diff options
Diffstat (limited to 'core/os/pool_allocator.cpp')
-rw-r--r-- | core/os/pool_allocator.cpp | 596 |
1 files changed, 596 insertions, 0 deletions
diff --git a/core/os/pool_allocator.cpp b/core/os/pool_allocator.cpp new file mode 100644 index 0000000000..52536ff45d --- /dev/null +++ b/core/os/pool_allocator.cpp @@ -0,0 +1,596 @@ +/*************************************************************************/ +/* pool_allocator.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "pool_allocator.h" + +#include "core/error/error_macros.h" +#include "core/os/copymem.h" +#include "core/os/memory.h" +#include "core/os/os.h" +#include "core/string/print_string.h" + +#include <assert.h> + +#define COMPACT_CHUNK(m_entry, m_to_pos) \ + do { \ + void *_dst = &((unsigned char *)pool)[m_to_pos]; \ + void *_src = &((unsigned char *)pool)[(m_entry).pos]; \ + movemem(_dst, _src, aligned((m_entry).len)); \ + (m_entry).pos = m_to_pos; \ + } while (0); + +void PoolAllocator::mt_lock() const { +} + +void PoolAllocator::mt_unlock() const { +} + +bool PoolAllocator::get_free_entry(EntryArrayPos *p_pos) { + if (entry_count == entry_max) { + return false; + } + + for (int i = 0; i < entry_max; i++) { + if (entry_array[i].len == 0) { + *p_pos = i; + return true; + } + } + + ERR_PRINT("Out of memory Chunks!"); + + return false; // +} + +/** + * Find a hole + * @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end + * @param p_for_size hole size + * @return false if hole found, true if no hole found + */ +bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) { + /* position where previous entry ends. Defaults to zero (begin of pool) */ + + int prev_entry_end_pos = 0; + + for (int i = 0; i < entry_count; i++) { + Entry &entry = entry_array[entry_indices[i]]; + + /* determine hole size to previous entry */ + + int hole_size = entry.pos - prev_entry_end_pos; + + /* determine if what we want fits in that hole */ + if (hole_size >= p_for_size) { + *p_pos = i; + return true; + } + + /* prepare for next one */ + prev_entry_end_pos = entry_end(entry); + } + + /* No holes between entries, check at the end..*/ + + if ((pool_size - prev_entry_end_pos) >= p_for_size) { + *p_pos = entry_count; + return true; + } + + return false; +} + +void PoolAllocator::compact(int p_up_to) { + uint32_t prev_entry_end_pos = 0; + + if (p_up_to < 0) { + p_up_to = entry_count; + } + for (int i = 0; i < p_up_to; i++) { + Entry &entry = entry_array[entry_indices[i]]; + + /* determine hole size to previous entry */ + + int hole_size = entry.pos - prev_entry_end_pos; + + /* if we can compact, do it */ + if (hole_size > 0 && !entry.lock) { + COMPACT_CHUNK(entry, prev_entry_end_pos); + } + + /* prepare for next one */ + prev_entry_end_pos = entry_end(entry); + } +} + +void PoolAllocator::compact_up(int p_from) { + uint32_t next_entry_end_pos = pool_size; // - static_area_size; + + for (int i = entry_count - 1; i >= p_from; i--) { + Entry &entry = entry_array[entry_indices[i]]; + + /* determine hole size to nextious entry */ + + int hole_size = next_entry_end_pos - (entry.pos + aligned(entry.len)); + + /* if we can compact, do it */ + if (hole_size > 0 && !entry.lock) { + COMPACT_CHUNK(entry, (next_entry_end_pos - aligned(entry.len))); + } + + /* prepare for next one */ + next_entry_end_pos = entry.pos; + } +} + +bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos, Entry *p_entry) { + EntryArrayPos entry_pos = entry_max; + + for (int i = 0; i < entry_count; i++) { + if (&entry_array[entry_indices[i]] == p_entry) { + entry_pos = i; + break; + } + } + + if (entry_pos == entry_max) { + return false; + } + + *p_map_pos = entry_pos; + return true; +} + +PoolAllocator::ID PoolAllocator::alloc(int p_size) { + ERR_FAIL_COND_V(p_size < 1, POOL_ALLOCATOR_INVALID_ID); +#ifdef DEBUG_ENABLED + if (p_size > free_mem) { + OS::get_singleton()->debug_break(); + } +#endif + ERR_FAIL_COND_V(p_size > free_mem, POOL_ALLOCATOR_INVALID_ID); + + mt_lock(); + + if (entry_count == entry_max) { + mt_unlock(); + ERR_PRINT("entry_count==entry_max"); + return POOL_ALLOCATOR_INVALID_ID; + } + + int size_to_alloc = aligned(p_size); + + EntryIndicesPos new_entry_indices_pos; + + if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { + /* No hole could be found, try compacting mem */ + compact(); + /* Then search again */ + + if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { + mt_unlock(); + ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "Memory can't be compacted further."); + } + } + + EntryArrayPos new_entry_array_pos; + + bool found_free_entry = get_free_entry(&new_entry_array_pos); + + if (!found_free_entry) { + mt_unlock(); + ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "No free entry found in PoolAllocator."); + } + + /* move all entry indices up, make room for this one */ + for (int i = entry_count; i > new_entry_indices_pos; i--) { + entry_indices[i] = entry_indices[i - 1]; + } + + entry_indices[new_entry_indices_pos] = new_entry_array_pos; + + entry_count++; + + Entry &entry = entry_array[entry_indices[new_entry_indices_pos]]; + + entry.len = p_size; + entry.pos = (new_entry_indices_pos == 0) ? 0 : entry_end(entry_array[entry_indices[new_entry_indices_pos - 1]]); //alloc either at beginning or end of previous + entry.lock = 0; + entry.check = (check_count++) & CHECK_MASK; + free_mem -= size_to_alloc; + if (free_mem < free_mem_peak) { + free_mem_peak = free_mem; + } + + ID retval = (entry_indices[new_entry_indices_pos] << CHECK_BITS) | entry.check; + mt_unlock(); + + //ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval ); + + return retval; +} + +PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) { + unsigned int check = p_mem & CHECK_MASK; + int entry = p_mem >> CHECK_BITS; + ERR_FAIL_INDEX_V(entry, entry_max, nullptr); + ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr); + ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr); + + return &entry_array[entry]; +} + +const PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) const { + unsigned int check = p_mem & CHECK_MASK; + int entry = p_mem >> CHECK_BITS; + ERR_FAIL_INDEX_V(entry, entry_max, nullptr); + ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr); + ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr); + + return &entry_array[entry]; +} + +void PoolAllocator::free(ID p_mem) { + mt_lock(); + Entry *e = get_entry(p_mem); + if (!e) { + mt_unlock(); + ERR_PRINT("!e"); + return; + } + if (e->lock) { + mt_unlock(); + ERR_PRINT("e->lock"); + return; + } + + EntryIndicesPos entry_indices_pos; + + bool index_found = find_entry_index(&entry_indices_pos, e); + if (!index_found) { + mt_unlock(); + ERR_FAIL_COND(!index_found); + } + + for (int i = entry_indices_pos; i < (entry_count - 1); i++) { + entry_indices[i] = entry_indices[i + 1]; + } + + entry_count--; + free_mem += aligned(e->len); + e->clear(); + mt_unlock(); +} + +int PoolAllocator::get_size(ID p_mem) const { + int size; + mt_lock(); + + const Entry *e = get_entry(p_mem); + if (!e) { + mt_unlock(); + ERR_PRINT("!e"); + return 0; + } + + size = e->len; + + mt_unlock(); + + return size; +} + +Error PoolAllocator::resize(ID p_mem, int p_new_size) { + mt_lock(); + Entry *e = get_entry(p_mem); + + if (!e) { + mt_unlock(); + ERR_FAIL_COND_V(!e, ERR_INVALID_PARAMETER); + } + + if (needs_locking && e->lock) { + mt_unlock(); + ERR_FAIL_COND_V(e->lock, ERR_ALREADY_IN_USE); + } + + uint32_t alloc_size = aligned(p_new_size); + + if ((uint32_t)aligned(e->len) == alloc_size) { + e->len = p_new_size; + mt_unlock(); + return OK; + } else if (e->len > (uint32_t)p_new_size) { + free_mem += aligned(e->len); + free_mem -= alloc_size; + e->len = p_new_size; + mt_unlock(); + return OK; + } + + //p_new_size = align(p_new_size) + int _free = free_mem; // - static_area_size; + + if (uint32_t(_free + aligned(e->len)) < alloc_size) { + mt_unlock(); + ERR_FAIL_V(ERR_OUT_OF_MEMORY); + } + + EntryIndicesPos entry_indices_pos; + + bool index_found = find_entry_index(&entry_indices_pos, e); + + if (!index_found) { + mt_unlock(); + ERR_FAIL_COND_V(!index_found, ERR_BUG); + } + + //no need to move stuff around, it fits before the next block + uint32_t next_pos; + if (entry_indices_pos + 1 == entry_count) { + next_pos = pool_size; // - static_area_size; + } else { + next_pos = entry_array[entry_indices[entry_indices_pos + 1]].pos; + } + + if ((next_pos - e->pos) > alloc_size) { + free_mem += aligned(e->len); + e->len = p_new_size; + free_mem -= alloc_size; + mt_unlock(); + return OK; + } + //it doesn't fit, compact around BEFORE current index (make room behind) + + compact(entry_indices_pos + 1); + + if ((next_pos - e->pos) > alloc_size) { + //now fits! hooray! + free_mem += aligned(e->len); + e->len = p_new_size; + free_mem -= alloc_size; + mt_unlock(); + if (free_mem < free_mem_peak) { + free_mem_peak = free_mem; + } + return OK; + } + + //STILL doesn't fit, compact around AFTER current index (make room after) + + compact_up(entry_indices_pos + 1); + + if ((entry_array[entry_indices[entry_indices_pos + 1]].pos - e->pos) > alloc_size) { + //now fits! hooray! + free_mem += aligned(e->len); + e->len = p_new_size; + free_mem -= alloc_size; + mt_unlock(); + if (free_mem < free_mem_peak) { + free_mem_peak = free_mem; + } + return OK; + } + + mt_unlock(); + ERR_FAIL_V(ERR_OUT_OF_MEMORY); +} + +Error PoolAllocator::lock(ID p_mem) { + if (!needs_locking) { + return OK; + } + mt_lock(); + Entry *e = get_entry(p_mem); + if (!e) { + mt_unlock(); + ERR_PRINT("!e"); + return ERR_INVALID_PARAMETER; + } + e->lock++; + mt_unlock(); + return OK; +} + +bool PoolAllocator::is_locked(ID p_mem) const { + if (!needs_locking) { + return false; + } + + mt_lock(); + const Entry *e = ((PoolAllocator *)(this))->get_entry(p_mem); + if (!e) { + mt_unlock(); + ERR_PRINT("!e"); + return false; + } + bool locked = e->lock; + mt_unlock(); + return locked; +} + +const void *PoolAllocator::get(ID p_mem) const { + if (!needs_locking) { + const Entry *e = get_entry(p_mem); + ERR_FAIL_COND_V(!e, nullptr); + return &pool[e->pos]; + } + + mt_lock(); + const Entry *e = get_entry(p_mem); + + if (!e) { + mt_unlock(); + ERR_FAIL_COND_V(!e, nullptr); + } + if (e->lock == 0) { + mt_unlock(); + ERR_PRINT("e->lock == 0"); + return nullptr; + } + + if ((int)e->pos >= pool_size) { + mt_unlock(); + ERR_PRINT("e->pos<0 || e->pos>=pool_size"); + return nullptr; + } + const void *ptr = &pool[e->pos]; + + mt_unlock(); + + return ptr; +} + +void *PoolAllocator::get(ID p_mem) { + if (!needs_locking) { + Entry *e = get_entry(p_mem); + ERR_FAIL_COND_V(!e, nullptr); + return &pool[e->pos]; + } + + mt_lock(); + Entry *e = get_entry(p_mem); + + if (!e) { + mt_unlock(); + ERR_FAIL_COND_V(!e, nullptr); + } + if (e->lock == 0) { + //assert(0); + mt_unlock(); + ERR_PRINT("e->lock == 0"); + return nullptr; + } + + if ((int)e->pos >= pool_size) { + mt_unlock(); + ERR_PRINT("e->pos<0 || e->pos>=pool_size"); + return nullptr; + } + void *ptr = &pool[e->pos]; + + mt_unlock(); + + return ptr; +} + +void PoolAllocator::unlock(ID p_mem) { + if (!needs_locking) { + return; + } + mt_lock(); + Entry *e = get_entry(p_mem); + if (!e) { + mt_unlock(); + ERR_FAIL_COND(!e); + } + if (e->lock == 0) { + mt_unlock(); + ERR_PRINT("e->lock == 0"); + return; + } + e->lock--; + mt_unlock(); +} + +int PoolAllocator::get_used_mem() const { + return pool_size - free_mem; +} + +int PoolAllocator::get_free_peak() { + return free_mem_peak; +} + +int PoolAllocator::get_free_mem() { + return free_mem; +} + +void PoolAllocator::create_pool(void *p_mem, int p_size, int p_max_entries) { + pool = (uint8_t *)p_mem; + pool_size = p_size; + + entry_array = memnew_arr(Entry, p_max_entries); + entry_indices = memnew_arr(int, p_max_entries); + entry_max = p_max_entries; + entry_count = 0; + + free_mem = p_size; + free_mem_peak = p_size; + + check_count = 0; +} + +PoolAllocator::PoolAllocator(int p_size, bool p_needs_locking, int p_max_entries) { + mem_ptr = memalloc(p_size); + ERR_FAIL_COND(!mem_ptr); + align = 1; + create_pool(mem_ptr, p_size, p_max_entries); + needs_locking = p_needs_locking; +} + +PoolAllocator::PoolAllocator(void *p_mem, int p_size, int p_align, bool p_needs_locking, int p_max_entries) { + if (p_align > 1) { + uint8_t *mem8 = (uint8_t *)p_mem; + uint64_t ofs = (uint64_t)mem8; + if (ofs % p_align) { + int dif = p_align - (ofs % p_align); + mem8 += p_align - (ofs % p_align); + p_size -= dif; + p_mem = (void *)mem8; + } + } + + create_pool(p_mem, p_size, p_max_entries); + needs_locking = p_needs_locking; + align = p_align; + mem_ptr = nullptr; +} + +PoolAllocator::PoolAllocator(int p_align, int p_size, bool p_needs_locking, int p_max_entries) { + ERR_FAIL_COND(p_align < 1); + mem_ptr = Memory::alloc_static(p_size + p_align, true); + uint8_t *mem8 = (uint8_t *)mem_ptr; + uint64_t ofs = (uint64_t)mem8; + if (ofs % p_align) { + mem8 += p_align - (ofs % p_align); + } + create_pool(mem8, p_size, p_max_entries); + needs_locking = p_needs_locking; + align = p_align; +} + +PoolAllocator::~PoolAllocator() { + if (mem_ptr) { + memfree(mem_ptr); + } + + memdelete_arr(entry_array); + memdelete_arr(entry_indices); +} |