diff options
Diffstat (limited to 'core/math')
-rw-r--r-- | core/math/camera_matrix.cpp | 124 | ||||
-rw-r--r-- | core/math/camera_matrix.h | 2 |
2 files changed, 113 insertions, 13 deletions
diff --git a/core/math/camera_matrix.cpp b/core/math/camera_matrix.cpp index 33ad522315..a1666ccd8b 100644 --- a/core/math/camera_matrix.cpp +++ b/core/math/camera_matrix.cpp @@ -91,6 +91,72 @@ void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_ matrix[3][3] = 0; } +void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) { + if (p_flip_fov) { + p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect); + } + + real_t left, right, modeltranslation, ymax, xmax, frustumshift; + + ymax = p_z_near * tan(p_fovy_degrees * Math_PI / 360.0f); + xmax = ymax * p_aspect; + frustumshift = (p_intraocular_dist / 2.0) * p_z_near / p_convergence_dist; + + switch (p_eye) { + case 1: { // left eye + left = -xmax + frustumshift; + right = xmax + frustumshift; + modeltranslation = p_intraocular_dist / 2.0; + }; break; + case 2: { // right eye + left = -xmax - frustumshift; + right = xmax - frustumshift; + modeltranslation = -p_intraocular_dist / 2.0; + }; break; + default: { // mono, should give the same result as set_perspective(p_fovy_degrees,p_aspect,p_z_near,p_z_far,p_flip_fov) + left = -xmax; + right = xmax; + modeltranslation = 0.0; + }; break; + }; + + set_frustum(left, right, -ymax, ymax, p_z_near, p_z_far); + + // translate matrix by (modeltranslation, 0.0, 0.0) + CameraMatrix cm; + cm.set_identity(); + cm.matrix[3][0] = modeltranslation; + *this = *this * cm; +} + +void CameraMatrix::set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far) { + // we first calculate our base frustum on our values without taking our lens magnification into account. + real_t display_to_eye = 2.0 * p_display_to_lens; + real_t f1 = (p_intraocular_dist * 0.5) / p_display_to_lens; + real_t f2 = ((p_display_width - p_intraocular_dist) * 0.5) / p_display_to_lens; + real_t f3 = (p_display_width / 4.0) / p_display_to_lens; + + // now we apply our oversample factor to increase our FOV. how much we oversample is always a balance we strike between performance and how much + // we're willing to sacrifice in FOV. + real_t add = ((f1 + f2) * (p_oversample - 1.0)) / 2.0; + f1 += add; + f2 += add; + + // always apply KEEP_WIDTH aspect ratio + f3 *= p_aspect; + + switch (p_eye) { + case 1: { // left eye + set_frustum(-f2 * p_z_near, f1 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far); + }; break; + case 2: { // right eye + set_frustum(-f1 * p_z_near, f2 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far); + }; break; + default: { // mono, does not apply here! + }; break; + }; +}; + void CameraMatrix::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) { set_identity(); @@ -243,23 +309,44 @@ bool CameraMatrix::get_endpoints(const Transform &p_transform, Vector3 *p_8point -matrix[15] + matrix[13]); top_plane.normalize(); - Vector3 near_endpoint; - Vector3 far_endpoint; + Vector3 near_endpoint_left, near_endpoint_right; + Vector3 far_endpoint_left, far_endpoint_right; - bool res = near_plane.intersect_3(right_plane, top_plane, &near_endpoint); + bool res = near_plane.intersect_3(right_plane, top_plane, &near_endpoint_right); ERR_FAIL_COND_V(!res, false); - res = far_plane.intersect_3(right_plane, top_plane, &far_endpoint); + res = far_plane.intersect_3(right_plane, top_plane, &far_endpoint_right); ERR_FAIL_COND_V(!res, false); - p_8points[0] = p_transform.xform(Vector3(near_endpoint.x, near_endpoint.y, near_endpoint.z)); - p_8points[1] = p_transform.xform(Vector3(near_endpoint.x, -near_endpoint.y, near_endpoint.z)); - p_8points[2] = p_transform.xform(Vector3(-near_endpoint.x, near_endpoint.y, near_endpoint.z)); - p_8points[3] = p_transform.xform(Vector3(-near_endpoint.x, -near_endpoint.y, near_endpoint.z)); - p_8points[4] = p_transform.xform(Vector3(far_endpoint.x, far_endpoint.y, far_endpoint.z)); - p_8points[5] = p_transform.xform(Vector3(far_endpoint.x, -far_endpoint.y, far_endpoint.z)); - p_8points[6] = p_transform.xform(Vector3(-far_endpoint.x, far_endpoint.y, far_endpoint.z)); - p_8points[7] = p_transform.xform(Vector3(-far_endpoint.x, -far_endpoint.y, far_endpoint.z)); + if ((matrix[8] == 0) && (matrix[9] == 0)) { + near_endpoint_left = near_endpoint_right; + near_endpoint_left.x = -near_endpoint_left.x; + + far_endpoint_left = far_endpoint_right; + far_endpoint_left.x = -far_endpoint_left.x; + } else { + ///////--- Left Plane ---/////// + Plane left_plane = Plane(matrix[0] + matrix[3], + matrix[4] + matrix[7], + matrix[8] + matrix[11], + -matrix[15] - matrix[12]); + left_plane.normalize(); + + res = near_plane.intersect_3(left_plane, top_plane, &near_endpoint_left); + ERR_FAIL_COND_V(!res, false); + + res = far_plane.intersect_3(left_plane, top_plane, &far_endpoint_left); + ERR_FAIL_COND_V(!res, false); + } + + p_8points[0] = p_transform.xform(Vector3(near_endpoint_right.x, near_endpoint_right.y, near_endpoint_right.z)); + p_8points[1] = p_transform.xform(Vector3(near_endpoint_right.x, -near_endpoint_right.y, near_endpoint_right.z)); + p_8points[2] = p_transform.xform(Vector3(near_endpoint_left.x, near_endpoint_left.y, near_endpoint_left.z)); + p_8points[3] = p_transform.xform(Vector3(near_endpoint_left.x, -near_endpoint_left.y, near_endpoint_left.z)); + p_8points[4] = p_transform.xform(Vector3(far_endpoint_right.x, far_endpoint_right.y, far_endpoint_right.z)); + p_8points[5] = p_transform.xform(Vector3(far_endpoint_right.x, -far_endpoint_right.y, far_endpoint_right.z)); + p_8points[6] = p_transform.xform(Vector3(far_endpoint_left.x, far_endpoint_left.y, far_endpoint_left.z)); + p_8points[7] = p_transform.xform(Vector3(far_endpoint_left.x, -far_endpoint_left.y, far_endpoint_left.z)); return true; } @@ -546,7 +633,18 @@ real_t CameraMatrix::get_fov() const { -matrix[15] + matrix[12]); right_plane.normalize(); - return Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x))) * 2.0; + if ((matrix[8] == 0) && (matrix[9] == 0)) { + return Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x))) * 2.0; + } else { + // our frustum is asymetrical need to calculate the left planes angle seperately.. + Plane left_plane = Plane(matrix[3] + matrix[0], + matrix[7] + matrix[4], + matrix[11] + matrix[8], + matrix[15] + matrix[12]); + left_plane.normalize(); + + return Math::rad2deg(Math::acos(Math::abs(left_plane.normal.x))) + Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x))); + } } void CameraMatrix::make_scale(const Vector3 &p_scale) { diff --git a/core/math/camera_matrix.h b/core/math/camera_matrix.h index af61e35993..4be8ffab8c 100644 --- a/core/math/camera_matrix.h +++ b/core/math/camera_matrix.h @@ -54,6 +54,8 @@ struct CameraMatrix { void set_light_bias(); void set_light_atlas_rect(const Rect2 &p_rect); void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov = false); + void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist); + void set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far); void set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar); void set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov = false); void set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far); |