diff options
Diffstat (limited to 'core/math')
-rw-r--r-- | core/math/basis.cpp | 2 | ||||
-rw-r--r-- | core/math/bvh.h | 695 | ||||
-rw-r--r-- | core/math/bvh_abb.h | 276 | ||||
-rw-r--r-- | core/math/bvh_cull.inc | 534 | ||||
-rw-r--r-- | core/math/bvh_debug.inc | 68 | ||||
-rw-r--r-- | core/math/bvh_integrity.inc | 42 | ||||
-rw-r--r-- | core/math/bvh_logic.inc | 230 | ||||
-rw-r--r-- | core/math/bvh_misc.inc | 55 | ||||
-rw-r--r-- | core/math/bvh_pair.inc | 62 | ||||
-rw-r--r-- | core/math/bvh_public.inc | 423 | ||||
-rw-r--r-- | core/math/bvh_refit.inc | 141 | ||||
-rw-r--r-- | core/math/bvh_split.inc | 294 | ||||
-rw-r--r-- | core/math/bvh_structs.inc | 180 | ||||
-rw-r--r-- | core/math/bvh_tree.h | 421 | ||||
-rw-r--r-- | core/math/color.cpp | 4 | ||||
-rw-r--r-- | core/math/color_names.inc | 295 | ||||
-rw-r--r-- | core/math/convex_hull.cpp | 2290 | ||||
-rw-r--r-- | core/math/convex_hull.h | 112 | ||||
-rw-r--r-- | core/math/dynamic_bvh.cpp | 5 | ||||
-rw-r--r-- | core/math/geometry_2d.h | 39 | ||||
-rw-r--r-- | core/math/math_funcs.h | 62 | ||||
-rw-r--r-- | core/math/quat.cpp | 2 | ||||
-rw-r--r-- | core/math/quat.h | 4 | ||||
-rw-r--r-- | core/math/rect2.h | 12 | ||||
-rw-r--r-- | core/math/vector2.cpp | 2 | ||||
-rw-r--r-- | core/math/vector2.h | 40 | ||||
-rw-r--r-- | core/math/vector3.cpp | 8 | ||||
-rw-r--r-- | core/math/vector3.h | 17 |
28 files changed, 6112 insertions, 203 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp index 50299902eb..037378b9d7 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -109,7 +109,7 @@ bool Basis::is_diagonal() const { } bool Basis::is_rotation() const { - return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal(); + return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal(); } #ifdef MATH_CHECKS diff --git a/core/math/bvh.h b/core/math/bvh.h new file mode 100644 index 0000000000..cefbc9b0db --- /dev/null +++ b/core/math/bvh.h @@ -0,0 +1,695 @@ +/*************************************************************************/ +/* bvh.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef BVH_H +#define BVH_H + +// BVH +// This class provides a wrapper around BVH tree, which contains most of the functionality +// for a dynamic BVH with templated leaf size. +// However BVH also adds facilities for pairing, to maintain compatibility with Godot 3.2. +// Pairing is a collision pairing system, on top of the basic BVH. + +// Some notes on the use of BVH / Octree from Godot 3.2. +// This is not well explained elsewhere. +// The rendering tree mask and types that are sent to the BVH are NOT layer masks. +// They are INSTANCE_TYPES (defined in visual_server.h), e.g. MESH, MULTIMESH, PARTICLES etc. +// Thus the lights do no cull by layer mask in the BVH. + +// Layer masks are implemented in the renderers as a later step, and light_cull_mask appears to be +// implemented in GLES3 but not GLES2. Layer masks are not yet implemented for directional lights. + +#include "bvh_tree.h" + +#define BVHTREE_CLASS BVH_Tree<T, 2, MAX_ITEMS, USE_PAIRS, Bounds, Point> + +template <class T, bool USE_PAIRS = false, int MAX_ITEMS = 32, class Bounds = AABB, class Point = Vector3> +class BVH_Manager { +public: + // note we are using uint32_t instead of BVHHandle, losing type safety, but this + // is for compatibility with octree + typedef void *(*PairCallback)(void *, uint32_t, T *, int, uint32_t, T *, int); + typedef void (*UnpairCallback)(void *, uint32_t, T *, int, uint32_t, T *, int, void *); + + // these 2 are crucial for fine tuning, and can be applied manually + // see the variable declarations for more info. + void params_set_node_expansion(real_t p_value) { + if (p_value >= 0.0) { + tree._node_expansion = p_value; + tree._auto_node_expansion = false; + } else { + tree._auto_node_expansion = true; + } + } + + void params_set_pairing_expansion(real_t p_value) { + if (p_value >= 0.0) { + tree._pairing_expansion = p_value; + tree._auto_pairing_expansion = false; + } else { + tree._auto_pairing_expansion = true; + } + } + + void set_pair_callback(PairCallback p_callback, void *p_userdata) { + pair_callback = p_callback; + pair_callback_userdata = p_userdata; + } + void set_unpair_callback(UnpairCallback p_callback, void *p_userdata) { + unpair_callback = p_callback; + unpair_callback_userdata = p_userdata; + } + + BVHHandle create(T *p_userdata, bool p_active, const Bounds &p_aabb = Bounds(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t p_pairable_mask = 1) { + // not sure if absolutely necessary to flush collisions here. It will cost performance to, instead + // of waiting for update, so only uncomment this if there are bugs. + if (USE_PAIRS) { + //_check_for_collisions(); + } + +#ifdef TOOLS_ENABLED + if (!USE_PAIRS) { + if (p_pairable) { + WARN_PRINT_ONCE("creating pairable item in BVH with USE_PAIRS set to false"); + } + } +#endif + + BVHHandle h = tree.item_add(p_userdata, p_active, p_aabb, p_subindex, p_pairable, p_pairable_type, p_pairable_mask); + + if (USE_PAIRS) { + // for safety initialize the expanded AABB + Bounds &expanded_aabb = tree._pairs[h.id()].expanded_aabb; + expanded_aabb = p_aabb; + expanded_aabb.grow_by(tree._pairing_expansion); + + // force a collision check no matter the AABB + if (p_active) { + _add_changed_item(h, p_aabb, false); + _check_for_collisions(true); + } + } + + return h; + } + + //////////////////////////////////////////////////// + // wrapper versions that use uint32_t instead of handle + // for backward compatibility. Less type safe + void move(uint32_t p_handle, const Bounds &p_aabb) { + BVHHandle h; + h.set(p_handle); + move(h, p_aabb); + } + + void erase(uint32_t p_handle) { + BVHHandle h; + h.set(p_handle); + erase(h); + } + + void force_collision_check(uint32_t p_handle) { + BVHHandle h; + h.set(p_handle); + force_collision_check(h); + } + + bool activate(uint32_t p_handle, const Bounds &p_aabb, bool p_delay_collision_check = false) { + BVHHandle h; + h.set(p_handle); + return activate(h, p_aabb, p_delay_collision_check); + } + + bool deactivate(uint32_t p_handle) { + BVHHandle h; + h.set(p_handle); + return deactivate(h); + } + + void set_pairable(uint32_t p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask, bool p_force_collision_check = true) { + BVHHandle h; + h.set(p_handle); + set_pairable(h, p_pairable, p_pairable_type, p_pairable_mask, p_force_collision_check); + } + + bool is_pairable(uint32_t p_handle) const { + BVHHandle h; + h.set(p_handle); + return item_is_pairable(h); + } + int get_subindex(uint32_t p_handle) const { + BVHHandle h; + h.set(p_handle); + return item_get_subindex(h); + } + + T *get(uint32_t p_handle) const { + BVHHandle h; + h.set(p_handle); + return item_get_userdata(h); + } + + //////////////////////////////////////////////////// + + void move(BVHHandle p_handle, const Bounds &p_aabb) { + if (tree.item_move(p_handle, p_aabb)) { + if (USE_PAIRS) { + _add_changed_item(p_handle, p_aabb); + } + } + } + + void erase(BVHHandle p_handle) { + // call unpair and remove all references to the item + // before deleting from the tree + if (USE_PAIRS) { + _remove_changed_item(p_handle); + } + + tree.item_remove(p_handle); + + _check_for_collisions(true); + } + + // use in conjunction with activate if you have deferred the collision check, and + // set pairable has never been called. + // (deferred collision checks are a workaround for visual server for historical reasons) + void force_collision_check(BVHHandle p_handle) { + if (USE_PAIRS) { + // the aabb should already be up to date in the BVH + Bounds aabb; + item_get_AABB(p_handle, aabb); + + // add it as changed even if aabb not different + _add_changed_item(p_handle, aabb, false); + + // force an immediate full collision check, much like calls to set_pairable + _check_for_collisions(true); + } + } + + // these should be read as set_visible for render trees, + // but generically this makes items add or remove from the + // tree internally, to speed things up by ignoring inactive items + bool activate(BVHHandle p_handle, const Bounds &p_aabb, bool p_delay_collision_check = false) { + // sending the aabb here prevents the need for the BVH to maintain + // a redundant copy of the aabb. + // returns success + if (tree.item_activate(p_handle, p_aabb)) { + if (USE_PAIRS) { + // in the special case of the render tree, when setting visibility we are using the combination of + // activate then set_pairable. This would case 2 sets of collision checks. For efficiency here we allow + // deferring to have a single collision check at the set_pairable call. + // Watch for bugs! This may cause bugs if set_pairable is not called. + if (!p_delay_collision_check) { + _add_changed_item(p_handle, p_aabb, false); + + // force an immediate collision check, much like calls to set_pairable + _check_for_collisions(true); + } + } + return true; + } + + return false; + } + + bool deactivate(BVHHandle p_handle) { + // returns success + if (tree.item_deactivate(p_handle)) { + // call unpair and remove all references to the item + // before deleting from the tree + if (USE_PAIRS) { + _remove_changed_item(p_handle); + + // force check for collisions, much like an erase was called + _check_for_collisions(true); + } + return true; + } + + return false; + } + + bool get_active(BVHHandle p_handle) const { + return tree.item_get_active(p_handle); + } + + // call e.g. once per frame (this does a trickle optimize) + void update() { + tree.update(); + _check_for_collisions(); +#ifdef BVH_INTEGRITY_CHECKS + tree.integrity_check_all(); +#endif + } + + // this can be called more frequently than per frame if necessary + void update_collisions() { + _check_for_collisions(); + } + + // prefer calling this directly as type safe + void set_pairable(const BVHHandle &p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask, bool p_force_collision_check = true) { + // Returns true if the pairing state has changed. + bool state_changed = tree.item_set_pairable(p_handle, p_pairable, p_pairable_type, p_pairable_mask); + + if (USE_PAIRS) { + // not sure if absolutely necessary to flush collisions here. It will cost performance to, instead + // of waiting for update, so only uncomment this if there are bugs. + //_check_for_collisions(); + + if ((p_force_collision_check || state_changed) && get_active(p_handle)) { + // when the pairable state changes, we need to force a collision check because newly pairable + // items may be in collision, and unpairable items might move out of collision. + // We cannot depend on waiting for the next update, because that may come much later. + Bounds aabb; + item_get_AABB(p_handle, aabb); + + // passing false disables the optimization which prevents collision checks if + // the aabb hasn't changed + _add_changed_item(p_handle, aabb, false); + + // force an immediate collision check (probably just for this one item) + // but it must be a FULL collision check, also checking pairable state and masks. + // This is because AABB intersecting objects may have changed pairable state / mask + // such that they should no longer be paired. E.g. lights. + _check_for_collisions(true); + } // only if active + } + } + + // cull tests + int cull_aabb(const Bounds &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) { + typename BVHTREE_CLASS::CullParams params; + + params.result_count_overall = 0; + params.result_max = p_result_max; + params.result_array = p_result_array; + params.subindex_array = p_subindex_array; + params.mask = p_mask; + params.pairable_type = 0; + params.test_pairable_only = false; + params.abb.from(p_aabb); + + tree.cull_aabb(params); + + return params.result_count_overall; + } + + int cull_segment(const Point &p_from, const Point &p_to, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) { + typename BVHTREE_CLASS::CullParams params; + + params.result_count_overall = 0; + params.result_max = p_result_max; + params.result_array = p_result_array; + params.subindex_array = p_subindex_array; + params.mask = p_mask; + params.pairable_type = 0; + + params.segment.from = p_from; + params.segment.to = p_to; + + tree.cull_segment(params); + + return params.result_count_overall; + } + + int cull_point(const Point &p_point, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) { + typename BVHTREE_CLASS::CullParams params; + + params.result_count_overall = 0; + params.result_max = p_result_max; + params.result_array = p_result_array; + params.subindex_array = p_subindex_array; + params.mask = p_mask; + params.pairable_type = 0; + + params.point = p_point; + + tree.cull_point(params); + return params.result_count_overall; + } + + int cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF) { + if (!p_convex.size()) { + return 0; + } + + Vector<Vector3> convex_points = Geometry3D::compute_convex_mesh_points(&p_convex[0], p_convex.size()); + if (convex_points.size() == 0) { + return 0; + } + + typename BVHTREE_CLASS::CullParams params; + params.result_count_overall = 0; + params.result_max = p_result_max; + params.result_array = p_result_array; + params.subindex_array = nullptr; + params.mask = p_mask; + params.pairable_type = 0; + + params.hull.planes = &p_convex[0]; + params.hull.num_planes = p_convex.size(); + params.hull.points = &convex_points[0]; + params.hull.num_points = convex_points.size(); + + tree.cull_convex(params); + + return params.result_count_overall; + } + +private: + // do this after moving etc. + void _check_for_collisions(bool p_full_check = false) { + if (!changed_items.size()) { + // noop + return; + } + + Bounds bb; + + typename BVHTREE_CLASS::CullParams params; + + params.result_count_overall = 0; + params.result_max = INT_MAX; + params.result_array = nullptr; + params.subindex_array = nullptr; + params.mask = 0xFFFFFFFF; + params.pairable_type = 0; + + for (unsigned int n = 0; n < changed_items.size(); n++) { + const BVHHandle &h = changed_items[n]; + + // use the expanded aabb for pairing + const Bounds &expanded_aabb = tree._pairs[h.id()].expanded_aabb; + BVHABB_CLASS abb; + abb.from(expanded_aabb); + + // find all the existing paired aabbs that are no longer + // paired, and send callbacks + _find_leavers(h, abb, p_full_check); + + uint32_t changed_item_ref_id = h.id(); + + // set up the test from this item. + // this includes whether to test the non pairable tree, + // and the item mask. + tree.item_fill_cullparams(h, params); + + params.abb = abb; + + params.result_count_overall = 0; // might not be needed + tree.cull_aabb(params, false); + + for (unsigned int i = 0; i < tree._cull_hits.size(); i++) { + uint32_t ref_id = tree._cull_hits[i]; + + // don't collide against ourself + if (ref_id == changed_item_ref_id) { + continue; + } + +#ifdef BVH_CHECKS + // if neither are pairable, they should ignore each other + // THIS SHOULD NEVER HAPPEN .. now we only test the pairable tree + // if the changed item is not pairable + CRASH_COND(params.test_pairable_only && !tree._extra[ref_id].pairable); +#endif + + // checkmasks is already done in the cull routine. + BVHHandle h_collidee; + h_collidee.set_id(ref_id); + + // find NEW enterers, and send callbacks for them only + _collide(h, h_collidee); + } + } + _reset(); + } + +public: + void item_get_AABB(BVHHandle p_handle, Bounds &r_aabb) { + BVHABB_CLASS abb; + tree.item_get_ABB(p_handle, abb); + abb.to(r_aabb); + } + +private: + // supplemental funcs + bool item_is_pairable(BVHHandle p_handle) const { return _get_extra(p_handle).pairable; } + T *item_get_userdata(BVHHandle p_handle) const { return _get_extra(p_handle).userdata; } + int item_get_subindex(BVHHandle p_handle) const { return _get_extra(p_handle).subindex; } + + void _unpair(BVHHandle p_from, BVHHandle p_to) { + tree._handle_sort(p_from, p_to); + + typename BVHTREE_CLASS::ItemExtra &exa = tree._extra[p_from.id()]; + typename BVHTREE_CLASS::ItemExtra &exb = tree._extra[p_to.id()]; + + // if the userdata is the same, no collisions should occur + if ((exa.userdata == exb.userdata) && exa.userdata) { + return; + } + + typename BVHTREE_CLASS::ItemPairs &pairs_from = tree._pairs[p_from.id()]; + typename BVHTREE_CLASS::ItemPairs &pairs_to = tree._pairs[p_to.id()]; + + void *ud_from = pairs_from.remove_pair_to(p_to); + pairs_to.remove_pair_to(p_from); + + // callback + if (unpair_callback) { + unpair_callback(pair_callback_userdata, p_from, exa.userdata, exa.subindex, p_to, exb.userdata, exb.subindex, ud_from); + } + } + + // returns true if unpair + bool _find_leavers_process_pair(typename BVHTREE_CLASS::ItemPairs &p_pairs_from, const BVHABB_CLASS &p_abb_from, BVHHandle p_from, BVHHandle p_to, bool p_full_check) { + BVHABB_CLASS abb_to; + tree.item_get_ABB(p_to, abb_to); + + // do they overlap? + if (p_abb_from.intersects(abb_to)) { + // the full check for pairable / non pairable and mask changes is extra expense + // this need not be done in most cases (for speed) except in the case where set_pairable is called + // where the masks etc of the objects in question may have changed + if (!p_full_check) { + return false; + } + const typename BVHTREE_CLASS::ItemExtra &exa = _get_extra(p_from); + const typename BVHTREE_CLASS::ItemExtra &exb = _get_extra(p_to); + + // one of the two must be pairable to still pair + // if neither are pairable, we always unpair + if (exa.pairable || exb.pairable) { + // the masks must still be compatible to pair + // i.e. if there is a hit between the two, then they should stay paired + if (tree._cull_pairing_mask_test_hit(exa.pairable_mask, exa.pairable_type, exb.pairable_mask, exb.pairable_type)) { + return false; + } + } + } + + _unpair(p_from, p_to); + return true; + } + + // find all the existing paired aabbs that are no longer + // paired, and send callbacks + void _find_leavers(BVHHandle p_handle, const BVHABB_CLASS &expanded_abb_from, bool p_full_check) { + typename BVHTREE_CLASS::ItemPairs &p_from = tree._pairs[p_handle.id()]; + + BVHABB_CLASS abb_from = expanded_abb_from; + + // remove from pairing list for every partner + for (unsigned int n = 0; n < p_from.extended_pairs.size(); n++) { + BVHHandle h_to = p_from.extended_pairs[n].handle; + if (_find_leavers_process_pair(p_from, abb_from, p_handle, h_to, p_full_check)) { + // we need to keep the counter n up to date if we deleted a pair + // as the number of items in p_from.extended_pairs will have decreased by 1 + // and we don't want to miss an item + n--; + } + } + } + + // find NEW enterers, and send callbacks for them only + // handle a and b + void _collide(BVHHandle p_ha, BVHHandle p_hb) { + // only have to do this oneway, lower ID then higher ID + tree._handle_sort(p_ha, p_hb); + + const typename BVHTREE_CLASS::ItemExtra &exa = _get_extra(p_ha); + const typename BVHTREE_CLASS::ItemExtra &exb = _get_extra(p_hb); + + // if the userdata is the same, no collisions should occur + if ((exa.userdata == exb.userdata) && exa.userdata) { + return; + } + + typename BVHTREE_CLASS::ItemPairs &p_from = tree._pairs[p_ha.id()]; + typename BVHTREE_CLASS::ItemPairs &p_to = tree._pairs[p_hb.id()]; + + // does this pair exist already? + // or only check the one with lower number of pairs for greater speed + if (p_from.num_pairs <= p_to.num_pairs) { + if (p_from.contains_pair_to(p_hb)) { + return; + } + } else { + if (p_to.contains_pair_to(p_ha)) { + return; + } + } + + // callback + void *callback_userdata = nullptr; + + if (pair_callback) { + callback_userdata = pair_callback(pair_callback_userdata, p_ha, exa.userdata, exa.subindex, p_hb, exb.userdata, exb.subindex); + } + + // new pair! .. only really need to store the userdata on the lower handle, but both have storage so... + p_from.add_pair_to(p_hb, callback_userdata); + p_to.add_pair_to(p_ha, callback_userdata); + } + + // if we remove an item, we need to immediately remove the pairs, to prevent reading the pair after deletion + void _remove_pairs_containing(BVHHandle p_handle) { + typename BVHTREE_CLASS::ItemPairs &p_from = tree._pairs[p_handle.id()]; + + // remove from pairing list for every partner. + // can't easily use a for loop here, because removing changes the size of the list + while (p_from.extended_pairs.size()) { + BVHHandle h_to = p_from.extended_pairs[0].handle; + _unpair(p_handle, h_to); + } + } + +private: + const typename BVHTREE_CLASS::ItemExtra &_get_extra(BVHHandle p_handle) const { + return tree._extra[p_handle.id()]; + } + const typename BVHTREE_CLASS::ItemRef &_get_ref(BVHHandle p_handle) const { + return tree._refs[p_handle.id()]; + } + + void _reset() { + changed_items.clear(); + _tick++; + } + + void _add_changed_item(BVHHandle p_handle, const Bounds &aabb, bool p_check_aabb = true) { + // Note that non pairable items can pair with pairable, + // so all types must be added to the list + + // aabb check with expanded aabb. This greatly decreases processing + // at the cost of slightly less accurate pairing checks + // Note this pairing AABB is separate from the AABB in the actual tree + Bounds &expanded_aabb = tree._pairs[p_handle.id()].expanded_aabb; + + // passing p_check_aabb false disables the optimization which prevents collision checks if + // the aabb hasn't changed. This is needed where set_pairable has been called, but the position + // has not changed. + if (p_check_aabb && expanded_aabb.encloses(aabb)) { + return; + } + + // ALWAYS update the new expanded aabb, even if already changed once + // this tick, because it is vital that the AABB is kept up to date + expanded_aabb = aabb; + expanded_aabb.grow_by(tree._pairing_expansion); + + // this code is to ensure that changed items only appear once on the updated list + // collision checking them multiple times is not needed, and repeats the same thing + uint32_t &last_updated_tick = tree._extra[p_handle.id()].last_updated_tick; + + if (last_updated_tick == _tick) { + return; // already on changed list + } + + // mark as on list + last_updated_tick = _tick; + + // add to the list + changed_items.push_back(p_handle); + } + + void _remove_changed_item(BVHHandle p_handle) { + // Care has to be taken here for items that are deleted. The ref ID + // could be reused on the same tick for new items. This is probably + // rare but should be taken into consideration + + // callbacks + _remove_pairs_containing(p_handle); + + // remove from changed items (not very efficient yet) + for (int n = 0; n < (int)changed_items.size(); n++) { + if (changed_items[n] == p_handle) { + changed_items.remove_unordered(n); + + // because we are using an unordered remove, + // the last changed item will now be at spot 'n', + // and we need to redo it, so we prevent moving on to + // the next n at the next for iteration. + n--; + } + } + + // reset the last updated tick (may not be necessary but just in case) + tree._extra[p_handle.id()].last_updated_tick = 0; + } + + PairCallback pair_callback; + UnpairCallback unpair_callback; + void *pair_callback_userdata; + void *unpair_callback_userdata; + + BVHTREE_CLASS tree; + + // for collision pairing, + // maintain a list of all items moved etc on each frame / tick + LocalVector<BVHHandle, uint32_t, true> changed_items; + uint32_t _tick; + +public: + BVH_Manager() { + _tick = 1; // start from 1 so items with 0 indicate never updated + pair_callback = nullptr; + unpair_callback = nullptr; + pair_callback_userdata = nullptr; + unpair_callback_userdata = nullptr; + } +}; + +#undef BVHTREE_CLASS + +#endif // BVH_H diff --git a/core/math/bvh_abb.h b/core/math/bvh_abb.h new file mode 100644 index 0000000000..bd9a01a87e --- /dev/null +++ b/core/math/bvh_abb.h @@ -0,0 +1,276 @@ +/*************************************************************************/ +/* bvh_abb.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef BVH_ABB_H +#define BVH_ABB_H + +// special optimized version of axis aligned bounding box +template <class Bounds = AABB, class Point = Vector3> +struct BVH_ABB { + struct ConvexHull { + // convex hulls (optional) + const Plane *planes; + int num_planes; + const Vector3 *points; + int num_points; + }; + + struct Segment { + Point from; + Point to; + }; + + enum IntersectResult { + IR_MISS = 0, + IR_PARTIAL, + IR_FULL, + }; + + // we store mins with a negative value in order to test them with SIMD + Point min; + Point neg_max; + + bool operator==(const BVH_ABB &o) const { return (min == o.min) && (neg_max == o.neg_max); } + bool operator!=(const BVH_ABB &o) const { return (*this == o) == false; } + + void set(const Point &_min, const Point &_max) { + min = _min; + neg_max = -_max; + } + + // to and from standard AABB + void from(const Bounds &p_aabb) { + min = p_aabb.position; + neg_max = -(p_aabb.position + p_aabb.size); + } + + void to(Bounds &r_aabb) const { + r_aabb.position = min; + r_aabb.size = calculate_size(); + } + + void merge(const BVH_ABB &p_o) { + for (int axis = 0; axis < Point::AXIS_COUNT; ++axis) { + neg_max[axis] = MIN(neg_max[axis], p_o.neg_max[axis]); + min[axis] = MIN(min[axis], p_o.min[axis]); + } + } + + Point calculate_size() const { + return -neg_max - min; + } + + Point calculate_centre() const { + return Point((calculate_size() * 0.5) + min); + } + + real_t get_proximity_to(const BVH_ABB &p_b) const { + const Point d = (min - neg_max) - (p_b.min - p_b.neg_max); + real_t proximity = 0.0; + for (int axis = 0; axis < Point::AXIS_COUNT; ++axis) { + proximity += Math::abs(d[axis]); + } + return proximity; + } + + int select_by_proximity(const BVH_ABB &p_a, const BVH_ABB &p_b) const { + return (get_proximity_to(p_a) < get_proximity_to(p_b) ? 0 : 1); + } + + uint32_t find_cutting_planes(const BVH_ABB::ConvexHull &p_hull, uint32_t *p_plane_ids) const { + uint32_t count = 0; + + for (int n = 0; n < p_hull.num_planes; n++) { + const Plane &p = p_hull.planes[n]; + if (intersects_plane(p)) { + p_plane_ids[count++] = n; + } + } + + return count; + } + + bool intersects_plane(const Plane &p_p) const { + Vector3 size = calculate_size(); + Vector3 half_extents = size * 0.5; + Vector3 ofs = min + half_extents; + + // forward side of plane? + Vector3 point_offset( + (p_p.normal.x < 0) ? -half_extents.x : half_extents.x, + (p_p.normal.y < 0) ? -half_extents.y : half_extents.y, + (p_p.normal.z < 0) ? -half_extents.z : half_extents.z); + Vector3 point = point_offset + ofs; + + if (!p_p.is_point_over(point)) { + return false; + } + + point = -point_offset + ofs; + if (p_p.is_point_over(point)) { + return false; + } + + return true; + } + + bool intersects_convex_optimized(const ConvexHull &p_hull, const uint32_t *p_plane_ids, uint32_t p_num_planes) const { + Vector3 size = calculate_size(); + Vector3 half_extents = size * 0.5; + Vector3 ofs = min + half_extents; + + for (unsigned int i = 0; i < p_num_planes; i++) { + const Plane &p = p_hull.planes[p_plane_ids[i]]; + Vector3 point( + (p.normal.x > 0) ? -half_extents.x : half_extents.x, + (p.normal.y > 0) ? -half_extents.y : half_extents.y, + (p.normal.z > 0) ? -half_extents.z : half_extents.z); + point += ofs; + if (p.is_point_over(point)) { + return false; + } + } + + return true; + } + + bool intersects_convex_partial(const ConvexHull &p_hull) const { + Bounds bb; + to(bb); + return bb.intersects_convex_shape(p_hull.planes, p_hull.num_planes, p_hull.points, p_hull.num_points); + } + + IntersectResult intersects_convex(const ConvexHull &p_hull) const { + if (intersects_convex_partial(p_hull)) { + // fully within? very important for tree checks + if (is_within_convex(p_hull)) { + return IR_FULL; + } + + return IR_PARTIAL; + } + + return IR_MISS; + } + + bool is_within_convex(const ConvexHull &p_hull) const { + // use half extents routine + Bounds bb; + to(bb); + return bb.inside_convex_shape(p_hull.planes, p_hull.num_planes); + } + + bool is_point_within_hull(const ConvexHull &p_hull, const Vector3 &p_pt) const { + for (int n = 0; n < p_hull.num_planes; n++) { + if (p_hull.planes[n].distance_to(p_pt) > 0.0f) { + return false; + } + } + return true; + } + + bool intersects_segment(const Segment &p_s) const { + Bounds bb; + to(bb); + return bb.intersects_segment(p_s.from, p_s.to); + } + + bool intersects_point(const Point &p_pt) const { + if (_any_lessthan(-p_pt, neg_max)) { + return false; + } + if (_any_lessthan(p_pt, min)) { + return false; + } + return true; + } + + bool intersects(const BVH_ABB &p_o) const { + if (_any_morethan(p_o.min, -neg_max)) { + return false; + } + if (_any_morethan(min, -p_o.neg_max)) { + return false; + } + return true; + } + + bool is_other_within(const BVH_ABB &p_o) const { + if (_any_lessthan(p_o.neg_max, neg_max)) { + return false; + } + if (_any_lessthan(p_o.min, min)) { + return false; + } + return true; + } + + void grow(const Point &p_change) { + neg_max -= p_change; + min -= p_change; + } + + void expand(real_t p_change) { + Point change; + change.set_all(p_change); + grow(change); + } + + // Actually surface area metric. + float get_area() const { + Point d = calculate_size(); + return 2.0f * (d.x * d.y + d.y * d.z + d.z * d.x); + } + + void set_to_max_opposite_extents() { + neg_max.set_all(FLT_MAX); + min = neg_max; + } + + bool _any_morethan(const Point &p_a, const Point &p_b) const { + for (int axis = 0; axis < Point::AXIS_COUNT; ++axis) { + if (p_a[axis] > p_b[axis]) { + return true; + } + } + return false; + } + + bool _any_lessthan(const Point &p_a, const Point &p_b) const { + for (int axis = 0; axis < Point::AXIS_COUNT; ++axis) { + if (p_a[axis] < p_b[axis]) { + return true; + } + } + return false; + } +}; + +#endif // BVH_ABB_H diff --git a/core/math/bvh_cull.inc b/core/math/bvh_cull.inc new file mode 100644 index 0000000000..cba8ea6cb3 --- /dev/null +++ b/core/math/bvh_cull.inc @@ -0,0 +1,534 @@ +public: +// cull parameters is a convenient way of passing a bunch +// of arguments through the culling functions without +// writing loads of code. Not all members are used for some cull checks +struct CullParams { + int result_count_overall; // both trees + int result_count; // this tree only + int result_max; + T **result_array; + int *subindex_array; + + // nobody truly understands how masks are intended to work. + uint32_t mask; + uint32_t pairable_type; + + // optional components for different tests + Vector3 point; + BVHABB_CLASS abb; + typename BVHABB_CLASS::ConvexHull hull; + typename BVHABB_CLASS::Segment segment; + + // when collision testing, non pairable moving items + // only need to be tested against the pairable tree. + // collisions with other non pairable items are irrelevant. + bool test_pairable_only; +}; + +private: +void _cull_translate_hits(CullParams &p) { + int num_hits = _cull_hits.size(); + int left = p.result_max - p.result_count_overall; + + if (num_hits > left) { + num_hits = left; + } + + int out_n = p.result_count_overall; + + for (int n = 0; n < num_hits; n++) { + uint32_t ref_id = _cull_hits[n]; + + const ItemExtra &ex = _extra[ref_id]; + p.result_array[out_n] = ex.userdata; + + if (p.subindex_array) { + p.subindex_array[out_n] = ex.subindex; + } + + out_n++; + } + + p.result_count = num_hits; + p.result_count_overall += num_hits; +} + +public: +int cull_convex(CullParams &r_params, bool p_translate_hits = true) { + _cull_hits.clear(); + r_params.result_count = 0; + + for (int n = 0; n < NUM_TREES; n++) { + if (_root_node_id[n] == BVHCommon::INVALID) { + continue; + } + + _cull_convex_iterative(_root_node_id[n], r_params); + } + + if (p_translate_hits) { + _cull_translate_hits(r_params); + } + + return r_params.result_count; +} + +int cull_segment(CullParams &r_params, bool p_translate_hits = true) { + _cull_hits.clear(); + r_params.result_count = 0; + + for (int n = 0; n < NUM_TREES; n++) { + if (_root_node_id[n] == BVHCommon::INVALID) { + continue; + } + + _cull_segment_iterative(_root_node_id[n], r_params); + } + + if (p_translate_hits) { + _cull_translate_hits(r_params); + } + + return r_params.result_count; +} + +int cull_point(CullParams &r_params, bool p_translate_hits = true) { + _cull_hits.clear(); + r_params.result_count = 0; + + for (int n = 0; n < NUM_TREES; n++) { + if (_root_node_id[n] == BVHCommon::INVALID) { + continue; + } + + _cull_point_iterative(_root_node_id[n], r_params); + } + + if (p_translate_hits) { + _cull_translate_hits(r_params); + } + + return r_params.result_count; +} + +int cull_aabb(CullParams &r_params, bool p_translate_hits = true) { + _cull_hits.clear(); + r_params.result_count = 0; + + for (int n = 0; n < NUM_TREES; n++) { + if (_root_node_id[n] == BVHCommon::INVALID) { + continue; + } + + if ((n == 0) && r_params.test_pairable_only) { + continue; + } + + _cull_aabb_iterative(_root_node_id[n], r_params); + } + + if (p_translate_hits) { + _cull_translate_hits(r_params); + } + + return r_params.result_count; +} + +bool _cull_hits_full(const CullParams &p) { + // instead of checking every hit, we can do a lazy check for this condition. + // it isn't a problem if we write too much _cull_hits because they only the + // result_max amount will be translated and outputted. But we might as + // well stop our cull checks after the maximum has been reached. + return (int)_cull_hits.size() >= p.result_max; +} + +// write this logic once for use in all routines +// double check this as a possible source of bugs in future. +bool _cull_pairing_mask_test_hit(uint32_t p_maskA, uint32_t p_typeA, uint32_t p_maskB, uint32_t p_typeB) const { + // double check this as a possible source of bugs in future. + bool A_match_B = p_maskA & p_typeB; + + if (!A_match_B) { + bool B_match_A = p_maskB & p_typeA; + if (!B_match_A) { + return false; + } + } + + return true; +} + +void _cull_hit(uint32_t p_ref_id, CullParams &p) { + // take into account masks etc + // this would be more efficient to do before plane checks, + // but done here for ease to get started + if (USE_PAIRS) { + const ItemExtra &ex = _extra[p_ref_id]; + + if (!_cull_pairing_mask_test_hit(p.mask, p.pairable_type, ex.pairable_mask, ex.pairable_type)) { + return; + } + } + + _cull_hits.push_back(p_ref_id); +} + +bool _cull_segment_iterative(uint32_t p_node_id, CullParams &r_params) { + // our function parameters to keep on a stack + struct CullSegParams { + uint32_t node_id; + }; + + // most of the iterative functionality is contained in this helper class + BVH_IterativeInfo<CullSegParams> ii; + + // alloca must allocate the stack from this function, it cannot be allocated in the + // helper class + ii.stack = (CullSegParams *)alloca(ii.get_alloca_stacksize()); + + // seed the stack + ii.get_first()->node_id = p_node_id; + + CullSegParams csp; + + // while there are still more nodes on the stack + while (ii.pop(csp)) { + TNode &tnode = _nodes[csp.node_id]; + + if (tnode.is_leaf()) { + // lazy check for hits full up condition + if (_cull_hits_full(r_params)) { + return false; + } + + TLeaf &leaf = _node_get_leaf(tnode); + + // test children individually + for (int n = 0; n < leaf.num_items; n++) { + const BVHABB_CLASS &aabb = leaf.get_aabb(n); + + if (aabb.intersects_segment(r_params.segment)) { + uint32_t child_id = leaf.get_item_ref_id(n); + + // register hit + _cull_hit(child_id, r_params); + } + } + } else { + // test children individually + for (int n = 0; n < tnode.num_children; n++) { + uint32_t child_id = tnode.children[n]; + const BVHABB_CLASS &child_abb = _nodes[child_id].aabb; + + if (child_abb.intersects_segment(r_params.segment)) { + // add to the stack + CullSegParams *child = ii.request(); + child->node_id = child_id; + } + } + } + + } // while more nodes to pop + + // true indicates results are not full + return true; +} + +bool _cull_point_iterative(uint32_t p_node_id, CullParams &r_params) { + // our function parameters to keep on a stack + struct CullPointParams { + uint32_t node_id; + }; + + // most of the iterative functionality is contained in this helper class + BVH_IterativeInfo<CullPointParams> ii; + + // alloca must allocate the stack from this function, it cannot be allocated in the + // helper class + ii.stack = (CullPointParams *)alloca(ii.get_alloca_stacksize()); + + // seed the stack + ii.get_first()->node_id = p_node_id; + + CullPointParams cpp; + + // while there are still more nodes on the stack + while (ii.pop(cpp)) { + TNode &tnode = _nodes[cpp.node_id]; + // no hit with this node? + if (!tnode.aabb.intersects_point(r_params.point)) { + continue; + } + + if (tnode.is_leaf()) { + // lazy check for hits full up condition + if (_cull_hits_full(r_params)) { + return false; + } + + TLeaf &leaf = _node_get_leaf(tnode); + + // test children individually + for (int n = 0; n < leaf.num_items; n++) { + if (leaf.get_aabb(n).intersects_point(r_params.point)) { + uint32_t child_id = leaf.get_item_ref_id(n); + + // register hit + _cull_hit(child_id, r_params); + } + } + } else { + // test children individually + for (int n = 0; n < tnode.num_children; n++) { + uint32_t child_id = tnode.children[n]; + + // add to the stack + CullPointParams *child = ii.request(); + child->node_id = child_id; + } + } + + } // while more nodes to pop + + // true indicates results are not full + return true; +} + +bool _cull_aabb_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully_within = false) { + // our function parameters to keep on a stack + struct CullAABBParams { + uint32_t node_id; + bool fully_within; + }; + + // most of the iterative functionality is contained in this helper class + BVH_IterativeInfo<CullAABBParams> ii; + + // alloca must allocate the stack from this function, it cannot be allocated in the + // helper class + ii.stack = (CullAABBParams *)alloca(ii.get_alloca_stacksize()); + + // seed the stack + ii.get_first()->node_id = p_node_id; + ii.get_first()->fully_within = p_fully_within; + + CullAABBParams cap; + + // while there are still more nodes on the stack + while (ii.pop(cap)) { + TNode &tnode = _nodes[cap.node_id]; + + if (tnode.is_leaf()) { + // lazy check for hits full up condition + if (_cull_hits_full(r_params)) { + return false; + } + + TLeaf &leaf = _node_get_leaf(tnode); + + // if fully within we can just add all items + // as long as they pass mask checks + if (cap.fully_within) { + for (int n = 0; n < leaf.num_items; n++) { + uint32_t child_id = leaf.get_item_ref_id(n); + + // register hit + _cull_hit(child_id, r_params); + } + } else { + for (int n = 0; n < leaf.num_items; n++) { + const BVHABB_CLASS &aabb = leaf.get_aabb(n); + + if (aabb.intersects(r_params.abb)) { + uint32_t child_id = leaf.get_item_ref_id(n); + + // register hit + _cull_hit(child_id, r_params); + } + } + } // not fully within + } else { + if (!cap.fully_within) { + // test children individually + for (int n = 0; n < tnode.num_children; n++) { + uint32_t child_id = tnode.children[n]; + const BVHABB_CLASS &child_abb = _nodes[child_id].aabb; + + if (child_abb.intersects(r_params.abb)) { + // is the node totally within the aabb? + bool fully_within = r_params.abb.is_other_within(child_abb); + + // add to the stack + CullAABBParams *child = ii.request(); + + // should always return valid child + child->node_id = child_id; + child->fully_within = fully_within; + } + } + } else { + for (int n = 0; n < tnode.num_children; n++) { + uint32_t child_id = tnode.children[n]; + + // add to the stack + CullAABBParams *child = ii.request(); + + // should always return valid child + child->node_id = child_id; + child->fully_within = true; + } + } + } + + } // while more nodes to pop + + // true indicates results are not full + return true; +} + +// returns full up with results +bool _cull_convex_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully_within = false) { + // our function parameters to keep on a stack + struct CullConvexParams { + uint32_t node_id; + bool fully_within; + }; + + // most of the iterative functionality is contained in this helper class + BVH_IterativeInfo<CullConvexParams> ii; + + // alloca must allocate the stack from this function, it cannot be allocated in the + // helper class + ii.stack = (CullConvexParams *)alloca(ii.get_alloca_stacksize()); + + // seed the stack + ii.get_first()->node_id = p_node_id; + ii.get_first()->fully_within = p_fully_within; + + // preallocate these as a once off to be reused + uint32_t max_planes = r_params.hull.num_planes; + uint32_t *plane_ids = (uint32_t *)alloca(sizeof(uint32_t) * max_planes); + + CullConvexParams ccp; + + // while there are still more nodes on the stack + while (ii.pop(ccp)) { + const TNode &tnode = _nodes[ccp.node_id]; + + if (!ccp.fully_within) { + typename BVHABB_CLASS::IntersectResult res = tnode.aabb.intersects_convex(r_params.hull); + + switch (res) { + default: { + continue; // miss, just move on to the next node in the stack + } break; + case BVHABB_CLASS::IR_PARTIAL: { + } break; + case BVHABB_CLASS::IR_FULL: { + ccp.fully_within = true; + } break; + } + + } // if not fully within already + + if (tnode.is_leaf()) { + // lazy check for hits full up condition + if (_cull_hits_full(r_params)) { + return false; + } + + const TLeaf &leaf = _node_get_leaf(tnode); + + // if fully within, simply add all items to the result + // (taking into account masks) + if (ccp.fully_within) { + for (int n = 0; n < leaf.num_items; n++) { + uint32_t child_id = leaf.get_item_ref_id(n); + + // register hit + _cull_hit(child_id, r_params); + } + + } else { + // we can either use a naive check of all the planes against the AABB, + // or an optimized check, which finds in advance which of the planes can possibly + // cut the AABB, and only tests those. This can be much faster. +#define BVH_CONVEX_CULL_OPTIMIZED +#ifdef BVH_CONVEX_CULL_OPTIMIZED + // first find which planes cut the aabb + uint32_t num_planes = tnode.aabb.find_cutting_planes(r_params.hull, plane_ids); + BVH_ASSERT(num_planes <= max_planes); + +//#define BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK +#ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK + // rigorous check + uint32_t results[MAX_ITEMS]; + uint32_t num_results = 0; +#endif + + // test children individually + for (int n = 0; n < leaf.num_items; n++) { + //const Item &item = leaf.get_item(n); + const BVHABB_CLASS &aabb = leaf.get_aabb(n); + + if (aabb.intersects_convex_optimized(r_params.hull, plane_ids, num_planes)) { + uint32_t child_id = leaf.get_item_ref_id(n); + +#ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK + results[num_results++] = child_id; +#endif + + // register hit + _cull_hit(child_id, r_params); + } + } + +#ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK + uint32_t test_count = 0; + + for (int n = 0; n < leaf.num_items; n++) { + const BVHABB_CLASS &aabb = leaf.get_aabb(n); + + if (aabb.intersects_convex_partial(r_params.hull)) { + uint32_t child_id = leaf.get_item_ref_id(n); + + CRASH_COND(child_id != results[test_count++]); + CRASH_COND(test_count > num_results); + } + } +#endif + +#else + // not BVH_CONVEX_CULL_OPTIMIZED + // test children individually + for (int n = 0; n < leaf.num_items; n++) { + const BVHABB_CLASS &aabb = leaf.get_aabb(n); + + if (aabb.intersects_convex_partial(r_params.hull)) { + uint32_t child_id = leaf.get_item_ref_id(n); + + // full up with results? exit early, no point in further testing + if (!_cull_hit(child_id, r_params)) + return false; + } + } +#endif // BVH_CONVEX_CULL_OPTIMIZED + } // if not fully within + } else { + for (int n = 0; n < tnode.num_children; n++) { + uint32_t child_id = tnode.children[n]; + + // add to the stack + CullConvexParams *child = ii.request(); + + // should always return valid child + child->node_id = child_id; + child->fully_within = ccp.fully_within; + } + } + + } // while more nodes to pop + + // true indicates results are not full + return true; +} diff --git a/core/math/bvh_debug.inc b/core/math/bvh_debug.inc new file mode 100644 index 0000000000..a97304334c --- /dev/null +++ b/core/math/bvh_debug.inc @@ -0,0 +1,68 @@ +public: +#ifdef BVH_VERBOSE +void _debug_recursive_print_tree(int p_tree_id) const { + if (_root_node_id[p_tree_id] != BVHCommon::INVALID) + _debug_recursive_print_tree_node(_root_node_id[p_tree_id]); +} + +String _debug_aabb_to_string(const BVHABB_CLASS &aabb) const { + String sz = "("; + sz += itos(aabb.min.x); + sz += " ~ "; + sz += itos(-aabb.neg_max.x); + sz += ") ("; + + sz += itos(aabb.min.y); + sz += " ~ "; + sz += itos(-aabb.neg_max.y); + sz += ") ("; + + sz += itos(aabb.min.z); + sz += " ~ "; + sz += itos(-aabb.neg_max.z); + sz += ") "; + + Vector3 size = aabb.calculate_size(); + float vol = size.x * size.y * size.z; + sz += "vol " + itos(vol); + + return sz; +} + +void _debug_recursive_print_tree_node(uint32_t p_node_id, int depth = 0) const { + const TNode &tnode = _nodes[p_node_id]; + + String sz = ""; + for (int n = 0; n < depth; n++) { + sz += "\t"; + } + sz += itos(p_node_id); + + if (tnode.is_leaf()) { + sz += " L"; + sz += itos(tnode.height) + " "; + const TLeaf &leaf = _node_get_leaf(tnode); + + sz += "["; + for (int n = 0; n < leaf.num_items; n++) { + if (n) + sz += ", "; + sz += "r"; + sz += itos(leaf.get_item_ref_id(n)); + } + sz += "] "; + } else { + sz += " N"; + sz += itos(tnode.height) + " "; + } + + sz += _debug_aabb_to_string(tnode.aabb); + print_line(sz); + + if (!tnode.is_leaf()) { + for (int n = 0; n < tnode.num_children; n++) { + _debug_recursive_print_tree_node(tnode.children[n], depth + 1); + } + } +} +#endif diff --git a/core/math/bvh_integrity.inc b/core/math/bvh_integrity.inc new file mode 100644 index 0000000000..02e9d30097 --- /dev/null +++ b/core/math/bvh_integrity.inc @@ -0,0 +1,42 @@ +void _integrity_check_all() { +#ifdef BVH_INTEGRITY_CHECKS + for (int n = 0; n < NUM_TREES; n++) { + uint32_t root = _root_node_id[n]; + if (root != BVHCommon::INVALID) { + _integrity_check_down(root); + } + } +#endif +} + +void _integrity_check_up(uint32_t p_node_id) { + TNode &node = _nodes[p_node_id]; + + BVHABB_CLASS abb = node.aabb; + node_update_aabb(node); + + BVHABB_CLASS abb2 = node.aabb; + abb2.expand(-_node_expansion); + + CRASH_COND(!abb.is_other_within(abb2)); +} + +void _integrity_check_down(uint32_t p_node_id) { + const TNode &node = _nodes[p_node_id]; + + if (node.is_leaf()) { + _integrity_check_up(p_node_id); + } else { + CRASH_COND(node.num_children != 2); + + for (int n = 0; n < node.num_children; n++) { + uint32_t child_id = node.children[n]; + + // check the children parent pointers are correct + TNode &child = _nodes[child_id]; + CRASH_COND(child.parent_id != p_node_id); + + _integrity_check_down(child_id); + } + } +} diff --git a/core/math/bvh_logic.inc b/core/math/bvh_logic.inc new file mode 100644 index 0000000000..afab08f151 --- /dev/null +++ b/core/math/bvh_logic.inc @@ -0,0 +1,230 @@ + +// for slow incremental optimization, we will periodically remove each +// item from the tree and reinsert, to give it a chance to find a better position +void _logic_item_remove_and_reinsert(uint32_t p_ref_id) { + // get the reference + ItemRef &ref = _refs[p_ref_id]; + + // no need to optimize inactive items + if (!ref.is_active()) { + return; + } + + // special case of debug draw + if (ref.item_id == BVHCommon::INVALID) { + return; + } + + BVH_ASSERT(ref.tnode_id != BVHCommon::INVALID); + + // some overlay elaborate way to find out which tree the node is in! + BVHHandle temp_handle; + temp_handle.set_id(p_ref_id); + uint32_t tree_id = _handle_get_tree_id(temp_handle); + + // remove and reinsert + BVHABB_CLASS abb; + node_remove_item(p_ref_id, tree_id, &abb); + + // we must choose where to add to tree + ref.tnode_id = _logic_choose_item_add_node(_root_node_id[tree_id], abb); + _node_add_item(ref.tnode_id, p_ref_id, abb); + + refit_upward_and_balance(ref.tnode_id, tree_id); +} + +// from randy gaul balance function +BVHABB_CLASS _logic_abb_merge(const BVHABB_CLASS &a, const BVHABB_CLASS &b) { + BVHABB_CLASS c = a; + c.merge(b); + return c; +} + +//-------------------------------------------------------------------------------------------------- +/** +@file q3DynamicAABBTree.h +@author Randy Gaul +@date 10/10/2014 + Copyright (c) 2014 Randy Gaul http://www.randygaul.net + This software is provided 'as-is', without any express or implied + warranty. In no event will the authors be held liable for any damages + arising from the use of this software. + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it + freely, subject to the following restrictions: + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + 2. Altered source versions must be plainly marked as such, and must not + be misrepresented as being the original software. + 3. This notice may not be removed or altered from any source distribution. +*/ +//-------------------------------------------------------------------------------------------------- + +// This function is based on the 'Balance' function from Randy Gaul's qu3e +// https://github.com/RandyGaul/qu3e +// It is MODIFIED from qu3e version. +// This is the only function used (and _logic_abb_merge helper function). +int32_t _logic_balance(int32_t iA, uint32_t p_tree_id) { + // return iA; // uncomment this to bypass balance + + TNode *A = &_nodes[iA]; + + if (A->is_leaf() || A->height == 1) { + return iA; + } + + /* A + / \ + B C + / \ / \ + D E F G + */ + + CRASH_COND(A->num_children != 2); + int32_t iB = A->children[0]; + int32_t iC = A->children[1]; + TNode *B = &_nodes[iB]; + TNode *C = &_nodes[iC]; + + int32_t balance = C->height - B->height; + + // C is higher, promote C + if (balance > 1) { + int32_t iF = C->children[0]; + int32_t iG = C->children[1]; + TNode *F = &_nodes[iF]; + TNode *G = &_nodes[iG]; + + // grandParent point to C + if (A->parent_id != BVHCommon::INVALID) { + if (_nodes[A->parent_id].children[0] == iA) { + _nodes[A->parent_id].children[0] = iC; + + } else { + _nodes[A->parent_id].children[1] = iC; + } + } else { + // check this .. seems dodgy + change_root_node(iC, p_tree_id); + } + + // Swap A and C + C->children[0] = iA; + C->parent_id = A->parent_id; + A->parent_id = iC; + + // Finish rotation + if (F->height > G->height) { + C->children[1] = iF; + A->children[1] = iG; + G->parent_id = iA; + A->aabb = _logic_abb_merge(B->aabb, G->aabb); + C->aabb = _logic_abb_merge(A->aabb, F->aabb); + + A->height = 1 + MAX(B->height, G->height); + C->height = 1 + MAX(A->height, F->height); + } + + else { + C->children[1] = iG; + A->children[1] = iF; + F->parent_id = iA; + A->aabb = _logic_abb_merge(B->aabb, F->aabb); + C->aabb = _logic_abb_merge(A->aabb, G->aabb); + + A->height = 1 + MAX(B->height, F->height); + C->height = 1 + MAX(A->height, G->height); + } + + return iC; + } + + // B is higher, promote B + else if (balance < -1) { + int32_t iD = B->children[0]; + int32_t iE = B->children[1]; + TNode *D = &_nodes[iD]; + TNode *E = &_nodes[iE]; + + // grandParent point to B + if (A->parent_id != BVHCommon::INVALID) { + if (_nodes[A->parent_id].children[0] == iA) { + _nodes[A->parent_id].children[0] = iB; + } else { + _nodes[A->parent_id].children[1] = iB; + } + } + + else { + // check this .. seems dodgy + change_root_node(iB, p_tree_id); + } + + // Swap A and B + B->children[1] = iA; + B->parent_id = A->parent_id; + A->parent_id = iB; + + // Finish rotation + if (D->height > E->height) { + B->children[0] = iD; + A->children[0] = iE; + E->parent_id = iA; + A->aabb = _logic_abb_merge(C->aabb, E->aabb); + B->aabb = _logic_abb_merge(A->aabb, D->aabb); + + A->height = 1 + MAX(C->height, E->height); + B->height = 1 + MAX(A->height, D->height); + } + + else { + B->children[0] = iE; + A->children[0] = iD; + D->parent_id = iA; + A->aabb = _logic_abb_merge(C->aabb, D->aabb); + B->aabb = _logic_abb_merge(A->aabb, E->aabb); + + A->height = 1 + MAX(C->height, D->height); + B->height = 1 + MAX(A->height, E->height); + } + + return iB; + } + + return iA; +} + +// either choose an existing node to add item to, or create a new node and return this +uint32_t _logic_choose_item_add_node(uint32_t p_node_id, const BVHABB_CLASS &p_aabb) { + while (true) { + BVH_ASSERT(p_node_id != BVHCommon::INVALID); + TNode &tnode = _nodes[p_node_id]; + + if (tnode.is_leaf()) { + // if a leaf, and non full, use this to add to + if (!node_is_leaf_full(tnode)) { + return p_node_id; + } + + // else split the leaf, and use one of the children to add to + return split_leaf(p_node_id, p_aabb); + } + + // this should not happen??? + // is still happening, need to debug and find circumstances. Is not that serious + // but would be nice to prevent. I think it only happens with the root node. + if (tnode.num_children == 1) { + WARN_PRINT_ONCE("BVH::recursive_choose_item_add_node, node with 1 child, recovering"); + p_node_id = tnode.children[0]; + } else { + BVH_ASSERT(tnode.num_children == 2); + TNode &childA = _nodes[tnode.children[0]]; + TNode &childB = _nodes[tnode.children[1]]; + int which = p_aabb.select_by_proximity(childA.aabb, childB.aabb); + + p_node_id = tnode.children[which]; + } + } +} diff --git a/core/math/bvh_misc.inc b/core/math/bvh_misc.inc new file mode 100644 index 0000000000..71aa0e4fe0 --- /dev/null +++ b/core/math/bvh_misc.inc @@ -0,0 +1,55 @@ + +int _handle_get_tree_id(BVHHandle p_handle) const { + if (USE_PAIRS) { + int tree = 0; + if (_extra[p_handle.id()].pairable) { + tree = 1; + } + return tree; + } + return 0; +} + +public: +void _handle_sort(BVHHandle &p_ha, BVHHandle &p_hb) const { + if (p_ha.id() > p_hb.id()) { + BVHHandle temp = p_hb; + p_hb = p_ha; + p_ha = temp; + } +} + +private: +void create_root_node(int p_tree) { + // if there is no root node, create one + if (_root_node_id[p_tree] == BVHCommon::INVALID) { + uint32_t root_node_id; + TNode *node = _nodes.request(root_node_id); + node->clear(); + _root_node_id[p_tree] = root_node_id; + + // make the root node a leaf + uint32_t leaf_id; + TLeaf *leaf = _leaves.request(leaf_id); + leaf->clear(); + node->neg_leaf_id = -(int)leaf_id; + } +} + +bool node_is_leaf_full(TNode &tnode) const { + const TLeaf &leaf = _node_get_leaf(tnode); + return leaf.is_full(); +} + +public: +TLeaf &_node_get_leaf(TNode &tnode) { + BVH_ASSERT(tnode.is_leaf()); + return _leaves[tnode.get_leaf_id()]; +} + +const TLeaf &_node_get_leaf(const TNode &tnode) const { + BVH_ASSERT(tnode.is_leaf()); + return _leaves[tnode.get_leaf_id()]; +} + +private: diff --git a/core/math/bvh_pair.inc b/core/math/bvh_pair.inc new file mode 100644 index 0000000000..839db59a3a --- /dev/null +++ b/core/math/bvh_pair.inc @@ -0,0 +1,62 @@ +public: +// note .. maybe this can be attached to another node structure? +// depends which works best for cache. +struct ItemPairs { + struct Link { + void set(BVHHandle h, void *ud) { + handle = h; + userdata = ud; + } + BVHHandle handle; + void *userdata; + }; + + void clear() { + num_pairs = 0; + extended_pairs.reset(); + expanded_aabb = Bounds(); + } + + Bounds expanded_aabb; + + // maybe we can just use the number in the vector TODO + int32_t num_pairs; + LocalVector<Link> extended_pairs; + + void add_pair_to(BVHHandle h, void *p_userdata) { + Link temp; + temp.set(h, p_userdata); + + extended_pairs.push_back(temp); + num_pairs++; + } + + uint32_t find_pair_to(BVHHandle h) const { + for (int n = 0; n < num_pairs; n++) { + if (extended_pairs[n].handle == h) { + return n; + } + } + return -1; + } + + bool contains_pair_to(BVHHandle h) const { + return find_pair_to(h) != BVHCommon::INVALID; + } + + // return success + void *remove_pair_to(BVHHandle h) { + void *userdata = nullptr; + + for (int n = 0; n < num_pairs; n++) { + if (extended_pairs[n].handle == h) { + userdata = extended_pairs[n].userdata; + extended_pairs.remove_unordered(n); + num_pairs--; + break; + } + } + + return userdata; + } +}; diff --git a/core/math/bvh_public.inc b/core/math/bvh_public.inc new file mode 100644 index 0000000000..2c1e406712 --- /dev/null +++ b/core/math/bvh_public.inc @@ -0,0 +1,423 @@ +public: +BVHHandle item_add(T *p_userdata, bool p_active, const Bounds &p_aabb, int32_t p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask, bool p_invisible = false) { +#ifdef BVH_VERBOSE_TREE + VERBOSE_PRINT("\nitem_add BEFORE"); + _debug_recursive_print_tree(0); + VERBOSE_PRINT("\n"); +#endif + + BVHABB_CLASS abb; + abb.from(p_aabb); + + // handle to be filled with the new item ref + BVHHandle handle; + + // ref id easier to pass around than handle + uint32_t ref_id; + + // this should never fail + ItemRef *ref = _refs.request(ref_id); + + // the extra data should be parallel list to the references + uint32_t extra_id; + ItemExtra *extra = _extra.request(extra_id); + BVH_ASSERT(extra_id == ref_id); + + // pairs info + if (USE_PAIRS) { + uint32_t pairs_id; + ItemPairs *pairs = _pairs.request(pairs_id); + pairs->clear(); + BVH_ASSERT(pairs_id == ref_id); + } + + extra->subindex = p_subindex; + extra->userdata = p_userdata; + extra->last_updated_tick = 0; + + // add an active reference to the list for slow incremental optimize + // this list must be kept in sync with the references as they are added or removed. + extra->active_ref_id = _active_refs.size(); + _active_refs.push_back(ref_id); + + if (USE_PAIRS) { + extra->pairable_mask = p_pairable_mask; + extra->pairable_type = p_pairable_type; + extra->pairable = p_pairable; + } else { + // just for safety, in case this gets queried etc + extra->pairable = 0; + p_pairable = false; + } + + // assign to handle to return + handle.set_id(ref_id); + + uint32_t tree_id = 0; + if (p_pairable) { + tree_id = 1; + } + + create_root_node(tree_id); + + // we must choose where to add to tree + if (p_active) { + ref->tnode_id = _logic_choose_item_add_node(_root_node_id[tree_id], abb); + + bool refit = _node_add_item(ref->tnode_id, ref_id, abb); + + if (refit) { + // only need to refit from the parent + const TNode &add_node = _nodes[ref->tnode_id]; + if (add_node.parent_id != BVHCommon::INVALID) { + refit_upward_and_balance(add_node.parent_id, tree_id); + } + } + } else { + ref->set_inactive(); + } + +#ifdef BVH_VERBOSE + // memory use + int mem = _refs.estimate_memory_use(); + mem += _nodes.estimate_memory_use(); + + String sz = _debug_aabb_to_string(abb); + VERBOSE_PRINT("\titem_add [" + itos(ref_id) + "] " + itos(_refs.size()) + " refs,\t" + itos(_nodes.size()) + " nodes " + sz); + VERBOSE_PRINT("mem use : " + itos(mem) + ", num nodes : " + itos(_nodes.size())); + +#endif + + return handle; +} + +void _debug_print_refs() { +#ifdef BVH_VERBOSE_TREE + print_line("refs....."); + for (int n = 0; n < _refs.size(); n++) { + const ItemRef &ref = _refs[n]; + print_line("tnode_id " + itos(ref.tnode_id) + ", item_id " + itos(ref.item_id)); + } + +#endif +} + +// returns false if noop +bool item_move(BVHHandle p_handle, const Bounds &p_aabb) { + uint32_t ref_id = p_handle.id(); + + // get the reference + ItemRef &ref = _refs[ref_id]; + if (!ref.is_active()) { + return false; + } + + BVHABB_CLASS abb; + abb.from(p_aabb); + + BVH_ASSERT(ref.tnode_id != BVHCommon::INVALID); + TNode &tnode = _nodes[ref.tnode_id]; + + // does it fit within the current aabb? + if (tnode.aabb.is_other_within(abb)) { + // do nothing .. fast path .. not moved enough to need refit + + // however we WILL update the exact aabb in the leaf, as this will be needed + // for accurate collision detection + TLeaf &leaf = _node_get_leaf(tnode); + + BVHABB_CLASS &leaf_abb = leaf.get_aabb(ref.item_id); + + // no change? + if (leaf_abb == abb) { + return false; + } + + leaf_abb = abb; + _integrity_check_all(); + + return true; + } + + uint32_t tree_id = _handle_get_tree_id(p_handle); + + // remove and reinsert + node_remove_item(ref_id, tree_id); + + // we must choose where to add to tree + ref.tnode_id = _logic_choose_item_add_node(_root_node_id[tree_id], abb); + + // add to the tree + bool needs_refit = _node_add_item(ref.tnode_id, ref_id, abb); + + // only need to refit from the PARENT + if (needs_refit) { + // only need to refit from the parent + const TNode &add_node = _nodes[ref.tnode_id]; + if (add_node.parent_id != BVHCommon::INVALID) { + // not sure we need to rebalance all the time, this can be done less often + refit_upward(add_node.parent_id); + } + //refit_upward_and_balance(add_node.parent_id); + } + + return true; +} + +void item_remove(BVHHandle p_handle) { + uint32_t ref_id = p_handle.id(); + + uint32_t tree_id = _handle_get_tree_id(p_handle); + + VERBOSE_PRINT("item_remove [" + itos(ref_id) + "] "); + + //////////////////////////////////////// + // remove the active reference from the list for slow incremental optimize + // this list must be kept in sync with the references as they are added or removed. + uint32_t active_ref_id = _extra[ref_id].active_ref_id; + uint32_t ref_id_moved_back = _active_refs[_active_refs.size() - 1]; + + // swap back and decrement for fast unordered remove + _active_refs[active_ref_id] = ref_id_moved_back; + _active_refs.resize(_active_refs.size() - 1); + + // keep the moved active reference up to date + _extra[ref_id_moved_back].active_ref_id = active_ref_id; + //////////////////////////////////////// + + // remove the item from the node (only if active) + if (_refs[ref_id].is_active()) { + node_remove_item(ref_id, tree_id); + } + + // remove the item reference + _refs.free(ref_id); + _extra.free(ref_id); + if (USE_PAIRS) { + _pairs.free(ref_id); + } + + // don't think refit_all is necessary? + //refit_all(_tree_id); + +#ifdef BVH_VERBOSE_TREE + _debug_recursive_print_tree(tree_id); +#endif +} + +// returns success +bool item_activate(BVHHandle p_handle, const Bounds &p_aabb) { + uint32_t ref_id = p_handle.id(); + ItemRef &ref = _refs[ref_id]; + if (ref.is_active()) { + // noop + return false; + } + + // add to tree + BVHABB_CLASS abb; + abb.from(p_aabb); + + uint32_t tree_id = _handle_get_tree_id(p_handle); + + // we must choose where to add to tree + ref.tnode_id = _logic_choose_item_add_node(_root_node_id[tree_id], abb); + _node_add_item(ref.tnode_id, ref_id, abb); + + refit_upward_and_balance(ref.tnode_id, tree_id); + + return true; +} + +// returns success +bool item_deactivate(BVHHandle p_handle) { + uint32_t ref_id = p_handle.id(); + ItemRef &ref = _refs[ref_id]; + if (!ref.is_active()) { + // noop + return false; + } + + uint32_t tree_id = _handle_get_tree_id(p_handle); + + // remove from tree + BVHABB_CLASS abb; + node_remove_item(ref_id, tree_id, &abb); + + // mark as inactive + ref.set_inactive(); + return true; +} + +bool item_get_active(BVHHandle p_handle) const { + uint32_t ref_id = p_handle.id(); + const ItemRef &ref = _refs[ref_id]; + return ref.is_active(); +} + +// during collision testing, we want to set the mask and whether pairable for the item testing from +void item_fill_cullparams(BVHHandle p_handle, CullParams &r_params) const { + uint32_t ref_id = p_handle.id(); + const ItemExtra &extra = _extra[ref_id]; + + // testing from a non pairable item, we only want to test pairable items + r_params.test_pairable_only = extra.pairable == 0; + + // we take into account the mask of the item testing from + r_params.mask = extra.pairable_mask; + r_params.pairable_type = extra.pairable_type; +} + +bool item_is_pairable(const BVHHandle &p_handle) { + uint32_t ref_id = p_handle.id(); + const ItemExtra &extra = _extra[ref_id]; + return extra.pairable != 0; +} + +void item_get_ABB(const BVHHandle &p_handle, BVHABB_CLASS &r_abb) { + // change tree? + uint32_t ref_id = p_handle.id(); + const ItemRef &ref = _refs[ref_id]; + + TNode &tnode = _nodes[ref.tnode_id]; + TLeaf &leaf = _node_get_leaf(tnode); + + r_abb = leaf.get_aabb(ref.item_id); +} + +bool item_set_pairable(const BVHHandle &p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) { + // change tree? + uint32_t ref_id = p_handle.id(); + + ItemExtra &ex = _extra[ref_id]; + ItemRef &ref = _refs[ref_id]; + + bool active = ref.is_active(); + bool pairable_changed = (ex.pairable != 0) != p_pairable; + bool state_changed = pairable_changed || (ex.pairable_type != p_pairable_type) || (ex.pairable_mask != p_pairable_mask); + + ex.pairable_type = p_pairable_type; + ex.pairable_mask = p_pairable_mask; + + if (active && pairable_changed) { + // record abb + TNode &tnode = _nodes[ref.tnode_id]; + TLeaf &leaf = _node_get_leaf(tnode); + BVHABB_CLASS abb = leaf.get_aabb(ref.item_id); + + // make sure current tree is correct prior to changing + uint32_t tree_id = _handle_get_tree_id(p_handle); + + // remove from old tree + node_remove_item(ref_id, tree_id); + + // we must set the pairable AFTER getting the current tree + // because the pairable status determines which tree + ex.pairable = p_pairable; + + // add to new tree + tree_id = _handle_get_tree_id(p_handle); + create_root_node(tree_id); + + // we must choose where to add to tree + ref.tnode_id = _logic_choose_item_add_node(_root_node_id[tree_id], abb); + bool needs_refit = _node_add_item(ref.tnode_id, ref_id, abb); + + // only need to refit from the PARENT + if (needs_refit) { + // only need to refit from the parent + const TNode &add_node = _nodes[ref.tnode_id]; + if (add_node.parent_id != BVHCommon::INVALID) { + refit_upward_and_balance(add_node.parent_id, tree_id); + } + } + } else { + // always keep this up to date + ex.pairable = p_pairable; + } + + return state_changed; +} + +void incremental_optimize() { + // first update all aabbs as one off step.. + // this is cheaper than doing it on each move as each leaf may get touched multiple times + // in a frame. + for (int n = 0; n < NUM_TREES; n++) { + if (_root_node_id[n] != BVHCommon::INVALID) { + refit_branch(_root_node_id[n]); + } + } + + // now do small section reinserting to get things moving + // gradually, and keep items in the right leaf + if (_current_active_ref >= _active_refs.size()) { + _current_active_ref = 0; + } + + // special case + if (!_active_refs.size()) { + return; + } + + uint32_t ref_id = _active_refs[_current_active_ref++]; + + _logic_item_remove_and_reinsert(ref_id); + +#ifdef BVH_VERBOSE + /* + // memory use + int mem_refs = _refs.estimate_memory_use(); + int mem_nodes = _nodes.estimate_memory_use(); + int mem_leaves = _leaves.estimate_memory_use(); + + String sz; + sz += "mem_refs : " + itos(mem_refs) + " "; + sz += "mem_nodes : " + itos(mem_nodes) + " "; + sz += "mem_leaves : " + itos(mem_leaves) + " "; + sz += ", num nodes : " + itos(_nodes.size()); + print_line(sz); + */ +#endif +} + +void update() { + incremental_optimize(); + + // keep the expansion values up to date with the world bound +//#define BVH_ALLOW_AUTO_EXPANSION +#ifdef BVH_ALLOW_AUTO_EXPANSION + if (_auto_node_expansion || _auto_pairing_expansion) { + BVHABB_CLASS world_bound; + world_bound.set_to_max_opposite_extents(); + + bool bound_valid = false; + + for (int n = 0; n < NUM_TREES; n++) { + uint32_t node_id = _root_node_id[n]; + if (node_id != BVHCommon::INVALID) { + world_bound.merge(_nodes[node_id].aabb); + bound_valid = true; + } + } + + // if there are no nodes, do nothing, but if there are... + if (bound_valid) { + Bounds bb; + world_bound.to(bb); + real_t size = bb.get_longest_axis_size(); + + // automatic AI decision for best parameters. + // These can be overridden in project settings. + + // these magic numbers are determined by experiment + if (_auto_node_expansion) { + _node_expansion = size * 0.025; + } + if (_auto_pairing_expansion) { + _pairing_expansion = size * 0.009; + } + } + } +#endif +} diff --git a/core/math/bvh_refit.inc b/core/math/bvh_refit.inc new file mode 100644 index 0000000000..717a3438c7 --- /dev/null +++ b/core/math/bvh_refit.inc @@ -0,0 +1,141 @@ +void _debug_node_verify_bound(uint32_t p_node_id) { + TNode &node = _nodes[p_node_id]; + BVHABB_CLASS abb_before = node.aabb; + + node_update_aabb(node); + + BVHABB_CLASS abb_after = node.aabb; + CRASH_COND(abb_before != abb_after); +} + +void node_update_aabb(TNode &tnode) { + tnode.aabb.set_to_max_opposite_extents(); + tnode.height = 0; + + if (!tnode.is_leaf()) { + for (int n = 0; n < tnode.num_children; n++) { + uint32_t child_node_id = tnode.children[n]; + + // merge with child aabb + const TNode &tchild = _nodes[child_node_id]; + tnode.aabb.merge(tchild.aabb); + + // do heights at the same time + if (tchild.height > tnode.height) { + tnode.height = tchild.height; + } + } + + // the height of a non leaf is always 1 bigger than the biggest child + tnode.height++; + +#ifdef BVH_CHECKS + if (!tnode.num_children) { + // the 'blank' aabb will screw up parent aabbs + WARN_PRINT("BVH_Tree::TNode no children, AABB is undefined"); + } +#endif + } else { + // leaf + const TLeaf &leaf = _node_get_leaf(tnode); + + for (int n = 0; n < leaf.num_items; n++) { + tnode.aabb.merge(leaf.get_aabb(n)); + } + + // now the leaf items are unexpanded, we expand only in the node AABB + tnode.aabb.expand(_node_expansion); +#ifdef BVH_CHECKS + if (!leaf.num_items) { + // the 'blank' aabb will screw up parent aabbs + WARN_PRINT("BVH_Tree::TLeaf no items, AABB is undefined"); + } +#endif + } +} + +void refit_all(int p_tree_id) { + refit_downward(_root_node_id[p_tree_id]); +} + +void refit_upward(uint32_t p_node_id) { + while (p_node_id != BVHCommon::INVALID) { + TNode &tnode = _nodes[p_node_id]; + node_update_aabb(tnode); + p_node_id = tnode.parent_id; + } +} + +void refit_upward_and_balance(uint32_t p_node_id, uint32_t p_tree_id) { + while (p_node_id != BVHCommon::INVALID) { + uint32_t before = p_node_id; + p_node_id = _logic_balance(p_node_id, p_tree_id); + + if (before != p_node_id) { + VERBOSE_PRINT("REBALANCED!"); + } + + TNode &tnode = _nodes[p_node_id]; + + // update overall aabb from the children + node_update_aabb(tnode); + + p_node_id = tnode.parent_id; + } +} + +void refit_downward(uint32_t p_node_id) { + TNode &tnode = _nodes[p_node_id]; + + // do children first + if (!tnode.is_leaf()) { + for (int n = 0; n < tnode.num_children; n++) { + refit_downward(tnode.children[n]); + } + } + + node_update_aabb(tnode); +} + +// go down to the leaves, then refit upward +void refit_branch(uint32_t p_node_id) { + // our function parameters to keep on a stack + struct RefitParams { + uint32_t node_id; + }; + + // most of the iterative functionality is contained in this helper class + BVH_IterativeInfo<RefitParams> ii; + + // alloca must allocate the stack from this function, it cannot be allocated in the + // helper class + ii.stack = (RefitParams *)alloca(ii.get_alloca_stacksize()); + + // seed the stack + ii.get_first()->node_id = p_node_id; + + RefitParams rp; + + // while there are still more nodes on the stack + while (ii.pop(rp)) { + TNode &tnode = _nodes[rp.node_id]; + + // do children first + if (!tnode.is_leaf()) { + for (int n = 0; n < tnode.num_children; n++) { + uint32_t child_id = tnode.children[n]; + + // add to the stack + RefitParams *child = ii.request(); + child->node_id = child_id; + } + } else { + // leaf .. only refit upward if dirty + TLeaf &leaf = _node_get_leaf(tnode); + if (leaf.is_dirty()) { + leaf.set_dirty(false); + refit_upward(p_node_id); + } + } + } // while more nodes to pop +} diff --git a/core/math/bvh_split.inc b/core/math/bvh_split.inc new file mode 100644 index 0000000000..3fcc4c7b10 --- /dev/null +++ b/core/math/bvh_split.inc @@ -0,0 +1,294 @@ +void _split_inform_references(uint32_t p_node_id) { + TNode &node = _nodes[p_node_id]; + TLeaf &leaf = _node_get_leaf(node); + + for (int n = 0; n < leaf.num_items; n++) { + uint32_t ref_id = leaf.get_item_ref_id(n); + + ItemRef &ref = _refs[ref_id]; + ref.tnode_id = p_node_id; + ref.item_id = n; + } +} + +void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds, const BVHABB_CLASS full_bound) { + // special case for low leaf sizes .. should static compile out + if (MAX_ITEMS < 4) { + uint32_t ind = group_a[0]; + + // add to b + group_b[num_b++] = ind; + + // remove from a + group_a[0] = group_a[num_a - 1]; + num_a--; + return; + } + + Point centre = full_bound.calculate_centre(); + Point size = full_bound.calculate_size(); + + int order[3]; + + order[0] = size.min_axis(); + order[2] = size.max_axis(); + order[1] = 3 - (order[0] + order[2]); + + // simplest case, split on the longest axis + int split_axis = order[0]; + for (int a = 0; a < num_a; a++) { + uint32_t ind = group_a[a]; + + if (temp_bounds[ind].min.coord[split_axis] > centre.coord[split_axis]) { + // add to b + group_b[num_b++] = ind; + + // remove from a + group_a[a] = group_a[num_a - 1]; + num_a--; + + // do this one again, as it has been replaced + a--; + } + } + + // detect when split on longest axis failed + int min_threshold = MAX_ITEMS / 4; + int min_group_size[3]; + min_group_size[0] = MIN(num_a, num_b); + if (min_group_size[0] < min_threshold) { + // slow but sure .. first move everything back into a + for (int b = 0; b < num_b; b++) { + group_a[num_a++] = group_b[b]; + } + num_b = 0; + + // now calculate the best split + for (int axis = 1; axis < 3; axis++) { + split_axis = order[axis]; + int count = 0; + + for (int a = 0; a < num_a; a++) { + uint32_t ind = group_a[a]; + + if (temp_bounds[ind].min.coord[split_axis] > centre.coord[split_axis]) { + count++; + } + } + + min_group_size[axis] = MIN(count, num_a - count); + } // for axis + + // best axis + int best_axis = 0; + int best_min = min_group_size[0]; + for (int axis = 1; axis < 3; axis++) { + if (min_group_size[axis] > best_min) { + best_min = min_group_size[axis]; + best_axis = axis; + } + } + + // now finally do the split + if (best_min > 0) { + split_axis = order[best_axis]; + + for (int a = 0; a < num_a; a++) { + uint32_t ind = group_a[a]; + + if (temp_bounds[ind].min.coord[split_axis] > centre.coord[split_axis]) { + // add to b + group_b[num_b++] = ind; + + // remove from a + group_a[a] = group_a[num_a - 1]; + num_a--; + + // do this one again, as it has been replaced + a--; + } + } + } // if there was a split! + } // if the longest axis wasn't a good split + + // special case, none crossed threshold + if (!num_b) { + uint32_t ind = group_a[0]; + + // add to b + group_b[num_b++] = ind; + + // remove from a + group_a[0] = group_a[num_a - 1]; + num_a--; + } + // opposite problem! :) + if (!num_a) { + uint32_t ind = group_b[0]; + + // add to a + group_a[num_a++] = ind; + + // remove from b + group_b[0] = group_b[num_b - 1]; + num_b--; + } +} + +void _split_leaf_sort_groups(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds) { + BVHABB_CLASS groupb_aabb; + groupb_aabb.set_to_max_opposite_extents(); + for (int n = 0; n < num_b; n++) { + int which = group_b[n]; + groupb_aabb.merge(temp_bounds[which]); + } + BVHABB_CLASS groupb_aabb_new; + + BVHABB_CLASS rest_aabb; + + float best_size = FLT_MAX; + int best_candidate = -1; + + // find most likely from a to move into b + for (int check = 0; check < num_a; check++) { + rest_aabb.set_to_max_opposite_extents(); + groupb_aabb_new = groupb_aabb; + + // find aabb of all the rest + for (int rest = 0; rest < num_a; rest++) { + if (rest == check) { + continue; + } + + int which = group_a[rest]; + rest_aabb.merge(temp_bounds[which]); + } + + groupb_aabb_new.merge(temp_bounds[group_a[check]]); + + // now compare the sizes + float size = groupb_aabb_new.get_area() + rest_aabb.get_area(); + if (size < best_size) { + best_size = size; + best_candidate = check; + } + } + + // we should now have the best, move it from group a to group b + group_b[num_b++] = group_a[best_candidate]; + + // remove best candidate from group a + num_a--; + group_a[best_candidate] = group_a[num_a]; +} + +uint32_t split_leaf(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) { + return split_leaf_complex(p_node_id, p_added_item_aabb); +} + +// aabb is the new inserted node +uint32_t split_leaf_complex(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) { + VERBOSE_PRINT("split_leaf"); + + // note the tnode before and AFTER splitting may be a different address + // in memory because the vector could get relocated. So we need to reget + // the tnode after the split + BVH_ASSERT(_nodes[p_node_id].is_leaf()); + + // first create child leaf nodes + uint32_t *child_ids = (uint32_t *)alloca(sizeof(uint32_t) * MAX_CHILDREN); + + for (int n = 0; n < MAX_CHILDREN; n++) { + // create node children + TNode *child_node = _nodes.request(child_ids[n]); + + child_node->clear(); + + // back link to parent + child_node->parent_id = p_node_id; + + // make each child a leaf node + node_make_leaf(child_ids[n]); + } + + // don't get any leaves or nodes till AFTER the split + TNode &tnode = _nodes[p_node_id]; + uint32_t orig_leaf_id = tnode.get_leaf_id(); + const TLeaf &orig_leaf = _node_get_leaf(tnode); + + // store the final child ids + for (int n = 0; n < MAX_CHILDREN; n++) { + tnode.children[n] = child_ids[n]; + } + + // mark as no longer a leaf node + tnode.num_children = MAX_CHILDREN; + + // 2 groups, A and B, and assign children to each to split equally + int max_children = orig_leaf.num_items + 1; // plus 1 for the wildcard .. the item being added + //CRASH_COND(max_children > MAX_CHILDREN); + + uint16_t *group_a = (uint16_t *)alloca(sizeof(uint16_t) * max_children); + uint16_t *group_b = (uint16_t *)alloca(sizeof(uint16_t) * max_children); + + // we are copying the ABBs. This is ugly, but we need one extra for the inserted item... + BVHABB_CLASS *temp_bounds = (BVHABB_CLASS *)alloca(sizeof(BVHABB_CLASS) * max_children); + + int num_a = max_children; + int num_b = 0; + + // setup - start with all in group a + for (int n = 0; n < orig_leaf.num_items; n++) { + group_a[n] = n; + temp_bounds[n] = orig_leaf.get_aabb(n); + } + // wildcard + int wildcard = orig_leaf.num_items; + + group_a[wildcard] = wildcard; + temp_bounds[wildcard] = p_added_item_aabb; + + // we can choose here either an equal split, or just 1 in the new leaf + _split_leaf_sort_groups_simple(num_a, num_b, group_a, group_b, temp_bounds, tnode.aabb); + + uint32_t wildcard_node = BVHCommon::INVALID; + + // now there should be equal numbers in both groups + for (int n = 0; n < num_a; n++) { + int which = group_a[n]; + + if (which != wildcard) { + const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which); + uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which); + //const Item &source_item = orig_leaf.get_item(which); + _node_add_item(tnode.children[0], source_item_ref_id, source_item_aabb); + } else { + wildcard_node = tnode.children[0]; + } + } + for (int n = 0; n < num_b; n++) { + int which = group_b[n]; + + if (which != wildcard) { + const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which); + uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which); + //const Item &source_item = orig_leaf.get_item(which); + _node_add_item(tnode.children[1], source_item_ref_id, source_item_aabb); + } else { + wildcard_node = tnode.children[1]; + } + } + + // now remove all items from the parent and replace with the child nodes + _leaves.free(orig_leaf_id); + + // we should keep the references up to date! + for (int n = 0; n < MAX_CHILDREN; n++) { + _split_inform_references(tnode.children[n]); + } + + refit_upward(p_node_id); + + BVH_ASSERT(wildcard_node != BVHCommon::INVALID); + return wildcard_node; +} diff --git a/core/math/bvh_structs.inc b/core/math/bvh_structs.inc new file mode 100644 index 0000000000..1d1e0e6468 --- /dev/null +++ b/core/math/bvh_structs.inc @@ -0,0 +1,180 @@ + +public: +struct ItemRef { + uint32_t tnode_id; // -1 is invalid + uint32_t item_id; // in the leaf + + bool is_active() const { return tnode_id != BVHCommon::INACTIVE; } + void set_inactive() { + tnode_id = BVHCommon::INACTIVE; + item_id = BVHCommon::INACTIVE; + } +}; + +// extra info kept in separate parallel list to the references, +// as this is less used as keeps cache better +struct ItemExtra { + uint32_t last_updated_tick; + uint32_t pairable; + uint32_t pairable_mask; + uint32_t pairable_type; + + int32_t subindex; + + // the active reference is a separate list of which references + // are active so that we can slowly iterate through it over many frames for + // slow optimize. + uint32_t active_ref_id; + + T *userdata; +}; + +// this is an item OR a child node depending on whether a leaf node +struct Item { + BVHABB_CLASS aabb; + uint32_t item_ref_id; +}; + +// tree leaf +struct TLeaf { + uint16_t num_items; + +private: + uint16_t dirty; + // separate data orientated lists for faster SIMD traversal + uint32_t item_ref_ids[MAX_ITEMS]; + BVHABB_CLASS aabbs[MAX_ITEMS]; + +public: + // accessors + BVHABB_CLASS &get_aabb(uint32_t p_id) { return aabbs[p_id]; } + const BVHABB_CLASS &get_aabb(uint32_t p_id) const { return aabbs[p_id]; } + + uint32_t &get_item_ref_id(uint32_t p_id) { return item_ref_ids[p_id]; } + const uint32_t &get_item_ref_id(uint32_t p_id) const { return item_ref_ids[p_id]; } + + bool is_dirty() const { return dirty; } + void set_dirty(bool p) { dirty = p; } + + void clear() { + num_items = 0; + set_dirty(true); + } + bool is_full() const { return num_items >= MAX_ITEMS; } + + void remove_item_unordered(uint32_t p_id) { + BVH_ASSERT(p_id < num_items); + num_items--; + aabbs[p_id] = aabbs[num_items]; + item_ref_ids[p_id] = item_ref_ids[num_items]; + } + + uint32_t request_item() { + if (num_items < MAX_ITEMS) { + uint32_t id = num_items; + num_items++; + return id; + } + return -1; + } +}; + +// tree node +struct TNode { + BVHABB_CLASS aabb; + // either number of children if positive + // or leaf id if negative (leaf id 0 is disallowed) + union { + int32_t num_children; + int32_t neg_leaf_id; + }; + uint32_t parent_id; // or -1 + uint16_t children[MAX_CHILDREN]; + + // height in the tree, where leaves are 0, and all above are 1+ + // (or the highest where there is a tie off) + int32_t height; + + bool is_leaf() const { return num_children < 0; } + void set_leaf_id(int id) { neg_leaf_id = -id; } + int get_leaf_id() const { return -neg_leaf_id; } + + void clear() { + num_children = 0; + parent_id = BVHCommon::INVALID; + height = 0; // or -1 for testing + + // for safety set to improbable value + aabb.set_to_max_opposite_extents(); + + // other members are not blanked for speed .. they may be uninitialized + } + + bool is_full_of_children() const { return num_children >= MAX_CHILDREN; } + + void remove_child_internal(uint32_t child_num) { + children[child_num] = children[num_children - 1]; + num_children--; + } + + int find_child(uint32_t p_child_node_id) { + BVH_ASSERT(!is_leaf()); + + for (int n = 0; n < num_children; n++) { + if (children[n] == p_child_node_id) { + return n; + } + } + + // not found + return -1; + } +}; + +// instead of using linked list we maintain +// item references (for quick lookup) +PooledList<ItemRef, true> _refs; +PooledList<ItemExtra, true> _extra; +PooledList<ItemPairs> _pairs; + +// these 2 are not in sync .. nodes != leaves! +PooledList<TNode, true> _nodes; +PooledList<TLeaf, true> _leaves; + +// we can maintain an un-ordered list of which references are active, +// in order to do a slow incremental optimize of the tree over each frame. +// This will work best if dynamic objects and static objects are in a different tree. +LocalVector<uint32_t, uint32_t, true> _active_refs; +uint32_t _current_active_ref = 0; + +// instead of translating directly to the userdata output, +// we keep an intermediate list of hits as reference IDs, which can be used +// for pairing collision detection +LocalVector<uint32_t, uint32_t, true> _cull_hits; + +// we now have multiple root nodes, allowing us to store +// more than 1 tree. This can be more efficient, while sharing the same +// common lists +enum { NUM_TREES = 2, +}; + +// Tree 0 - Non pairable +// Tree 1 - Pairable +// This is more efficient because in physics we only need check non pairable against the pairable tree. +uint32_t _root_node_id[NUM_TREES]; + +// these values may need tweaking according to the project +// the bound of the world, and the average velocities of the objects + +// node expansion is important in the rendering tree +// larger values give less re-insertion as items move... +// but on the other hand over estimates the bounding box of nodes. +// we can either use auto mode, where the expansion is based on the root node size, or specify manually +real_t _node_expansion = 0.5; +bool _auto_node_expansion = true; + +// pairing expansion important for physics pairing +// larger values gives more 'sticky' pairing, and is less likely to exhibit tunneling +// we can either use auto mode, where the expansion is based on the root node size, or specify manually +real_t _pairing_expansion = 0.1; +bool _auto_pairing_expansion = true; diff --git a/core/math/bvh_tree.h b/core/math/bvh_tree.h new file mode 100644 index 0000000000..3169d31ec7 --- /dev/null +++ b/core/math/bvh_tree.h @@ -0,0 +1,421 @@ +/*************************************************************************/ +/* bvh_tree.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef BVH_TREE_H +#define BVH_TREE_H + +// BVH Tree +// This is an implementation of a dynamic BVH with templated leaf size. +// This differs from most dynamic BVH in that it can handle more than 1 object +// in leaf nodes. This can make it far more efficient in certain circumstances. +// It also means that the splitting logic etc have to be completely different +// to a simpler tree. +// Note that MAX_CHILDREN should be fixed at 2 for now. + +#include "core/math/aabb.h" +#include "core/math/bvh_abb.h" +#include "core/math/geometry_3d.h" +#include "core/math/vector3.h" +#include "core/string/print_string.h" +#include "core/templates/local_vector.h" +#include "core/templates/pooled_list.h" +#include <limits.h> + +#define BVHABB_CLASS BVH_ABB<Bounds, Point> + +// never do these checks in release +#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) +//#define BVH_VERBOSE +//#define BVH_VERBOSE_TREE + +//#define BVH_VERBOSE_FRAME +//#define BVH_CHECKS +//#define BVH_INTEGRITY_CHECKS +#endif + +// debug only assert +#ifdef BVH_CHECKS +#define BVH_ASSERT(a) CRASH_COND((a) == false) +#else +#define BVH_ASSERT(a) +#endif + +#ifdef BVH_VERBOSE +#define VERBOSE_PRINT print_line +#else +#define VERBOSE_PRINT(a) +#endif + +// really just a namespace +struct BVHCommon { + // these could possibly also be the same constant, + // although this may be useful for debugging. + // or use zero for invalid and +1 based indices. + static const uint32_t INVALID = (0xffffffff); + static const uint32_t INACTIVE = (0xfffffffe); +}; + +// really a handle, can be anything +// note that zero is a valid reference for the BVH .. this may involve using +// a plus one based ID for clients that expect 0 to be invalid. +struct BVHHandle { + // conversion operator + operator uint32_t() const { return _data; } + void set(uint32_t p_value) { _data = p_value; } + + uint32_t _data; + + void set_invalid() { _data = BVHCommon::INVALID; } + bool is_invalid() const { return _data == BVHCommon::INVALID; } + uint32_t id() const { return _data; } + void set_id(uint32_t p_id) { _data = p_id; } + + bool operator==(const BVHHandle &p_h) const { return _data == p_h._data; } + bool operator!=(const BVHHandle &p_h) const { return (*this == p_h) == false; } +}; + +// helper class to make iterative versions of recursive functions +template <class T> +class BVH_IterativeInfo { +public: + enum { + ALLOCA_STACK_SIZE = 128 + }; + + int32_t depth = 1; + int32_t threshold = ALLOCA_STACK_SIZE - 2; + T *stack; + //only used in rare occasions when you run out of alloca memory + // because tree is too unbalanced. + LocalVector<T> aux_stack; + int32_t get_alloca_stacksize() const { return ALLOCA_STACK_SIZE * sizeof(T); } + + T *get_first() const { + return &stack[0]; + } + + // pop the last member of the stack, or return false + bool pop(T &r_value) { + if (!depth) { + return false; + } + + depth--; + r_value = stack[depth]; + return true; + } + + // request new addition to stack + T *request() { + if (depth > threshold) { + if (aux_stack.is_empty()) { + aux_stack.resize(ALLOCA_STACK_SIZE * 2); + memcpy(aux_stack.ptr(), stack, get_alloca_stacksize()); + } else { + aux_stack.resize(aux_stack.size() * 2); + } + stack = aux_stack.ptr(); + threshold = aux_stack.size() - 2; + } + return &stack[depth++]; + } +}; + +template <class T, int MAX_CHILDREN, int MAX_ITEMS, bool USE_PAIRS = false, class Bounds = AABB, class Point = Vector3> +class BVH_Tree { + friend class BVH; + +#include "bvh_pair.inc" +#include "bvh_structs.inc" + +public: + BVH_Tree() { + for (int n = 0; n < NUM_TREES; n++) { + _root_node_id[n] = BVHCommon::INVALID; + } + + // disallow zero leaf ids + // (as these ids are stored as negative numbers in the node) + uint32_t dummy_leaf_id; + _leaves.request(dummy_leaf_id); + } + +private: + bool node_add_child(uint32_t p_node_id, uint32_t p_child_node_id) { + TNode &tnode = _nodes[p_node_id]; + if (tnode.is_full_of_children()) { + return false; + } + + tnode.children[tnode.num_children] = p_child_node_id; + tnode.num_children += 1; + + // back link in the child to the parent + TNode &tnode_child = _nodes[p_child_node_id]; + tnode_child.parent_id = p_node_id; + + return true; + } + + void node_replace_child(uint32_t p_parent_id, uint32_t p_old_child_id, uint32_t p_new_child_id) { + TNode &parent = _nodes[p_parent_id]; + BVH_ASSERT(!parent.is_leaf()); + + int child_num = parent.find_child(p_old_child_id); + BVH_ASSERT(child_num != BVHCommon::INVALID); + parent.children[child_num] = p_new_child_id; + + TNode &new_child = _nodes[p_new_child_id]; + new_child.parent_id = p_parent_id; + } + + void node_remove_child(uint32_t p_parent_id, uint32_t p_child_id, uint32_t p_tree_id, bool p_prevent_sibling = false) { + TNode &parent = _nodes[p_parent_id]; + BVH_ASSERT(!parent.is_leaf()); + + int child_num = parent.find_child(p_child_id); + BVH_ASSERT(child_num != BVHCommon::INVALID); + + parent.remove_child_internal(child_num); + + // no need to keep back references for children at the moment + + uint32_t sibling_id; // always a node id, as tnode is never a leaf + bool sibling_present = false; + + // if there are more children, or this is the root node, don't try and delete + if (parent.num_children > 1) { + return; + } + + // if there is 1 sibling, it can be moved to be a child of the + if (parent.num_children == 1) { + // else there is now a redundant node with one child, which can be removed + sibling_id = parent.children[0]; + sibling_present = true; + } + + // now there may be no children in this node .. in which case it can be deleted + // remove node if empty + // remove link from parent + uint32_t grandparent_id = parent.parent_id; + + // special case for root node + if (grandparent_id == BVHCommon::INVALID) { + if (sibling_present) { + // change the root node + change_root_node(sibling_id, p_tree_id); + + // delete the old root node as no longer needed + _nodes.free(p_parent_id); + } + + return; + } + + if (sibling_present) { + node_replace_child(grandparent_id, p_parent_id, sibling_id); + } else { + node_remove_child(grandparent_id, p_parent_id, p_tree_id, true); + } + + // put the node on the free list to recycle + _nodes.free(p_parent_id); + } + + void change_root_node(uint32_t p_new_root_id, uint32_t p_tree_id) { + _root_node_id[p_tree_id] = p_new_root_id; + TNode &root = _nodes[p_new_root_id]; + + // mark no parent + root.parent_id = BVHCommon::INVALID; + } + + void node_make_leaf(uint32_t p_node_id) { + uint32_t child_leaf_id; + TLeaf *child_leaf = _leaves.request(child_leaf_id); + child_leaf->clear(); + + // zero is reserved at startup, to prevent this id being used + // (as they are stored as negative values in the node, and zero is already taken) + BVH_ASSERT(child_leaf_id != 0); + + TNode &node = _nodes[p_node_id]; + node.neg_leaf_id = -(int)child_leaf_id; + } + + void node_remove_item(uint32_t p_ref_id, uint32_t p_tree_id, BVHABB_CLASS *r_old_aabb = nullptr) { + // get the reference + ItemRef &ref = _refs[p_ref_id]; + uint32_t owner_node_id = ref.tnode_id; + + // debug draw special + // This may not be needed + if (owner_node_id == BVHCommon::INVALID) { + return; + } + + TNode &tnode = _nodes[owner_node_id]; + CRASH_COND(!tnode.is_leaf()); + + TLeaf &leaf = _node_get_leaf(tnode); + + // if the aabb is not determining the corner size, then there is no need to refit! + // (optimization, as merging AABBs takes a lot of time) + const BVHABB_CLASS &old_aabb = leaf.get_aabb(ref.item_id); + + // shrink a little to prevent using corner aabbs + // in order to miss the corners first we shrink by node_expansion + // (which is added to the overall bound of the leaf), then we also + // shrink by an epsilon, in order to miss out the very corner aabbs + // which are important in determining the bound. Any other aabb + // within this can be removed and not affect the overall bound. + BVHABB_CLASS node_bound = tnode.aabb; + node_bound.expand(-_node_expansion - 0.001f); + bool refit = true; + + if (node_bound.is_other_within(old_aabb)) { + refit = false; + } + + // record the old aabb if required (for incremental remove_and_reinsert) + if (r_old_aabb) { + *r_old_aabb = old_aabb; + } + + leaf.remove_item_unordered(ref.item_id); + + if (leaf.num_items) { + // the swapped item has to have its reference changed to, to point to the new item id + uint32_t swapped_ref_id = leaf.get_item_ref_id(ref.item_id); + + ItemRef &swapped_ref = _refs[swapped_ref_id]; + + swapped_ref.item_id = ref.item_id; + + // only have to refit if it is an edge item + // This is a VERY EXPENSIVE STEP + // we defer the refit updates until the update function is called once per frame + if (refit) { + leaf.set_dirty(true); + } + } else { + // remove node if empty + // remove link from parent + if (tnode.parent_id != BVHCommon::INVALID) { + // DANGER .. this can potentially end up with root node with 1 child ... + // we don't want this and must check for it + + uint32_t parent_id = tnode.parent_id; + + node_remove_child(parent_id, owner_node_id, p_tree_id); + refit_upward(parent_id); + + // put the node on the free list to recycle + _nodes.free(owner_node_id); + } + + // else if no parent, it is the root node. Do not delete + } + + ref.tnode_id = BVHCommon::INVALID; + ref.item_id = BVHCommon::INVALID; // unset + } + + // returns true if needs refit of PARENT tree only, the node itself AABB is calculated + // within this routine + bool _node_add_item(uint32_t p_node_id, uint32_t p_ref_id, const BVHABB_CLASS &p_aabb) { + ItemRef &ref = _refs[p_ref_id]; + ref.tnode_id = p_node_id; + + TNode &node = _nodes[p_node_id]; + BVH_ASSERT(node.is_leaf()); + TLeaf &leaf = _node_get_leaf(node); + + // optimization - we only need to do a refit + // if the added item is changing the AABB of the node. + // in most cases it won't. + bool needs_refit = true; + + // expand bound now + BVHABB_CLASS expanded = p_aabb; + expanded.expand(_node_expansion); + + // the bound will only be valid if there is an item in there already + if (leaf.num_items) { + if (node.aabb.is_other_within(expanded)) { + // no change to node AABBs + needs_refit = false; + } else { + node.aabb.merge(expanded); + } + } else { + // bound of the node = the new aabb + node.aabb = expanded; + } + + ref.item_id = leaf.request_item(); + BVH_ASSERT(ref.item_id != BVHCommon::INVALID); + + // set the aabb of the new item + leaf.get_aabb(ref.item_id) = p_aabb; + + // back reference on the item back to the item reference + leaf.get_item_ref_id(ref.item_id) = p_ref_id; + + return needs_refit; + } + + uint32_t _node_create_another_child(uint32_t p_node_id, const BVHABB_CLASS &p_aabb) { + uint32_t child_node_id; + TNode *child_node = _nodes.request(child_node_id); + child_node->clear(); + + // may not be necessary + child_node->aabb = p_aabb; + + node_add_child(p_node_id, child_node_id); + + return child_node_id; + } + +#include "bvh_cull.inc" +#include "bvh_debug.inc" +#include "bvh_integrity.inc" +#include "bvh_logic.inc" +#include "bvh_misc.inc" +#include "bvh_public.inc" +#include "bvh_refit.inc" +#include "bvh_split.inc" +}; + +#undef VERBOSE_PRINT + +#endif // BVH_TREE_H diff --git a/core/math/color.cpp b/core/math/color.cpp index 8affb07e8c..64abd6dd08 100644 --- a/core/math/color.cpp +++ b/core/math/color.cpp @@ -379,11 +379,11 @@ int Color::find_named_color(const String &p_name) { name = name.replace("_", ""); name = name.replace("'", ""); name = name.replace(".", ""); - name = name.to_lower(); + name = name.to_upper(); int idx = 0; while (named_colors[idx].name != nullptr) { - if (name == named_colors[idx].name) { + if (name == String(named_colors[idx].name).replace("_", "")) { return idx; } idx++; diff --git a/core/math/color_names.inc b/core/math/color_names.inc index e5b935ea9c..2020bdbfca 100644 --- a/core/math/color_names.inc +++ b/core/math/color_names.inc @@ -9,152 +9,155 @@ struct NamedColor { Color color; }; +// NOTE: This data is duplicated in the file: +// modules/mono/glue/GodotSharp/GodotSharp/Core/Colors.cs + static NamedColor named_colors[] = { - { "aliceblue", Color(0.94, 0.97, 1.00) }, - { "antiquewhite", Color(0.98, 0.92, 0.84) }, - { "aqua", Color(0.00, 1.00, 1.00) }, - { "aquamarine", Color(0.50, 1.00, 0.83) }, - { "azure", Color(0.94, 1.00, 1.00) }, - { "beige", Color(0.96, 0.96, 0.86) }, - { "bisque", Color(1.00, 0.89, 0.77) }, - { "black", Color(0.00, 0.00, 0.00) }, - { "blanchedalmond", Color(1.00, 0.92, 0.80) }, - { "blue", Color(0.00, 0.00, 1.00) }, - { "blueviolet", Color(0.54, 0.17, 0.89) }, - { "brown", Color(0.65, 0.16, 0.16) }, - { "burlywood", Color(0.87, 0.72, 0.53) }, - { "cadetblue", Color(0.37, 0.62, 0.63) }, - { "chartreuse", Color(0.50, 1.00, 0.00) }, - { "chocolate", Color(0.82, 0.41, 0.12) }, - { "coral", Color(1.00, 0.50, 0.31) }, - { "cornflower", Color(0.39, 0.58, 0.93) }, - { "cornsilk", Color(1.00, 0.97, 0.86) }, - { "crimson", Color(0.86, 0.08, 0.24) }, - { "cyan", Color(0.00, 1.00, 1.00) }, - { "darkblue", Color(0.00, 0.00, 0.55) }, - { "darkcyan", Color(0.00, 0.55, 0.55) }, - { "darkgoldenrod", Color(0.72, 0.53, 0.04) }, - { "darkgray", Color(0.66, 0.66, 0.66) }, - { "darkgreen", Color(0.00, 0.39, 0.00) }, - { "darkkhaki", Color(0.74, 0.72, 0.42) }, - { "darkmagenta", Color(0.55, 0.00, 0.55) }, - { "darkolivegreen", Color(0.33, 0.42, 0.18) }, - { "darkorange", Color(1.00, 0.55, 0.00) }, - { "darkorchid", Color(0.60, 0.20, 0.80) }, - { "darkred", Color(0.55, 0.00, 0.00) }, - { "darksalmon", Color(0.91, 0.59, 0.48) }, - { "darkseagreen", Color(0.56, 0.74, 0.56) }, - { "darkslateblue", Color(0.28, 0.24, 0.55) }, - { "darkslategray", Color(0.18, 0.31, 0.31) }, - { "darkturquoise", Color(0.00, 0.81, 0.82) }, - { "darkviolet", Color(0.58, 0.00, 0.83) }, - { "deeppink", Color(1.00, 0.08, 0.58) }, - { "deepskyblue", Color(0.00, 0.75, 1.00) }, - { "dimgray", Color(0.41, 0.41, 0.41) }, - { "dodgerblue", Color(0.12, 0.56, 1.00) }, - { "firebrick", Color(0.70, 0.13, 0.13) }, - { "floralwhite", Color(1.00, 0.98, 0.94) }, - { "forestgreen", Color(0.13, 0.55, 0.13) }, - { "fuchsia", Color(1.00, 0.00, 1.00) }, - { "gainsboro", Color(0.86, 0.86, 0.86) }, - { "ghostwhite", Color(0.97, 0.97, 1.00) }, - { "gold", Color(1.00, 0.84, 0.00) }, - { "goldenrod", Color(0.85, 0.65, 0.13) }, - { "gray", Color(0.75, 0.75, 0.75) }, - { "green", Color(0.00, 1.00, 0.00) }, - { "greenyellow", Color(0.68, 1.00, 0.18) }, - { "honeydew", Color(0.94, 1.00, 0.94) }, - { "hotpink", Color(1.00, 0.41, 0.71) }, - { "indianred", Color(0.80, 0.36, 0.36) }, - { "indigo", Color(0.29, 0.00, 0.51) }, - { "ivory", Color(1.00, 1.00, 0.94) }, - { "khaki", Color(0.94, 0.90, 0.55) }, - { "lavender", Color(0.90, 0.90, 0.98) }, - { "lavenderblush", Color(1.00, 0.94, 0.96) }, - { "lawngreen", Color(0.49, 0.99, 0.00) }, - { "lemonchiffon", Color(1.00, 0.98, 0.80) }, - { "lightblue", Color(0.68, 0.85, 0.90) }, - { "lightcoral", Color(0.94, 0.50, 0.50) }, - { "lightcyan", Color(0.88, 1.00, 1.00) }, - { "lightgoldenrod", Color(0.98, 0.98, 0.82) }, - { "lightgray", Color(0.83, 0.83, 0.83) }, - { "lightgreen", Color(0.56, 0.93, 0.56) }, - { "lightpink", Color(1.00, 0.71, 0.76) }, - { "lightsalmon", Color(1.00, 0.63, 0.48) }, - { "lightseagreen", Color(0.13, 0.70, 0.67) }, - { "lightskyblue", Color(0.53, 0.81, 0.98) }, - { "lightslategray", Color(0.47, 0.53, 0.60) }, - { "lightsteelblue", Color(0.69, 0.77, 0.87) }, - { "lightyellow", Color(1.00, 1.00, 0.88) }, - { "lime", Color(0.00, 1.00, 0.00) }, - { "limegreen", Color(0.20, 0.80, 0.20) }, - { "linen", Color(0.98, 0.94, 0.90) }, - { "magenta", Color(1.00, 0.00, 1.00) }, - { "maroon", Color(0.69, 0.19, 0.38) }, - { "mediumaquamarine", Color(0.40, 0.80, 0.67) }, - { "mediumblue", Color(0.00, 0.00, 0.80) }, - { "mediumorchid", Color(0.73, 0.33, 0.83) }, - { "mediumpurple", Color(0.58, 0.44, 0.86) }, - { "mediumseagreen", Color(0.24, 0.70, 0.44) }, - { "mediumslateblue", Color(0.48, 0.41, 0.93) }, - { "mediumspringgreen", Color(0.00, 0.98, 0.60) }, - { "mediumturquoise", Color(0.28, 0.82, 0.80) }, - { "mediumvioletred", Color(0.78, 0.08, 0.52) }, - { "midnightblue", Color(0.10, 0.10, 0.44) }, - { "mintcream", Color(0.96, 1.00, 0.98) }, - { "mistyrose", Color(1.00, 0.89, 0.88) }, - { "moccasin", Color(1.00, 0.89, 0.71) }, - { "navajowhite", Color(1.00, 0.87, 0.68) }, - { "navyblue", Color(0.00, 0.00, 0.50) }, - { "oldlace", Color(0.99, 0.96, 0.90) }, - { "olive", Color(0.50, 0.50, 0.00) }, - { "olivedrab", Color(0.42, 0.56, 0.14) }, - { "orange", Color(1.00, 0.65, 0.00) }, - { "orangered", Color(1.00, 0.27, 0.00) }, - { "orchid", Color(0.85, 0.44, 0.84) }, - { "palegoldenrod", Color(0.93, 0.91, 0.67) }, - { "palegreen", Color(0.60, 0.98, 0.60) }, - { "paleturquoise", Color(0.69, 0.93, 0.93) }, - { "palevioletred", Color(0.86, 0.44, 0.58) }, - { "papayawhip", Color(1.00, 0.94, 0.84) }, - { "peachpuff", Color(1.00, 0.85, 0.73) }, - { "peru", Color(0.80, 0.52, 0.25) }, - { "pink", Color(1.00, 0.75, 0.80) }, - { "plum", Color(0.87, 0.63, 0.87) }, - { "powderblue", Color(0.69, 0.88, 0.90) }, - { "purple", Color(0.63, 0.13, 0.94) }, - { "rebeccapurple", Color(0.40, 0.20, 0.60) }, - { "red", Color(1.00, 0.00, 0.00) }, - { "rosybrown", Color(0.74, 0.56, 0.56) }, - { "royalblue", Color(0.25, 0.41, 0.88) }, - { "saddlebrown", Color(0.55, 0.27, 0.07) }, - { "salmon", Color(0.98, 0.50, 0.45) }, - { "sandybrown", Color(0.96, 0.64, 0.38) }, - { "seagreen", Color(0.18, 0.55, 0.34) }, - { "seashell", Color(1.00, 0.96, 0.93) }, - { "sienna", Color(0.63, 0.32, 0.18) }, - { "silver", Color(0.75, 0.75, 0.75) }, - { "skyblue", Color(0.53, 0.81, 0.92) }, - { "slateblue", Color(0.42, 0.35, 0.80) }, - { "slategray", Color(0.44, 0.50, 0.56) }, - { "snow", Color(1.00, 0.98, 0.98) }, - { "springgreen", Color(0.00, 1.00, 0.50) }, - { "steelblue", Color(0.27, 0.51, 0.71) }, - { "tan", Color(0.82, 0.71, 0.55) }, - { "teal", Color(0.00, 0.50, 0.50) }, - { "thistle", Color(0.85, 0.75, 0.85) }, - { "tomato", Color(1.00, 0.39, 0.28) }, - { "transparent", Color(1.00, 1.00, 1.00, 0.00) }, - { "turquoise", Color(0.25, 0.88, 0.82) }, - { "violet", Color(0.93, 0.51, 0.93) }, - { "webgray", Color(0.50, 0.50, 0.50) }, - { "webgreen", Color(0.00, 0.50, 0.00) }, - { "webmaroon", Color(0.50, 0.00, 0.00) }, - { "webpurple", Color(0.50, 0.00, 0.50) }, - { "wheat", Color(0.96, 0.87, 0.70) }, - { "white", Color(1.00, 1.00, 1.00) }, - { "whitesmoke", Color(0.96, 0.96, 0.96) }, - { "yellow", Color(1.00, 1.00, 0.00) }, - { "yellowgreen", Color(0.60, 0.80, 0.20) }, + { "ALICE_BLUE", Color(0.94, 0.97, 1.00) }, + { "ANTIQUE_WHITE", Color(0.98, 0.92, 0.84) }, + { "AQUA", Color(0.00, 1.00, 1.00) }, + { "AQUAMARINE", Color(0.50, 1.00, 0.83) }, + { "AZURE", Color(0.94, 1.00, 1.00) }, + { "BEIGE", Color(0.96, 0.96, 0.86) }, + { "BISQUE", Color(1.00, 0.89, 0.77) }, + { "BLACK", Color(0.00, 0.00, 0.00) }, + { "BLANCHED_ALMOND", Color(1.00, 0.92, 0.80) }, + { "BLUE", Color(0.00, 0.00, 1.00) }, + { "BLUE_VIOLET", Color(0.54, 0.17, 0.89) }, + { "BROWN", Color(0.65, 0.16, 0.16) }, + { "BURLYWOOD", Color(0.87, 0.72, 0.53) }, + { "CADET_BLUE", Color(0.37, 0.62, 0.63) }, + { "CHARTREUSE", Color(0.50, 1.00, 0.00) }, + { "CHOCOLATE", Color(0.82, 0.41, 0.12) }, + { "CORAL", Color(1.00, 0.50, 0.31) }, + { "CORNFLOWER_BLUE", Color(0.39, 0.58, 0.93) }, + { "CORNSILK", Color(1.00, 0.97, 0.86) }, + { "CRIMSON", Color(0.86, 0.08, 0.24) }, + { "CYAN", Color(0.00, 1.00, 1.00) }, + { "DARK_BLUE", Color(0.00, 0.00, 0.55) }, + { "DARK_CYAN", Color(0.00, 0.55, 0.55) }, + { "DARK_GOLDENROD", Color(0.72, 0.53, 0.04) }, + { "DARK_GRAY", Color(0.66, 0.66, 0.66) }, + { "DARK_GREEN", Color(0.00, 0.39, 0.00) }, + { "DARK_KHAKI", Color(0.74, 0.72, 0.42) }, + { "DARK_MAGENTA", Color(0.55, 0.00, 0.55) }, + { "DARK_OLIVE_GREEN", Color(0.33, 0.42, 0.18) }, + { "DARK_ORANGE", Color(1.00, 0.55, 0.00) }, + { "DARK_ORCHID", Color(0.60, 0.20, 0.80) }, + { "DARK_RED", Color(0.55, 0.00, 0.00) }, + { "DARK_SALMON", Color(0.91, 0.59, 0.48) }, + { "DARK_SEA_GREEN", Color(0.56, 0.74, 0.56) }, + { "DARK_SLATE_BLUE", Color(0.28, 0.24, 0.55) }, + { "DARK_SLATE_GRAY", Color(0.18, 0.31, 0.31) }, + { "DARK_TURQUOISE", Color(0.00, 0.81, 0.82) }, + { "DARK_VIOLET", Color(0.58, 0.00, 0.83) }, + { "DEEP_PINK", Color(1.00, 0.08, 0.58) }, + { "DEEP_SKY_BLUE", Color(0.00, 0.75, 1.00) }, + { "DIM_GRAY", Color(0.41, 0.41, 0.41) }, + { "DODGER_BLUE", Color(0.12, 0.56, 1.00) }, + { "FIREBRICK", Color(0.70, 0.13, 0.13) }, + { "FLORAL_WHITE", Color(1.00, 0.98, 0.94) }, + { "FOREST_GREEN", Color(0.13, 0.55, 0.13) }, + { "FUCHSIA", Color(1.00, 0.00, 1.00) }, + { "GAINSBORO", Color(0.86, 0.86, 0.86) }, + { "GHOST_WHITE", Color(0.97, 0.97, 1.00) }, + { "GOLD", Color(1.00, 0.84, 0.00) }, + { "GOLDENROD", Color(0.85, 0.65, 0.13) }, + { "GRAY", Color(0.75, 0.75, 0.75) }, + { "GREEN", Color(0.00, 1.00, 0.00) }, + { "GREEN_YELLOW", Color(0.68, 1.00, 0.18) }, + { "HONEYDEW", Color(0.94, 1.00, 0.94) }, + { "HOT_PINK", Color(1.00, 0.41, 0.71) }, + { "INDIAN_RED", Color(0.80, 0.36, 0.36) }, + { "INDIGO", Color(0.29, 0.00, 0.51) }, + { "IVORY", Color(1.00, 1.00, 0.94) }, + { "KHAKI", Color(0.94, 0.90, 0.55) }, + { "LAVENDER", Color(0.90, 0.90, 0.98) }, + { "LAVENDER_BLUSH", Color(1.00, 0.94, 0.96) }, + { "LAWN_GREEN", Color(0.49, 0.99, 0.00) }, + { "LEMON_CHIFFON", Color(1.00, 0.98, 0.80) }, + { "LIGHT_BLUE", Color(0.68, 0.85, 0.90) }, + { "LIGHT_CORAL", Color(0.94, 0.50, 0.50) }, + { "LIGHT_CYAN", Color(0.88, 1.00, 1.00) }, + { "LIGHT_GOLDENROD", Color(0.98, 0.98, 0.82) }, + { "LIGHT_GRAY", Color(0.83, 0.83, 0.83) }, + { "LIGHT_GREEN", Color(0.56, 0.93, 0.56) }, + { "LIGHT_PINK", Color(1.00, 0.71, 0.76) }, + { "LIGHT_SALMON", Color(1.00, 0.63, 0.48) }, + { "LIGHT_SEA_GREEN", Color(0.13, 0.70, 0.67) }, + { "LIGHT_SKY_BLUE", Color(0.53, 0.81, 0.98) }, + { "LIGHT_SLATE_GRAY", Color(0.47, 0.53, 0.60) }, + { "LIGHT_STEEL_BLUE", Color(0.69, 0.77, 0.87) }, + { "LIGHT_YELLOW", Color(1.00, 1.00, 0.88) }, + { "LIME", Color(0.00, 1.00, 0.00) }, + { "LIME_GREEN", Color(0.20, 0.80, 0.20) }, + { "LINEN", Color(0.98, 0.94, 0.90) }, + { "MAGENTA", Color(1.00, 0.00, 1.00) }, + { "MAROON", Color(0.69, 0.19, 0.38) }, + { "MEDIUM_AQUAMARINE", Color(0.40, 0.80, 0.67) }, + { "MEDIUM_BLUE", Color(0.00, 0.00, 0.80) }, + { "MEDIUM_ORCHID", Color(0.73, 0.33, 0.83) }, + { "MEDIUM_PURPLE", Color(0.58, 0.44, 0.86) }, + { "MEDIUM_SEA_GREEN", Color(0.24, 0.70, 0.44) }, + { "MEDIUM_SLATE_BLUE", Color(0.48, 0.41, 0.93) }, + { "MEDIUM_SPRING_GREEN", Color(0.00, 0.98, 0.60) }, + { "MEDIUM_TURQUOISE", Color(0.28, 0.82, 0.80) }, + { "MEDIUM_VIOLET_RED", Color(0.78, 0.08, 0.52) }, + { "MIDNIGHT_BLUE", Color(0.10, 0.10, 0.44) }, + { "MINT_CREAM", Color(0.96, 1.00, 0.98) }, + { "MISTY_ROSE", Color(1.00, 0.89, 0.88) }, + { "MOCCASIN", Color(1.00, 0.89, 0.71) }, + { "NAVAJO_WHITE", Color(1.00, 0.87, 0.68) }, + { "NAVY_BLUE", Color(0.00, 0.00, 0.50) }, + { "OLD_LACE", Color(0.99, 0.96, 0.90) }, + { "OLIVE", Color(0.50, 0.50, 0.00) }, + { "OLIVE_DRAB", Color(0.42, 0.56, 0.14) }, + { "ORANGE", Color(1.00, 0.65, 0.00) }, + { "ORANGE_RED", Color(1.00, 0.27, 0.00) }, + { "ORCHID", Color(0.85, 0.44, 0.84) }, + { "PALE_GOLDENROD", Color(0.93, 0.91, 0.67) }, + { "PALE_GREEN", Color(0.60, 0.98, 0.60) }, + { "PALE_TURQUOISE", Color(0.69, 0.93, 0.93) }, + { "PALE_VIOLET_RED", Color(0.86, 0.44, 0.58) }, + { "PAPAYA_WHIP", Color(1.00, 0.94, 0.84) }, + { "PEACH_PUFF", Color(1.00, 0.85, 0.73) }, + { "PERU", Color(0.80, 0.52, 0.25) }, + { "PINK", Color(1.00, 0.75, 0.80) }, + { "PLUM", Color(0.87, 0.63, 0.87) }, + { "POWDER_BLUE", Color(0.69, 0.88, 0.90) }, + { "PURPLE", Color(0.63, 0.13, 0.94) }, + { "REBECCA_PURPLE", Color(0.40, 0.20, 0.60) }, + { "RED", Color(1.00, 0.00, 0.00) }, + { "ROSY_BROWN", Color(0.74, 0.56, 0.56) }, + { "ROYAL_BLUE", Color(0.25, 0.41, 0.88) }, + { "SADDLE_BROWN", Color(0.55, 0.27, 0.07) }, + { "SALMON", Color(0.98, 0.50, 0.45) }, + { "SANDY_BROWN", Color(0.96, 0.64, 0.38) }, + { "SEA_GREEN", Color(0.18, 0.55, 0.34) }, + { "SEASHELL", Color(1.00, 0.96, 0.93) }, + { "SIENNA", Color(0.63, 0.32, 0.18) }, + { "SILVER", Color(0.75, 0.75, 0.75) }, + { "SKY_BLUE", Color(0.53, 0.81, 0.92) }, + { "SLATE_BLUE", Color(0.42, 0.35, 0.80) }, + { "SLATE_GRAY", Color(0.44, 0.50, 0.56) }, + { "SNOW", Color(1.00, 0.98, 0.98) }, + { "SPRING_GREEN", Color(0.00, 1.00, 0.50) }, + { "STEEL_BLUE", Color(0.27, 0.51, 0.71) }, + { "TAN", Color(0.82, 0.71, 0.55) }, + { "TEAL", Color(0.00, 0.50, 0.50) }, + { "THISTLE", Color(0.85, 0.75, 0.85) }, + { "TOMATO", Color(1.00, 0.39, 0.28) }, + { "TRANSPARENT", Color(1.00, 1.00, 1.00, 0.00) }, + { "TURQUOISE", Color(0.25, 0.88, 0.82) }, + { "VIOLET", Color(0.93, 0.51, 0.93) }, + { "WEB_GRAY", Color(0.50, 0.50, 0.50) }, + { "WEB_GREEN", Color(0.00, 0.50, 0.00) }, + { "WEB_MAROON", Color(0.50, 0.00, 0.00) }, + { "WEB_PURPLE", Color(0.50, 0.00, 0.50) }, + { "WHEAT", Color(0.96, 0.87, 0.70) }, + { "WHITE", Color(1.00, 1.00, 1.00) }, + { "WHITE_SMOKE", Color(0.96, 0.96, 0.96) }, + { "YELLOW", Color(1.00, 1.00, 0.00) }, + { "YELLOW_GREEN", Color(0.60, 0.80, 0.20) }, { nullptr, Color() }, }; diff --git a/core/math/convex_hull.cpp b/core/math/convex_hull.cpp new file mode 100644 index 0000000000..682a7ea39e --- /dev/null +++ b/core/math/convex_hull.cpp @@ -0,0 +1,2290 @@ +/*************************************************************************/ +/* convex_hull.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +/* + * Based on Godot's patched VHACD-version of Bullet's btConvexHullComputer. + * See /thirdparty/vhacd/btConvexHullComputer.cpp at 64403ddcab9f1dca2408f0a412a22d899708bbb1 + * In turn, based on /src/LinearMath/btConvexHullComputer.cpp in <https://github.com/bulletphysics/bullet3> + * at 73b217fb07e7e3ce126caeb28ab3c9ddd0718467 + * + * Changes: + * - int32_t is consistently used instead of int in some cases + * - integrated patch db0d6c92927f5a1358b887f2645c11f3014f0e8a from Bullet (CWE-190 integer overflow in btConvexHullComputer) + * - adapted to Godot's code style + * - replaced Bullet's types (e.g. vectors) with Godot's + * - replaced custom Pool implementation with PagedAllocator + */ + +/* +Copyright (c) 2011 Ole Kniemeyer, MAXON, www.maxon.net + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#include "convex_hull.h" + +#include "core/error/error_macros.h" +#include "core/math/aabb.h" +#include "core/math/math_defs.h" +#include "core/os/memory.h" +#include "core/templates/paged_allocator.h" + +#include <string.h> + +//#define DEBUG_CONVEX_HULL +//#define SHOW_ITERATIONS + +// -- GODOT start -- +// Assembly optimizations are not used at the moment. +//#define USE_X86_64_ASM +// -- GODOT end -- + +#ifdef DEBUG_ENABLED +#define CHULL_ASSERT(m_cond) \ + do { \ + if (unlikely(!(m_cond))) { \ + ERR_PRINT("Assertion \"" _STR(m_cond) "\" failed."); \ + } \ + } while (0) +#else +#define CHULL_ASSERT(m_cond) \ + do { \ + } while (0) +#endif + +#if defined(DEBUG_CONVEX_HULL) || defined(SHOW_ITERATIONS) +#include <stdio.h> +#endif + +// Convex hull implementation based on Preparata and Hong +// Ole Kniemeyer, MAXON Computer GmbH +class ConvexHullInternal { +public: + class Point64 { + public: + int64_t x; + int64_t y; + int64_t z; + + Point64(int64_t p_x, int64_t p_y, int64_t p_z) { + x = p_x; + y = p_y; + z = p_z; + } + + bool is_zero() { + return (x == 0) && (y == 0) && (z == 0); + } + + int64_t dot(const Point64 &b) const { + return x * b.x + y * b.y + z * b.z; + } + }; + + class Point32 { + public: + int32_t x = 0; + int32_t y = 0; + int32_t z = 0; + int32_t index = -1; + + Point32() { + } + + Point32(int32_t p_x, int32_t p_y, int32_t p_z) { + x = p_x; + y = p_y; + z = p_z; + } + + bool operator==(const Point32 &b) const { + return (x == b.x) && (y == b.y) && (z == b.z); + } + + bool operator!=(const Point32 &b) const { + return (x != b.x) || (y != b.y) || (z != b.z); + } + + bool is_zero() { + return (x == 0) && (y == 0) && (z == 0); + } + + Point64 cross(const Point32 &b) const { + return Point64((int64_t)y * b.z - (int64_t)z * b.y, (int64_t)z * b.x - (int64_t)x * b.z, (int64_t)x * b.y - (int64_t)y * b.x); + } + + Point64 cross(const Point64 &b) const { + return Point64(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x); + } + + int64_t dot(const Point32 &b) const { + return (int64_t)x * b.x + (int64_t)y * b.y + (int64_t)z * b.z; + } + + int64_t dot(const Point64 &b) const { + return x * b.x + y * b.y + z * b.z; + } + + Point32 operator+(const Point32 &b) const { + return Point32(x + b.x, y + b.y, z + b.z); + } + + Point32 operator-(const Point32 &b) const { + return Point32(x - b.x, y - b.y, z - b.z); + } + }; + + class Int128 { + public: + uint64_t low = 0; + uint64_t high = 0; + + Int128() { + } + + Int128(uint64_t p_low, uint64_t p_high) { + low = p_low; + high = p_high; + } + + Int128(uint64_t p_low) { + low = p_low; + high = 0; + } + + Int128(int64_t p_value) { + low = p_value; + if (p_value >= 0) { + high = 0; + } else { + high = (uint64_t)-1LL; + } + } + + static Int128 mul(int64_t a, int64_t b); + + static Int128 mul(uint64_t a, uint64_t b); + + Int128 operator-() const { + return Int128((uint64_t) - (int64_t)low, ~high + (low == 0)); + } + + Int128 operator+(const Int128 &b) const { +#ifdef USE_X86_64_ASM + Int128 result; + __asm__("addq %[bl], %[rl]\n\t" + "adcq %[bh], %[rh]\n\t" + : [rl] "=r"(result.low), [rh] "=r"(result.high) + : "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high) + : "cc"); + return result; +#else + uint64_t lo = low + b.low; + return Int128(lo, high + b.high + (lo < low)); +#endif + } + + Int128 operator-(const Int128 &b) const { +#ifdef USE_X86_64_ASM + Int128 result; + __asm__("subq %[bl], %[rl]\n\t" + "sbbq %[bh], %[rh]\n\t" + : [rl] "=r"(result.low), [rh] "=r"(result.high) + : "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high) + : "cc"); + return result; +#else + return *this + -b; +#endif + } + + Int128 &operator+=(const Int128 &b) { +#ifdef USE_X86_64_ASM + __asm__("addq %[bl], %[rl]\n\t" + "adcq %[bh], %[rh]\n\t" + : [rl] "=r"(low), [rh] "=r"(high) + : "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high) + : "cc"); +#else + uint64_t lo = low + b.low; + if (lo < low) { + ++high; + } + low = lo; + high += b.high; +#endif + return *this; + } + + Int128 &operator++() { + if (++low == 0) { + ++high; + } + return *this; + } + + Int128 operator*(int64_t b) const; + + real_t to_scalar() const { + return ((int64_t)high >= 0) ? real_t(high) * (real_t(0x100000000LL) * real_t(0x100000000LL)) + real_t(low) : -(-*this).to_scalar(); + } + + int32_t get_sign() const { + return ((int64_t)high < 0) ? -1 : (high || low) ? 1 : + 0; + } + + bool operator<(const Int128 &b) const { + return (high < b.high) || ((high == b.high) && (low < b.low)); + } + + int32_t ucmp(const Int128 &b) const { + if (high < b.high) { + return -1; + } + if (high > b.high) { + return 1; + } + if (low < b.low) { + return -1; + } + if (low > b.low) { + return 1; + } + return 0; + } + }; + + class Rational64 { + private: + uint64_t numerator; + uint64_t denominator; + int32_t sign; + + public: + Rational64(int64_t p_numerator, int64_t p_denominator) { + if (p_numerator > 0) { + sign = 1; + numerator = (uint64_t)p_numerator; + } else if (p_numerator < 0) { + sign = -1; + numerator = (uint64_t)-p_numerator; + } else { + sign = 0; + numerator = 0; + } + if (p_denominator > 0) { + denominator = (uint64_t)p_denominator; + } else if (p_denominator < 0) { + sign = -sign; + denominator = (uint64_t)-p_denominator; + } else { + denominator = 0; + } + } + + bool is_negative_infinity() const { + return (sign < 0) && (denominator == 0); + } + + bool is_nan() const { + return (sign == 0) && (denominator == 0); + } + + int32_t compare(const Rational64 &b) const; + + real_t to_scalar() const { + return sign * ((denominator == 0) ? FLT_MAX : (real_t)numerator / denominator); + } + }; + + class Rational128 { + private: + Int128 numerator; + Int128 denominator; + int32_t sign; + bool is_int_64; + + public: + Rational128(int64_t p_value) { + if (p_value > 0) { + sign = 1; + this->numerator = p_value; + } else if (p_value < 0) { + sign = -1; + this->numerator = -p_value; + } else { + sign = 0; + this->numerator = (uint64_t)0; + } + this->denominator = (uint64_t)1; + is_int_64 = true; + } + + Rational128(const Int128 &p_numerator, const Int128 &p_denominator) { + sign = p_numerator.get_sign(); + if (sign >= 0) { + this->numerator = p_numerator; + } else { + this->numerator = -p_numerator; + } + int32_t dsign = p_denominator.get_sign(); + if (dsign >= 0) { + this->denominator = p_denominator; + } else { + sign = -sign; + this->denominator = -p_denominator; + } + is_int_64 = false; + } + + int32_t compare(const Rational128 &b) const; + + int32_t compare(int64_t b) const; + + real_t to_scalar() const { + return sign * ((denominator.get_sign() == 0) ? FLT_MAX : numerator.to_scalar() / denominator.to_scalar()); + } + }; + + class PointR128 { + public: + Int128 x; + Int128 y; + Int128 z; + Int128 denominator; + + PointR128() { + } + + PointR128(Int128 p_x, Int128 p_y, Int128 p_z, Int128 p_denominator) { + x = p_x; + y = p_y; + z = p_z; + denominator = p_denominator; + } + + real_t xvalue() const { + return x.to_scalar() / denominator.to_scalar(); + } + + real_t yvalue() const { + return y.to_scalar() / denominator.to_scalar(); + } + + real_t zvalue() const { + return z.to_scalar() / denominator.to_scalar(); + } + }; + + class Edge; + class Face; + + class Vertex { + public: + Vertex *next = nullptr; + Vertex *prev = nullptr; + Edge *edges = nullptr; + Face *first_nearby_face = nullptr; + Face *last_nearby_face = nullptr; + PointR128 point128; + Point32 point; + int32_t copy = -1; + + Vertex() { + } + +#ifdef DEBUG_CONVEX_HULL + void print() { + printf("V%d (%d, %d, %d)", point.index, point.x, point.y, point.z); + } + + void print_graph(); +#endif + + Point32 operator-(const Vertex &b) const { + return point - b.point; + } + + Rational128 dot(const Point64 &b) const { + return (point.index >= 0) ? Rational128(point.dot(b)) : Rational128(point128.x * b.x + point128.y * b.y + point128.z * b.z, point128.denominator); + } + + real_t xvalue() const { + return (point.index >= 0) ? real_t(point.x) : point128.xvalue(); + } + + real_t yvalue() const { + return (point.index >= 0) ? real_t(point.y) : point128.yvalue(); + } + + real_t zvalue() const { + return (point.index >= 0) ? real_t(point.z) : point128.zvalue(); + } + + void receive_nearby_faces(Vertex *p_src) { + if (last_nearby_face) { + last_nearby_face->next_with_same_nearby_vertex = p_src->first_nearby_face; + } else { + first_nearby_face = p_src->first_nearby_face; + } + if (p_src->last_nearby_face) { + last_nearby_face = p_src->last_nearby_face; + } + for (Face *f = p_src->first_nearby_face; f; f = f->next_with_same_nearby_vertex) { + CHULL_ASSERT(f->nearby_vertex == p_src); + f->nearby_vertex = this; + } + p_src->first_nearby_face = nullptr; + p_src->last_nearby_face = nullptr; + } + }; + + class Edge { + public: + Edge *next = nullptr; + Edge *prev = nullptr; + Edge *reverse = nullptr; + Vertex *target = nullptr; + Face *face = nullptr; + int32_t copy = -1; + + void link(Edge *n) { + CHULL_ASSERT(reverse->target == n->reverse->target); + next = n; + n->prev = this; + } + +#ifdef DEBUG_CONVEX_HULL + void print() { + printf("E%p : %d -> %d, n=%p p=%p (0 %d\t%d\t%d) -> (%d %d %d)", this, reverse->target->point.index, target->point.index, next, prev, + reverse->target->point.x, reverse->target->point.y, reverse->target->point.z, target->point.x, target->point.y, target->point.z); + } +#endif + }; + + class Face { + public: + Face *next = nullptr; + Vertex *nearby_vertex = nullptr; + Face *next_with_same_nearby_vertex = nullptr; + Point32 origin; + Point32 dir0; + Point32 dir1; + + Face() { + } + + void init(Vertex *p_a, Vertex *p_b, Vertex *p_c) { + nearby_vertex = p_a; + origin = p_a->point; + dir0 = *p_b - *p_a; + dir1 = *p_c - *p_a; + if (p_a->last_nearby_face) { + p_a->last_nearby_face->next_with_same_nearby_vertex = this; + } else { + p_a->first_nearby_face = this; + } + p_a->last_nearby_face = this; + } + + Point64 get_normal() { + return dir0.cross(dir1); + } + }; + + template <typename UWord, typename UHWord> + class DMul { + private: + static uint32_t high(uint64_t p_value) { + return (uint32_t)(p_value >> 32); + } + + static uint32_t low(uint64_t p_value) { + return (uint32_t)p_value; + } + + static uint64_t mul(uint32_t a, uint32_t b) { + return (uint64_t)a * (uint64_t)b; + } + + static void shl_half(uint64_t &p_value) { + p_value <<= 32; + } + + static uint64_t high(Int128 p_value) { + return p_value.high; + } + + static uint64_t low(Int128 p_value) { + return p_value.low; + } + + static Int128 mul(uint64_t a, uint64_t b) { + return Int128::mul(a, b); + } + + static void shl_half(Int128 &p_value) { + p_value.high = p_value.low; + p_value.low = 0; + } + + public: + static void mul(UWord p_a, UWord p_b, UWord &r_low, UWord &r_high) { + UWord p00 = mul(low(p_a), low(p_b)); + UWord p01 = mul(low(p_a), high(p_b)); + UWord p10 = mul(high(p_a), low(p_b)); + UWord p11 = mul(high(p_a), high(p_b)); + UWord p0110 = UWord(low(p01)) + UWord(low(p10)); + p11 += high(p01); + p11 += high(p10); + p11 += high(p0110); + shl_half(p0110); + p00 += p0110; + if (p00 < p0110) { + ++p11; + } + r_low = p00; + r_high = p11; + } + }; + +private: + class IntermediateHull { + public: + Vertex *min_xy = nullptr; + Vertex *max_xy = nullptr; + Vertex *min_yx = nullptr; + Vertex *max_yx = nullptr; + + IntermediateHull() { + } + + void print(); + }; + + enum Orientation { NONE, + CLOCKWISE, + COUNTER_CLOCKWISE }; + + Vector3 scaling; + Vector3 center; + PagedAllocator<Vertex> vertex_pool; + PagedAllocator<Edge> edge_pool; + PagedAllocator<Face> face_pool; + LocalVector<Vertex *> original_vertices; + int32_t merge_stamp = 0; + int32_t min_axis = 0; + int32_t med_axis = 0; + int32_t max_axis = 0; + int32_t used_edge_pairs = 0; + int32_t max_used_edge_pairs = 0; + + static Orientation get_orientation(const Edge *p_prev, const Edge *p_next, const Point32 &p_s, const Point32 &p_t); + Edge *find_max_angle(bool p_ccw, const Vertex *p_start, const Point32 &p_s, const Point64 &p_rxs, const Point64 &p_ssxrxs, Rational64 &p_min_cot); + void find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, Vertex *p_stop0, Vertex *p_stop1); + + Edge *new_edge_pair(Vertex *p_from, Vertex *p_to); + + void remove_edge_pair(Edge *p_edge) { + Edge *n = p_edge->next; + Edge *r = p_edge->reverse; + + CHULL_ASSERT(p_edge->target && r->target); + + if (n != p_edge) { + n->prev = p_edge->prev; + p_edge->prev->next = n; + r->target->edges = n; + } else { + r->target->edges = nullptr; + } + + n = r->next; + + if (n != r) { + n->prev = r->prev; + r->prev->next = n; + p_edge->target->edges = n; + } else { + p_edge->target->edges = nullptr; + } + + edge_pool.free(p_edge); + edge_pool.free(r); + used_edge_pairs--; + } + + void compute_internal(int32_t p_start, int32_t p_end, IntermediateHull &r_result); + + bool merge_projection(IntermediateHull &p_h0, IntermediateHull &p_h1, Vertex *&r_c0, Vertex *&r_c1); + + void merge(IntermediateHull &p_h0, IntermediateHull &p_h1); + + Vector3 to_gd_vector(const Point32 &p_v); + + Vector3 get_gd_normal(Face *p_face); + + bool shift_face(Face *p_face, real_t p_amount, LocalVector<Vertex *> p_stack); + +public: + ~ConvexHullInternal() { + vertex_pool.reset(true); + edge_pool.reset(true); + face_pool.reset(true); + } + + Vertex *vertex_list; + + void compute(const Vector3 *p_coords, int32_t p_count); + + Vector3 get_coordinates(const Vertex *p_v); + + real_t shrink(real_t amount, real_t p_clamp_amount); +}; + +ConvexHullInternal::Int128 ConvexHullInternal::Int128::operator*(int64_t b) const { + bool negative = (int64_t)high < 0; + Int128 a = negative ? -*this : *this; + if (b < 0) { + negative = !negative; + b = -b; + } + Int128 result = mul(a.low, (uint64_t)b); + result.high += a.high * (uint64_t)b; + return negative ? -result : result; +} + +ConvexHullInternal::Int128 ConvexHullInternal::Int128::mul(int64_t a, int64_t b) { + Int128 result; + +#ifdef USE_X86_64_ASM + __asm__("imulq %[b]" + : "=a"(result.low), "=d"(result.high) + : "0"(a), [b] "r"(b) + : "cc"); + return result; + +#else + bool negative = a < 0; + if (negative) { + a = -a; + } + if (b < 0) { + negative = !negative; + b = -b; + } + DMul<uint64_t, uint32_t>::mul((uint64_t)a, (uint64_t)b, result.low, result.high); + return negative ? -result : result; +#endif +} + +ConvexHullInternal::Int128 ConvexHullInternal::Int128::mul(uint64_t a, uint64_t b) { + Int128 result; + +#ifdef USE_X86_64_ASM + __asm__("mulq %[b]" + : "=a"(result.low), "=d"(result.high) + : "0"(a), [b] "r"(b) + : "cc"); + +#else + DMul<uint64_t, uint32_t>::mul(a, b, result.low, result.high); +#endif + + return result; +} + +int32_t ConvexHullInternal::Rational64::compare(const Rational64 &b) const { + if (sign != b.sign) { + return sign - b.sign; + } else if (sign == 0) { + return 0; + } + + // return (numerator * b.denominator > b.numerator * denominator) ? sign : (numerator * b.denominator < b.numerator * denominator) ? -sign : 0; + +#ifdef USE_X86_64_ASM + + int32_t result; + int64_t tmp; + int64_t dummy; + __asm__("mulq %[bn]\n\t" + "movq %%rax, %[tmp]\n\t" + "movq %%rdx, %%rbx\n\t" + "movq %[tn], %%rax\n\t" + "mulq %[bd]\n\t" + "subq %[tmp], %%rax\n\t" + "sbbq %%rbx, %%rdx\n\t" // rdx:rax contains 128-bit-difference "numerator*b.denominator - b.numerator*denominator" + "setnsb %%bh\n\t" // bh=1 if difference is non-negative, bh=0 otherwise + "orq %%rdx, %%rax\n\t" + "setnzb %%bl\n\t" // bl=1 if difference if non-zero, bl=0 if it is zero + "decb %%bh\n\t" // now bx=0x0000 if difference is zero, 0xff01 if it is negative, 0x0001 if it is positive (i.e., same sign as difference) + "shll $16, %%ebx\n\t" // ebx has same sign as difference + : "=&b"(result), [tmp] "=&r"(tmp), "=a"(dummy) + : "a"(denominator), [bn] "g"(b.numerator), [tn] "g"(numerator), [bd] "g"(b.denominator) + : "%rdx", "cc"); + return result ? result ^ sign // if sign is +1, only bit 0 of result is inverted, which does not change the sign of result (and cannot result in zero) + // if sign is -1, all bits of result are inverted, which changes the sign of result (and again cannot result in zero) + : + 0; + +#else + + return sign * Int128::mul(numerator, b.denominator).ucmp(Int128::mul(denominator, b.numerator)); + +#endif +} + +int32_t ConvexHullInternal::Rational128::compare(const Rational128 &b) const { + if (sign != b.sign) { + return sign - b.sign; + } else if (sign == 0) { + return 0; + } + if (is_int_64) { + return -b.compare(sign * (int64_t)numerator.low); + } + + Int128 nbd_low, nbd_high, dbn_low, dbn_high; + DMul<Int128, uint64_t>::mul(numerator, b.denominator, nbd_low, nbd_high); + DMul<Int128, uint64_t>::mul(denominator, b.numerator, dbn_low, dbn_high); + + int32_t cmp = nbd_high.ucmp(dbn_high); + if (cmp) { + return cmp * sign; + } + return nbd_low.ucmp(dbn_low) * sign; +} + +int32_t ConvexHullInternal::Rational128::compare(int64_t b) const { + if (is_int_64) { + int64_t a = sign * (int64_t)numerator.low; + return (a > b) ? 1 : (a < b) ? -1 : + 0; + } + if (b > 0) { + if (sign <= 0) { + return -1; + } + } else if (b < 0) { + if (sign >= 0) { + return 1; + } + b = -b; + } else { + return sign; + } + + return numerator.ucmp(denominator * b) * sign; +} + +ConvexHullInternal::Edge *ConvexHullInternal::new_edge_pair(Vertex *p_from, Vertex *p_to) { + CHULL_ASSERT(p_from && p_to); + Edge *e = edge_pool.alloc(); + Edge *r = edge_pool.alloc(); + e->reverse = r; + r->reverse = e; + e->copy = merge_stamp; + r->copy = merge_stamp; + e->target = p_to; + r->target = p_from; + e->face = nullptr; + r->face = nullptr; + used_edge_pairs++; + if (used_edge_pairs > max_used_edge_pairs) { + max_used_edge_pairs = used_edge_pairs; + } + return e; +} + +bool ConvexHullInternal::merge_projection(IntermediateHull &r_h0, IntermediateHull &r_h1, Vertex *&r_c0, Vertex *&r_c1) { + Vertex *v0 = r_h0.max_yx; + Vertex *v1 = r_h1.min_yx; + if ((v0->point.x == v1->point.x) && (v0->point.y == v1->point.y)) { + CHULL_ASSERT(v0->point.z < v1->point.z); + Vertex *v1p = v1->prev; + if (v1p == v1) { + r_c0 = v0; + if (v1->edges) { + CHULL_ASSERT(v1->edges->next == v1->edges); + v1 = v1->edges->target; + CHULL_ASSERT(v1->edges->next == v1->edges); + } + r_c1 = v1; + return false; + } + Vertex *v1n = v1->next; + v1p->next = v1n; + v1n->prev = v1p; + if (v1 == r_h1.min_xy) { + if ((v1n->point.x < v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y < v1p->point.y))) { + r_h1.min_xy = v1n; + } else { + r_h1.min_xy = v1p; + } + } + if (v1 == r_h1.max_xy) { + if ((v1n->point.x > v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y > v1p->point.y))) { + r_h1.max_xy = v1n; + } else { + r_h1.max_xy = v1p; + } + } + } + + v0 = r_h0.max_xy; + v1 = r_h1.max_xy; + Vertex *v00 = nullptr; + Vertex *v10 = nullptr; + int32_t sign = 1; + + for (int32_t side = 0; side <= 1; side++) { + int32_t dx = (v1->point.x - v0->point.x) * sign; + if (dx > 0) { + while (true) { + int32_t dy = v1->point.y - v0->point.y; + + Vertex *w0 = side ? v0->next : v0->prev; + if (w0 != v0) { + int32_t dx0 = (w0->point.x - v0->point.x) * sign; + int32_t dy0 = w0->point.y - v0->point.y; + if ((dy0 <= 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx <= dy * dx0)))) { + v0 = w0; + dx = (v1->point.x - v0->point.x) * sign; + continue; + } + } + + Vertex *w1 = side ? v1->next : v1->prev; + if (w1 != v1) { + int32_t dx1 = (w1->point.x - v1->point.x) * sign; + int32_t dy1 = w1->point.y - v1->point.y; + int32_t dxn = (w1->point.x - v0->point.x) * sign; + if ((dxn > 0) && (dy1 < 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx < dy * dx1)))) { + v1 = w1; + dx = dxn; + continue; + } + } + + break; + } + } else if (dx < 0) { + while (true) { + int32_t dy = v1->point.y - v0->point.y; + + Vertex *w1 = side ? v1->prev : v1->next; + if (w1 != v1) { + int32_t dx1 = (w1->point.x - v1->point.x) * sign; + int32_t dy1 = w1->point.y - v1->point.y; + if ((dy1 >= 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx <= dy * dx1)))) { + v1 = w1; + dx = (v1->point.x - v0->point.x) * sign; + continue; + } + } + + Vertex *w0 = side ? v0->prev : v0->next; + if (w0 != v0) { + int32_t dx0 = (w0->point.x - v0->point.x) * sign; + int32_t dy0 = w0->point.y - v0->point.y; + int32_t dxn = (v1->point.x - w0->point.x) * sign; + if ((dxn < 0) && (dy0 > 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx < dy * dx0)))) { + v0 = w0; + dx = dxn; + continue; + } + } + + break; + } + } else { + int32_t x = v0->point.x; + int32_t y0 = v0->point.y; + Vertex *w0 = v0; + Vertex *t; + while (((t = side ? w0->next : w0->prev) != v0) && (t->point.x == x) && (t->point.y <= y0)) { + w0 = t; + y0 = t->point.y; + } + v0 = w0; + + int32_t y1 = v1->point.y; + Vertex *w1 = v1; + while (((t = side ? w1->prev : w1->next) != v1) && (t->point.x == x) && (t->point.y >= y1)) { + w1 = t; + y1 = t->point.y; + } + v1 = w1; + } + + if (side == 0) { + v00 = v0; + v10 = v1; + + v0 = r_h0.min_xy; + v1 = r_h1.min_xy; + sign = -1; + } + } + + v0->prev = v1; + v1->next = v0; + + v00->next = v10; + v10->prev = v00; + + if (r_h1.min_xy->point.x < r_h0.min_xy->point.x) { + r_h0.min_xy = r_h1.min_xy; + } + if (r_h1.max_xy->point.x >= r_h0.max_xy->point.x) { + r_h0.max_xy = r_h1.max_xy; + } + + r_h0.max_yx = r_h1.max_yx; + + r_c0 = v00; + r_c1 = v10; + + return true; +} + +void ConvexHullInternal::compute_internal(int32_t p_start, int32_t p_end, IntermediateHull &r_result) { + int32_t n = p_end - p_start; + switch (n) { + case 0: + r_result.min_xy = nullptr; + r_result.max_xy = nullptr; + r_result.min_yx = nullptr; + r_result.max_yx = nullptr; + return; + case 2: { + Vertex *v = original_vertices[p_start]; + Vertex *w = original_vertices[p_start + 1]; + if (v->point != w->point) { + int32_t dx = v->point.x - w->point.x; + int32_t dy = v->point.y - w->point.y; + + if ((dx == 0) && (dy == 0)) { + if (v->point.z > w->point.z) { + Vertex *t = w; + w = v; + v = t; + } + CHULL_ASSERT(v->point.z < w->point.z); + v->next = v; + v->prev = v; + r_result.min_xy = v; + r_result.max_xy = v; + r_result.min_yx = v; + r_result.max_yx = v; + } else { + v->next = w; + v->prev = w; + w->next = v; + w->prev = v; + + if ((dx < 0) || ((dx == 0) && (dy < 0))) { + r_result.min_xy = v; + r_result.max_xy = w; + } else { + r_result.min_xy = w; + r_result.max_xy = v; + } + + if ((dy < 0) || ((dy == 0) && (dx < 0))) { + r_result.min_yx = v; + r_result.max_yx = w; + } else { + r_result.min_yx = w; + r_result.max_yx = v; + } + } + + Edge *e = new_edge_pair(v, w); + e->link(e); + v->edges = e; + + e = e->reverse; + e->link(e); + w->edges = e; + + return; + } + [[fallthrough]]; + } + case 1: { + Vertex *v = original_vertices[p_start]; + v->edges = nullptr; + v->next = v; + v->prev = v; + + r_result.min_xy = v; + r_result.max_xy = v; + r_result.min_yx = v; + r_result.max_yx = v; + + return; + } + } + + int32_t split0 = p_start + n / 2; + Point32 p = original_vertices[split0 - 1]->point; + int32_t split1 = split0; + while ((split1 < p_end) && (original_vertices[split1]->point == p)) { + split1++; + } + compute_internal(p_start, split0, r_result); + IntermediateHull hull1; + compute_internal(split1, p_end, hull1); +#ifdef DEBUG_CONVEX_HULL + printf("\n\nMerge\n"); + r_result.print(); + hull1.print(); +#endif + merge(r_result, hull1); +#ifdef DEBUG_CONVEX_HULL + printf("\n Result\n"); + r_result.print(); +#endif +} + +#ifdef DEBUG_CONVEX_HULL +void ConvexHullInternal::IntermediateHull::print() { + printf(" Hull\n"); + for (Vertex *v = min_xy; v;) { + printf(" "); + v->print(); + if (v == max_xy) { + printf(" max_xy"); + } + if (v == min_yx) { + printf(" min_yx"); + } + if (v == max_yx) { + printf(" max_yx"); + } + if (v->next->prev != v) { + printf(" Inconsistency"); + } + printf("\n"); + v = v->next; + if (v == min_xy) { + break; + } + } + if (min_xy) { + min_xy->copy = (min_xy->copy == -1) ? -2 : -1; + min_xy->print_graph(); + } +} + +void ConvexHullInternal::Vertex::print_graph() { + print(); + printf("\nEdges\n"); + Edge *e = edges; + if (e) { + do { + e->print(); + printf("\n"); + e = e->next; + } while (e != edges); + do { + Vertex *v = e->target; + if (v->copy != copy) { + v->copy = copy; + v->print_graph(); + } + e = e->next; + } while (e != edges); + } +} +#endif + +ConvexHullInternal::Orientation ConvexHullInternal::get_orientation(const Edge *p_prev, const Edge *p_next, const Point32 &p_s, const Point32 &p_t) { + CHULL_ASSERT(p_prev->reverse->target == p_next->reverse->target); + if (p_prev->next == p_next) { + if (p_prev->prev == p_next) { + Point64 n = p_t.cross(p_s); + Point64 m = (*p_prev->target - *p_next->reverse->target).cross(*p_next->target - *p_next->reverse->target); + CHULL_ASSERT(!m.is_zero()); + int64_t dot = n.dot(m); + CHULL_ASSERT(dot != 0); + return (dot > 0) ? COUNTER_CLOCKWISE : CLOCKWISE; + } + return COUNTER_CLOCKWISE; + } else if (p_prev->prev == p_next) { + return CLOCKWISE; + } else { + return NONE; + } +} + +ConvexHullInternal::Edge *ConvexHullInternal::find_max_angle(bool p_ccw, const Vertex *p_start, const Point32 &p_s, const Point64 &p_rxs, const Point64 &p_sxrxs, Rational64 &p_min_cot) { + Edge *min_edge = nullptr; + +#ifdef DEBUG_CONVEX_HULL + printf("find max edge for %d\n", p_start->point.index); +#endif + Edge *e = p_start->edges; + if (e) { + do { + if (e->copy > merge_stamp) { + Point32 t = *e->target - *p_start; + Rational64 cot(t.dot(p_sxrxs), t.dot(p_rxs)); +#ifdef DEBUG_CONVEX_HULL + printf(" Angle is %f (%d) for ", Math::atan(cot.to_scalar()), (int32_t)cot.is_nan()); + e->print(); +#endif + if (cot.is_nan()) { + CHULL_ASSERT(p_ccw ? (t.dot(p_s) < 0) : (t.dot(p_s) > 0)); + } else { + int32_t cmp; + if (min_edge == nullptr) { + p_min_cot = cot; + min_edge = e; + } else if ((cmp = cot.compare(p_min_cot)) < 0) { + p_min_cot = cot; + min_edge = e; + } else if ((cmp == 0) && (p_ccw == (get_orientation(min_edge, e, p_s, t) == COUNTER_CLOCKWISE))) { + min_edge = e; + } + } +#ifdef DEBUG_CONVEX_HULL + printf("\n"); +#endif + } + e = e->next; + } while (e != p_start->edges); + } + return min_edge; +} + +void ConvexHullInternal::find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, Vertex *p_stop0, Vertex *p_stop1) { + Edge *start0 = p_e0; + Edge *start1 = p_e1; + Point32 et0 = start0 ? start0->target->point : p_c0->point; + Point32 et1 = start1 ? start1->target->point : p_c1->point; + Point32 s = p_c1->point - p_c0->point; + Point64 normal = ((start0 ? start0 : start1)->target->point - p_c0->point).cross(s); + int64_t dist = p_c0->point.dot(normal); + CHULL_ASSERT(!start1 || (start1->target->point.dot(normal) == dist)); + Point64 perp = s.cross(normal); + CHULL_ASSERT(!perp.is_zero()); + +#ifdef DEBUG_CONVEX_HULL + printf(" Advancing %d %d (%p %p, %d %d)\n", p_c0->point.index, p_c1->point.index, start0, start1, start0 ? start0->target->point.index : -1, start1 ? start1->target->point.index : -1); +#endif + + int64_t max_dot0 = et0.dot(perp); + if (p_e0) { + while (p_e0->target != p_stop0) { + Edge *e = p_e0->reverse->prev; + if (e->target->point.dot(normal) < dist) { + break; + } + CHULL_ASSERT(e->target->point.dot(normal) == dist); + if (e->copy == merge_stamp) { + break; + } + int64_t dot = e->target->point.dot(perp); + if (dot <= max_dot0) { + break; + } + max_dot0 = dot; + p_e0 = e; + et0 = e->target->point; + } + } + + int64_t max_dot1 = et1.dot(perp); + if (p_e1) { + while (p_e1->target != p_stop1) { + Edge *e = p_e1->reverse->next; + if (e->target->point.dot(normal) < dist) { + break; + } + CHULL_ASSERT(e->target->point.dot(normal) == dist); + if (e->copy == merge_stamp) { + break; + } + int64_t dot = e->target->point.dot(perp); + if (dot <= max_dot1) { + break; + } + max_dot1 = dot; + p_e1 = e; + et1 = e->target->point; + } + } + +#ifdef DEBUG_CONVEX_HULL + printf(" Starting at %d %d\n", et0.index, et1.index); +#endif + + int64_t dx = max_dot1 - max_dot0; + if (dx > 0) { + while (true) { + int64_t dy = (et1 - et0).dot(s); + + if (p_e0 && (p_e0->target != p_stop0)) { + Edge *f0 = p_e0->next->reverse; + if (f0->copy > merge_stamp) { + int64_t dx0 = (f0->target->point - et0).dot(perp); + int64_t dy0 = (f0->target->point - et0).dot(s); + if ((dx0 == 0) ? (dy0 < 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) >= 0))) { + et0 = f0->target->point; + dx = (et1 - et0).dot(perp); + p_e0 = (p_e0 == start0) ? nullptr : f0; + continue; + } + } + } + + if (p_e1 && (p_e1->target != p_stop1)) { + Edge *f1 = p_e1->reverse->next; + if (f1->copy > merge_stamp) { + Point32 d1 = f1->target->point - et1; + if (d1.dot(normal) == 0) { + int64_t dx1 = d1.dot(perp); + int64_t dy1 = d1.dot(s); + int64_t dxn = (f1->target->point - et0).dot(perp); + if ((dxn > 0) && ((dx1 == 0) ? (dy1 < 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) > 0)))) { + p_e1 = f1; + et1 = p_e1->target->point; + dx = dxn; + continue; + } + } else { + CHULL_ASSERT((p_e1 == start1) && (d1.dot(normal) < 0)); + } + } + } + + break; + } + } else if (dx < 0) { + while (true) { + int64_t dy = (et1 - et0).dot(s); + + if (p_e1 && (p_e1->target != p_stop1)) { + Edge *f1 = p_e1->prev->reverse; + if (f1->copy > merge_stamp) { + int64_t dx1 = (f1->target->point - et1).dot(perp); + int64_t dy1 = (f1->target->point - et1).dot(s); + if ((dx1 == 0) ? (dy1 > 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) <= 0))) { + et1 = f1->target->point; + dx = (et1 - et0).dot(perp); + p_e1 = (p_e1 == start1) ? nullptr : f1; + continue; + } + } + } + + if (p_e0 && (p_e0->target != p_stop0)) { + Edge *f0 = p_e0->reverse->prev; + if (f0->copy > merge_stamp) { + Point32 d0 = f0->target->point - et0; + if (d0.dot(normal) == 0) { + int64_t dx0 = d0.dot(perp); + int64_t dy0 = d0.dot(s); + int64_t dxn = (et1 - f0->target->point).dot(perp); + if ((dxn < 0) && ((dx0 == 0) ? (dy0 > 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) < 0)))) { + p_e0 = f0; + et0 = p_e0->target->point; + dx = dxn; + continue; + } + } else { + CHULL_ASSERT((p_e0 == start0) && (d0.dot(normal) < 0)); + } + } + } + + break; + } + } +#ifdef DEBUG_CONVEX_HULL + printf(" Advanced edges to %d %d\n", et0.index, et1.index); +#endif +} + +void ConvexHullInternal::merge(IntermediateHull &p_h0, IntermediateHull &p_h1) { + if (!p_h1.max_xy) { + return; + } + if (!p_h0.max_xy) { + p_h0 = p_h1; + return; + } + + merge_stamp--; + + Vertex *c0 = nullptr; + Edge *to_prev0 = nullptr; + Edge *first_new0 = nullptr; + Edge *pending_head0 = nullptr; + Edge *pending_tail0 = nullptr; + Vertex *c1 = nullptr; + Edge *to_prev1 = nullptr; + Edge *first_new1 = nullptr; + Edge *pending_head1 = nullptr; + Edge *pending_tail1 = nullptr; + Point32 prev_point; + + if (merge_projection(p_h0, p_h1, c0, c1)) { + Point32 s = *c1 - *c0; + Point64 normal = Point32(0, 0, -1).cross(s); + Point64 t = s.cross(normal); + CHULL_ASSERT(!t.is_zero()); + + Edge *e = c0->edges; + Edge *start0 = nullptr; + if (e) { + do { + int64_t dot = (*e->target - *c0).dot(normal); + CHULL_ASSERT(dot <= 0); + if ((dot == 0) && ((*e->target - *c0).dot(t) > 0)) { + if (!start0 || (get_orientation(start0, e, s, Point32(0, 0, -1)) == CLOCKWISE)) { + start0 = e; + } + } + e = e->next; + } while (e != c0->edges); + } + + e = c1->edges; + Edge *start1 = nullptr; + if (e) { + do { + int64_t dot = (*e->target - *c1).dot(normal); + CHULL_ASSERT(dot <= 0); + if ((dot == 0) && ((*e->target - *c1).dot(t) > 0)) { + if (!start1 || (get_orientation(start1, e, s, Point32(0, 0, -1)) == COUNTER_CLOCKWISE)) { + start1 = e; + } + } + e = e->next; + } while (e != c1->edges); + } + + if (start0 || start1) { + find_edge_for_coplanar_faces(c0, c1, start0, start1, nullptr, nullptr); + if (start0) { + c0 = start0->target; + } + if (start1) { + c1 = start1->target; + } + } + + prev_point = c1->point; + prev_point.z++; + } else { + prev_point = c1->point; + prev_point.x++; + } + + Vertex *first0 = c0; + Vertex *first1 = c1; + bool first_run = true; + + while (true) { + Point32 s = *c1 - *c0; + Point32 r = prev_point - c0->point; + Point64 rxs = r.cross(s); + Point64 sxrxs = s.cross(rxs); + +#ifdef DEBUG_CONVEX_HULL + printf("\n Checking %d %d\n", c0->point.index, c1->point.index); +#endif + Rational64 min_cot0(0, 0); + Edge *min0 = find_max_angle(false, c0, s, rxs, sxrxs, min_cot0); + Rational64 min_cot1(0, 0); + Edge *min1 = find_max_angle(true, c1, s, rxs, sxrxs, min_cot1); + if (!min0 && !min1) { + Edge *e = new_edge_pair(c0, c1); + e->link(e); + c0->edges = e; + + e = e->reverse; + e->link(e); + c1->edges = e; + return; + } else { + int32_t cmp = !min0 ? 1 : !min1 ? -1 : + min_cot0.compare(min_cot1); +#ifdef DEBUG_CONVEX_HULL + printf(" -> Result %d\n", cmp); +#endif + if (first_run || ((cmp >= 0) ? !min_cot1.is_negative_infinity() : !min_cot0.is_negative_infinity())) { + Edge *e = new_edge_pair(c0, c1); + if (pending_tail0) { + pending_tail0->prev = e; + } else { + pending_head0 = e; + } + e->next = pending_tail0; + pending_tail0 = e; + + e = e->reverse; + if (pending_tail1) { + pending_tail1->next = e; + } else { + pending_head1 = e; + } + e->prev = pending_tail1; + pending_tail1 = e; + } + + Edge *e0 = min0; + Edge *e1 = min1; + +#ifdef DEBUG_CONVEX_HULL + printf(" Found min edges to %d %d\n", e0 ? e0->target->point.index : -1, e1 ? e1->target->point.index : -1); +#endif + + if (cmp == 0) { + find_edge_for_coplanar_faces(c0, c1, e0, e1, nullptr, nullptr); + } + + if ((cmp >= 0) && e1) { + if (to_prev1) { + for (Edge *e = to_prev1->next, *n = nullptr; e != min1; e = n) { + n = e->next; + remove_edge_pair(e); + } + } + + if (pending_tail1) { + if (to_prev1) { + to_prev1->link(pending_head1); + } else { + min1->prev->link(pending_head1); + first_new1 = pending_head1; + } + pending_tail1->link(min1); + pending_head1 = nullptr; + pending_tail1 = nullptr; + } else if (!to_prev1) { + first_new1 = min1; + } + + prev_point = c1->point; + c1 = e1->target; + to_prev1 = e1->reverse; + } + + if ((cmp <= 0) && e0) { + if (to_prev0) { + for (Edge *e = to_prev0->prev, *n = nullptr; e != min0; e = n) { + n = e->prev; + remove_edge_pair(e); + } + } + + if (pending_tail0) { + if (to_prev0) { + pending_head0->link(to_prev0); + } else { + pending_head0->link(min0->next); + first_new0 = pending_head0; + } + min0->link(pending_tail0); + pending_head0 = nullptr; + pending_tail0 = nullptr; + } else if (!to_prev0) { + first_new0 = min0; + } + + prev_point = c0->point; + c0 = e0->target; + to_prev0 = e0->reverse; + } + } + + if ((c0 == first0) && (c1 == first1)) { + if (to_prev0 == nullptr) { + pending_head0->link(pending_tail0); + c0->edges = pending_tail0; + } else { + for (Edge *e = to_prev0->prev, *n = nullptr; e != first_new0; e = n) { + n = e->prev; + remove_edge_pair(e); + } + if (pending_tail0) { + pending_head0->link(to_prev0); + first_new0->link(pending_tail0); + } + } + + if (to_prev1 == nullptr) { + pending_tail1->link(pending_head1); + c1->edges = pending_tail1; + } else { + for (Edge *e = to_prev1->next, *n = nullptr; e != first_new1; e = n) { + n = e->next; + remove_edge_pair(e); + } + if (pending_tail1) { + to_prev1->link(pending_head1); + pending_tail1->link(first_new1); + } + } + + return; + } + + first_run = false; + } +} + +struct PointComparator { + _FORCE_INLINE_ bool operator()(const ConvexHullInternal::Point32 &p, const ConvexHullInternal::Point32 &q) const { + return (p.y < q.y) || ((p.y == q.y) && ((p.x < q.x) || ((p.x == q.x) && (p.z < q.z)))); + } +}; + +void ConvexHullInternal::compute(const Vector3 *p_coords, int32_t p_count) { + AABB aabb; + for (int32_t i = 0; i < p_count; i++) { + Vector3 p = p_coords[i]; + if (i == 0) { + aabb.position = p; + } else { + aabb.expand_to(p); + } + } + + Vector3 s = aabb.size; + max_axis = s.max_axis(); + min_axis = s.min_axis(); + if (min_axis == max_axis) { + min_axis = (max_axis + 1) % 3; + } + med_axis = 3 - max_axis - min_axis; + + s /= real_t(10216); + if (((med_axis + 1) % 3) != max_axis) { + s *= -1; + } + scaling = s; + + if (s[0] != 0) { + s[0] = real_t(1) / s[0]; + } + if (s[1] != 0) { + s[1] = real_t(1) / s[1]; + } + if (s[2] != 0) { + s[2] = real_t(1) / s[2]; + } + + center = aabb.position; + + LocalVector<Point32> points; + points.resize(p_count); + for (int32_t i = 0; i < p_count; i++) { + Vector3 p = p_coords[i]; + p = (p - center) * s; + points[i].x = (int32_t)p[med_axis]; + points[i].y = (int32_t)p[max_axis]; + points[i].z = (int32_t)p[min_axis]; + points[i].index = i; + } + + points.sort_custom<PointComparator>(); + + vertex_pool.reset(true); + original_vertices.resize(p_count); + for (int32_t i = 0; i < p_count; i++) { + Vertex *v = vertex_pool.alloc(); + v->edges = nullptr; + v->point = points[i]; + v->copy = -1; + original_vertices[i] = v; + } + + points.clear(); + + edge_pool.reset(true); + + used_edge_pairs = 0; + max_used_edge_pairs = 0; + + merge_stamp = -3; + + IntermediateHull hull; + compute_internal(0, p_count, hull); + vertex_list = hull.min_xy; +#ifdef DEBUG_CONVEX_HULL + printf("max. edges %d (3v = %d)", max_used_edge_pairs, 3 * p_count); +#endif +} + +Vector3 ConvexHullInternal::to_gd_vector(const Point32 &p_v) { + Vector3 p; + p[med_axis] = real_t(p_v.x); + p[max_axis] = real_t(p_v.y); + p[min_axis] = real_t(p_v.z); + return p * scaling; +} + +Vector3 ConvexHullInternal::get_gd_normal(Face *p_face) { + return to_gd_vector(p_face->dir0).cross(to_gd_vector(p_face->dir1)).normalized(); +} + +Vector3 ConvexHullInternal::get_coordinates(const Vertex *p_v) { + Vector3 p; + p[med_axis] = p_v->xvalue(); + p[max_axis] = p_v->yvalue(); + p[min_axis] = p_v->zvalue(); + return p * scaling + center; +} + +real_t ConvexHullInternal::shrink(real_t p_amount, real_t p_clamp_amount) { + if (!vertex_list) { + return 0; + } + int32_t stamp = --merge_stamp; + LocalVector<Vertex *> stack; + vertex_list->copy = stamp; + stack.push_back(vertex_list); + LocalVector<Face *> faces; + + Point32 ref = vertex_list->point; + Int128 hull_center_x(0, 0); + Int128 hull_center_y(0, 0); + Int128 hull_center_z(0, 0); + Int128 volume(0, 0); + + while (stack.size() > 0) { + Vertex *v = stack[stack.size() - 1]; + stack.remove(stack.size() - 1); + Edge *e = v->edges; + if (e) { + do { + if (e->target->copy != stamp) { + e->target->copy = stamp; + stack.push_back(e->target); + } + if (e->copy != stamp) { + Face *face = face_pool.alloc(); + face->init(e->target, e->reverse->prev->target, v); + faces.push_back(face); + Edge *f = e; + + Vertex *a = nullptr; + Vertex *b = nullptr; + do { + if (a && b) { + int64_t vol = (v->point - ref).dot((a->point - ref).cross(b->point - ref)); + CHULL_ASSERT(vol >= 0); + Point32 c = v->point + a->point + b->point + ref; + hull_center_x += vol * c.x; + hull_center_y += vol * c.y; + hull_center_z += vol * c.z; + volume += vol; + } + + CHULL_ASSERT(f->copy != stamp); + f->copy = stamp; + f->face = face; + + a = b; + b = f->target; + + f = f->reverse->prev; + } while (f != e); + } + e = e->next; + } while (e != v->edges); + } + } + + if (volume.get_sign() <= 0) { + return 0; + } + + Vector3 hull_center; + hull_center[med_axis] = hull_center_x.to_scalar(); + hull_center[max_axis] = hull_center_y.to_scalar(); + hull_center[min_axis] = hull_center_z.to_scalar(); + hull_center /= 4 * volume.to_scalar(); + hull_center *= scaling; + + int32_t face_count = faces.size(); + + if (p_clamp_amount > 0) { + real_t min_dist = FLT_MAX; + for (int32_t i = 0; i < face_count; i++) { + Vector3 normal = get_gd_normal(faces[i]); + real_t dist = normal.dot(to_gd_vector(faces[i]->origin) - hull_center); + if (dist < min_dist) { + min_dist = dist; + } + } + + if (min_dist <= 0) { + return 0; + } + + p_amount = MIN(p_amount, min_dist * p_clamp_amount); + } + + uint32_t seed = 243703; + for (int32_t i = 0; i < face_count; i++, seed = 1664525 * seed + 1013904223) { + SWAP(faces[i], faces[seed % face_count]); + } + + for (int32_t i = 0; i < face_count; i++) { + if (!shift_face(faces[i], p_amount, stack)) { + return -p_amount; + } + } + + return p_amount; +} + +bool ConvexHullInternal::shift_face(Face *p_face, real_t p_amount, LocalVector<Vertex *> p_stack) { + Vector3 orig_shift = get_gd_normal(p_face) * -p_amount; + if (scaling[0] != 0) { + orig_shift[0] /= scaling[0]; + } + if (scaling[1] != 0) { + orig_shift[1] /= scaling[1]; + } + if (scaling[2] != 0) { + orig_shift[2] /= scaling[2]; + } + Point32 shift((int32_t)orig_shift[med_axis], (int32_t)orig_shift[max_axis], (int32_t)orig_shift[min_axis]); + if (shift.is_zero()) { + return true; + } + Point64 normal = p_face->get_normal(); +#ifdef DEBUG_CONVEX_HULL + printf("\nShrinking p_face (%d %d %d) (%d %d %d) (%d %d %d) by (%d %d %d)\n", + p_face->origin.x, p_face->origin.y, p_face->origin.z, p_face->dir0.x, p_face->dir0.y, p_face->dir0.z, p_face->dir1.x, p_face->dir1.y, p_face->dir1.z, shift.x, shift.y, shift.z); +#endif + int64_t orig_dot = p_face->origin.dot(normal); + Point32 shifted_origin = p_face->origin + shift; + int64_t shifted_dot = shifted_origin.dot(normal); + CHULL_ASSERT(shifted_dot <= orig_dot); + if (shifted_dot >= orig_dot) { + return false; + } + + Edge *intersection = nullptr; + + Edge *start_edge = p_face->nearby_vertex->edges; +#ifdef DEBUG_CONVEX_HULL + printf("Start edge is "); + start_edge->print(); + printf(", normal is (%lld %lld %lld), shifted dot is %lld\n", normal.x, normal.y, normal.z, shifted_dot); +#endif + Rational128 opt_dot = p_face->nearby_vertex->dot(normal); + int32_t cmp = opt_dot.compare(shifted_dot); +#ifdef SHOW_ITERATIONS + int32_t n = 0; +#endif + if (cmp >= 0) { + Edge *e = start_edge; + do { +#ifdef SHOW_ITERATIONS + n++; +#endif + Rational128 dot = e->target->dot(normal); + CHULL_ASSERT(dot.compare(orig_dot) <= 0); +#ifdef DEBUG_CONVEX_HULL + printf("Moving downwards, edge is "); + e->print(); + printf(", dot is %f (%f %lld)\n", (float)dot.to_scalar(), (float)opt_dot.to_scalar(), shifted_dot); +#endif + if (dot.compare(opt_dot) < 0) { + int32_t c = dot.compare(shifted_dot); + opt_dot = dot; + e = e->reverse; + start_edge = e; + if (c < 0) { + intersection = e; + break; + } + cmp = c; + } + e = e->prev; + } while (e != start_edge); + + if (!intersection) { + return false; + } + } else { + Edge *e = start_edge; + do { +#ifdef SHOW_ITERATIONS + n++; +#endif + Rational128 dot = e->target->dot(normal); + CHULL_ASSERT(dot.compare(orig_dot) <= 0); +#ifdef DEBUG_CONVEX_HULL + printf("Moving upwards, edge is "); + e->print(); + printf(", dot is %f (%f %lld)\n", (float)dot.to_scalar(), (float)opt_dot.to_scalar(), shifted_dot); +#endif + if (dot.compare(opt_dot) > 0) { + cmp = dot.compare(shifted_dot); + if (cmp >= 0) { + intersection = e; + break; + } + opt_dot = dot; + e = e->reverse; + start_edge = e; + } + e = e->prev; + } while (e != start_edge); + + if (!intersection) { + return true; + } + } + +#ifdef SHOW_ITERATIONS + printf("Needed %d iterations to find initial intersection\n", n); +#endif + + if (cmp == 0) { + Edge *e = intersection->reverse->next; +#ifdef SHOW_ITERATIONS + n = 0; +#endif + while (e->target->dot(normal).compare(shifted_dot) <= 0) { +#ifdef SHOW_ITERATIONS + n++; +#endif + e = e->next; + if (e == intersection->reverse) { + return true; + } +#ifdef DEBUG_CONVEX_HULL + printf("Checking for outwards edge, current edge is "); + e->print(); + printf("\n"); +#endif + } +#ifdef SHOW_ITERATIONS + printf("Needed %d iterations to check for complete containment\n", n); +#endif + } + + Edge *first_intersection = nullptr; + Edge *face_edge = nullptr; + Edge *first_face_edge = nullptr; + +#ifdef SHOW_ITERATIONS + int32_t m = 0; +#endif + while (true) { +#ifdef SHOW_ITERATIONS + m++; +#endif +#ifdef DEBUG_CONVEX_HULL + printf("Intersecting edge is "); + intersection->print(); + printf("\n"); +#endif + if (cmp == 0) { + Edge *e = intersection->reverse->next; + start_edge = e; +#ifdef SHOW_ITERATIONS + n = 0; +#endif + while (true) { +#ifdef SHOW_ITERATIONS + n++; +#endif + if (e->target->dot(normal).compare(shifted_dot) >= 0) { + break; + } + intersection = e->reverse; + e = e->next; + if (e == start_edge) { + return true; + } + } +#ifdef SHOW_ITERATIONS + printf("Needed %d iterations to advance intersection\n", n); +#endif + } + +#ifdef DEBUG_CONVEX_HULL + printf("Advanced intersecting edge to "); + intersection->print(); + printf(", cmp = %d\n", cmp); +#endif + + if (!first_intersection) { + first_intersection = intersection; + } else if (intersection == first_intersection) { + break; + } + + int32_t prev_cmp = cmp; + Edge *prev_intersection = intersection; + Edge *prev_face_edge = face_edge; + + Edge *e = intersection->reverse; +#ifdef SHOW_ITERATIONS + n = 0; +#endif + while (true) { +#ifdef SHOW_ITERATIONS + n++; +#endif + e = e->reverse->prev; + CHULL_ASSERT(e != intersection->reverse); + cmp = e->target->dot(normal).compare(shifted_dot); +#ifdef DEBUG_CONVEX_HULL + printf("Testing edge "); + e->print(); + printf(" -> cmp = %d\n", cmp); +#endif + if (cmp >= 0) { + intersection = e; + break; + } + } +#ifdef SHOW_ITERATIONS + printf("Needed %d iterations to find other intersection of p_face\n", n); +#endif + + if (cmp > 0) { + Vertex *removed = intersection->target; + e = intersection->reverse; + if (e->prev == e) { + removed->edges = nullptr; + } else { + removed->edges = e->prev; + e->prev->link(e->next); + e->link(e); + } +#ifdef DEBUG_CONVEX_HULL + printf("1: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z); +#endif + + Point64 n0 = intersection->face->get_normal(); + Point64 n1 = intersection->reverse->face->get_normal(); + int64_t m00 = p_face->dir0.dot(n0); + int64_t m01 = p_face->dir1.dot(n0); + int64_t m10 = p_face->dir0.dot(n1); + int64_t m11 = p_face->dir1.dot(n1); + int64_t r0 = (intersection->face->origin - shifted_origin).dot(n0); + int64_t r1 = (intersection->reverse->face->origin - shifted_origin).dot(n1); + Int128 det = Int128::mul(m00, m11) - Int128::mul(m01, m10); + CHULL_ASSERT(det.get_sign() != 0); + Vertex *v = vertex_pool.alloc(); + v->point.index = -1; + v->copy = -1; + v->point128 = PointR128(Int128::mul(p_face->dir0.x * r0, m11) - Int128::mul(p_face->dir0.x * r1, m01) + Int128::mul(p_face->dir1.x * r1, m00) - Int128::mul(p_face->dir1.x * r0, m10) + det * shifted_origin.x, + Int128::mul(p_face->dir0.y * r0, m11) - Int128::mul(p_face->dir0.y * r1, m01) + Int128::mul(p_face->dir1.y * r1, m00) - Int128::mul(p_face->dir1.y * r0, m10) + det * shifted_origin.y, + Int128::mul(p_face->dir0.z * r0, m11) - Int128::mul(p_face->dir0.z * r1, m01) + Int128::mul(p_face->dir1.z * r1, m00) - Int128::mul(p_face->dir1.z * r0, m10) + det * shifted_origin.z, + det); + v->point.x = (int32_t)v->point128.xvalue(); + v->point.y = (int32_t)v->point128.yvalue(); + v->point.z = (int32_t)v->point128.zvalue(); + intersection->target = v; + v->edges = e; + + p_stack.push_back(v); + p_stack.push_back(removed); + p_stack.push_back(nullptr); + } + + if (cmp || prev_cmp || (prev_intersection->reverse->next->target != intersection->target)) { + face_edge = new_edge_pair(prev_intersection->target, intersection->target); + if (prev_cmp == 0) { + face_edge->link(prev_intersection->reverse->next); + } + if ((prev_cmp == 0) || prev_face_edge) { + prev_intersection->reverse->link(face_edge); + } + if (cmp == 0) { + intersection->reverse->prev->link(face_edge->reverse); + } + face_edge->reverse->link(intersection->reverse); + } else { + face_edge = prev_intersection->reverse->next; + } + + if (prev_face_edge) { + if (prev_cmp > 0) { + face_edge->link(prev_face_edge->reverse); + } else if (face_edge != prev_face_edge->reverse) { + p_stack.push_back(prev_face_edge->target); + while (face_edge->next != prev_face_edge->reverse) { + Vertex *removed = face_edge->next->target; + remove_edge_pair(face_edge->next); + p_stack.push_back(removed); +#ifdef DEBUG_CONVEX_HULL + printf("2: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z); +#endif + } + p_stack.push_back(nullptr); + } + } + face_edge->face = p_face; + face_edge->reverse->face = intersection->face; + + if (!first_face_edge) { + first_face_edge = face_edge; + } + } +#ifdef SHOW_ITERATIONS + printf("Needed %d iterations to process all intersections\n", m); +#endif + + if (cmp > 0) { + first_face_edge->reverse->target = face_edge->target; + first_intersection->reverse->link(first_face_edge); + first_face_edge->link(face_edge->reverse); + } else if (first_face_edge != face_edge->reverse) { + p_stack.push_back(face_edge->target); + while (first_face_edge->next != face_edge->reverse) { + Vertex *removed = first_face_edge->next->target; + remove_edge_pair(first_face_edge->next); + p_stack.push_back(removed); +#ifdef DEBUG_CONVEX_HULL + printf("3: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z); +#endif + } + p_stack.push_back(nullptr); + } + + CHULL_ASSERT(p_stack.size() > 0); + vertex_list = p_stack[0]; + +#ifdef DEBUG_CONVEX_HULL + printf("Removing part\n"); +#endif +#ifdef SHOW_ITERATIONS + n = 0; +#endif + uint32_t pos = 0; + while (pos < p_stack.size()) { + uint32_t end = p_stack.size(); + while (pos < end) { + Vertex *kept = p_stack[pos++]; +#ifdef DEBUG_CONVEX_HULL + kept->print(); +#endif + bool deeper = false; + Vertex *removed; + while ((removed = p_stack[pos++]) != nullptr) { +#ifdef SHOW_ITERATIONS + n++; +#endif + kept->receive_nearby_faces(removed); + while (removed->edges) { + if (!deeper) { + deeper = true; + p_stack.push_back(kept); + } + p_stack.push_back(removed->edges->target); + remove_edge_pair(removed->edges); + } + } + if (deeper) { + p_stack.push_back(nullptr); + } + } + } +#ifdef SHOW_ITERATIONS + printf("Needed %d iterations to remove part\n", n); +#endif + + p_stack.resize(0); + p_face->origin = shifted_origin; + + return true; +} + +static int32_t get_vertex_copy(ConvexHullInternal::Vertex *p_vertex, LocalVector<ConvexHullInternal::Vertex *> &p_vertices) { + int32_t index = p_vertex->copy; + if (index < 0) { + index = p_vertices.size(); + p_vertex->copy = index; + p_vertices.push_back(p_vertex); +#ifdef DEBUG_CONVEX_HULL + printf("Vertex %d gets index *%d\n", p_vertex->point.index, index); +#endif + } + return index; +} + +real_t ConvexHullComputer::compute(const Vector3 *p_coords, int32_t p_count, real_t p_shrink, real_t p_shrink_clamp) { + if (p_count <= 0) { + vertices.clear(); + edges.clear(); + faces.clear(); + return 0; + } + + ConvexHullInternal hull; + hull.compute(p_coords, p_count); + + real_t shift = 0; + if ((p_shrink > 0) && ((shift = hull.shrink(p_shrink, p_shrink_clamp)) < 0)) { + vertices.clear(); + edges.clear(); + faces.clear(); + return shift; + } + + vertices.resize(0); + edges.resize(0); + faces.resize(0); + + LocalVector<ConvexHullInternal::Vertex *> old_vertices; + get_vertex_copy(hull.vertex_list, old_vertices); + int32_t copied = 0; + while (copied < (int32_t)old_vertices.size()) { + ConvexHullInternal::Vertex *v = old_vertices[copied]; + vertices.push_back(hull.get_coordinates(v)); + ConvexHullInternal::Edge *first_edge = v->edges; + if (first_edge) { + int32_t first_copy = -1; + int32_t prev_copy = -1; + ConvexHullInternal::Edge *e = first_edge; + do { + if (e->copy < 0) { + int32_t s = edges.size(); + edges.push_back(Edge()); + edges.push_back(Edge()); + Edge *c = &edges[s]; + Edge *r = &edges[s + 1]; + e->copy = s; + e->reverse->copy = s + 1; + c->reverse = 1; + r->reverse = -1; + c->target_vertex = get_vertex_copy(e->target, old_vertices); + r->target_vertex = copied; +#ifdef DEBUG_CONVEX_HULL + printf(" CREATE: Vertex *%d has edge to *%d\n", copied, c->get_target_vertex()); +#endif + } + if (prev_copy >= 0) { + edges[e->copy].next = prev_copy - e->copy; + } else { + first_copy = e->copy; + } + prev_copy = e->copy; + e = e->next; + } while (e != first_edge); + edges[first_copy].next = prev_copy - first_copy; + } + copied++; + } + + for (int32_t i = 0; i < copied; i++) { + ConvexHullInternal::Vertex *v = old_vertices[i]; + ConvexHullInternal::Edge *first_edge = v->edges; + if (first_edge) { + ConvexHullInternal::Edge *e = first_edge; + do { + if (e->copy >= 0) { +#ifdef DEBUG_CONVEX_HULL + printf("Vertex *%d has edge to *%d\n", i, edges[e->copy].get_target_vertex()); +#endif + faces.push_back(e->copy); + ConvexHullInternal::Edge *f = e; + do { +#ifdef DEBUG_CONVEX_HULL + printf(" Face *%d\n", edges[f->copy].get_target_vertex()); +#endif + f->copy = -1; + f = f->reverse->prev; + } while (f != e); + } + e = e->next; + } while (e != first_edge); + } + } + + return shift; +} + +Error ConvexHullComputer::convex_hull(const Vector<Vector3> &p_points, Geometry3D::MeshData &r_mesh) { + r_mesh = Geometry3D::MeshData(); // clear + + if (p_points.size() == 0) { + return FAILED; // matches QuickHull + } + + ConvexHullComputer ch; + ch.compute(p_points.ptr(), p_points.size(), -1.0, -1.0); + + r_mesh.vertices = ch.vertices; + + r_mesh.edges.resize(ch.edges.size()); + for (uint32_t i = 0; i < ch.edges.size(); i++) { + r_mesh.edges.write[i].a = (&ch.edges[i])->get_source_vertex(); + r_mesh.edges.write[i].b = (&ch.edges[i])->get_target_vertex(); + } + + r_mesh.faces.resize(ch.faces.size()); + for (uint32_t i = 0; i < ch.faces.size(); i++) { + const Edge *e_start = &ch.edges[ch.faces[i]]; + const Edge *e = e_start; + Geometry3D::MeshData::Face &face = r_mesh.faces.write[i]; + + do { + face.indices.push_back(e->get_target_vertex()); + + e = e->get_next_edge_of_face(); + } while (e != e_start); + + // compute normal + if (face.indices.size() >= 3) { + face.plane = Plane(r_mesh.vertices[face.indices[0]], r_mesh.vertices[face.indices[2]], r_mesh.vertices[face.indices[1]]); + } else { + WARN_PRINT("Too few vertices per face."); + } + } + + return OK; +} diff --git a/core/math/convex_hull.h b/core/math/convex_hull.h new file mode 100644 index 0000000000..ba7be9c5e8 --- /dev/null +++ b/core/math/convex_hull.h @@ -0,0 +1,112 @@ +/*************************************************************************/ +/* convex_hull.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +/* +Copyright (c) 2011 Ole Kniemeyer, MAXON, www.maxon.net +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef CONVEX_HULL_H +#define CONVEX_HULL_H + +#include "core/math/geometry_3d.h" +#include "core/math/vector3.h" +#include "core/templates/local_vector.h" +#include "core/templates/vector.h" + +/// Convex hull implementation based on Preparata and Hong +/// See http://code.google.com/p/bullet/issues/detail?id=275 +/// Ole Kniemeyer, MAXON Computer GmbH +class ConvexHullComputer { +public: + class Edge { + private: + int32_t next = 0; + int32_t reverse = 0; + int32_t target_vertex = 0; + + friend class ConvexHullComputer; + + public: + int32_t get_source_vertex() const { + return (this + reverse)->target_vertex; + } + + int32_t get_target_vertex() const { + return target_vertex; + } + + const Edge *get_next_edge_of_vertex() const // clockwise list of all edges of a vertex + { + return this + next; + } + + const Edge *get_next_edge_of_face() const // counter-clockwise list of all edges of a face + { + return (this + reverse)->get_next_edge_of_vertex(); + } + + const Edge *get_reverse_edge() const { + return this + reverse; + } + }; + + // Vertices of the output hull + Vector<Vector3> vertices; + + // Edges of the output hull + LocalVector<Edge> edges; + + // Faces of the convex hull. Each entry is an index into the "edges" array pointing to an edge of the face. Faces are planar n-gons + LocalVector<int32_t> faces; + + /* + Compute convex hull of "count" vertices stored in "coords". + If "shrink" is positive, the convex hull is shrunken by that amount (each face is moved by "shrink" length units + towards the center along its normal). + If "shrinkClamp" is positive, "shrink" is clamped to not exceed "shrinkClamp * innerRadius", where "innerRadius" + is the minimum distance of a face to the center of the convex hull. + The returned value is the amount by which the hull has been shrunken. If it is negative, the amount was so large + that the resulting convex hull is empty. + The output convex hull can be found in the member variables "vertices", "edges", "faces". + */ + real_t compute(const Vector3 *p_coords, int32_t p_count, real_t p_shrink, real_t p_shrink_clamp); + + static Error convex_hull(const Vector<Vector3> &p_points, Geometry3D::MeshData &r_mesh); +}; + +#endif // CONVEX_HULL_H diff --git a/core/math/dynamic_bvh.cpp b/core/math/dynamic_bvh.cpp index 200095d8cb..8e596f0f9d 100644 --- a/core/math/dynamic_bvh.cpp +++ b/core/math/dynamic_bvh.cpp @@ -312,8 +312,11 @@ void DynamicBVH::optimize_incremental(int passes) { if (passes < 0) { passes = total_leaves; } - if (bvh_root && (passes > 0)) { + if (passes > 0) { do { + if (!bvh_root) { + break; + } Node *node = bvh_root; unsigned bit = 0; while (node->is_internal()) { diff --git a/core/math/geometry_2d.h b/core/math/geometry_2d.h index 4b5aef352f..4958b5ac6a 100644 --- a/core/math/geometry_2d.h +++ b/core/math/geometry_2d.h @@ -395,6 +395,45 @@ public: H.resize(k); return H; } + + static Vector<Point2i> bresenham_line(const Point2i &p_start, const Point2i &p_end) { + Vector<Point2i> points; + + Vector2i delta = (p_end - p_start).abs() * 2; + Vector2i step = (p_end - p_start).sign(); + Vector2i current = p_start; + + if (delta.x > delta.y) { + int err = delta.x / 2; + + for (; current.x != p_end.x; current.x += step.x) { + points.push_back(current); + + err -= delta.y; + if (err < 0) { + current.y += step.y; + err += delta.x; + } + } + } else { + int err = delta.y / 2; + + for (; current.y != p_end.y; current.y += step.y) { + points.push_back(current); + + err -= delta.x; + if (err < 0) { + current.x += step.x; + err += delta.y; + } + } + } + + points.push_back(current); + + return points; + } + static Vector<Vector<Vector2>> decompose_polygon_in_convex(Vector<Point2> polygon); static void make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size); diff --git a/core/math/math_funcs.h b/core/math/math_funcs.h index c0d7649b65..3389407e72 100644 --- a/core/math/math_funcs.h +++ b/core/math/math_funcs.h @@ -275,8 +275,8 @@ public: static _ALWAYS_INLINE_ double db2linear(double p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); } static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); } - static _ALWAYS_INLINE_ double round(double p_val) { return (p_val >= 0) ? Math::floor(p_val + 0.5) : -Math::floor(-p_val + 0.5); } - static _ALWAYS_INLINE_ float round(float p_val) { return (p_val >= 0) ? Math::floor(p_val + 0.5) : -Math::floor(-p_val + 0.5); } + static _ALWAYS_INLINE_ double round(double p_val) { return ::round(p_val); } + static _ALWAYS_INLINE_ float round(float p_val) { return ::roundf(p_val); } static _ALWAYS_INLINE_ int64_t wrapi(int64_t value, int64_t min, int64_t max) { int64_t range = max - min; @@ -311,20 +311,20 @@ public: static float random(float from, float to); static int random(int from, int to); - static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b) { + static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; } // Then check for approximate equality. - real_t tolerance = CMP_EPSILON * abs(a); + float tolerance = CMP_EPSILON * abs(a); if (tolerance < CMP_EPSILON) { tolerance = CMP_EPSILON; } return abs(a - b) < tolerance; } - static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b, real_t tolerance) { + static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b, float tolerance) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; @@ -333,7 +333,33 @@ public: return abs(a - b) < tolerance; } - static _ALWAYS_INLINE_ bool is_zero_approx(real_t s) { + static _ALWAYS_INLINE_ bool is_zero_approx(float s) { + return abs(s) < CMP_EPSILON; + } + + static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b) { + // Check for exact equality first, required to handle "infinity" values. + if (a == b) { + return true; + } + // Then check for approximate equality. + double tolerance = CMP_EPSILON * abs(a); + if (tolerance < CMP_EPSILON) { + tolerance = CMP_EPSILON; + } + return abs(a - b) < tolerance; + } + + static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b, double tolerance) { + // Check for exact equality first, required to handle "infinity" values. + if (a == b) { + return true; + } + // Then check for approximate equality. + return abs(a - b) < tolerance; + } + + static _ALWAYS_INLINE_ bool is_zero_approx(double s) { return abs(s) < CMP_EPSILON; } @@ -358,28 +384,10 @@ public: return u.d; } - //this function should be as fast as possible and rounding mode should not matter + // This function should be as fast as possible and rounding mode should not matter. static _ALWAYS_INLINE_ int fast_ftoi(float a) { - static int b; - -#if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone? - b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5)); - -#elif defined(_MSC_VER) && _MSC_VER < 1800 - __asm fld a __asm fistp b - /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) ) - // use AT&T inline assembly style, document that - // we use memory as output (=m) and input (m) - __asm__ __volatile__ ( - "flds %1 \n\t" - "fistpl %0 \n\t" - : "=m" (b) - : "m" (a));*/ - -#else - b = lrintf(a); //assuming everything but msvc 2012 or earlier has lrint -#endif - return b; + // Assuming every supported compiler has `lrint()`. + return lrintf(a); } static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) { diff --git a/core/math/quat.cpp b/core/math/quat.cpp index 6f13e04027..3982a0b993 100644 --- a/core/math/quat.cpp +++ b/core/math/quat.cpp @@ -87,7 +87,7 @@ Quat Quat::normalized() const { } bool Quat::is_normalized() const { - return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon + return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon } Quat Quat::inverse() const { diff --git a/core/math/quat.h b/core/math/quat.h index 9db914fe52..d9b130c050 100644 --- a/core/math/quat.h +++ b/core/math/quat.h @@ -28,14 +28,12 @@ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ -// Circular dependency between Vector3 and Basis :/ -#include "core/math/vector3.h" - #ifndef QUAT_H #define QUAT_H #include "core/math/math_defs.h" #include "core/math/math_funcs.h" +#include "core/math/vector3.h" #include "core/string/ustring.h" class Quat { diff --git a/core/math/rect2.h b/core/math/rect2.h index 512499bdb2..1dc027cf72 100644 --- a/core/math/rect2.h +++ b/core/math/rect2.h @@ -182,13 +182,17 @@ struct Rect2 { inline Rect2 grow(real_t p_amount) const { Rect2 g = *this; - g.position.x -= p_amount; - g.position.y -= p_amount; - g.size.width += p_amount * 2; - g.size.height += p_amount * 2; + g.grow_by(p_amount); return g; } + inline void grow_by(real_t p_amount) { + position.x -= p_amount; + position.y -= p_amount; + size.width += p_amount * 2; + size.height += p_amount * 2; + } + inline Rect2 grow_side(Side p_side, real_t p_amount) const { Rect2 g = *this; g = g.grow_individual((SIDE_LEFT == p_side) ? p_amount : 0, diff --git a/core/math/vector2.cpp b/core/math/vector2.cpp index 5129ed336e..46a08b53ab 100644 --- a/core/math/vector2.cpp +++ b/core/math/vector2.cpp @@ -59,7 +59,7 @@ Vector2 Vector2::normalized() const { bool Vector2::is_normalized() const { // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. - return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); + return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); } real_t Vector2::distance_to(const Vector2 &p_vector2) const { diff --git a/core/math/vector2.h b/core/math/vector2.h index 81bc71d590..6abe0f5ea9 100644 --- a/core/math/vector2.h +++ b/core/math/vector2.h @@ -37,18 +37,26 @@ struct Vector2i; struct Vector2 { + static const int AXIS_COUNT = 2; + enum Axis { AXIS_X, AXIS_Y, }; union { - real_t x = 0; - real_t width; - }; - union { - real_t y = 0; - real_t height; + struct { + union { + real_t x; + real_t width; + }; + union { + real_t y; + real_t height; + }; + }; + + real_t coord[2] = { 0 }; }; _FORCE_INLINE_ real_t &operator[](int p_idx) { @@ -58,6 +66,18 @@ struct Vector2 { return p_idx ? y : x; } + _FORCE_INLINE_ void set_all(real_t p_value) { + x = y = p_value; + } + + _FORCE_INLINE_ int min_axis() const { + return x < y ? 0 : 1; + } + + _FORCE_INLINE_ int max_axis() const { + return x < y ? 1 : 0; + } + void normalize(); Vector2 normalized() const; bool is_normalized() const; @@ -280,6 +300,14 @@ struct Vector2i { return p_idx ? y : x; } + Vector2i min(const Vector2i &p_vector2i) const { + return Vector2(MIN(x, p_vector2i.x), MIN(y, p_vector2i.y)); + } + + Vector2i max(const Vector2i &p_vector2i) const { + return Vector2(MAX(x, p_vector2i.x), MAX(y, p_vector2i.y)); + } + Vector2i operator+(const Vector2i &p_v) const; void operator+=(const Vector2i &p_v); Vector2i operator-(const Vector2i &p_v) const; diff --git a/core/math/vector3.cpp b/core/math/vector3.cpp index f0629d3db8..d4317d506c 100644 --- a/core/math/vector3.cpp +++ b/core/math/vector3.cpp @@ -52,14 +52,6 @@ real_t Vector3::get_axis(int p_axis) const { return operator[](p_axis); } -int Vector3::min_axis() const { - return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2); -} - -int Vector3::max_axis() const { - return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0); -} - void Vector3::snap(Vector3 p_step) { x = Math::snapped(x, p_step.x); y = Math::snapped(y, p_step.y); diff --git a/core/math/vector3.h b/core/math/vector3.h index 377581bb45..adfc52566f 100644 --- a/core/math/vector3.h +++ b/core/math/vector3.h @@ -38,6 +38,8 @@ class Basis; struct Vector3 { + static const int AXIS_COUNT = 3; + enum Axis { AXIS_X, AXIS_Y, @@ -65,8 +67,17 @@ struct Vector3 { void set_axis(int p_axis, real_t p_value); real_t get_axis(int p_axis) const; - int min_axis() const; - int max_axis() const; + _FORCE_INLINE_ void set_all(real_t p_value) { + x = y = z = p_value; + } + + _FORCE_INLINE_ int min_axis() const { + return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2); + } + + _FORCE_INLINE_ int max_axis() const { + return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0); + } _FORCE_INLINE_ real_t length() const; _FORCE_INLINE_ real_t length_squared() const; @@ -412,7 +423,7 @@ Vector3 Vector3::normalized() const { bool Vector3::is_normalized() const { // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. - return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); + return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); } Vector3 Vector3::inverse() const { |