diff options
Diffstat (limited to 'core/templates')
-rw-r--r-- | core/templates/hash_map.h | 775 | ||||
-rw-r--r-- | core/templates/hashfuncs.h | 85 | ||||
-rw-r--r-- | core/templates/ordered_hash_map.h | 301 | ||||
-rw-r--r-- | core/templates/paged_allocator.h | 8 |
4 files changed, 494 insertions, 675 deletions
diff --git a/core/templates/hash_map.h b/core/templates/hash_map.h index fa5677cc70..55292d3eb5 100644 --- a/core/templates/hash_map.h +++ b/core/templates/hash_map.h @@ -31,524 +31,553 @@ #ifndef HASH_MAP_H #define HASH_MAP_H -#include "core/error/error_macros.h" #include "core/math/math_funcs.h" #include "core/os/memory.h" -#include "core/string/ustring.h" #include "core/templates/hashfuncs.h" -#include "core/templates/list.h" +#include "core/templates/paged_allocator.h" +#include "core/templates/pair.h" /** - * @class HashMap + * A HashMap implementation that uses open addressing with Robin Hood hashing. + * Robin Hood hashing swaps out entries that have a smaller probing distance + * than the to-be-inserted entry, that evens out the average probing distance + * and enables faster lookups. Backward shift deletion is employed to further + * improve the performance and to avoid infinite loops in rare cases. * - * Implementation of a standard Hashing HashMap, for quick lookups of Data associated with a Key. - * The implementation provides hashers for the default types, if you need a special kind of hasher, provide - * your own. - * @param TKey Key, search is based on it, needs to be hasheable. It is unique in this container. - * @param TData Data, data associated with the key - * @param Hasher Hasher object, needs to provide a valid static hash function for TKey - * @param Comparator comparator object, needs to be able to safely compare two TKey values. - * It needs to ensure that x == x for any items inserted in the map. Bear in mind that nan != nan when implementing an equality check. - * @param MIN_HASH_TABLE_POWER Miminum size of the hash table, as a power of two. You rarely need to change this parameter. - * @param RELATIONSHIP Relationship at which the hash table is resized. if amount of elements is RELATIONSHIP - * times bigger than the hash table, table is resized to solve this condition. if RELATIONSHIP is zero, table is always MIN_HASH_TABLE_POWER. + * Keys and values are stored in a double linked list by insertion order. This + * has a slight performance overhead on lookup, which can be mostly compensated + * using a paged allocator if required. * + * The assignment operator copy the pairs from one map to the other. */ -template <class TKey, class TData, class Hasher = HashMapHasherDefault, class Comparator = HashMapComparatorDefault<TKey>, uint8_t MIN_HASH_TABLE_POWER = 3, uint8_t RELATIONSHIP = 8> +template <class TKey, class TValue> +struct HashMapElement { + HashMapElement *next = nullptr; + HashMapElement *prev = nullptr; + KeyValue<TKey, TValue> data; + HashMapElement() {} + HashMapElement(const TKey &p_key, const TValue &p_value) : + data(p_key, p_value) {} +}; + +template <class TKey, class TValue, + class Hasher = HashMapHasherDefault, + class Comparator = HashMapComparatorDefault<TKey>, + class Allocator = DefaultTypedAllocator<HashMapElement<TKey, TValue>>> class HashMap { public: - struct Pair { - TKey key; - TData data; + const uint32_t MIN_CAPACITY_INDEX = 2; // Use a prime. + const float MAX_OCCUPANCY = 0.75; + const uint32_t EMPTY_HASH = 0; - Pair(const TKey &p_key) : - key(p_key), - data() {} - Pair(const TKey &p_key, const TData &p_data) : - key(p_key), - data(p_data) { - } - }; +private: + Allocator element_alloc; + HashMapElement<TKey, TValue> **elements = nullptr; + uint32_t *hashes = nullptr; + HashMapElement<TKey, TValue> *head_element = nullptr; + HashMapElement<TKey, TValue> *tail_element = nullptr; - struct Element { - private: - friend class HashMap; + uint32_t capacity_index = 0; + uint32_t num_elements = 0; - uint32_t hash = 0; - Element *next = nullptr; - Element() {} - Pair pair; + _FORCE_INLINE_ uint32_t _hash(const TKey &p_key) const { + uint32_t hash = Hasher::hash(p_key); - public: - const TKey &key() const { - return pair.key; + if (unlikely(hash == EMPTY_HASH)) { + hash = EMPTY_HASH + 1; } - TData &value() { - return pair.data; - } + return hash; + } - const TData &value() const { - return pair.value(); + _FORCE_INLINE_ uint32_t _get_probe_length(uint32_t p_pos, uint32_t p_hash, uint32_t p_capacity) const { + uint32_t original_pos = p_hash % p_capacity; + return (p_pos - original_pos + p_capacity) % p_capacity; + } + + bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) const { + if (elements == nullptr) { + return false; // Failed lookups, no elements } - Element(const TKey &p_key) : - pair(p_key) {} - Element(const Element &p_other) : - hash(p_other.hash), - pair(p_other.pair.key, p_other.pair.data) {} - }; + uint32_t capacity = hash_table_size_primes[capacity_index]; + uint32_t hash = _hash(p_key); + uint32_t pos = hash % capacity; + uint32_t distance = 0; -private: - Element **hash_table = nullptr; - uint8_t hash_table_power = 0; - uint32_t elements = 0; + while (true) { + if (hashes[pos] == EMPTY_HASH) { + return false; + } - void make_hash_table() { - ERR_FAIL_COND(hash_table); + if (distance > _get_probe_length(pos, hashes[pos], capacity)) { + return false; + } - hash_table = memnew_arr(Element *, (1 << MIN_HASH_TABLE_POWER)); + if (hashes[pos] == hash && Comparator::compare(elements[pos]->data.key, p_key)) { + r_pos = pos; + return true; + } - hash_table_power = MIN_HASH_TABLE_POWER; - elements = 0; - for (int i = 0; i < (1 << MIN_HASH_TABLE_POWER); i++) { - hash_table[i] = nullptr; + pos = (pos + 1) % capacity; + distance++; } } - void erase_hash_table() { - ERR_FAIL_COND_MSG(elements, "Cannot erase hash table if there are still elements inside."); + void _insert_with_hash(uint32_t p_hash, HashMapElement<TKey, TValue> *p_value) { + uint32_t capacity = hash_table_size_primes[capacity_index]; + uint32_t hash = p_hash; + HashMapElement<TKey, TValue> *value = p_value; + uint32_t distance = 0; + uint32_t pos = hash % capacity; - memdelete_arr(hash_table); - hash_table = nullptr; - hash_table_power = 0; - elements = 0; - } + while (true) { + if (hashes[pos] == EMPTY_HASH) { + elements[pos] = value; + hashes[pos] = hash; - void check_hash_table() { - int new_hash_table_power = -1; + num_elements++; - if ((int)elements > ((1 << hash_table_power) * RELATIONSHIP)) { - /* rehash up */ - new_hash_table_power = hash_table_power + 1; - - while ((int)elements > ((1 << new_hash_table_power) * RELATIONSHIP)) { - new_hash_table_power++; + return; } - } else if ((hash_table_power > (int)MIN_HASH_TABLE_POWER) && ((int)elements < ((1 << (hash_table_power - 1)) * RELATIONSHIP))) { - /* rehash down */ - new_hash_table_power = hash_table_power - 1; - - while ((int)elements < ((1 << (new_hash_table_power - 1)) * RELATIONSHIP)) { - new_hash_table_power--; + // Not an empty slot, let's check the probing length of the existing one. + uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos], capacity); + if (existing_probe_len < distance) { + SWAP(hash, hashes[pos]); + SWAP(value, elements[pos]); + distance = existing_probe_len; } - if (new_hash_table_power < (int)MIN_HASH_TABLE_POWER) { - new_hash_table_power = MIN_HASH_TABLE_POWER; - } + pos = (pos + 1) % capacity; + distance++; } + } - if (new_hash_table_power == -1) { - return; - } + void _resize_and_rehash(uint32_t p_new_capacity_index) { + uint32_t old_capacity = hash_table_size_primes[capacity_index]; - Element **new_hash_table = memnew_arr(Element *, ((uint64_t)1 << new_hash_table_power)); - ERR_FAIL_COND_MSG(!new_hash_table, "Out of memory."); + // Capacity can't be 0. + capacity_index = MAX((uint32_t)MIN_CAPACITY_INDEX, p_new_capacity_index); - for (int i = 0; i < (1 << new_hash_table_power); i++) { - new_hash_table[i] = nullptr; - } + uint32_t capacity = hash_table_size_primes[capacity_index]; - if (hash_table) { - for (int i = 0; i < (1 << hash_table_power); i++) { - while (hash_table[i]) { - Element *se = hash_table[i]; - hash_table[i] = se->next; - int new_pos = se->hash & ((1 << new_hash_table_power) - 1); - se->next = new_hash_table[new_pos]; - new_hash_table[new_pos] = se; - } - } + HashMapElement<TKey, TValue> **old_elements = elements; + uint32_t *old_hashes = hashes; - memdelete_arr(hash_table); - } - hash_table = new_hash_table; - hash_table_power = new_hash_table_power; - } + num_elements = 0; + hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); + elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static(sizeof(HashMapElement<TKey, TValue> *) * capacity)); - /* I want to have only one function.. */ - _FORCE_INLINE_ const Element *get_element(const TKey &p_key) const { - uint32_t hash = Hasher::hash(p_key); - uint32_t index = hash & ((1 << hash_table_power) - 1); + for (uint32_t i = 0; i < capacity; i++) { + hashes[i] = 0; + elements[i] = nullptr; + } - Element *e = hash_table[index]; + if (old_capacity == 0) { + // Nothing to do. + return; + } - while (e) { - /* checking hash first avoids comparing key, which may take longer */ - if (e->hash == hash && Comparator::compare(e->pair.key, p_key)) { - /* the pair exists in this hashtable, so just update data */ - return e; + for (uint32_t i = 0; i < old_capacity; i++) { + if (old_hashes[i] == EMPTY_HASH) { + continue; } - e = e->next; + _insert_with_hash(old_hashes[i], old_elements[i]); } - return nullptr; - } - - Element *create_element(const TKey &p_key) { - /* if element doesn't exist, create it */ - Element *e = memnew(Element(p_key)); - ERR_FAIL_COND_V_MSG(!e, nullptr, "Out of memory."); - uint32_t hash = Hasher::hash(p_key); - uint32_t index = hash & ((1 << hash_table_power) - 1); - e->next = hash_table[index]; - e->hash = hash; - - hash_table[index] = e; - elements++; - - return e; + Memory::free_static(old_elements); + Memory::free_static(old_hashes); } - void copy_from(const HashMap &p_t) { - if (&p_t == this) { - return; /* much less bother with that */ - } + _FORCE_INLINE_ HashMapElement<TKey, TValue> *_insert(const TKey &p_key, const TValue &p_value, bool p_front_insert = false) { + uint32_t capacity = hash_table_size_primes[capacity_index]; + if (unlikely(elements == nullptr)) { + // Allocate on demand to save memory. - clear(); + hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity)); + elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static(sizeof(HashMapElement<TKey, TValue> *) * capacity)); - if (!p_t.hash_table || p_t.hash_table_power == 0) { - return; /* not copying from empty table */ + for (uint32_t i = 0; i < capacity; i++) { + hashes[i] = EMPTY_HASH; + elements[i] = nullptr; + } } - hash_table = memnew_arr(Element *, (uint64_t)1 << p_t.hash_table_power); - hash_table_power = p_t.hash_table_power; - elements = p_t.elements; - - for (int i = 0; i < (1 << p_t.hash_table_power); i++) { - hash_table[i] = nullptr; + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); - const Element *e = p_t.hash_table[i]; - - while (e) { - Element *le = memnew(Element(*e)); /* local element */ + if (exists) { + elements[pos]->data.value = p_value; + return elements[pos]; + } else { + if (num_elements + 1 > MAX_OCCUPANCY * capacity) { + ERR_FAIL_COND_V_MSG(capacity_index + 1 == HASH_TABLE_SIZE_MAX, nullptr, "Hash table maximum capacity reached, aborting insertion."); + _resize_and_rehash(capacity_index + 1); + } - /* add to list and reassign pointers */ - le->next = hash_table[i]; - hash_table[i] = le; + HashMapElement<TKey, TValue> *elem = element_alloc.new_allocation(HashMapElement<TKey, TValue>(p_key, p_value)); - e = e->next; + if (tail_element == nullptr) { + head_element = elem; + tail_element = elem; + } else if (p_front_insert) { + head_element->prev = elem; + elem->next = head_element; + head_element = elem; + } else { + tail_element->next = elem; + elem->prev = tail_element; + tail_element = elem; } + + uint32_t hash = _hash(p_key); + _insert_with_hash(hash, elem); + return elem; } } public: - Element *set(const TKey &p_key, const TData &p_data) { - return set(Pair(p_key, p_data)); - } + _FORCE_INLINE_ uint32_t get_capacity() const { return hash_table_size_primes[capacity_index]; } + _FORCE_INLINE_ uint32_t size() const { return num_elements; } - Element *set(const Pair &p_pair) { - Element *e = nullptr; - if (!hash_table) { - make_hash_table(); // if no table, make one - } else { - e = const_cast<Element *>(get_element(p_pair.key)); - } + /* Standard Godot Container API */ - /* if we made it up to here, the pair doesn't exist, create and assign */ + bool is_empty() const { + return num_elements == 0; + } - if (!e) { - e = create_element(p_pair.key); - if (!e) { - return nullptr; - } - check_hash_table(); // perform mantenience routine + void clear() { + if (elements == nullptr) { + return; } + uint32_t capacity = hash_table_size_primes[capacity_index]; + for (uint32_t i = 0; i < capacity; i++) { + if (hashes[i] == EMPTY_HASH) { + continue; + } - e->pair.data = p_pair.data; - return e; - } + hashes[i] = EMPTY_HASH; + element_alloc.delete_allocation(elements[i]); + elements[i] = nullptr; + } - bool has(const TKey &p_key) const { - return getptr(p_key) != nullptr; + tail_element = nullptr; + head_element = nullptr; + num_elements = 0; } - /** - * Get a key from data, return a const reference. - * WARNING: this doesn't check errors, use either getptr and check nullptr, or check - * first with has(key) - */ - - const TData &get(const TKey &p_key) const { - const TData *res = getptr(p_key); - CRASH_COND_MSG(!res, "Map key not found."); - return *res; + TValue &get(const TKey &p_key) { + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); + CRASH_COND_MSG(!exists, "HashMap key not found."); + return elements[pos]->data.value; } - TData &get(const TKey &p_key) { - TData *res = getptr(p_key); - CRASH_COND_MSG(!res, "Map key not found."); - return *res; + const TValue &get(const TKey &p_key) const { + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); + CRASH_COND_MSG(!exists, "HashMap key not found."); + return elements[pos]->data.value; } - /** - * Same as get, except it can return nullptr when item was not found. - * This is mainly used for speed purposes. - */ + const TValue *getptr(const TKey &p_key) const { + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); - _FORCE_INLINE_ TData *getptr(const TKey &p_key) { - if (unlikely(!hash_table)) { - return nullptr; + if (exists) { + return &elements[pos]->data.value; } + return nullptr; + } - Element *e = const_cast<Element *>(get_element(p_key)); + TValue *getptr(const TKey &p_key) { + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); - if (e) { - return &e->pair.data; + if (exists) { + return &elements[pos]->data.value; } - return nullptr; } - _FORCE_INLINE_ const TData *getptr(const TKey &p_key) const { - if (unlikely(!hash_table)) { - return nullptr; - } + _FORCE_INLINE_ bool has(const TKey &p_key) const { + uint32_t _pos = 0; + return _lookup_pos(p_key, _pos); + } - const Element *e = const_cast<Element *>(get_element(p_key)); + bool erase(const TKey &p_key) { + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); - if (e) { - return &e->pair.data; + if (!exists) { + return false; } - return nullptr; - } + uint32_t capacity = hash_table_size_primes[capacity_index]; + uint32_t next_pos = (pos + 1) % capacity; + while (hashes[next_pos] != EMPTY_HASH && _get_probe_length(next_pos, hashes[next_pos], capacity) != 0) { + SWAP(hashes[next_pos], hashes[pos]); + SWAP(elements[next_pos], elements[pos]); + pos = next_pos; + next_pos = (pos + 1) % capacity; + } - /** - * Same as get, except it can return nullptr when item was not found. - * This version is custom, will take a hash and a custom key (that should support operator==() - */ + hashes[pos] = EMPTY_HASH; - template <class C> - _FORCE_INLINE_ TData *custom_getptr(C p_custom_key, uint32_t p_custom_hash) { - if (unlikely(!hash_table)) { - return nullptr; + if (head_element == elements[pos]) { + head_element = elements[pos]->next; } - uint32_t hash = p_custom_hash; - uint32_t index = hash & ((1 << hash_table_power) - 1); - - Element *e = hash_table[index]; + if (tail_element == elements[pos]) { + tail_element = elements[pos]->prev; + } - while (e) { - /* checking hash first avoids comparing key, which may take longer */ - if (e->hash == hash && Comparator::compare(e->pair.key, p_custom_key)) { - /* the pair exists in this hashtable, so just update data */ - return &e->pair.data; - } + if (elements[pos]->prev) { + elements[pos]->prev->next = elements[pos]->next; + } - e = e->next; + if (elements[pos]->next) { + elements[pos]->next->prev = elements[pos]->prev; } - return nullptr; + element_alloc.delete_allocation(elements[pos]); + elements[pos] = nullptr; + + num_elements--; + return true; } - template <class C> - _FORCE_INLINE_ const TData *custom_getptr(C p_custom_key, uint32_t p_custom_hash) const { - if (unlikely(!hash_table)) { - return nullptr; + // Reserves space for a number of elements, useful to avoid many resizes and rehashes. + // If adding a known (possibly large) number of elements at once, must be larger than old capacity. + void reserve(uint32_t p_new_capacity) { + uint32_t new_index = capacity_index; + + while (hash_table_size_primes[new_index] < p_new_capacity) { + ERR_FAIL_COND_MSG(new_index + 1 == (uint32_t)HASH_TABLE_SIZE_MAX, nullptr); + new_index++; } - uint32_t hash = p_custom_hash; - uint32_t index = hash & ((1 << hash_table_power) - 1); + if (new_index == capacity_index) { + return; + } + + if (elements == nullptr) { + capacity_index = new_index; + return; // Unallocated yet. + } + _resize_and_rehash(new_index); + } - const Element *e = hash_table[index]; + /** Iterator API **/ - while (e) { - /* checking hash first avoids comparing key, which may take longer */ - if (e->hash == hash && Comparator::compare(e->pair.key, p_custom_key)) { - /* the pair exists in this hashtable, so just update data */ - return &e->pair.data; + struct Iterator { + _FORCE_INLINE_ KeyValue<TKey, TValue> &operator*() const { + return E->data; + } + _FORCE_INLINE_ KeyValue<TKey, TValue> *operator->() const { return &E->data; } + _FORCE_INLINE_ Iterator &operator++() { + if (E) { + E = E->next; } - - e = e->next; + return *this; + } + _FORCE_INLINE_ Iterator &operator--() { + if (E) { + E = E->prev; + } + return *this; } - return nullptr; - } + _FORCE_INLINE_ bool operator==(const Iterator &b) const { return E == b.E; } + _FORCE_INLINE_ bool operator!=(const Iterator &b) const { return E != b.E; } - /** - * Erase an item, return true if erasing was successful - */ + _FORCE_INLINE_ operator bool() const { + return E != nullptr; + } - bool erase(const TKey &p_key) { - if (unlikely(!hash_table)) { - return false; + _FORCE_INLINE_ Iterator(HashMapElement<TKey, TValue> *p_E) { E = p_E; } + _FORCE_INLINE_ Iterator() {} + _FORCE_INLINE_ Iterator(const Iterator &p_it) { E = p_it.E; } + _FORCE_INLINE_ void operator=(const Iterator &p_it) { + E = p_it.E; } - uint32_t hash = Hasher::hash(p_key); - uint32_t index = hash & ((1 << hash_table_power) - 1); - - Element *e = hash_table[index]; - Element *p = nullptr; - while (e) { - /* checking hash first avoids comparing key, which may take longer */ - if (e->hash == hash && Comparator::compare(e->pair.key, p_key)) { - if (p) { - p->next = e->next; - } else { - //begin of list - hash_table[index] = e->next; - } - - memdelete(e); - elements--; - - if (elements == 0) { - erase_hash_table(); - } else { - check_hash_table(); - } - return true; + private: + HashMapElement<TKey, TValue> *E = nullptr; + }; + + struct ConstIterator { + _FORCE_INLINE_ const KeyValue<TKey, TValue> &operator*() const { + return E->data; + } + _FORCE_INLINE_ const KeyValue<TKey, TValue> *operator->() const { return &E->data; } + _FORCE_INLINE_ ConstIterator &operator++() { + if (E) { + E = E->next; + } + return *this; + } + _FORCE_INLINE_ ConstIterator &operator--() { + if (E) { + E = E->prev; } + return *this; + } + + _FORCE_INLINE_ bool operator==(const ConstIterator &b) const { return E == b.E; } + _FORCE_INLINE_ bool operator!=(const ConstIterator &b) const { return E != b.E; } - p = e; - e = e->next; + _FORCE_INLINE_ operator bool() const { + return E != nullptr; } - return false; - } + _FORCE_INLINE_ ConstIterator(const HashMapElement<TKey, TValue> *p_E) { E = p_E; } + _FORCE_INLINE_ ConstIterator() {} + _FORCE_INLINE_ ConstIterator(const ConstIterator &p_it) { E = p_it.E; } + _FORCE_INLINE_ void operator=(const ConstIterator &p_it) { + E = p_it.E; + } - inline const TData &operator[](const TKey &p_key) const { //constref + private: + const HashMapElement<TKey, TValue> *E = nullptr; + }; - return get(p_key); + _FORCE_INLINE_ Iterator begin() { + return Iterator(head_element); + } + _FORCE_INLINE_ Iterator end() { + return Iterator(nullptr); + } + _FORCE_INLINE_ Iterator last() { + return Iterator(tail_element); } - inline TData &operator[](const TKey &p_key) { //assignment - Element *e = nullptr; - if (!hash_table) { - make_hash_table(); // if no table, make one - } else { - e = const_cast<Element *>(get_element(p_key)); + _FORCE_INLINE_ Iterator find(const TKey &p_key) { + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); + if (!exists) { + return end(); } + return Iterator(elements[pos]); + } - /* if we made it up to here, the pair doesn't exist, create */ - if (!e) { - e = create_element(p_key); - CRASH_COND(!e); - check_hash_table(); // perform mantenience routine + _FORCE_INLINE_ void remove(const Iterator &p_iter) { + if (p_iter) { + erase(p_iter->key); } + } - return e->pair.data; + _FORCE_INLINE_ ConstIterator begin() const { + return ConstIterator(head_element); + } + _FORCE_INLINE_ ConstIterator end() const { + return ConstIterator(nullptr); + } + _FORCE_INLINE_ ConstIterator last() const { + return ConstIterator(tail_element); } - /** - * Get the next key to p_key, and the first key if p_key is null. - * Returns a pointer to the next key if found, nullptr otherwise. - * Adding/Removing elements while iterating will, of course, have unexpected results, don't do it. - * - * Example: - * - * const TKey *k=nullptr; - * - * while( (k=table.next(k)) ) { - * - * print( *k ); - * } - * - */ - const TKey *next(const TKey *p_key) const { - if (unlikely(!hash_table)) { - return nullptr; + _FORCE_INLINE_ ConstIterator find(const TKey &p_key) const { + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); + if (!exists) { + return end(); } + return ConstIterator(elements[pos]); + } - if (!p_key) { /* get the first key */ - - for (int i = 0; i < (1 << hash_table_power); i++) { - if (hash_table[i]) { - return &hash_table[i]->pair.key; - } - } - - } else { /* get the next key */ + /* Indexing */ - const Element *e = get_element(*p_key); - ERR_FAIL_COND_V_MSG(!e, nullptr, "Invalid key supplied."); - if (e->next) { - /* if there is a "next" in the list, return that */ - return &e->next->pair.key; - } else { - /* go to next elements */ - uint32_t index = e->hash & ((1 << hash_table_power) - 1); - index++; - for (int i = index; i < (1 << hash_table_power); i++) { - if (hash_table[i]) { - return &hash_table[i]->pair.key; - } - } - } + const TValue &operator[](const TKey &p_key) const { + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); + CRASH_COND(!exists); + return elements[pos]->data.value; + } - /* nothing found, was at end */ + TValue &operator[](const TKey &p_key) { + uint32_t pos = 0; + bool exists = _lookup_pos(p_key, pos); + if (!exists) { + return _insert(p_key, TValue())->data.value; + } else { + return elements[pos]->data.value; } - - return nullptr; /* nothing found */ } - inline unsigned int size() const { - return elements; - } + /* Insert */ - inline bool is_empty() const { - return elements == 0; + Iterator insert(const TKey &p_key, const TValue &p_value, bool p_front_insert = false) { + return Iterator(_insert(p_key, p_value, p_front_insert)); } - void clear() { - /* clean up */ - if (hash_table) { - for (int i = 0; i < (1 << hash_table_power); i++) { - while (hash_table[i]) { - Element *e = hash_table[i]; - hash_table[i] = e->next; - memdelete(e); - } - } + /* Constructors */ - memdelete_arr(hash_table); + HashMap(const HashMap &p_other) { + reserve(hash_table_size_primes[p_other.capacity_index]); + + if (p_other.num_elements == 0) { + return; } - hash_table = nullptr; - hash_table_power = 0; - elements = 0; + for (const KeyValue<TKey, TValue> &E : p_other) { + insert(E.key, E.value); + } } - void operator=(const HashMap &p_table) { - copy_from(p_table); - } + void operator=(const HashMap &p_other) { + if (this == &p_other) { + return; // Ignore self assignment. + } + if (num_elements != 0) { + clear(); + } - void get_key_list(List<TKey> *r_keys) const { - if (unlikely(!hash_table)) { - return; + reserve(hash_table_size_primes[p_other.capacity_index]); + + if (p_other.elements == nullptr) { + return; // Nothing to copy. } - for (int i = 0; i < (1 << hash_table_power); i++) { - Element *e = hash_table[i]; - while (e) { - r_keys->push_back(e->pair.key); - e = e->next; - } + + for (const KeyValue<TKey, TValue> &E : p_other) { + insert(E.key, E.value); } } - HashMap() {} + HashMap(uint32_t p_initial_capacity) { + // Capacity can't be 0. + capacity_index = 0; + reserve(p_initial_capacity); + } + HashMap() { + capacity_index = MIN_CAPACITY_INDEX; + } - HashMap(const HashMap &p_table) { - copy_from(p_table); + uint32_t debug_get_hash(uint32_t p_index) { + if (num_elements == 0) { + return 0; + } + ERR_FAIL_INDEX_V(p_index, get_capacity(), 0); + return hashes[p_index]; + } + Iterator debug_get_element(uint32_t p_index) { + if (num_elements == 0) { + return Iterator(); + } + ERR_FAIL_INDEX_V(p_index, get_capacity(), Iterator()); + return Iterator(elements[p_index]); } ~HashMap() { clear(); + + if (elements != nullptr) { + Memory::free_static(elements); + Memory::free_static(hashes); + } } }; diff --git a/core/templates/hashfuncs.h b/core/templates/hashfuncs.h index 2a129f97d5..eb73ff4ede 100644 --- a/core/templates/hashfuncs.h +++ b/core/templates/hashfuncs.h @@ -31,14 +31,22 @@ #ifndef HASHFUNCS_H #define HASHFUNCS_H +#include "core/math/aabb.h" #include "core/math/math_defs.h" #include "core/math/math_funcs.h" +#include "core/math/rect2.h" +#include "core/math/rect2i.h" +#include "core/math/vector2.h" +#include "core/math/vector2i.h" +#include "core/math/vector3.h" +#include "core/math/vector3i.h" #include "core/object/object_id.h" #include "core/string/node_path.h" #include "core/string/string_name.h" #include "core/string/ustring.h" #include "core/templates/rid.h" #include "core/typedefs.h" + /** * Hashing functions */ @@ -178,6 +186,49 @@ struct HashMapHasherDefault { static _FORCE_INLINE_ uint32_t hash(const StringName &p_string_name) { return p_string_name.hash(); } static _FORCE_INLINE_ uint32_t hash(const NodePath &p_path) { return p_path.hash(); } + static _FORCE_INLINE_ uint32_t hash(const Vector2i &p_vec) { + uint32_t h = hash_djb2_one_32(p_vec.x); + return hash_djb2_one_32(p_vec.y, h); + } + static _FORCE_INLINE_ uint32_t hash(const Vector3i &p_vec) { + uint32_t h = hash_djb2_one_32(p_vec.x); + h = hash_djb2_one_32(p_vec.y, h); + return hash_djb2_one_32(p_vec.z, h); + } + + static _FORCE_INLINE_ uint32_t hash(const Vector2 &p_vec) { + uint32_t h = hash_djb2_one_float(p_vec.x); + return hash_djb2_one_float(p_vec.y, h); + } + static _FORCE_INLINE_ uint32_t hash(const Vector3 &p_vec) { + uint32_t h = hash_djb2_one_float(p_vec.x); + h = hash_djb2_one_float(p_vec.y, h); + return hash_djb2_one_float(p_vec.z, h); + } + + static _FORCE_INLINE_ uint32_t hash(const Rect2i &p_rect) { + uint32_t h = hash_djb2_one_32(p_rect.position.x); + h = hash_djb2_one_32(p_rect.position.y, h); + h = hash_djb2_one_32(p_rect.size.x, h); + return hash_djb2_one_32(p_rect.size.y, h); + } + + static _FORCE_INLINE_ uint32_t hash(const Rect2 &p_rect) { + uint32_t h = hash_djb2_one_float(p_rect.position.x); + h = hash_djb2_one_float(p_rect.position.y, h); + h = hash_djb2_one_float(p_rect.size.x, h); + return hash_djb2_one_float(p_rect.size.y, h); + } + + static _FORCE_INLINE_ uint32_t hash(const AABB &p_aabb) { + uint32_t h = hash_djb2_one_float(p_aabb.position.x); + h = hash_djb2_one_float(p_aabb.position.y, h); + h = hash_djb2_one_float(p_aabb.position.z, h); + h = hash_djb2_one_float(p_aabb.size.x, h); + h = hash_djb2_one_float(p_aabb.size.y, h); + return hash_djb2_one_float(p_aabb.size.z, h); + } + //static _FORCE_INLINE_ uint32_t hash(const void* p_ptr) { return uint32_t(uint64_t(p_ptr))*(0x9e3779b1L); } }; @@ -196,4 +247,38 @@ struct HashMapComparatorDefault { } }; +constexpr uint32_t HASH_TABLE_SIZE_MAX = 29; + +const uint32_t hash_table_size_primes[HASH_TABLE_SIZE_MAX] = { + 5, + 13, + 23, + 47, + 97, + 193, + 389, + 769, + 1543, + 3079, + 6151, + 12289, + 24593, + 49157, + 98317, + 196613, + 393241, + 786433, + 1572869, + 3145739, + 6291469, + 12582917, + 25165843, + 50331653, + 100663319, + 201326611, + 402653189, + 805306457, + 1610612741, +}; + #endif // HASHFUNCS_H diff --git a/core/templates/ordered_hash_map.h b/core/templates/ordered_hash_map.h deleted file mode 100644 index 3d1f3a08ec..0000000000 --- a/core/templates/ordered_hash_map.h +++ /dev/null @@ -1,301 +0,0 @@ -/*************************************************************************/ -/* ordered_hash_map.h */ -/*************************************************************************/ -/* This file is part of: */ -/* GODOT ENGINE */ -/* https://godotengine.org */ -/*************************************************************************/ -/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ -/* */ -/* Permission is hereby granted, free of charge, to any person obtaining */ -/* a copy of this software and associated documentation files (the */ -/* "Software"), to deal in the Software without restriction, including */ -/* without limitation the rights to use, copy, modify, merge, publish, */ -/* distribute, sublicense, and/or sell copies of the Software, and to */ -/* permit persons to whom the Software is furnished to do so, subject to */ -/* the following conditions: */ -/* */ -/* The above copyright notice and this permission notice shall be */ -/* included in all copies or substantial portions of the Software. */ -/* */ -/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ -/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ -/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ -/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ -/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ -/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ -/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ -/*************************************************************************/ - -#ifndef ORDERED_HASH_MAP_H -#define ORDERED_HASH_MAP_H - -#include "core/templates/hash_map.h" -#include "core/templates/list.h" -#include "core/templates/pair.h" - -/** - * A hash map which allows to iterate elements in insertion order. - * Insertion, lookup, deletion have O(1) complexity. - * The API aims to be consistent with Map rather than HashMap, because the - * former is more frequently used and is more coherent with the rest of the - * codebase. - * Deletion during iteration is safe and will preserve the order. - */ -template <class K, class V, class Hasher = HashMapHasherDefault, class Comparator = HashMapComparatorDefault<K>, uint8_t MIN_HASH_TABLE_POWER = 3, uint8_t RELATIONSHIP = 8> -class OrderedHashMap { - typedef List<Pair<const K *, V>> InternalList; - typedef HashMap<K, typename InternalList::Element *, Hasher, Comparator, MIN_HASH_TABLE_POWER, RELATIONSHIP> InternalMap; - - InternalList list; - InternalMap map; - -public: - class Element { - friend class OrderedHashMap<K, V, Hasher, Comparator, MIN_HASH_TABLE_POWER, RELATIONSHIP>; - - typename InternalList::Element *list_element = nullptr; - typename InternalList::Element *prev_element = nullptr; - typename InternalList::Element *next_element = nullptr; - - Element(typename InternalList::Element *p_element) { - list_element = p_element; - - if (list_element) { - next_element = list_element->next(); - prev_element = list_element->prev(); - } - } - - public: - _FORCE_INLINE_ Element() {} - - Element next() const { - return Element(next_element); - } - - Element prev() const { - return Element(prev_element); - } - - Element(const Element &other) : - list_element(other.list_element), - prev_element(other.prev_element), - next_element(other.next_element) { - } - - void operator=(const Element &other) { - list_element = other.list_element; - next_element = other.next_element; - prev_element = other.prev_element; - } - - _FORCE_INLINE_ bool operator==(const Element &p_other) const { - return this->list_element == p_other.list_element; - } - _FORCE_INLINE_ bool operator!=(const Element &p_other) const { - return this->list_element != p_other.list_element; - } - - operator bool() const { - return (list_element != nullptr); - } - - const K &key() const { - CRASH_COND(!list_element); - return *(list_element->get().first); - } - - V &value() { - CRASH_COND(!list_element); - return list_element->get().second; - } - - const V &value() const { - CRASH_COND(!list_element); - return list_element->get().second; - } - - V &get() { - CRASH_COND(!list_element); - return list_element->get().second; - } - - const V &get() const { - CRASH_COND(!list_element); - return list_element->get().second; - } - }; - - class ConstElement { - friend class OrderedHashMap<K, V, Hasher, Comparator, MIN_HASH_TABLE_POWER, RELATIONSHIP>; - - const typename InternalList::Element *list_element = nullptr; - - ConstElement(const typename InternalList::Element *p_element) : - list_element(p_element) { - } - - public: - _FORCE_INLINE_ ConstElement() {} - - ConstElement(const ConstElement &other) : - list_element(other.list_element) { - } - - void operator=(const ConstElement &other) { - list_element = other.list_element; - } - - ConstElement next() const { - return ConstElement(list_element ? list_element->next() : nullptr); - } - - ConstElement prev() const { - return ConstElement(list_element ? list_element->prev() : nullptr); - } - - _FORCE_INLINE_ bool operator==(const ConstElement &p_other) const { - return this->list_element == p_other.list_element; - } - _FORCE_INLINE_ bool operator!=(const ConstElement &p_other) const { - return this->list_element != p_other.list_element; - } - - operator bool() const { - return (list_element != nullptr); - } - - const K &key() const { - CRASH_COND(!list_element); - return *(list_element->get().first); - } - - const V &value() const { - CRASH_COND(!list_element); - return list_element->get().second; - } - - const V &get() const { - CRASH_COND(!list_element); - return list_element->get().second; - } - }; - - ConstElement find(const K &p_key) const { - typename InternalList::Element *const *list_element = map.getptr(p_key); - if (list_element) { - return ConstElement(*list_element); - } - return ConstElement(nullptr); - } - - Element find(const K &p_key) { - typename InternalList::Element **list_element = map.getptr(p_key); - if (list_element) { - return Element(*list_element); - } - return Element(nullptr); - } - - Element insert(const K &p_key, const V &p_value) { - typename InternalList::Element **list_element = map.getptr(p_key); - if (list_element) { - (*list_element)->get().second = p_value; - return Element(*list_element); - } - // Incorrectly set the first value of the pair with a value that will - // be invalid as soon as we leave this function... - typename InternalList::Element *new_element = list.push_back(Pair<const K *, V>(&p_key, p_value)); - // ...this is needed here in case the hashmap recursively reference itself... - typename InternalMap::Element *e = map.set(p_key, new_element); - // ...now we can set the right value ! - new_element->get().first = &e->key(); - - return Element(new_element); - } - - void erase(Element &p_element) { - map.erase(p_element.key()); - list.erase(p_element.list_element); - p_element.list_element = nullptr; - } - - bool erase(const K &p_key) { - typename InternalList::Element **list_element = map.getptr(p_key); - if (list_element) { - list.erase(*list_element); - map.erase(p_key); - return true; - } - return false; - } - - inline bool has(const K &p_key) const { - return map.has(p_key); - } - - const V &operator[](const K &p_key) const { - ConstElement e = find(p_key); - CRASH_COND(!e); - return e.value(); - } - - V &operator[](const K &p_key) { - Element e = find(p_key); - if (!e) { - // consistent with Map behaviour - e = insert(p_key, V()); - } - return e.value(); - } - - inline Element front() { - return Element(list.front()); - } - - inline Element back() { - return Element(list.back()); - } - - inline ConstElement front() const { - return ConstElement(list.front()); - } - - inline ConstElement back() const { - return ConstElement(list.back()); - } - - inline bool is_empty() const { return list.is_empty(); } - inline int size() const { return list.size(); } - - const void *id() const { - return list.id(); - } - - void clear() { - map.clear(); - list.clear(); - } - -private: - void _copy_from(const OrderedHashMap &p_map) { - for (ConstElement E = p_map.front(); E; E = E.next()) { - insert(E.key(), E.value()); - } - } - -public: - void operator=(const OrderedHashMap &p_map) { - _copy_from(p_map); - } - - OrderedHashMap(const OrderedHashMap &p_map) { - _copy_from(p_map); - } - - _FORCE_INLINE_ OrderedHashMap() {} -}; - -#endif // ORDERED_HASH_MAP_H diff --git a/core/templates/paged_allocator.h b/core/templates/paged_allocator.h index b9067e2edd..cf5911a847 100644 --- a/core/templates/paged_allocator.h +++ b/core/templates/paged_allocator.h @@ -50,6 +50,10 @@ class PagedAllocator { SpinLock spin_lock; public: + enum { + DEFAULT_PAGE_SIZE = 4096 + }; + template <class... Args> T *alloc(const Args &&...p_args) { if (thread_safe) { @@ -121,7 +125,9 @@ public: page_shift = get_shift_from_power_of_2(page_size); } - PagedAllocator(uint32_t p_page_size = 4096) { // power of 2 recommended because of alignment with OS page sizes. Even if element is bigger, its still a multiple and get rounded amount of pages + // Power of 2 recommended because of alignment with OS page sizes. + // Even if element is bigger, it's still a multiple and gets rounded to amount of pages. + PagedAllocator(uint32_t p_page_size = DEFAULT_PAGE_SIZE) { configure(p_page_size); } |