorPartition::ScanLineEdge::IsConvex(const Vector2& p1, const Vector2& p2, const Vector2& p3) const {
+ real_t tmp;
+ tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y);
+ if(tmp>0) return 1;
+ else return 0;
+}
+
+bool TriangulatorPartition::ScanLineEdge::operator < (const ScanLineEdge & other) const {
+ if(other.p1.y == other.p2.y) {
+ if(p1.y == p2.y) {
+ if(p1.y < other.p1.y) return true;
+ else return false;
+ }
+ if(IsConvex(p1,p2,other.p1)) return true;
+ else return false;
+ } else if(p1.y == p2.y) {
+ if(IsConvex(other.p1,other.p2,p1)) return false;
+ else return true;
+ } else if(p1.y < other.p1.y) {
+ if(IsConvex(other.p1,other.p2,p1)) return false;
+ else return true;
+ } else {
+ if(IsConvex(p1,p2,other.p1)) return true;
+ else return false;
+ }
+}
+
+//triangulates monotone polygon
+//O(n) time, O(n) space complexity
+int TriangulatorPartition::TriangulateMonotone(TriangulatorPoly *inPoly, list<TriangulatorPoly> *triangles) {
+ long i,i2,j,topindex,bottomindex,leftindex,rightindex,vindex;
+ Vector2 *points;
+ long numpoints;
+ TriangulatorPoly triangle;
+
+ numpoints = inPoly->GetNumPoints();
+ points = inPoly->GetPoints();
+
+ //trivial calses
+ if(numpoints < 3) return 0;
+ if(numpoints == 3) {
+ triangles->push_back(*inPoly);
+ }
+
+ topindex = 0; bottomindex=0;
+ for(i=1;i<numpoints;i++) {
+ if(Below(points[i],points[bottomindex])) bottomindex = i;
+ if(Below(points[topindex],points[i])) topindex = i;
+ }
+
+ //check if the poly is really monotone
+ i = topindex;
+ while(i!=bottomindex) {
+ i2 = i+1; if(i2>=numpoints) i2 = 0;
+ if(!Below(points[i2],points[i])) return 0;
+ i = i2;
+ }
+ i = bottomindex;
+ while(i!=topindex) {
+ i2 = i+1; if(i2>=numpoints) i2 = 0;
+ if(!Below(points[i],points[i2])) return 0;
+ i = i2;
+ }
+
+ char *vertextypes = new char[numpoints];
+ long *priority = new long[numpoints];
+
+ //merge left and right vertex chains
+ priority[0] = topindex;
+ vertextypes[topindex] = 0;
+ leftindex = topindex+1; if(leftindex>=numpoints) leftindex = 0;
+ rightindex = topindex-1; if(rightindex<0) rightindex = numpoints-1;
+ for(i=1;i<(numpoints-1);i++) {
+ if(leftindex==bottomindex) {
+ priority[i] = rightindex;
+ rightindex--; if(rightindex<0) rightindex = numpoints-1;
+ vertextypes[priority[i]] = -1;
+ } else if(rightindex==bottomindex) {
+ priority[i] = leftindex;
+ leftindex++; if(leftindex>=numpoints) leftindex = 0;
+ vertextypes[priority[i]] = 1;
+ } else {
+ if(Below(points[leftindex],points[rightindex])) {
+ priority[i] = rightindex;
+ rightindex--; if(rightindex<0) rightindex = numpoints-1;
+ vertextypes[priority[i]] = -1;
+ } else {
+ priority[i] = leftindex;
+ leftindex++; if(leftindex>=numpoints) leftindex = 0;
+ vertextypes[priority[i]] = 1;
+ }
+ }
+ }
+ priority[i] = bottomindex;
+ vertextypes[bottomindex] = 0;
+
+ long *stack = new long[numpoints];
+ long stackptr = 0;
+
+ stack[0] = priority[0];
+ stack[1] = priority[1];
+ stackptr = 2;
+
+ //for each vertex from top to bottom trim as many triangles as possible
+ for(i=2;i<(numpoints-1);i++) {
+ vindex = priority[i];
+ if(vertextypes[vindex]!=vertextypes[stack[stackptr-1]]) {
+ for(j=0;j<(stackptr-1);j++) {
+ if(vertextypes[vindex]==1) {
+ triangle.Triangle(points[stack[j+1]],points[stack[j]],points[vindex]);
+ } else {
+ triangle.Triangle(points[stack[j]],points[stack[j+1]],points[vindex]);
+ }
+ triangles->push_back(triangle);
+ }
+ stack[0] = priority[i-1];
+ stack[1] = priority[i];
+ stackptr = 2;
+ } else {
+ stackptr--;
+ while(stackptr>0) {
+ if(vertextypes[vindex]==1) {
+ if(IsConvex(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]])) {
+ triangle.Triangle(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]]);
+ triangles->push_back(triangle);
+ stackptr--;
+ } else {
+ break;
+ }
+ } else {
+ if(IsConvex(points[vindex],points[stack[stackptr]],points[stack[stackptr-1]])) {
+ triangle.Triangle(points[vindex],points[stack[stackptr]],points[stack[stackptr-1]]);
+ triangles->push_back(triangle);
+ stackptr--;
+ } else {
+ break;
+ }
+ }
+ }
+ stackptr++;
+ stack[stackptr] = vindex;
+ stackptr++;
+ }
+ }
+ vindex = priority[i];
+ for(j=0;j<(stackptr-1);j++) {
+ if(vertextypes[stack[j+1]]==1) {
+ triangle.Triangle(points[stack[j]],points[stack[j+1]],points[vindex]);
+ } else {
+ triangle.Triangle(points[stack[j+1]],points[stack[j]],points[vindex]);
+ }
+ triangles->push_back(triangle);
+ }
+
+ delete [] priority;
+ delete [] vertextypes;
+ delete [] stack;
+
+ return 1;
+}
+
+int TriangulatorPartition::Triangulate_MONO(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *triangles) {
+ list<TriangulatorPoly> monotone;
+ list<TriangulatorPoly>::iterator iter;
+
+ if(!MonotonePartition(inpolys,&monotone)) return 0;
+ for(iter = monotone.begin(); iter!=monotone.end();iter++) {
+ if(!TriangulateMonotone(&(*iter),triangles)) return 0;
+ }
+ return 1;
+}
+
+int TriangulatorPartition::Triangulate_MONO(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) {
+ list<TriangulatorPoly> polys;
+ polys.push_back(*poly);
+
+ return Triangulate_MONO(&polys, triangles);
+}
diff --git a/core/math/triangulator.h b/core/math/triangulator.h
new file mode 100644
index 0000000000..c34c445892
--- /dev/null
+++ b/core/math/triangulator.h
@@ -0,0 +1,309 @@
+//Copyright (C) 2011 by Ivan Fratric
+//
+//Permission is hereby granted, free of charge, to any person obtaining a copy
+//of this software and associated documentation files (the "Software"), to deal
+//in the Software without restriction, including without limitation the rights
+//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+//copies of the Software, and to permit persons to whom the Software is
+//furnished to do so, subject to the following conditions:
+//
+//The above copyright notice and this permission notice shall be included in
+//all copies or substantial portions of the Software.
+//
+//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+//THE SOFTWARE.
+
+#ifndef TRIANGULATOR_H
+#define TRIANGULATOR_H
+
+#include "math_2d.h"
+#include <list>
+#include <set>
+
+//2D point structure
+
+
+#define TRIANGULATOR_CCW 1
+#define TRIANGULATOR_CW -1
+//Polygon implemented as an array of points with a 'hole' flag
+class TriangulatorPoly {
+protected:
+
+
+
+ Vector2 *points;
+ long numpoints;
+ bool hole;
+
+public:
+
+ //constructors/destructors
+ TriangulatorPoly();
+ ~TriangulatorPoly();
+
+ TriangulatorPoly(const TriangulatorPoly &src);
+ TriangulatorPoly& operator=(const TriangulatorPoly &src);
+
+ //getters and setters
+ long GetNumPoints() {
+ return numpoints;
+ }
+
+ bool IsHole() {
+ return hole;
+ }
+
+ void SetHole(bool hole) {
+ this->hole = hole;
+ }
+
+ Vector2 &GetPoint(long i) {
+ return points[i];
+ }
+
+ Vector2 *GetPoints() {
+ return points;
+ }
+
+ Vector2& operator[] (int i) {
+ return points[i];
+ }
+
+ //clears the polygon points
+ void Clear();
+
+ //inits the polygon with numpoints vertices
+ void Init(long numpoints);
+
+ //creates a triangle with points p1,p2,p3
+ void Triangle(Vector2 &p1, Vector2 &p2, Vector2 &p3);
+
+ //inverts the orfer of vertices
+ void Invert();
+
+ //returns the orientation of the polygon
+ //possible values:
+ // Triangulator_CCW : polygon vertices are in counter-clockwise order
+ // Triangulator_CW : polygon vertices are in clockwise order
+ // 0 : the polygon has no (measurable) area
+ int GetOrientation();
+
+ //sets the polygon orientation
+ //orientation can be
+ // Triangulator_CCW : sets vertices in counter-clockwise order
+ // Triangulator_CW : sets vertices in clockwise order
+ void SetOrientation(int orientation);
+};
+
+class TriangulatorPartition {
+protected:
+ struct PartitionVertex {
+ bool isActive;
+ bool isConvex;
+ bool isEar;
+
+ Vector2 p;
+ real_t angle;
+ PartitionVertex *previous;
+ PartitionVertex *next;
+ };
+
+ struct MonotoneVertex {
+ Vector2 p;
+ long previous;
+ long next;
+ };
+
+ class VertexSorter{
+ MonotoneVertex *vertices;
+ public:
+ VertexSorter(MonotoneVertex *v) : vertices(v) {}
+ bool operator() (long index1, long index2);
+ };
+
+ struct Diagonal {
+ long index1;
+ long index2;
+ };
+
+ //dynamic programming state for minimum-weight triangulation
+ struct DPState {
+ bool visible;
+ real_t weight;
+ long bestvertex;
+ };
+
+ //dynamic programming state for convex partitioning
+ struct DPState2 {
+ bool visible;
+ long weight;
+ std::list<Diagonal> pairs;
+ };
+
+ //edge that intersects the scanline
+ struct ScanLineEdge {
+ mutable long index;
+ Vector2 p1;
+ Vector2 p2;
+
+ //determines if the edge is to the left of another edge
+ bool operator< (const ScanLineEdge & other) const;
+
+ bool IsConvex(const Vector2& p1, const Vector2& p2, const Vector2& p3) const;
+ };
+
+ //standard helper functions
+ bool IsConvex(Vector2& p1, Vector2& p2, Vector2& p3);
+ bool IsReflex(Vector2& p1, Vector2& p2, Vector2& p3);
+ bool IsInside(Vector2& p1, Vector2& p2, Vector2& p3, Vector2 &p);
+
+ bool InCone(Vector2 &p1, Vector2 &p2, Vector2 &p3, Vector2 &p);
+ bool InCone(PartitionVertex *v, Vector2 &p);
+
+ int Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21, Vector2 &p22);
+
+ Vector2 Normalize(const Vector2 &p);
+ real_t Distance(const Vector2 &p1, const Vector2 &p2);
+
+ //helper functions for Triangulate_EC
+ void UpdateVertexReflexity(PartitionVertex *v);
+ void UpdateVertex(PartitionVertex *v,PartitionVertex *vertices, long numvertices);
+
+ //helper functions for ConvexPartition_OPT
+ void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates);
+ void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
+ void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
+
+ //helper functions for MonotonePartition
+ bool Below(Vector2 &p1, Vector2 &p2);
+ void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
+ char *vertextypes, std::set<ScanLineEdge>::iterator *edgeTreeIterators,
+ std::set<ScanLineEdge> *edgeTree, long *helpers);
+
+ //triangulates a monotone polygon, used in Triangulate_MONO
+ int TriangulateMonotone(TriangulatorPoly *inPoly, std::list<TriangulatorPoly> *triangles);
+
+public:
+
+ //simple heuristic procedure for removing holes from a list of polygons
+ //works by creating a diagonal from the rightmost hole vertex to some visible vertex
+ //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : a list of polygons that can contain holes
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // outpolys : a list of polygons without holes
+ //returns 1 on success, 0 on failure
+ int RemoveHoles(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *outpolys);
+
+ //triangulates a polygon by ear clipping
+ //time complexity O(n^2), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // poly : an input polygon to be triangulated
+ // vertices have to be in counter-clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_EC(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles);
+
+ //triangulates a list of polygons that may contain holes by ear clipping algorithm
+ //first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon
+ //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : a list of polygons to be triangulated (can contain holes)
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_EC(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *triangles);
+
+ //creates an optimal polygon triangulation in terms of minimal edge length
+ //time complexity: O(n^3), n is the number of vertices
+ //space complexity: O(n^2)
+ //params:
+ // poly : an input polygon to be triangulated
+ // vertices have to be in counter-clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_OPT(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles);
+
+ //triangulates a polygons by firstly partitioning it into monotone polygons
+ //time complexity: O(n*log(n)), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // poly : an input polygon to be triangulated
+ // vertices have to be in counter-clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_MONO(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles);
+
+ //triangulates a list of polygons by firstly partitioning them into monotone polygons
+ //time complexity: O(n*log(n)), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : a list of polygons to be triangulated (can contain holes)
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // triangles : a list of triangles (result)
+ //returns 1 on success, 0 on failure
+ int Triangulate_MONO(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *triangles);
+
+ //creates a monotone partition of a list of polygons that can contain holes
+ //time complexity: O(n*log(n)), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : a list of polygons to be triangulated (can contain holes)
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // monotonePolys : a list of monotone polygons (result)
+ //returns 1 on success, 0 on failure
+ int MonotonePartition(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *monotonePolys);
+
+ //partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm
+ //the algorithm gives at most four times the number of parts as the optimal algorithm
+ //however, in practice it works much better than that and often gives optimal partition
+ //uses triangulation obtained by ear clipping as intermediate result
+ //time complexity O(n^2), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // poly : an input polygon to be partitioned
+ // vertices have to be in counter-clockwise order
+ // parts : resulting list of convex polygons
+ //returns 1 on success, 0 on failure
+ int ConvexPartition_HM(TriangulatorPoly *poly, std::list<TriangulatorPoly> *parts);
+
+ //partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm
+ //the algorithm gives at most four times the number of parts as the optimal algorithm
+ //however, in practice it works much better than that and often gives optimal partition
+ //uses triangulation obtained by ear clipping as intermediate result
+ //time complexity O(n^2), n is the number of vertices
+ //space complexity: O(n)
+ //params:
+ // inpolys : an input list of polygons to be partitioned
+ // vertices of all non-hole polys have to be in counter-clockwise order
+ // vertices of all hole polys have to be in clockwise order
+ // parts : resulting list of convex polygons
+ //returns 1 on success, 0 on failure
+ int ConvexPartition_HM(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *parts);
+
+ //optimal convex partitioning (in terms of number of resulting convex polygons)
+ //using the Keil-Snoeyink algorithm
+ //M. Keil, J. Snoeyink, "On the time bound for convex decomposition of simple polygons", 1998
+ //time complexity O(n^3), n is the number of vertices
+ //space complexity: O(n^3)
+ // poly : an input polygon to be partitioned
+ // vertices have to be in counter-clockwise order
+ // parts : resulting list of convex polygons
+ //returns 1 on success, 0 on failure
+ int ConvexPartition_OPT(TriangulatorPoly *poly, std::list<TriangulatorPoly> *parts);
+};
+
+
+#endif