summaryrefslogtreecommitdiff
path: root/core/math
diff options
context:
space:
mode:
Diffstat (limited to 'core/math')
-rw-r--r--core/math/a_star.cpp148
-rw-r--r--core/math/a_star.h12
-rw-r--r--core/math/basis.cpp358
-rw-r--r--core/math/basis.h165
-rw-r--r--core/math/bvh.h297
-rw-r--r--core/math/bvh_abb.h64
-rw-r--r--core/math/bvh_cull.inc95
-rw-r--r--core/math/bvh_debug.inc4
-rw-r--r--core/math/bvh_logic.inc16
-rw-r--r--core/math/bvh_misc.inc6
-rw-r--r--core/math/bvh_pair.inc14
-rw-r--r--core/math/bvh_public.inc146
-rw-r--r--core/math/bvh_split.inc18
-rw-r--r--core/math/bvh_structs.inc89
-rw-r--r--core/math/bvh_tree.h56
-rw-r--r--core/math/camera_matrix.cpp48
-rw-r--r--core/math/camera_matrix.h1
-rw-r--r--core/math/color.h6
-rw-r--r--core/math/color_names.inc292
-rw-r--r--core/math/convex_hull.cpp8
-rw-r--r--core/math/expression.cpp2
-rw-r--r--core/math/expression.h2
-rw-r--r--core/math/face3.cpp6
-rw-r--r--core/math/face3.h2
-rw-r--r--core/math/geometry_2d.cpp24
-rw-r--r--core/math/geometry_2d.h10
-rw-r--r--core/math/geometry_3d.cpp6
-rw-r--r--core/math/geometry_3d.h30
-rw-r--r--core/math/math_fieldwise.cpp48
-rw-r--r--core/math/math_funcs.h54
-rw-r--r--core/math/octree.h37
-rw-r--r--core/math/plane.cpp4
-rw-r--r--core/math/quaternion.cpp21
-rw-r--r--core/math/quaternion.h4
-rw-r--r--core/math/random_pcg.h6
-rw-r--r--core/math/rect2.cpp32
-rw-r--r--core/math/transform_2d.cpp124
-rw-r--r--core/math/transform_2d.h91
-rw-r--r--core/math/transform_3d.cpp24
-rw-r--r--core/math/transform_3d.h12
-rw-r--r--core/math/triangle_mesh.cpp20
-rw-r--r--core/math/vector2.cpp2
-rw-r--r--core/math/vector2.h3
-rw-r--r--core/math/vector2i.h3
-rw-r--r--core/math/vector3.cpp42
-rw-r--r--core/math/vector3.h50
-rw-r--r--core/math/vector3i.cpp7
-rw-r--r--core/math/vector3i.h9
48 files changed, 1431 insertions, 1087 deletions
diff --git a/core/math/a_star.cpp b/core/math/a_star.cpp
index 14057b96be..284b4294ea 100644
--- a/core/math/a_star.cpp
+++ b/core/math/a_star.cpp
@@ -33,7 +33,7 @@
#include "core/math/geometry_3d.h"
#include "core/object/script_language.h"
-int AStar::get_available_point_id() const {
+int AStar3D::get_available_point_id() const {
if (points.has(last_free_id)) {
int cur_new_id = last_free_id + 1;
while (points.has(cur_new_id)) {
@@ -45,9 +45,9 @@ int AStar::get_available_point_id() const {
return last_free_id;
}
-void AStar::add_point(int p_id, const Vector3 &p_pos, real_t p_weight_scale) {
+void AStar3D::add_point(int p_id, const Vector3 &p_pos, real_t p_weight_scale) {
ERR_FAIL_COND_MSG(p_id < 0, vformat("Can't add a point with negative id: %d.", p_id));
- ERR_FAIL_COND_MSG(p_weight_scale < 1, vformat("Can't add a point with weight scale less than one: %f.", p_weight_scale));
+ ERR_FAIL_COND_MSG(p_weight_scale < 0.0, vformat("Can't add a point with weight scale less than 0.0: %f.", p_weight_scale));
Point *found_pt;
bool p_exists = points.lookup(p_id, found_pt);
@@ -68,7 +68,7 @@ void AStar::add_point(int p_id, const Vector3 &p_pos, real_t p_weight_scale) {
}
}
-Vector3 AStar::get_point_position(int p_id) const {
+Vector3 AStar3D::get_point_position(int p_id) const {
Point *p;
bool p_exists = points.lookup(p_id, p);
ERR_FAIL_COND_V_MSG(!p_exists, Vector3(), vformat("Can't get point's position. Point with id: %d doesn't exist.", p_id));
@@ -76,7 +76,7 @@ Vector3 AStar::get_point_position(int p_id) const {
return p->pos;
}
-void AStar::set_point_position(int p_id, const Vector3 &p_pos) {
+void AStar3D::set_point_position(int p_id, const Vector3 &p_pos) {
Point *p;
bool p_exists = points.lookup(p_id, p);
ERR_FAIL_COND_MSG(!p_exists, vformat("Can't set point's position. Point with id: %d doesn't exist.", p_id));
@@ -84,7 +84,7 @@ void AStar::set_point_position(int p_id, const Vector3 &p_pos) {
p->pos = p_pos;
}
-real_t AStar::get_point_weight_scale(int p_id) const {
+real_t AStar3D::get_point_weight_scale(int p_id) const {
Point *p;
bool p_exists = points.lookup(p_id, p);
ERR_FAIL_COND_V_MSG(!p_exists, 0, vformat("Can't get point's weight scale. Point with id: %d doesn't exist.", p_id));
@@ -92,16 +92,16 @@ real_t AStar::get_point_weight_scale(int p_id) const {
return p->weight_scale;
}
-void AStar::set_point_weight_scale(int p_id, real_t p_weight_scale) {
+void AStar3D::set_point_weight_scale(int p_id, real_t p_weight_scale) {
Point *p;
bool p_exists = points.lookup(p_id, p);
ERR_FAIL_COND_MSG(!p_exists, vformat("Can't set point's weight scale. Point with id: %d doesn't exist.", p_id));
- ERR_FAIL_COND_MSG(p_weight_scale < 1, vformat("Can't set point's weight scale less than one: %f.", p_weight_scale));
+ ERR_FAIL_COND_MSG(p_weight_scale < 0.0, vformat("Can't set point's weight scale less than 0.0: %f.", p_weight_scale));
p->weight_scale = p_weight_scale;
}
-void AStar::remove_point(int p_id) {
+void AStar3D::remove_point(int p_id) {
Point *p;
bool p_exists = points.lookup(p_id, p);
ERR_FAIL_COND_MSG(!p_exists, vformat("Can't remove point. Point with id: %d doesn't exist.", p_id));
@@ -127,7 +127,7 @@ void AStar::remove_point(int p_id) {
last_free_id = p_id;
}
-void AStar::connect_points(int p_id, int p_with_id, bool bidirectional) {
+void AStar3D::connect_points(int p_id, int p_with_id, bool bidirectional) {
ERR_FAIL_COND_MSG(p_id == p_with_id, vformat("Can't connect point with id: %d to itself.", p_id));
Point *a;
@@ -165,7 +165,7 @@ void AStar::connect_points(int p_id, int p_with_id, bool bidirectional) {
segments.insert(s);
}
-void AStar::disconnect_points(int p_id, int p_with_id, bool bidirectional) {
+void AStar3D::disconnect_points(int p_id, int p_with_id, bool bidirectional) {
Point *a;
bool a_exists = points.lookup(p_id, a);
ERR_FAIL_COND_MSG(!a_exists, vformat("Can't disconnect points. Point with id: %d doesn't exist.", p_id));
@@ -205,11 +205,11 @@ void AStar::disconnect_points(int p_id, int p_with_id, bool bidirectional) {
}
}
-bool AStar::has_point(int p_id) const {
+bool AStar3D::has_point(int p_id) const {
return points.has(p_id);
}
-Array AStar::get_point_ids() {
+Array AStar3D::get_point_ids() {
Array point_list;
for (OAHashMap<int, Point *>::Iterator it = points.iter(); it.valid; it = points.next_iter(it)) {
@@ -219,7 +219,7 @@ Array AStar::get_point_ids() {
return point_list;
}
-Vector<int> AStar::get_point_connections(int p_id) {
+Vector<int> AStar3D::get_point_connections(int p_id) {
Point *p;
bool p_exists = points.lookup(p_id, p);
ERR_FAIL_COND_V_MSG(!p_exists, Vector<int>(), vformat("Can't get point's connections. Point with id: %d doesn't exist.", p_id));
@@ -233,7 +233,7 @@ Vector<int> AStar::get_point_connections(int p_id) {
return point_list;
}
-bool AStar::are_points_connected(int p_id, int p_with_id, bool bidirectional) const {
+bool AStar3D::are_points_connected(int p_id, int p_with_id, bool bidirectional) const {
Segment s(p_id, p_with_id);
const Set<Segment>::Element *element = segments.find(s);
@@ -241,7 +241,7 @@ bool AStar::are_points_connected(int p_id, int p_with_id, bool bidirectional) co
(bidirectional || (element->get().direction & s.direction) == s.direction);
}
-void AStar::clear() {
+void AStar3D::clear() {
last_free_id = 0;
for (OAHashMap<int, Point *>::Iterator it = points.iter(); it.valid; it = points.next_iter(it)) {
memdelete(*(it.value));
@@ -250,21 +250,21 @@ void AStar::clear() {
points.clear();
}
-int AStar::get_point_count() const {
+int AStar3D::get_point_count() const {
return points.get_num_elements();
}
-int AStar::get_point_capacity() const {
+int AStar3D::get_point_capacity() const {
return points.get_capacity();
}
-void AStar::reserve_space(int p_num_nodes) {
+void AStar3D::reserve_space(int p_num_nodes) {
ERR_FAIL_COND_MSG(p_num_nodes <= 0, vformat("New capacity must be greater than 0, new was: %d.", p_num_nodes));
ERR_FAIL_COND_MSG((uint32_t)p_num_nodes < points.get_capacity(), vformat("New capacity must be greater than current capacity: %d, new was: %d.", points.get_capacity(), p_num_nodes));
points.reserve(p_num_nodes);
}
-int AStar::get_closest_point(const Vector3 &p_point, bool p_include_disabled) const {
+int AStar3D::get_closest_point(const Vector3 &p_point, bool p_include_disabled) const {
int closest_id = -1;
real_t closest_dist = 1e20;
@@ -289,7 +289,7 @@ int AStar::get_closest_point(const Vector3 &p_point, bool p_include_disabled) co
return closest_id;
}
-Vector3 AStar::get_closest_position_in_segment(const Vector3 &p_point) const {
+Vector3 AStar3D::get_closest_position_in_segment(const Vector3 &p_point) const {
real_t closest_dist = 1e20;
Vector3 closest_point;
@@ -318,7 +318,7 @@ Vector3 AStar::get_closest_position_in_segment(const Vector3 &p_point) const {
return closest_point;
}
-bool AStar::_solve(Point *begin_point, Point *end_point) {
+bool AStar3D::_solve(Point *begin_point, Point *end_point) {
pass++;
if (!end_point->enabled) {
@@ -380,7 +380,7 @@ bool AStar::_solve(Point *begin_point, Point *end_point) {
return found_route;
}
-real_t AStar::_estimate_cost(int p_from_id, int p_to_id) {
+real_t AStar3D::_estimate_cost(int p_from_id, int p_to_id) {
real_t scost;
if (GDVIRTUAL_CALL(_estimate_cost, p_from_id, p_to_id, scost)) {
return scost;
@@ -397,7 +397,7 @@ real_t AStar::_estimate_cost(int p_from_id, int p_to_id) {
return from_point->pos.distance_to(to_point->pos);
}
-real_t AStar::_compute_cost(int p_from_id, int p_to_id) {
+real_t AStar3D::_compute_cost(int p_from_id, int p_to_id) {
real_t scost;
if (GDVIRTUAL_CALL(_compute_cost, p_from_id, p_to_id, scost)) {
return scost;
@@ -414,7 +414,7 @@ real_t AStar::_compute_cost(int p_from_id, int p_to_id) {
return from_point->pos.distance_to(to_point->pos);
}
-Vector<Vector3> AStar::get_point_path(int p_from_id, int p_to_id) {
+Vector<Vector3> AStar3D::get_point_path(int p_from_id, int p_to_id) {
Point *a;
bool from_exists = points.lookup(p_from_id, a);
ERR_FAIL_COND_V_MSG(!from_exists, Vector<Vector3>(), vformat("Can't get point path. Point with id: %d doesn't exist.", p_from_id));
@@ -463,7 +463,7 @@ Vector<Vector3> AStar::get_point_path(int p_from_id, int p_to_id) {
return path;
}
-Vector<int> AStar::get_id_path(int p_from_id, int p_to_id) {
+Vector<int> AStar3D::get_id_path(int p_from_id, int p_to_id) {
Point *a;
bool from_exists = points.lookup(p_from_id, a);
ERR_FAIL_COND_V_MSG(!from_exists, Vector<int>(), vformat("Can't get id path. Point with id: %d doesn't exist.", p_from_id));
@@ -512,7 +512,7 @@ Vector<int> AStar::get_id_path(int p_from_id, int p_to_id) {
return path;
}
-void AStar::set_point_disabled(int p_id, bool p_disabled) {
+void AStar3D::set_point_disabled(int p_id, bool p_disabled) {
Point *p;
bool p_exists = points.lookup(p_id, p);
ERR_FAIL_COND_MSG(!p_exists, vformat("Can't set if point is disabled. Point with id: %d doesn't exist.", p_id));
@@ -520,7 +520,7 @@ void AStar::set_point_disabled(int p_id, bool p_disabled) {
p->enabled = !p_disabled;
}
-bool AStar::is_point_disabled(int p_id) const {
+bool AStar3D::is_point_disabled(int p_id) const {
Point *p;
bool p_exists = points.lookup(p_id, p);
ERR_FAIL_COND_V_MSG(!p_exists, false, vformat("Can't get if point is disabled. Point with id: %d doesn't exist.", p_id));
@@ -528,41 +528,41 @@ bool AStar::is_point_disabled(int p_id) const {
return !p->enabled;
}
-void AStar::_bind_methods() {
- ClassDB::bind_method(D_METHOD("get_available_point_id"), &AStar::get_available_point_id);
- ClassDB::bind_method(D_METHOD("add_point", "id", "position", "weight_scale"), &AStar::add_point, DEFVAL(1.0));
- ClassDB::bind_method(D_METHOD("get_point_position", "id"), &AStar::get_point_position);
- ClassDB::bind_method(D_METHOD("set_point_position", "id", "position"), &AStar::set_point_position);
- ClassDB::bind_method(D_METHOD("get_point_weight_scale", "id"), &AStar::get_point_weight_scale);
- ClassDB::bind_method(D_METHOD("set_point_weight_scale", "id", "weight_scale"), &AStar::set_point_weight_scale);
- ClassDB::bind_method(D_METHOD("remove_point", "id"), &AStar::remove_point);
- ClassDB::bind_method(D_METHOD("has_point", "id"), &AStar::has_point);
- ClassDB::bind_method(D_METHOD("get_point_connections", "id"), &AStar::get_point_connections);
- ClassDB::bind_method(D_METHOD("get_point_ids"), &AStar::get_point_ids);
+void AStar3D::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("get_available_point_id"), &AStar3D::get_available_point_id);
+ ClassDB::bind_method(D_METHOD("add_point", "id", "position", "weight_scale"), &AStar3D::add_point, DEFVAL(1.0));
+ ClassDB::bind_method(D_METHOD("get_point_position", "id"), &AStar3D::get_point_position);
+ ClassDB::bind_method(D_METHOD("set_point_position", "id", "position"), &AStar3D::set_point_position);
+ ClassDB::bind_method(D_METHOD("get_point_weight_scale", "id"), &AStar3D::get_point_weight_scale);
+ ClassDB::bind_method(D_METHOD("set_point_weight_scale", "id", "weight_scale"), &AStar3D::set_point_weight_scale);
+ ClassDB::bind_method(D_METHOD("remove_point", "id"), &AStar3D::remove_point);
+ ClassDB::bind_method(D_METHOD("has_point", "id"), &AStar3D::has_point);
+ ClassDB::bind_method(D_METHOD("get_point_connections", "id"), &AStar3D::get_point_connections);
+ ClassDB::bind_method(D_METHOD("get_point_ids"), &AStar3D::get_point_ids);
- ClassDB::bind_method(D_METHOD("set_point_disabled", "id", "disabled"), &AStar::set_point_disabled, DEFVAL(true));
- ClassDB::bind_method(D_METHOD("is_point_disabled", "id"), &AStar::is_point_disabled);
+ ClassDB::bind_method(D_METHOD("set_point_disabled", "id", "disabled"), &AStar3D::set_point_disabled, DEFVAL(true));
+ ClassDB::bind_method(D_METHOD("is_point_disabled", "id"), &AStar3D::is_point_disabled);
- ClassDB::bind_method(D_METHOD("connect_points", "id", "to_id", "bidirectional"), &AStar::connect_points, DEFVAL(true));
- ClassDB::bind_method(D_METHOD("disconnect_points", "id", "to_id", "bidirectional"), &AStar::disconnect_points, DEFVAL(true));
- ClassDB::bind_method(D_METHOD("are_points_connected", "id", "to_id", "bidirectional"), &AStar::are_points_connected, DEFVAL(true));
+ ClassDB::bind_method(D_METHOD("connect_points", "id", "to_id", "bidirectional"), &AStar3D::connect_points, DEFVAL(true));
+ ClassDB::bind_method(D_METHOD("disconnect_points", "id", "to_id", "bidirectional"), &AStar3D::disconnect_points, DEFVAL(true));
+ ClassDB::bind_method(D_METHOD("are_points_connected", "id", "to_id", "bidirectional"), &AStar3D::are_points_connected, DEFVAL(true));
- ClassDB::bind_method(D_METHOD("get_point_count"), &AStar::get_point_count);
- ClassDB::bind_method(D_METHOD("get_point_capacity"), &AStar::get_point_capacity);
- ClassDB::bind_method(D_METHOD("reserve_space", "num_nodes"), &AStar::reserve_space);
- ClassDB::bind_method(D_METHOD("clear"), &AStar::clear);
+ ClassDB::bind_method(D_METHOD("get_point_count"), &AStar3D::get_point_count);
+ ClassDB::bind_method(D_METHOD("get_point_capacity"), &AStar3D::get_point_capacity);
+ ClassDB::bind_method(D_METHOD("reserve_space", "num_nodes"), &AStar3D::reserve_space);
+ ClassDB::bind_method(D_METHOD("clear"), &AStar3D::clear);
- ClassDB::bind_method(D_METHOD("get_closest_point", "to_position", "include_disabled"), &AStar::get_closest_point, DEFVAL(false));
- ClassDB::bind_method(D_METHOD("get_closest_position_in_segment", "to_position"), &AStar::get_closest_position_in_segment);
+ ClassDB::bind_method(D_METHOD("get_closest_point", "to_position", "include_disabled"), &AStar3D::get_closest_point, DEFVAL(false));
+ ClassDB::bind_method(D_METHOD("get_closest_position_in_segment", "to_position"), &AStar3D::get_closest_position_in_segment);
- ClassDB::bind_method(D_METHOD("get_point_path", "from_id", "to_id"), &AStar::get_point_path);
- ClassDB::bind_method(D_METHOD("get_id_path", "from_id", "to_id"), &AStar::get_id_path);
+ ClassDB::bind_method(D_METHOD("get_point_path", "from_id", "to_id"), &AStar3D::get_point_path);
+ ClassDB::bind_method(D_METHOD("get_id_path", "from_id", "to_id"), &AStar3D::get_id_path);
GDVIRTUAL_BIND(_estimate_cost, "from_id", "to_id")
GDVIRTUAL_BIND(_compute_cost, "from_id", "to_id")
}
-AStar::~AStar() {
+AStar3D::~AStar3D() {
clear();
}
@@ -660,11 +660,11 @@ real_t AStar2D::_estimate_cost(int p_from_id, int p_to_id) {
return scost;
}
- AStar::Point *from_point;
+ AStar3D::Point *from_point;
bool from_exists = astar.points.lookup(p_from_id, from_point);
ERR_FAIL_COND_V_MSG(!from_exists, 0, vformat("Can't estimate cost. Point with id: %d doesn't exist.", p_from_id));
- AStar::Point *to_point;
+ AStar3D::Point *to_point;
bool to_exists = astar.points.lookup(p_to_id, to_point);
ERR_FAIL_COND_V_MSG(!to_exists, 0, vformat("Can't estimate cost. Point with id: %d doesn't exist.", p_to_id));
@@ -677,11 +677,11 @@ real_t AStar2D::_compute_cost(int p_from_id, int p_to_id) {
return scost;
}
- AStar::Point *from_point;
+ AStar3D::Point *from_point;
bool from_exists = astar.points.lookup(p_from_id, from_point);
ERR_FAIL_COND_V_MSG(!from_exists, 0, vformat("Can't compute cost. Point with id: %d doesn't exist.", p_from_id));
- AStar::Point *to_point;
+ AStar3D::Point *to_point;
bool to_exists = astar.points.lookup(p_to_id, to_point);
ERR_FAIL_COND_V_MSG(!to_exists, 0, vformat("Can't compute cost. Point with id: %d doesn't exist.", p_to_id));
@@ -689,11 +689,11 @@ real_t AStar2D::_compute_cost(int p_from_id, int p_to_id) {
}
Vector<Vector2> AStar2D::get_point_path(int p_from_id, int p_to_id) {
- AStar::Point *a;
+ AStar3D::Point *a;
bool from_exists = astar.points.lookup(p_from_id, a);
ERR_FAIL_COND_V_MSG(!from_exists, Vector<Vector2>(), vformat("Can't get point path. Point with id: %d doesn't exist.", p_from_id));
- AStar::Point *b;
+ AStar3D::Point *b;
bool to_exists = astar.points.lookup(p_to_id, b);
ERR_FAIL_COND_V_MSG(!to_exists, Vector<Vector2>(), vformat("Can't get point path. Point with id: %d doesn't exist.", p_to_id));
@@ -702,15 +702,15 @@ Vector<Vector2> AStar2D::get_point_path(int p_from_id, int p_to_id) {
return ret;
}
- AStar::Point *begin_point = a;
- AStar::Point *end_point = b;
+ AStar3D::Point *begin_point = a;
+ AStar3D::Point *end_point = b;
bool found_route = _solve(begin_point, end_point);
if (!found_route) {
return Vector<Vector2>();
}
- AStar::Point *p = end_point;
+ AStar3D::Point *p = end_point;
int pc = 1; // Begin point
while (p != begin_point) {
pc++;
@@ -723,7 +723,7 @@ Vector<Vector2> AStar2D::get_point_path(int p_from_id, int p_to_id) {
{
Vector2 *w = path.ptrw();
- AStar::Point *p2 = end_point;
+ AStar3D::Point *p2 = end_point;
int idx = pc - 1;
while (p2 != begin_point) {
w[idx--] = Vector2(p2->pos.x, p2->pos.y);
@@ -737,11 +737,11 @@ Vector<Vector2> AStar2D::get_point_path(int p_from_id, int p_to_id) {
}
Vector<int> AStar2D::get_id_path(int p_from_id, int p_to_id) {
- AStar::Point *a;
+ AStar3D::Point *a;
bool from_exists = astar.points.lookup(p_from_id, a);
ERR_FAIL_COND_V_MSG(!from_exists, Vector<int>(), vformat("Can't get id path. Point with id: %d doesn't exist.", p_from_id));
- AStar::Point *b;
+ AStar3D::Point *b;
bool to_exists = astar.points.lookup(p_to_id, b);
ERR_FAIL_COND_V_MSG(!to_exists, Vector<int>(), vformat("Can't get id path. Point with id: %d doesn't exist.", p_to_id));
@@ -751,15 +751,15 @@ Vector<int> AStar2D::get_id_path(int p_from_id, int p_to_id) {
return ret;
}
- AStar::Point *begin_point = a;
- AStar::Point *end_point = b;
+ AStar3D::Point *begin_point = a;
+ AStar3D::Point *end_point = b;
bool found_route = _solve(begin_point, end_point);
if (!found_route) {
return Vector<int>();
}
- AStar::Point *p = end_point;
+ AStar3D::Point *p = end_point;
int pc = 1; // Begin point
while (p != begin_point) {
pc++;
@@ -785,7 +785,7 @@ Vector<int> AStar2D::get_id_path(int p_from_id, int p_to_id) {
return path;
}
-bool AStar2D::_solve(AStar::Point *begin_point, AStar::Point *end_point) {
+bool AStar2D::_solve(AStar3D::Point *begin_point, AStar3D::Point *end_point) {
astar.pass++;
if (!end_point->enabled) {
@@ -794,15 +794,15 @@ bool AStar2D::_solve(AStar::Point *begin_point, AStar::Point *end_point) {
bool found_route = false;
- Vector<AStar::Point *> open_list;
- SortArray<AStar::Point *, AStar::SortPoints> sorter;
+ Vector<AStar3D::Point *> open_list;
+ SortArray<AStar3D::Point *, AStar3D::SortPoints> sorter;
begin_point->g_score = 0;
begin_point->f_score = _estimate_cost(begin_point->id, end_point->id);
open_list.push_back(begin_point);
while (!open_list.is_empty()) {
- AStar::Point *p = open_list[0]; // The currently processed point
+ AStar3D::Point *p = open_list[0]; // The currently processed point
if (p == end_point) {
found_route = true;
@@ -813,8 +813,8 @@ bool AStar2D::_solve(AStar::Point *begin_point, AStar::Point *end_point) {
open_list.remove_at(open_list.size() - 1);
p->closed_pass = astar.pass; // Mark the point as closed
- for (OAHashMap<int, AStar::Point *>::Iterator it = p->neighbours.iter(); it.valid; it = p->neighbours.next_iter(it)) {
- AStar::Point *e = *(it.value); // The neighbour point
+ for (OAHashMap<int, AStar3D::Point *>::Iterator it = p->neighbours.iter(); it.valid; it = p->neighbours.next_iter(it)) {
+ AStar3D::Point *e = *(it.value); // The neighbour point
if (!e->enabled || e->closed_pass == astar.pass) {
continue;
diff --git a/core/math/a_star.h b/core/math/a_star.h
index 130c202a61..bb7112fb09 100644
--- a/core/math/a_star.h
+++ b/core/math/a_star.h
@@ -40,8 +40,8 @@
A* pathfinding algorithm.
*/
-class AStar : public RefCounted {
- GDCLASS(AStar, RefCounted);
+class AStar3D : public RefCounted {
+ GDCLASS(AStar3D, RefCounted);
friend class AStar2D;
struct Point {
@@ -156,15 +156,15 @@ public:
Vector<Vector3> get_point_path(int p_from_id, int p_to_id);
Vector<int> get_id_path(int p_from_id, int p_to_id);
- AStar() {}
- ~AStar();
+ AStar3D() {}
+ ~AStar3D();
};
class AStar2D : public RefCounted {
GDCLASS(AStar2D, RefCounted);
- AStar astar;
+ AStar3D astar;
- bool _solve(AStar::Point *begin_point, AStar::Point *end_point);
+ bool _solve(AStar3D::Point *begin_point, AStar3D::Point *end_point);
protected:
static void _bind_methods();
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index e34c1c1315..65353d8118 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -34,32 +34,32 @@
#include "core/string/print_string.h"
#define cofac(row1, col1, row2, col2) \
- (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
+ (rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1])
void Basis::from_z(const Vector3 &p_z) {
- if (Math::abs(p_z.z) > Math_SQRT12) {
+ if (Math::abs(p_z.z) > (real_t)Math_SQRT12) {
// choose p in y-z plane
real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
real_t k = 1.0f / Math::sqrt(a);
- elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
- elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]);
+ rows[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
+ rows[1] = Vector3(a * k, -p_z[0] * rows[0][2], p_z[0] * rows[0][1]);
} else {
// choose p in x-y plane
real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
real_t k = 1.0f / Math::sqrt(a);
- elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
- elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k);
+ rows[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
+ rows[1] = Vector3(-p_z.z * rows[0].y, p_z.z * rows[0].x, a * k);
}
- elements[2] = p_z;
+ rows[2] = p_z;
}
void Basis::invert() {
real_t co[3] = {
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
};
- real_t det = elements[0][0] * co[0] +
- elements[0][1] * co[1] +
- elements[0][2] * co[2];
+ real_t det = rows[0][0] * co[0] +
+ rows[0][1] * co[1] +
+ rows[0][2] * co[2];
#ifdef MATH_CHECKS
ERR_FAIL_COND(det == 0);
#endif
@@ -73,9 +73,9 @@ void Basis::invert() {
void Basis::orthonormalize() {
// Gram-Schmidt Process
- Vector3 x = get_axis(0);
- Vector3 y = get_axis(1);
- Vector3 z = get_axis(2);
+ Vector3 x = get_column(0);
+ Vector3 y = get_column(1);
+ Vector3 z = get_column(2);
x.normalize();
y = (y - x * (x.dot(y)));
@@ -83,9 +83,9 @@ void Basis::orthonormalize() {
z = (z - x * (x.dot(z)) - y * (y.dot(z)));
z.normalize();
- set_axis(0, x);
- set_axis(1, y);
- set_axis(2, z);
+ set_column(0, x);
+ set_column(1, y);
+ set_column(2, z);
}
Basis Basis::orthonormalized() const {
@@ -115,9 +115,9 @@ bool Basis::is_orthogonal() const {
bool Basis::is_diagonal() const {
return (
- Math::is_zero_approx(elements[0][1]) && Math::is_zero_approx(elements[0][2]) &&
- Math::is_zero_approx(elements[1][0]) && Math::is_zero_approx(elements[1][2]) &&
- Math::is_zero_approx(elements[2][0]) && Math::is_zero_approx(elements[2][1]));
+ Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) &&
+ Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) &&
+ Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1]));
}
bool Basis::is_rotation() const {
@@ -127,13 +127,13 @@ bool Basis::is_rotation() const {
#ifdef MATH_CHECKS
// This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef.
bool Basis::is_symmetric() const {
- if (!Math::is_equal_approx(elements[0][1], elements[1][0])) {
+ if (!Math::is_equal_approx(rows[0][1], rows[1][0])) {
return false;
}
- if (!Math::is_equal_approx(elements[0][2], elements[2][0])) {
+ if (!Math::is_equal_approx(rows[0][2], rows[2][0])) {
return false;
}
- if (!Math::is_equal_approx(elements[1][2], elements[2][1])) {
+ if (!Math::is_equal_approx(rows[1][2], rows[2][1])) {
return false;
}
@@ -149,14 +149,14 @@ Basis Basis::diagonalize() {
#endif
const int ite_max = 1024;
- real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
+ real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2];
int ite = 0;
Basis acc_rot;
- while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) {
- real_t el01_2 = elements[0][1] * elements[0][1];
- real_t el02_2 = elements[0][2] * elements[0][2];
- real_t el12_2 = elements[1][2] * elements[1][2];
+ while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) {
+ real_t el01_2 = rows[0][1] * rows[0][1];
+ real_t el02_2 = rows[0][2] * rows[0][2];
+ real_t el12_2 = rows[1][2] * rows[1][2];
// Find the pivot element
int i, j;
if (el01_2 > el02_2) {
@@ -179,19 +179,19 @@ Basis Basis::diagonalize() {
// Compute the rotation angle
real_t angle;
- if (Math::is_equal_approx(elements[j][j], elements[i][i])) {
+ if (Math::is_equal_approx(rows[j][j], rows[i][i])) {
angle = Math_PI / 4;
} else {
- angle = 0.5f * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
+ angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i]));
}
// Compute the rotation matrix
Basis rot;
- rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle);
- rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle));
+ rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle);
+ rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle));
// Update the off matrix norm
- off_matrix_norm_2 -= elements[i][j] * elements[i][j];
+ off_matrix_norm_2 -= rows[i][j] * rows[i][j];
// Apply the rotation
*this = rot * *this * rot.transposed();
@@ -208,9 +208,9 @@ Basis Basis::inverse() const {
}
void Basis::transpose() {
- SWAP(elements[0][1], elements[1][0]);
- SWAP(elements[0][2], elements[2][0]);
- SWAP(elements[1][2], elements[2][1]);
+ SWAP(rows[0][1], rows[1][0]);
+ SWAP(rows[0][2], rows[2][0]);
+ SWAP(rows[1][2], rows[2][1]);
}
Basis Basis::transposed() const {
@@ -226,15 +226,15 @@ Basis Basis::from_scale(const Vector3 &p_scale) {
// Multiplies the matrix from left by the scaling matrix: M -> S.M
// See the comment for Basis::rotated for further explanation.
void Basis::scale(const Vector3 &p_scale) {
- elements[0][0] *= p_scale.x;
- elements[0][1] *= p_scale.x;
- elements[0][2] *= p_scale.x;
- elements[1][0] *= p_scale.y;
- elements[1][1] *= p_scale.y;
- elements[1][2] *= p_scale.y;
- elements[2][0] *= p_scale.z;
- elements[2][1] *= p_scale.z;
- elements[2][2] *= p_scale.z;
+ rows[0][0] *= p_scale.x;
+ rows[0][1] *= p_scale.x;
+ rows[0][2] *= p_scale.x;
+ rows[1][0] *= p_scale.y;
+ rows[1][1] *= p_scale.y;
+ rows[1][2] *= p_scale.y;
+ rows[2][0] *= p_scale.z;
+ rows[2][1] *= p_scale.z;
+ rows[2][2] *= p_scale.z;
}
Basis Basis::scaled(const Vector3 &p_scale) const {
@@ -260,7 +260,7 @@ Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const {
Basis b;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
- dots[j] += s[i] * abs(m.get_axis(i).normalized().dot(b.get_axis(j)));
+ dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j)));
}
}
m.scale_local(Vector3(1, 1, 1) + dots);
@@ -268,14 +268,14 @@ Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const {
}
float Basis::get_uniform_scale() const {
- return (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0f;
+ return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f;
}
void Basis::make_scale_uniform() {
- float l = (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0f;
+ float l = (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f;
for (int i = 0; i < 3; i++) {
- elements[i].normalize();
- elements[i] *= l;
+ rows[i].normalize();
+ rows[i] *= l;
}
}
@@ -285,14 +285,14 @@ Basis Basis::scaled_local(const Vector3 &p_scale) const {
Vector3 Basis::get_scale_abs() const {
return Vector3(
- Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
- Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
- Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
+ Vector3(rows[0][0], rows[1][0], rows[2][0]).length(),
+ Vector3(rows[0][1], rows[1][1], rows[2][1]).length(),
+ Vector3(rows[0][2], rows[1][2], rows[2][2]).length());
}
Vector3 Basis::get_scale_local() const {
real_t det_sign = SIGN(determinant());
- return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length());
+ return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length());
}
// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
@@ -347,22 +347,22 @@ Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
// The main use of Basis is as Transform.basis, which is used by the transformation matrix
// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
// not the matrix itself (which is R * (*this) * R.transposed()).
-Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const {
- return Basis(p_axis, p_phi) * (*this);
+Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const {
+ return Basis(p_axis, p_angle) * (*this);
}
-void Basis::rotate(const Vector3 &p_axis, real_t p_phi) {
- *this = rotated(p_axis, p_phi);
+void Basis::rotate(const Vector3 &p_axis, real_t p_angle) {
+ *this = rotated(p_axis, p_angle);
}
-void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) {
+void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) {
// performs a rotation in object-local coordinate system:
// M -> (M.R.Minv).M = M.R.
- *this = rotated_local(p_axis, p_phi);
+ *this = rotated_local(p_axis, p_angle);
}
-Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const {
- return (*this) * Basis(p_axis, p_phi);
+Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
+ return (*this) * Basis(p_axis, p_angle);
}
Basis Basis::rotated(const Vector3 &p_euler) const {
@@ -462,27 +462,27 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
Vector3 euler;
- real_t sy = elements[0][2];
- if (sy < (1.0f - CMP_EPSILON)) {
- if (sy > -(1.0f - CMP_EPSILON)) {
+ real_t sy = rows[0][2];
+ if (sy < (1.0f - (real_t)CMP_EPSILON)) {
+ if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
// is this a pure Y rotation?
- if (elements[1][0] == 0 && elements[0][1] == 0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
+ if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = 0;
- euler.y = atan2(elements[0][2], elements[0][0]);
+ euler.y = atan2(rows[0][2], rows[0][0]);
euler.z = 0;
} else {
- euler.x = Math::atan2(-elements[1][2], elements[2][2]);
+ euler.x = Math::atan2(-rows[1][2], rows[2][2]);
euler.y = Math::asin(sy);
- euler.z = Math::atan2(-elements[0][1], elements[0][0]);
+ euler.z = Math::atan2(-rows[0][1], rows[0][0]);
}
} else {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.x = Math::atan2(rows[2][1], rows[1][1]);
euler.y = -Math_PI / 2.0f;
euler.z = 0.0f;
}
} else {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.x = Math::atan2(rows[2][1], rows[1][1]);
euler.y = Math_PI / 2.0f;
euler.z = 0.0f;
}
@@ -497,21 +497,21 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
// cy*sx*sz cz*sx cx*cy+sx*sz*sy
Vector3 euler;
- real_t sz = elements[0][1];
- if (sz < (1.0f - CMP_EPSILON)) {
- if (sz > -(1.0f - CMP_EPSILON)) {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ real_t sz = rows[0][1];
+ if (sz < (1.0f - (real_t)CMP_EPSILON)) {
+ if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
+ euler.x = Math::atan2(rows[2][1], rows[1][1]);
+ euler.y = Math::atan2(rows[0][2], rows[0][0]);
euler.z = Math::asin(-sz);
} else {
// It's -1
- euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.x = -Math::atan2(rows[1][2], rows[2][2]);
euler.y = 0.0f;
euler.z = Math_PI / 2.0f;
}
} else {
// It's 1
- euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.x = -Math::atan2(rows[1][2], rows[2][2]);
euler.y = 0.0f;
euler.z = -Math_PI / 2.0f;
}
@@ -527,29 +527,29 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
Vector3 euler;
- real_t m12 = elements[1][2];
+ real_t m12 = rows[1][2];
- if (m12 < (1 - CMP_EPSILON)) {
- if (m12 > -(1 - CMP_EPSILON)) {
+ if (m12 < (1 - (real_t)CMP_EPSILON)) {
+ if (m12 > -(1 - (real_t)CMP_EPSILON)) {
// is this a pure X rotation?
- if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
+ if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) {
// return the simplest form (human friendlier in editor and scripts)
- euler.x = atan2(-m12, elements[1][1]);
+ euler.x = atan2(-m12, rows[1][1]);
euler.y = 0;
euler.z = 0;
} else {
euler.x = asin(-m12);
- euler.y = atan2(elements[0][2], elements[2][2]);
- euler.z = atan2(elements[1][0], elements[1][1]);
+ euler.y = atan2(rows[0][2], rows[2][2]);
+ euler.z = atan2(rows[1][0], rows[1][1]);
}
} else { // m12 == -1
euler.x = Math_PI * 0.5f;
- euler.y = atan2(elements[0][1], elements[0][0]);
+ euler.y = atan2(rows[0][1], rows[0][0]);
euler.z = 0;
}
} else { // m12 == 1
euler.x = -Math_PI * 0.5f;
- euler.y = -atan2(elements[0][1], elements[0][0]);
+ euler.y = -atan2(rows[0][1], rows[0][0]);
euler.z = 0;
}
@@ -564,21 +564,21 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
// -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
Vector3 euler;
- real_t sz = elements[1][0];
- if (sz < (1.0f - CMP_EPSILON)) {
- if (sz > -(1.0f - CMP_EPSILON)) {
- euler.x = Math::atan2(-elements[1][2], elements[1][1]);
- euler.y = Math::atan2(-elements[2][0], elements[0][0]);
+ real_t sz = rows[1][0];
+ if (sz < (1.0f - (real_t)CMP_EPSILON)) {
+ if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
+ euler.x = Math::atan2(-rows[1][2], rows[1][1]);
+ euler.y = Math::atan2(-rows[2][0], rows[0][0]);
euler.z = Math::asin(sz);
} else {
// It's -1
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.x = Math::atan2(rows[2][1], rows[2][2]);
euler.y = 0.0f;
euler.z = -Math_PI / 2.0f;
}
} else {
// It's 1
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.x = Math::atan2(rows[2][1], rows[2][2]);
euler.y = 0.0f;
euler.z = Math_PI / 2.0f;
}
@@ -592,22 +592,22 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
// cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
// -cx*sy sx cx*cy
Vector3 euler;
- real_t sx = elements[2][1];
- if (sx < (1.0f - CMP_EPSILON)) {
- if (sx > -(1.0f - CMP_EPSILON)) {
+ real_t sx = rows[2][1];
+ if (sx < (1.0f - (real_t)CMP_EPSILON)) {
+ if (sx > -(1.0f - (real_t)CMP_EPSILON)) {
euler.x = Math::asin(sx);
- euler.y = Math::atan2(-elements[2][0], elements[2][2]);
- euler.z = Math::atan2(-elements[0][1], elements[1][1]);
+ euler.y = Math::atan2(-rows[2][0], rows[2][2]);
+ euler.z = Math::atan2(-rows[0][1], rows[1][1]);
} else {
// It's -1
euler.x = -Math_PI / 2.0f;
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.y = Math::atan2(rows[0][2], rows[0][0]);
euler.z = 0;
}
} else {
// It's 1
euler.x = Math_PI / 2.0f;
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.y = Math::atan2(rows[0][2], rows[0][0]);
euler.z = 0;
}
return euler;
@@ -620,23 +620,23 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
// cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
// -sy cy*sx cy*cx
Vector3 euler;
- real_t sy = elements[2][0];
- if (sy < (1.0f - CMP_EPSILON)) {
- if (sy > -(1.0f - CMP_EPSILON)) {
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ real_t sy = rows[2][0];
+ if (sy < (1.0f - (real_t)CMP_EPSILON)) {
+ if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
+ euler.x = Math::atan2(rows[2][1], rows[2][2]);
euler.y = Math::asin(-sy);
- euler.z = Math::atan2(elements[1][0], elements[0][0]);
+ euler.z = Math::atan2(rows[1][0], rows[0][0]);
} else {
// It's -1
euler.x = 0;
euler.y = Math_PI / 2.0f;
- euler.z = -Math::atan2(elements[0][1], elements[1][1]);
+ euler.z = -Math::atan2(rows[0][1], rows[1][1]);
}
} else {
// It's 1
euler.x = 0;
euler.y = -Math_PI / 2.0f;
- euler.z = -Math::atan2(elements[0][1], elements[1][1]);
+ euler.z = -Math::atan2(rows[0][1], rows[1][1]);
}
return euler;
} break;
@@ -688,13 +688,13 @@ void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) {
}
bool Basis::is_equal_approx(const Basis &p_basis) const {
- return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]);
+ return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]);
}
bool Basis::operator==(const Basis &p_matrix) const {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
- if (elements[i][j] != p_matrix.elements[i][j]) {
+ if (rows[i][j] != p_matrix.rows[i][j]) {
return false;
}
}
@@ -708,9 +708,9 @@ bool Basis::operator!=(const Basis &p_matrix) const {
}
Basis::operator String() const {
- return "[X: " + get_axis(0).operator String() +
- ", Y: " + get_axis(1).operator String() +
- ", Z: " + get_axis(2).operator String() + "]";
+ return "[X: " + get_column(0).operator String() +
+ ", Y: " + get_column(1).operator String() +
+ ", Z: " + get_column(2).operator String() + "]";
}
Quaternion Basis::get_quaternion() const {
@@ -719,7 +719,7 @@ Quaternion Basis::get_quaternion() const {
#endif
/* Allow getting a quaternion from an unnormalized transform */
Basis m = *this;
- real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
+ real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2];
real_t temp[4];
if (trace > 0.0f) {
@@ -727,23 +727,23 @@ Quaternion Basis::get_quaternion() const {
temp[3] = (s * 0.5f);
s = 0.5f / s;
- temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s);
- temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s);
- temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s);
+ temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s);
+ temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s);
+ temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s);
} else {
- int i = m.elements[0][0] < m.elements[1][1]
- ? (m.elements[1][1] < m.elements[2][2] ? 2 : 1)
- : (m.elements[0][0] < m.elements[2][2] ? 2 : 0);
+ int i = m.rows[0][0] < m.rows[1][1]
+ ? (m.rows[1][1] < m.rows[2][2] ? 2 : 1)
+ : (m.rows[0][0] < m.rows[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
- real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0f);
+ real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f);
temp[i] = s * 0.5f;
s = 0.5f / s;
- temp[3] = (m.elements[k][j] - m.elements[j][k]) * s;
- temp[j] = (m.elements[j][i] + m.elements[i][j]) * s;
- temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
+ temp[3] = (m.rows[k][j] - m.rows[j][k]) * s;
+ temp[j] = (m.rows[j][i] + m.rows[i][j]) * s;
+ temp[k] = (m.rows[k][i] + m.rows[i][k]) * s;
}
return Quaternion(temp[0], temp[1], temp[2], temp[3]);
@@ -820,11 +820,11 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
real_t epsilon = 0.01; // margin to allow for rounding errors
real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
- if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
+ if ((Math::abs(rows[1][0] - rows[0][1]) < epsilon) && (Math::abs(rows[2][0] - rows[0][2]) < epsilon) && (Math::abs(rows[2][1] - rows[1][2]) < epsilon)) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
- if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
+ if ((Math::abs(rows[1][0] + rows[0][1]) < epsilon2) && (Math::abs(rows[2][0] + rows[0][2]) < epsilon2) && (Math::abs(rows[2][1] + rows[1][2]) < epsilon2) && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < epsilon2)) {
// this singularity is identity matrix so angle = 0
r_axis = Vector3(0, 1, 0);
r_angle = 0;
@@ -832,13 +832,13 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
}
// otherwise this singularity is angle = 180
angle = Math_PI;
- real_t xx = (elements[0][0] + 1) / 2;
- real_t yy = (elements[1][1] + 1) / 2;
- real_t zz = (elements[2][2] + 1) / 2;
- real_t xy = (elements[1][0] + elements[0][1]) / 4;
- real_t xz = (elements[2][0] + elements[0][2]) / 4;
- real_t yz = (elements[2][1] + elements[1][2]) / 4;
- if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
+ real_t xx = (rows[0][0] + 1) / 2;
+ real_t yy = (rows[1][1] + 1) / 2;
+ real_t zz = (rows[2][2] + 1) / 2;
+ real_t xy = (rows[1][0] + rows[0][1]) / 4;
+ real_t xz = (rows[2][0] + rows[0][2]) / 4;
+ real_t yz = (rows[2][1] + rows[1][2]) / 4;
+ if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term
if (xx < epsilon) {
x = 0;
y = Math_SQRT12;
@@ -848,7 +848,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
y = xy / x;
z = xz / x;
}
- } else if (yy > zz) { // elements[1][1] is the largest diagonal term
+ } else if (yy > zz) { // rows[1][1] is the largest diagonal term
if (yy < epsilon) {
x = Math_SQRT12;
y = 0;
@@ -858,7 +858,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
x = xy / y;
z = yz / y;
}
- } else { // elements[2][2] is the largest diagonal term so base result on this
+ } else { // rows[2][2] is the largest diagonal term so base result on this
if (zz < epsilon) {
x = Math_SQRT12;
y = Math_SQRT12;
@@ -874,15 +874,15 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
return;
}
// as we have reached here there are no singularities so we can handle normally
- real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise
+ real_t s = Math::sqrt((rows[1][2] - rows[2][1]) * (rows[1][2] - rows[2][1]) + (rows[2][0] - rows[0][2]) * (rows[2][0] - rows[0][2]) + (rows[0][1] - rows[1][0]) * (rows[0][1] - rows[1][0])); // s=|axis||sin(angle)|, used to normalise
- angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
+ angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2);
if (angle < 0) {
s = -s;
}
- x = (elements[2][1] - elements[1][2]) / s;
- y = (elements[0][2] - elements[2][0]) / s;
- z = (elements[1][0] - elements[0][1]) / s;
+ x = (rows[2][1] - rows[1][2]) / s;
+ y = (rows[0][2] - rows[2][0]) / s;
+ z = (rows[1][0] - rows[0][1]) / s;
r_axis = Vector3(x, y, z);
r_angle = angle;
@@ -900,39 +900,39 @@ void Basis::set_quaternion(const Quaternion &p_quaternion) {
xz - wy, yz + wx, 1.0f - (xx + yy));
}
-void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
+void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
#ifdef MATH_CHECKS
ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
#endif
Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
- real_t cosine = Math::cos(p_phi);
- elements[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x);
- elements[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y);
- elements[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z);
+ real_t cosine = Math::cos(p_angle);
+ rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x);
+ rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y);
+ rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z);
- real_t sine = Math::sin(p_phi);
+ real_t sine = Math::sin(p_angle);
real_t t = 1 - cosine;
real_t xyzt = p_axis.x * p_axis.y * t;
real_t zyxs = p_axis.z * sine;
- elements[0][1] = xyzt - zyxs;
- elements[1][0] = xyzt + zyxs;
+ rows[0][1] = xyzt - zyxs;
+ rows[1][0] = xyzt + zyxs;
xyzt = p_axis.x * p_axis.z * t;
zyxs = p_axis.y * sine;
- elements[0][2] = xyzt + zyxs;
- elements[2][0] = xyzt - zyxs;
+ rows[0][2] = xyzt + zyxs;
+ rows[2][0] = xyzt - zyxs;
xyzt = p_axis.y * p_axis.z * t;
zyxs = p_axis.x * sine;
- elements[1][2] = xyzt - zyxs;
- elements[2][1] = xyzt + zyxs;
+ rows[1][2] = xyzt - zyxs;
+ rows[2][1] = xyzt + zyxs;
}
-void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) {
+void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) {
_set_diagonal(p_scale);
- rotate(p_axis, p_phi);
+ rotate(p_axis, p_angle);
}
void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) {
@@ -948,24 +948,24 @@ void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &
// This also sets the non-diagonal elements to 0, which is misleading from the
// name, so we want this method to be private. Use `from_scale` externally.
void Basis::_set_diagonal(const Vector3 &p_diag) {
- elements[0][0] = p_diag.x;
- elements[0][1] = 0;
- elements[0][2] = 0;
+ rows[0][0] = p_diag.x;
+ rows[0][1] = 0;
+ rows[0][2] = 0;
- elements[1][0] = 0;
- elements[1][1] = p_diag.y;
- elements[1][2] = 0;
+ rows[1][0] = 0;
+ rows[1][1] = p_diag.y;
+ rows[1][2] = 0;
- elements[2][0] = 0;
- elements[2][1] = 0;
- elements[2][2] = p_diag.z;
+ rows[2][0] = 0;
+ rows[2][1] = 0;
+ rows[2][2] = p_diag.z;
}
Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const {
Basis b;
- b.elements[0] = elements[0].lerp(p_to.elements[0], p_weight);
- b.elements[1] = elements[1].lerp(p_to.elements[1], p_weight);
- b.elements[2] = elements[2].lerp(p_to.elements[2], p_weight);
+ b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight);
+ b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight);
+ b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight);
return b;
}
@@ -976,9 +976,9 @@ Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
Quaternion to(p_to);
Basis b(from.slerp(to, p_weight));
- b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight);
- b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight);
- b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight);
+ b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight);
+ b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight);
+ b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight);
return b;
}
@@ -1002,17 +1002,17 @@ void Basis::rotate_sh(real_t *p_values) {
const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv;
const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv;
- real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] };
+ const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] };
- real_t m00 = elements[0][0];
- real_t m01 = elements[0][1];
- real_t m02 = elements[0][2];
- real_t m10 = elements[1][0];
- real_t m11 = elements[1][1];
- real_t m12 = elements[1][2];
- real_t m20 = elements[2][0];
- real_t m21 = elements[2][1];
- real_t m22 = elements[2][2];
+ real_t m00 = rows[0][0];
+ real_t m01 = rows[0][1];
+ real_t m02 = rows[0][2];
+ real_t m10 = rows[1][0];
+ real_t m11 = rows[1][1];
+ real_t m12 = rows[1][2];
+ real_t m20 = rows[2][0];
+ real_t m21 = rows[2][1];
+ real_t m22 = rows[2][2];
p_values[0] = src[0];
p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3];
@@ -1107,6 +1107,6 @@ Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) {
Vector3 v_y = v_z.cross(v_x);
Basis basis;
- basis.set(v_x, v_y, v_z);
+ basis.set_columns(v_x, v_y, v_z);
return basis;
}
diff --git a/core/math/basis.h b/core/math/basis.h
index 683f05150c..9cce22510b 100644
--- a/core/math/basis.h
+++ b/core/math/basis.h
@@ -35,17 +35,17 @@
#include "core/math/vector3.h"
struct _NO_DISCARD_ Basis {
- Vector3 elements[3] = {
+ Vector3 rows[3] = {
Vector3(1, 0, 0),
Vector3(0, 1, 0),
Vector3(0, 0, 1)
};
_FORCE_INLINE_ const Vector3 &operator[](int axis) const {
- return elements[axis];
+ return rows[axis];
}
_FORCE_INLINE_ Vector3 &operator[](int axis) {
- return elements[axis];
+ return rows[axis];
}
void invert();
@@ -58,22 +58,11 @@ struct _NO_DISCARD_ Basis {
void from_z(const Vector3 &p_z);
- _FORCE_INLINE_ Vector3 get_axis(int p_axis) const {
- // get actual basis axis (elements is transposed for performance)
- return Vector3(elements[0][p_axis], elements[1][p_axis], elements[2][p_axis]);
- }
- _FORCE_INLINE_ void set_axis(int p_axis, const Vector3 &p_value) {
- // get actual basis axis (elements is transposed for performance)
- elements[0][p_axis] = p_value.x;
- elements[1][p_axis] = p_value.y;
- elements[2][p_axis] = p_value.z;
- }
+ void rotate(const Vector3 &p_axis, real_t p_angle);
+ Basis rotated(const Vector3 &p_axis, real_t p_angle) const;
- void rotate(const Vector3 &p_axis, real_t p_phi);
- Basis rotated(const Vector3 &p_axis, real_t p_phi) const;
-
- void rotate_local(const Vector3 &p_axis, real_t p_phi);
- Basis rotated_local(const Vector3 &p_axis, real_t p_phi) const;
+ void rotate_local(const Vector3 &p_axis, real_t p_angle);
+ Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;
void rotate(const Vector3 &p_euler);
Basis rotated(const Vector3 &p_euler) const;
@@ -111,7 +100,7 @@ struct _NO_DISCARD_ Basis {
void set_quaternion(const Quaternion &p_quaternion);
void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
- void set_axis_angle(const Vector3 &p_axis, real_t p_phi);
+ void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
void scale(const Vector3 &p_scale);
Basis scaled(const Vector3 &p_scale) const;
@@ -129,19 +118,19 @@ struct _NO_DISCARD_ Basis {
Vector3 get_scale_abs() const;
Vector3 get_scale_local() const;
- void set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale);
+ void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale);
void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale);
// transposed dot products
_FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
- return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
+ return rows[0][0] * v[0] + rows[1][0] * v[1] + rows[2][0] * v[2];
}
_FORCE_INLINE_ real_t tdoty(const Vector3 &v) const {
- return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
+ return rows[0][1] * v[0] + rows[1][1] * v[1] + rows[2][1] * v[2];
}
_FORCE_INLINE_ real_t tdotz(const Vector3 &v) const {
- return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
+ return rows[0][2] * v[0] + rows[1][2] * v[1] + rows[2][2] * v[2];
}
bool is_equal_approx(const Basis &p_basis) const;
@@ -176,55 +165,55 @@ struct _NO_DISCARD_ Basis {
/* create / set */
_FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
- elements[0][0] = xx;
- elements[0][1] = xy;
- elements[0][2] = xz;
- elements[1][0] = yx;
- elements[1][1] = yy;
- elements[1][2] = yz;
- elements[2][0] = zx;
- elements[2][1] = zy;
- elements[2][2] = zz;
- }
- _FORCE_INLINE_ void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
- set_axis(0, p_x);
- set_axis(1, p_y);
- set_axis(2, p_z);
+ rows[0][0] = xx;
+ rows[0][1] = xy;
+ rows[0][2] = xz;
+ rows[1][0] = yx;
+ rows[1][1] = yy;
+ rows[1][2] = yz;
+ rows[2][0] = zx;
+ rows[2][1] = zy;
+ rows[2][2] = zz;
}
- _FORCE_INLINE_ Vector3 get_column(int i) const {
- return Vector3(elements[0][i], elements[1][i], elements[2][i]);
+ _FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
+ set_column(0, p_x);
+ set_column(1, p_y);
+ set_column(2, p_z);
}
- _FORCE_INLINE_ Vector3 get_row(int i) const {
- return Vector3(elements[i][0], elements[i][1], elements[i][2]);
+ _FORCE_INLINE_ Vector3 get_column(int p_index) const {
+ // Get actual basis axis column (we store transposed as rows for performance).
+ return Vector3(rows[0][p_index], rows[1][p_index], rows[2][p_index]);
}
- _FORCE_INLINE_ Vector3 get_main_diagonal() const {
- return Vector3(elements[0][0], elements[1][1], elements[2][2]);
+
+ _FORCE_INLINE_ void set_column(int p_index, const Vector3 &p_value) {
+ // Set actual basis axis column (we store transposed as rows for performance).
+ rows[0][p_index] = p_value.x;
+ rows[1][p_index] = p_value.y;
+ rows[2][p_index] = p_value.z;
}
- _FORCE_INLINE_ void set_row(int i, const Vector3 &p_row) {
- elements[i][0] = p_row.x;
- elements[i][1] = p_row.y;
- elements[i][2] = p_row.z;
+ _FORCE_INLINE_ Vector3 get_main_diagonal() const {
+ return Vector3(rows[0][0], rows[1][1], rows[2][2]);
}
_FORCE_INLINE_ void set_zero() {
- elements[0].zero();
- elements[1].zero();
- elements[2].zero();
+ rows[0].zero();
+ rows[1].zero();
+ rows[2].zero();
}
_FORCE_INLINE_ Basis transpose_xform(const Basis &m) const {
return Basis(
- elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
- elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
- elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
- elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
- elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
- elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
- elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
- elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
- elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
+ rows[0].x * m[0].x + rows[1].x * m[1].x + rows[2].x * m[2].x,
+ rows[0].x * m[0].y + rows[1].x * m[1].y + rows[2].x * m[2].y,
+ rows[0].x * m[0].z + rows[1].x * m[1].z + rows[2].x * m[2].z,
+ rows[0].y * m[0].x + rows[1].y * m[1].x + rows[2].y * m[2].x,
+ rows[0].y * m[0].y + rows[1].y * m[1].y + rows[2].y * m[2].y,
+ rows[0].y * m[0].z + rows[1].y * m[1].z + rows[2].y * m[2].z,
+ rows[0].z * m[0].x + rows[1].z * m[1].x + rows[2].z * m[2].x,
+ rows[0].z * m[0].y + rows[1].z * m[1].y + rows[2].z * m[2].y,
+ rows[0].z * m[0].z + rows[1].z * m[1].z + rows[2].z * m[2].z);
}
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
@@ -248,14 +237,14 @@ struct _NO_DISCARD_ Basis {
Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
- Basis(const Vector3 &p_axis, real_t p_phi) { set_axis_angle(p_axis, p_phi); }
- Basis(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_phi, p_scale); }
+ Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
+ Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
static Basis from_scale(const Vector3 &p_scale);
_FORCE_INLINE_ Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) {
- elements[0] = row0;
- elements[1] = row1;
- elements[2] = row2;
+ rows[0] = row0;
+ rows[1] = row1;
+ rows[2] = row2;
}
_FORCE_INLINE_ Basis() {}
@@ -267,22 +256,22 @@ private:
_FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
set(
- p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
- p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
- p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
+ p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
+ p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
+ p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
}
_FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
return Basis(
- p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
- p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
- p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
+ p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
+ p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
+ p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
}
_FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
- elements[0] += p_matrix.elements[0];
- elements[1] += p_matrix.elements[1];
- elements[2] += p_matrix.elements[2];
+ rows[0] += p_matrix.rows[0];
+ rows[1] += p_matrix.rows[1];
+ rows[2] += p_matrix.rows[2];
}
_FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
@@ -292,9 +281,9 @@ _FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
}
_FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
- elements[0] -= p_matrix.elements[0];
- elements[1] -= p_matrix.elements[1];
- elements[2] -= p_matrix.elements[2];
+ rows[0] -= p_matrix.rows[0];
+ rows[1] -= p_matrix.rows[1];
+ rows[2] -= p_matrix.rows[2];
}
_FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
@@ -304,9 +293,9 @@ _FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
}
_FORCE_INLINE_ void Basis::operator*=(const real_t p_val) {
- elements[0] *= p_val;
- elements[1] *= p_val;
- elements[2] *= p_val;
+ rows[0] *= p_val;
+ rows[1] *= p_val;
+ rows[2] *= p_val;
}
_FORCE_INLINE_ Basis Basis::operator*(const real_t p_val) const {
@@ -317,22 +306,22 @@ _FORCE_INLINE_ Basis Basis::operator*(const real_t p_val) const {
Vector3 Basis::xform(const Vector3 &p_vector) const {
return Vector3(
- elements[0].dot(p_vector),
- elements[1].dot(p_vector),
- elements[2].dot(p_vector));
+ rows[0].dot(p_vector),
+ rows[1].dot(p_vector),
+ rows[2].dot(p_vector));
}
Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
return Vector3(
- (elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z),
- (elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z),
- (elements[0][2] * p_vector.x) + (elements[1][2] * p_vector.y) + (elements[2][2] * p_vector.z));
+ (rows[0][0] * p_vector.x) + (rows[1][0] * p_vector.y) + (rows[2][0] * p_vector.z),
+ (rows[0][1] * p_vector.x) + (rows[1][1] * p_vector.y) + (rows[2][1] * p_vector.z),
+ (rows[0][2] * p_vector.x) + (rows[1][2] * p_vector.y) + (rows[2][2] * p_vector.z));
}
real_t Basis::determinant() const {
- return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) -
- elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) +
- elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]);
+ return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) -
+ rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) +
+ rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]);
}
#endif // BASIS_H
diff --git a/core/math/bvh.h b/core/math/bvh.h
index a8e3cc7bbe..9f6ab9f736 100644
--- a/core/math/bvh.h
+++ b/core/math/bvh.h
@@ -46,21 +46,35 @@
// Layer masks are implemented in the renderers as a later step, and light_cull_mask appears to be
// implemented in GLES3 but not GLES2. Layer masks are not yet implemented for directional lights.
+// In the physics, the pairable_type is based on 1 << p_object->get_type() where:
+// TYPE_AREA,
+// TYPE_BODY
+// and pairable_mask is either 0 if static, or set to all if non static
+
#include "bvh_tree.h"
+#include "core/os/mutex.h"
-#define BVHTREE_CLASS BVH_Tree<T, 2, MAX_ITEMS, USE_PAIRS, Bounds, Point>
+#define BVHTREE_CLASS BVH_Tree<T, NUM_TREES, 2, MAX_ITEMS, USER_PAIR_TEST_FUNCTION, USER_CULL_TEST_FUNCTION, USE_PAIRS, BOUNDS, POINT>
+#define BVH_LOCKED_FUNCTION BVHLockedFunction(&_mutex, BVH_THREAD_SAFE &&_thread_safe);
-template <class T, bool USE_PAIRS = false, int MAX_ITEMS = 32, class Bounds = AABB, class Point = Vector3>
+template <class T, int NUM_TREES = 1, bool USE_PAIRS = false, int MAX_ITEMS = 32, class USER_PAIR_TEST_FUNCTION = BVH_DummyPairTestFunction<T>, class USER_CULL_TEST_FUNCTION = BVH_DummyCullTestFunction<T>, class BOUNDS = AABB, class POINT = Vector3, bool BVH_THREAD_SAFE = true>
class BVH_Manager {
public:
// note we are using uint32_t instead of BVHHandle, losing type safety, but this
// is for compatibility with octree
typedef void *(*PairCallback)(void *, uint32_t, T *, int, uint32_t, T *, int);
typedef void (*UnpairCallback)(void *, uint32_t, T *, int, uint32_t, T *, int, void *);
+ typedef void *(*CheckPairCallback)(void *, uint32_t, T *, int, uint32_t, T *, int, void *);
+
+ // allow locally toggling thread safety if the template has been compiled with BVH_THREAD_SAFE
+ void params_set_thread_safe(bool p_enable) {
+ _thread_safe = p_enable;
+ }
// these 2 are crucial for fine tuning, and can be applied manually
// see the variable declarations for more info.
void params_set_node_expansion(real_t p_value) {
+ BVH_LOCKED_FUNCTION
if (p_value >= 0.0) {
tree._node_expansion = p_value;
tree._auto_node_expansion = false;
@@ -70,43 +84,40 @@ public:
}
void params_set_pairing_expansion(real_t p_value) {
- if (p_value >= 0.0) {
- tree._pairing_expansion = p_value;
- tree._auto_pairing_expansion = false;
- } else {
- tree._auto_pairing_expansion = true;
- }
+ BVH_LOCKED_FUNCTION
+ tree.params_set_pairing_expansion(p_value);
}
void set_pair_callback(PairCallback p_callback, void *p_userdata) {
+ BVH_LOCKED_FUNCTION
pair_callback = p_callback;
pair_callback_userdata = p_userdata;
}
void set_unpair_callback(UnpairCallback p_callback, void *p_userdata) {
+ BVH_LOCKED_FUNCTION
unpair_callback = p_callback;
unpair_callback_userdata = p_userdata;
}
+ void set_check_pair_callback(CheckPairCallback p_callback, void *p_userdata) {
+ BVH_LOCKED_FUNCTION
+ check_pair_callback = p_callback;
+ check_pair_callback_userdata = p_userdata;
+ }
+
+ BVHHandle create(T *p_userdata, bool p_active = true, uint32_t p_tree_id = 0, uint32_t p_tree_collision_mask = 1, const BOUNDS &p_aabb = BOUNDS(), int p_subindex = 0) {
+ BVH_LOCKED_FUNCTION
- BVHHandle create(T *p_userdata, bool p_active, const Bounds &p_aabb = Bounds(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t p_pairable_mask = 1) {
// not sure if absolutely necessary to flush collisions here. It will cost performance to, instead
// of waiting for update, so only uncomment this if there are bugs.
if (USE_PAIRS) {
//_check_for_collisions();
}
-#ifdef TOOLS_ENABLED
- if (!USE_PAIRS) {
- if (p_pairable) {
- WARN_PRINT_ONCE("creating pairable item in BVH with USE_PAIRS set to false");
- }
- }
-#endif
-
- BVHHandle h = tree.item_add(p_userdata, p_active, p_aabb, p_subindex, p_pairable, p_pairable_type, p_pairable_mask);
+ BVHHandle h = tree.item_add(p_userdata, p_active, p_aabb, p_subindex, p_tree_id, p_tree_collision_mask);
if (USE_PAIRS) {
// for safety initialize the expanded AABB
- Bounds &expanded_aabb = tree._pairs[h.id()].expanded_aabb;
+ BOUNDS &expanded_aabb = tree._pairs[h.id()].expanded_aabb;
expanded_aabb = p_aabb;
expanded_aabb.grow_by(tree._pairing_expansion);
@@ -123,12 +134,18 @@ public:
////////////////////////////////////////////////////
// wrapper versions that use uint32_t instead of handle
// for backward compatibility. Less type safe
- void move(uint32_t p_handle, const Bounds &p_aabb) {
+ void move(uint32_t p_handle, const BOUNDS &p_aabb) {
BVHHandle h;
h.set(p_handle);
move(h, p_aabb);
}
+ void recheck_pairs(uint32_t p_handle) {
+ BVHHandle h;
+ h.set(p_handle);
+ recheck_pairs(h);
+ }
+
void erase(uint32_t p_handle) {
BVHHandle h;
h.set(p_handle);
@@ -141,7 +158,7 @@ public:
force_collision_check(h);
}
- bool activate(uint32_t p_handle, const Bounds &p_aabb, bool p_delay_collision_check = false) {
+ bool activate(uint32_t p_handle, const BOUNDS &p_aabb, bool p_delay_collision_check = false) {
BVHHandle h;
h.set(p_handle);
return activate(h, p_aabb, p_delay_collision_check);
@@ -153,16 +170,16 @@ public:
return deactivate(h);
}
- void set_pairable(uint32_t p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask, bool p_force_collision_check = true) {
+ void set_tree(uint32_t p_handle, uint32_t p_tree_id, uint32_t p_tree_collision_mask, bool p_force_collision_check = true) {
BVHHandle h;
h.set(p_handle);
- set_pairable(h, p_pairable, p_pairable_type, p_pairable_mask, p_force_collision_check);
+ set_tree(h, p_tree_id, p_tree_collision_mask, p_force_collision_check);
}
- bool is_pairable(uint32_t p_handle) const {
+ uint32_t get_tree_id(uint32_t p_handle) const {
BVHHandle h;
h.set(p_handle);
- return item_is_pairable(h);
+ return item_get_tree_id(h);
}
int get_subindex(uint32_t p_handle) const {
BVHHandle h;
@@ -178,7 +195,9 @@ public:
////////////////////////////////////////////////////
- void move(BVHHandle p_handle, const Bounds &p_aabb) {
+ void move(BVHHandle p_handle, const BOUNDS &p_aabb) {
+ DEV_ASSERT(!p_handle.is_invalid());
+ BVH_LOCKED_FUNCTION
if (tree.item_move(p_handle, p_aabb)) {
if (USE_PAIRS) {
_add_changed_item(p_handle, p_aabb);
@@ -186,7 +205,14 @@ public:
}
}
+ void recheck_pairs(BVHHandle p_handle) {
+ DEV_ASSERT(!p_handle.is_invalid());
+ force_collision_check(p_handle);
+ }
+
void erase(BVHHandle p_handle) {
+ DEV_ASSERT(!p_handle.is_invalid());
+ BVH_LOCKED_FUNCTION
// call unpair and remove all references to the item
// before deleting from the tree
if (USE_PAIRS) {
@@ -200,11 +226,13 @@ public:
// use in conjunction with activate if you have deferred the collision check, and
// set pairable has never been called.
- // (deferred collision checks are a workaround for rendering server for historical reasons)
+ // (deferred collision checks are a workaround for visual server for historical reasons)
void force_collision_check(BVHHandle p_handle) {
+ DEV_ASSERT(!p_handle.is_invalid());
+ BVH_LOCKED_FUNCTION
if (USE_PAIRS) {
// the aabb should already be up to date in the BVH
- Bounds aabb;
+ BOUNDS aabb;
item_get_AABB(p_handle, aabb);
// add it as changed even if aabb not different
@@ -218,7 +246,9 @@ public:
// these should be read as set_visible for render trees,
// but generically this makes items add or remove from the
// tree internally, to speed things up by ignoring inactive items
- bool activate(BVHHandle p_handle, const Bounds &p_aabb, bool p_delay_collision_check = false) {
+ bool activate(BVHHandle p_handle, const BOUNDS &p_aabb, bool p_delay_collision_check = false) {
+ DEV_ASSERT(!p_handle.is_invalid());
+ BVH_LOCKED_FUNCTION
// sending the aabb here prevents the need for the BVH to maintain
// a redundant copy of the aabb.
// returns success
@@ -242,6 +272,8 @@ public:
}
bool deactivate(BVHHandle p_handle) {
+ DEV_ASSERT(!p_handle.is_invalid());
+ BVH_LOCKED_FUNCTION
// returns success
if (tree.item_deactivate(p_handle)) {
// call unpair and remove all references to the item
@@ -258,12 +290,15 @@ public:
return false;
}
- bool get_active(BVHHandle p_handle) const {
+ bool get_active(BVHHandle p_handle) {
+ DEV_ASSERT(!p_handle.is_invalid());
+ BVH_LOCKED_FUNCTION
return tree.item_get_active(p_handle);
}
// call e.g. once per frame (this does a trickle optimize)
void update() {
+ BVH_LOCKED_FUNCTION
tree.update();
_check_for_collisions();
#ifdef BVH_INTEGRITY_CHECKS
@@ -273,24 +308,27 @@ public:
// this can be called more frequently than per frame if necessary
void update_collisions() {
+ BVH_LOCKED_FUNCTION
_check_for_collisions();
}
// prefer calling this directly as type safe
- void set_pairable(const BVHHandle &p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask, bool p_force_collision_check = true) {
+ void set_tree(const BVHHandle &p_handle, uint32_t p_tree_id, uint32_t p_tree_collision_mask, bool p_force_collision_check = true) {
+ DEV_ASSERT(!p_handle.is_invalid());
+ BVH_LOCKED_FUNCTION
// Returns true if the pairing state has changed.
- bool state_changed = tree.item_set_pairable(p_handle, p_pairable, p_pairable_type, p_pairable_mask);
+ bool state_changed = tree.item_set_tree(p_handle, p_tree_id, p_tree_collision_mask);
if (USE_PAIRS) {
// not sure if absolutely necessary to flush collisions here. It will cost performance to, instead
// of waiting for update, so only uncomment this if there are bugs.
//_check_for_collisions();
- if ((p_force_collision_check || state_changed) && get_active(p_handle)) {
+ if ((p_force_collision_check || state_changed) && tree.item_get_active(p_handle)) {
// when the pairable state changes, we need to force a collision check because newly pairable
// items may be in collision, and unpairable items might move out of collision.
// We cannot depend on waiting for the next update, because that may come much later.
- Bounds aabb;
+ BOUNDS aabb;
item_get_AABB(p_handle, aabb);
// passing false disables the optimization which prevents collision checks if
@@ -307,32 +345,33 @@ public:
}
// cull tests
- int cull_aabb(const Bounds &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) {
+ int cull_aabb(const BOUNDS &p_aabb, T **p_result_array, int p_result_max, const T *p_tester, uint32_t p_tree_collision_mask = 0xFFFFFFFF, int *p_subindex_array = nullptr) {
+ BVH_LOCKED_FUNCTION
typename BVHTREE_CLASS::CullParams params;
params.result_count_overall = 0;
params.result_max = p_result_max;
params.result_array = p_result_array;
params.subindex_array = p_subindex_array;
- params.mask = p_mask;
- params.pairable_type = 0;
- params.test_pairable_only = false;
+ params.tree_collision_mask = p_tree_collision_mask;
params.abb.from(p_aabb);
+ params.tester = p_tester;
tree.cull_aabb(params);
return params.result_count_overall;
}
- int cull_segment(const Point &p_from, const Point &p_to, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) {
+ int cull_segment(const POINT &p_from, const POINT &p_to, T **p_result_array, int p_result_max, const T *p_tester, uint32_t p_tree_collision_mask = 0xFFFFFFFF, int *p_subindex_array = nullptr) {
+ BVH_LOCKED_FUNCTION
typename BVHTREE_CLASS::CullParams params;
params.result_count_overall = 0;
params.result_max = p_result_max;
params.result_array = p_result_array;
params.subindex_array = p_subindex_array;
- params.mask = p_mask;
- params.pairable_type = 0;
+ params.tester = p_tester;
+ params.tree_collision_mask = p_tree_collision_mask;
params.segment.from = p_from;
params.segment.to = p_to;
@@ -342,15 +381,16 @@ public:
return params.result_count_overall;
}
- int cull_point(const Point &p_point, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) {
+ int cull_point(const POINT &p_point, T **p_result_array, int p_result_max, const T *p_tester, uint32_t p_tree_collision_mask = 0xFFFFFFFF, int *p_subindex_array = nullptr) {
+ BVH_LOCKED_FUNCTION
typename BVHTREE_CLASS::CullParams params;
params.result_count_overall = 0;
params.result_max = p_result_max;
params.result_array = p_result_array;
params.subindex_array = p_subindex_array;
- params.mask = p_mask;
- params.pairable_type = 0;
+ params.tester = p_tester;
+ params.tree_collision_mask = p_tree_collision_mask;
params.point = p_point;
@@ -358,7 +398,8 @@ public:
return params.result_count_overall;
}
- int cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF) {
+ int cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, const T *p_tester, uint32_t p_tree_collision_mask = 0xFFFFFFFF) {
+ BVH_LOCKED_FUNCTION
if (!p_convex.size()) {
return 0;
}
@@ -373,8 +414,8 @@ public:
params.result_max = p_result_max;
params.result_array = p_result_array;
params.subindex_array = nullptr;
- params.mask = p_mask;
- params.pairable_type = 0;
+ params.tester = p_tester;
+ params.tree_collision_mask = p_tree_collision_mask;
params.hull.planes = &p_convex[0];
params.hull.num_planes = p_convex.size();
@@ -394,7 +435,7 @@ private:
return;
}
- Bounds bb;
+ BOUNDS bb;
typename BVHTREE_CLASS::CullParams params;
@@ -402,28 +443,23 @@ private:
params.result_max = INT_MAX;
params.result_array = nullptr;
params.subindex_array = nullptr;
- params.mask = 0xFFFFFFFF;
- params.pairable_type = 0;
for (unsigned int n = 0; n < changed_items.size(); n++) {
const BVHHandle &h = changed_items[n];
// use the expanded aabb for pairing
- const Bounds &expanded_aabb = tree._pairs[h.id()].expanded_aabb;
+ const BOUNDS &expanded_aabb = tree._pairs[h.id()].expanded_aabb;
BVHABB_CLASS abb;
abb.from(expanded_aabb);
+ tree.item_fill_cullparams(h, params);
+
// find all the existing paired aabbs that are no longer
// paired, and send callbacks
_find_leavers(h, abb, p_full_check);
uint32_t changed_item_ref_id = h.id();
- // set up the test from this item.
- // this includes whether to test the non pairable tree,
- // and the item mask.
- tree.item_fill_cullparams(h, params);
-
params.abb = abb;
params.result_count_overall = 0; // might not be needed
@@ -437,13 +473,6 @@ private:
continue;
}
-#ifdef BVH_CHECKS
- // if neither are pairable, they should ignore each other
- // THIS SHOULD NEVER HAPPEN .. now we only test the pairable tree
- // if the changed item is not pairable
- CRASH_COND(params.test_pairable_only && !tree._extra[ref_id].pairable);
-#endif
-
// checkmasks is already done in the cull routine.
BVHHandle h_collidee;
h_collidee.set_id(ref_id);
@@ -456,7 +485,8 @@ private:
}
public:
- void item_get_AABB(BVHHandle p_handle, Bounds &r_aabb) {
+ void item_get_AABB(BVHHandle p_handle, BOUNDS &r_aabb) {
+ DEV_ASSERT(!p_handle.is_invalid());
BVHABB_CLASS abb;
tree.item_get_ABB(p_handle, abb);
abb.to(r_aabb);
@@ -464,7 +494,7 @@ public:
private:
// supplemental funcs
- bool item_is_pairable(BVHHandle p_handle) const { return _get_extra(p_handle).pairable; }
+ uint32_t item_get_tree_id(BVHHandle p_handle) const { return _get_extra(p_handle).tree_id; }
T *item_get_userdata(BVHHandle p_handle) const { return _get_extra(p_handle).userdata; }
int item_get_subindex(BVHHandle p_handle) const { return _get_extra(p_handle).subindex; }
@@ -485,12 +515,35 @@ private:
void *ud_from = pairs_from.remove_pair_to(p_to);
pairs_to.remove_pair_to(p_from);
+#ifdef BVH_VERBOSE_PAIRING
+ print_line("_unpair " + itos(p_from.id()) + " from " + itos(p_to.id()));
+#endif
+
// callback
if (unpair_callback) {
unpair_callback(pair_callback_userdata, p_from, exa.userdata, exa.subindex, p_to, exb.userdata, exb.subindex, ud_from);
}
}
+ void *_recheck_pair(BVHHandle p_from, BVHHandle p_to, void *p_pair_data) {
+ tree._handle_sort(p_from, p_to);
+
+ typename BVHTREE_CLASS::ItemExtra &exa = tree._extra[p_from.id()];
+ typename BVHTREE_CLASS::ItemExtra &exb = tree._extra[p_to.id()];
+
+ // if the userdata is the same, no collisions should occur
+ if ((exa.userdata == exb.userdata) && exa.userdata) {
+ return p_pair_data;
+ }
+
+ // callback
+ if (check_pair_callback) {
+ return check_pair_callback(check_pair_callback_userdata, p_from, exa.userdata, exa.subindex, p_to, exb.userdata, exb.subindex, p_pair_data);
+ }
+
+ return p_pair_data;
+ }
+
// returns true if unpair
bool _find_leavers_process_pair(typename BVHTREE_CLASS::ItemPairs &p_pairs_from, const BVHABB_CLASS &p_abb_from, BVHHandle p_from, BVHHandle p_to, bool p_full_check) {
BVHABB_CLASS abb_to;
@@ -498,8 +551,8 @@ private:
// do they overlap?
if (p_abb_from.intersects(abb_to)) {
- // the full check for pairable / non pairable and mask changes is extra expense
- // this need not be done in most cases (for speed) except in the case where set_pairable is called
+ // the full check for pairable / non pairable (i.e. tree_id and tree_masks) and mask changes is extra expense
+ // this need not be done in most cases (for speed) except in the case where set_tree is called
// where the masks etc of the objects in question may have changed
if (!p_full_check) {
return false;
@@ -507,12 +560,13 @@ private:
const typename BVHTREE_CLASS::ItemExtra &exa = _get_extra(p_from);
const typename BVHTREE_CLASS::ItemExtra &exb = _get_extra(p_to);
- // one of the two must be pairable to still pair
- // if neither are pairable, we always unpair
- if (exa.pairable || exb.pairable) {
+ // Checking tree_ids and tree_collision_masks
+ if (exa.are_item_trees_compatible(exb)) {
+ bool pair_allowed = USER_PAIR_TEST_FUNCTION::user_pair_check(exa.userdata, exb.userdata);
+
// the masks must still be compatible to pair
- // i.e. if there is a hit between the two, then they should stay paired
- if (tree._cull_pairing_mask_test_hit(exa.pairable_mask, exa.pairable_type, exb.pairable_mask, exb.pairable_type)) {
+ // i.e. if there is a hit between the two and they intersect, then they should stay paired
+ if (pair_allowed) {
return false;
}
}
@@ -550,6 +604,11 @@ private:
const typename BVHTREE_CLASS::ItemExtra &exa = _get_extra(p_ha);
const typename BVHTREE_CLASS::ItemExtra &exb = _get_extra(p_hb);
+ // user collision callback
+ if (!USER_PAIR_TEST_FUNCTION::user_pair_check(exa.userdata, exb.userdata)) {
+ return;
+ }
+
// if the userdata is the same, no collisions should occur
if ((exa.userdata == exb.userdata) && exa.userdata) {
return;
@@ -573,6 +632,10 @@ private:
// callback
void *callback_userdata = nullptr;
+#ifdef BVH_VERBOSE_PAIRING
+ print_line("_pair " + itos(p_ha.id()) + " to " + itos(p_hb.id()));
+#endif
+
if (pair_callback) {
callback_userdata = pair_callback(pair_callback_userdata, p_ha, exa.userdata, exa.subindex, p_hb, exb.userdata, exb.subindex);
}
@@ -594,6 +657,32 @@ private:
}
}
+ // Send pair callbacks again for all existing pairs for the given handle.
+ void _recheck_pairs(BVHHandle p_handle) {
+ typename BVHTREE_CLASS::ItemPairs &from = tree._pairs[p_handle.id()];
+
+ // checking pair for every partner.
+ for (unsigned int n = 0; n < from.extended_pairs.size(); n++) {
+ typename BVHTREE_CLASS::ItemPairs::Link &pair = from.extended_pairs[n];
+ BVHHandle h_to = pair.handle;
+ void *new_pair_data = _recheck_pair(p_handle, h_to, pair.userdata);
+
+ if (new_pair_data != pair.userdata) {
+ pair.userdata = new_pair_data;
+
+ // Update pair data for the second item.
+ typename BVHTREE_CLASS::ItemPairs &to = tree._pairs[h_to.id()];
+ for (unsigned int to_index = 0; to_index < to.extended_pairs.size(); to_index++) {
+ typename BVHTREE_CLASS::ItemPairs::Link &to_pair = to.extended_pairs[to_index];
+ if (to_pair.handle == p_handle) {
+ to_pair.userdata = new_pair_data;
+ break;
+ }
+ }
+ }
+ }
+ }
+
private:
const typename BVHTREE_CLASS::ItemExtra &_get_extra(BVHHandle p_handle) const {
return tree._extra[p_handle.id()];
@@ -607,19 +696,24 @@ private:
_tick++;
}
- void _add_changed_item(BVHHandle p_handle, const Bounds &aabb, bool p_check_aabb = true) {
+ void _add_changed_item(BVHHandle p_handle, const BOUNDS &aabb, bool p_check_aabb = true) {
// Note that non pairable items can pair with pairable,
// so all types must be added to the list
+#ifdef BVH_EXPAND_LEAF_AABBS
+ // if using expanded AABB in the leaf, the redundancy check will already have been made
+ BOUNDS &expanded_aabb = tree._pairs[p_handle.id()].expanded_aabb;
+ item_get_AABB(p_handle, expanded_aabb);
+#else
// aabb check with expanded aabb. This greatly decreases processing
// at the cost of slightly less accurate pairing checks
// Note this pairing AABB is separate from the AABB in the actual tree
- Bounds &expanded_aabb = tree._pairs[p_handle.id()].expanded_aabb;
+ BOUNDS &expanded_aabb = tree._pairs[p_handle.id()].expanded_aabb;
// passing p_check_aabb false disables the optimization which prevents collision checks if
// the aabb hasn't changed. This is needed where set_pairable has been called, but the position
// has not changed.
- if (p_check_aabb && expanded_aabb.encloses(aabb)) {
+ if (p_check_aabb && tree.expanded_aabb_encloses_not_shrink(expanded_aabb, aabb)) {
return;
}
@@ -627,6 +721,7 @@ private:
// this tick, because it is vital that the AABB is kept up to date
expanded_aabb = aabb;
expanded_aabb.grow_by(tree._pairing_expansion);
+#endif
// this code is to ensure that changed items only appear once on the updated list
// collision checking them multiple times is not needed, and repeats the same thing
@@ -668,26 +763,54 @@ private:
tree._extra[p_handle.id()].last_updated_tick = 0;
}
- PairCallback pair_callback;
- UnpairCallback unpair_callback;
- void *pair_callback_userdata;
- void *unpair_callback_userdata;
+ PairCallback pair_callback = nullptr;
+ UnpairCallback unpair_callback = nullptr;
+ CheckPairCallback check_pair_callback = nullptr;
+ void *pair_callback_userdata = nullptr;
+ void *unpair_callback_userdata = nullptr;
+ void *check_pair_callback_userdata = nullptr;
BVHTREE_CLASS tree;
// for collision pairing,
// maintain a list of all items moved etc on each frame / tick
LocalVector<BVHHandle, uint32_t, true> changed_items;
- uint32_t _tick;
+ uint32_t _tick = 1; // Start from 1 so items with 0 indicate never updated.
+
+ class BVHLockedFunction {
+ public:
+ BVHLockedFunction(Mutex *p_mutex, bool p_thread_safe) {
+ // will be compiled out if not set in template
+ if (p_thread_safe) {
+ _mutex = p_mutex;
+
+ if (_mutex->try_lock() != OK) {
+ WARN_PRINT("Info : multithread BVH access detected (benign)");
+ _mutex->lock();
+ }
+
+ } else {
+ _mutex = nullptr;
+ }
+ }
+ ~BVHLockedFunction() {
+ // will be compiled out if not set in template
+ if (_mutex) {
+ _mutex->unlock();
+ }
+ }
+
+ private:
+ Mutex *_mutex = nullptr;
+ };
+
+ Mutex _mutex;
+
+ // local toggle for turning on and off thread safety in project settings
+ bool _thread_safe = BVH_THREAD_SAFE;
public:
- BVH_Manager() {
- _tick = 1; // start from 1 so items with 0 indicate never updated
- pair_callback = nullptr;
- unpair_callback = nullptr;
- pair_callback_userdata = nullptr;
- unpair_callback_userdata = nullptr;
- }
+ BVH_Manager() {}
};
#undef BVHTREE_CLASS
diff --git a/core/math/bvh_abb.h b/core/math/bvh_abb.h
index 009032d34d..8a44f1c4da 100644
--- a/core/math/bvh_abb.h
+++ b/core/math/bvh_abb.h
@@ -32,7 +32,7 @@
#define BVH_ABB_H
// special optimized version of axis aligned bounding box
-template <class Bounds = AABB, class Point = Vector3>
+template <class BOUNDS = AABB, class POINT = Vector3>
struct BVH_ABB {
struct ConvexHull {
// convex hulls (optional)
@@ -43,8 +43,8 @@ struct BVH_ABB {
};
struct Segment {
- Point from;
- Point to;
+ POINT from;
+ POINT to;
};
enum IntersectResult {
@@ -54,47 +54,47 @@ struct BVH_ABB {
};
// we store mins with a negative value in order to test them with SIMD
- Point min;
- Point neg_max;
+ POINT min;
+ POINT neg_max;
bool operator==(const BVH_ABB &o) const { return (min == o.min) && (neg_max == o.neg_max); }
bool operator!=(const BVH_ABB &o) const { return (*this == o) == false; }
- void set(const Point &_min, const Point &_max) {
+ void set(const POINT &_min, const POINT &_max) {
min = _min;
neg_max = -_max;
}
// to and from standard AABB
- void from(const Bounds &p_aabb) {
+ void from(const BOUNDS &p_aabb) {
min = p_aabb.position;
neg_max = -(p_aabb.position + p_aabb.size);
}
- void to(Bounds &r_aabb) const {
+ void to(BOUNDS &r_aabb) const {
r_aabb.position = min;
r_aabb.size = calculate_size();
}
void merge(const BVH_ABB &p_o) {
- for (int axis = 0; axis < Point::AXIS_COUNT; ++axis) {
+ for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
neg_max[axis] = MIN(neg_max[axis], p_o.neg_max[axis]);
min[axis] = MIN(min[axis], p_o.min[axis]);
}
}
- Point calculate_size() const {
+ POINT calculate_size() const {
return -neg_max - min;
}
- Point calculate_centre() const {
- return Point((calculate_size() * 0.5) + min);
+ POINT calculate_centre() const {
+ return POINT((calculate_size() * 0.5) + min);
}
real_t get_proximity_to(const BVH_ABB &p_b) const {
- const Point d = (min - neg_max) - (p_b.min - p_b.neg_max);
+ const POINT d = (min - neg_max) - (p_b.min - p_b.neg_max);
real_t proximity = 0.0;
- for (int axis = 0; axis < Point::AXIS_COUNT; ++axis) {
+ for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
proximity += Math::abs(d[axis]);
}
return proximity;
@@ -104,7 +104,7 @@ struct BVH_ABB {
return (get_proximity_to(p_a) < get_proximity_to(p_b) ? 0 : 1);
}
- uint32_t find_cutting_planes(const BVH_ABB::ConvexHull &p_hull, uint32_t *p_plane_ids) const {
+ uint32_t find_cutting_planes(const typename BVH_ABB::ConvexHull &p_hull, uint32_t *p_plane_ids) const {
uint32_t count = 0;
for (int n = 0; n < p_hull.num_planes; n++) {
@@ -162,7 +162,7 @@ struct BVH_ABB {
}
bool intersects_convex_partial(const ConvexHull &p_hull) const {
- Bounds bb;
+ BOUNDS bb;
to(bb);
return bb.intersects_convex_shape(p_hull.planes, p_hull.num_planes, p_hull.points, p_hull.num_points);
}
@@ -182,7 +182,7 @@ struct BVH_ABB {
bool is_within_convex(const ConvexHull &p_hull) const {
// use half extents routine
- Bounds bb;
+ BOUNDS bb;
to(bb);
return bb.inside_convex_shape(p_hull.planes, p_hull.num_planes);
}
@@ -197,12 +197,12 @@ struct BVH_ABB {
}
bool intersects_segment(const Segment &p_s) const {
- Bounds bb;
+ BOUNDS bb;
to(bb);
return bb.intersects_segment(p_s.from, p_s.to);
}
- bool intersects_point(const Point &p_pt) const {
+ bool intersects_point(const POINT &p_pt) const {
if (_any_lessthan(-p_pt, neg_max)) {
return false;
}
@@ -212,6 +212,7 @@ struct BVH_ABB {
return true;
}
+ // Very hot in profiling, make sure optimized
bool intersects(const BVH_ABB &p_o) const {
if (_any_morethan(p_o.min, -neg_max)) {
return false;
@@ -222,6 +223,17 @@ struct BVH_ABB {
return true;
}
+ // for pre-swizzled tester (this object)
+ bool intersects_swizzled(const BVH_ABB &p_o) const {
+ if (_any_lessthan(min, p_o.min)) {
+ return false;
+ }
+ if (_any_lessthan(neg_max, p_o.neg_max)) {
+ return false;
+ }
+ return true;
+ }
+
bool is_other_within(const BVH_ABB &p_o) const {
if (_any_lessthan(p_o.neg_max, neg_max)) {
return false;
@@ -232,20 +244,20 @@ struct BVH_ABB {
return true;
}
- void grow(const Point &p_change) {
+ void grow(const POINT &p_change) {
neg_max -= p_change;
min -= p_change;
}
void expand(real_t p_change) {
- Point change;
+ POINT change;
change.set_all(p_change);
grow(change);
}
// Actually surface area metric.
float get_area() const {
- Point d = calculate_size();
+ POINT d = calculate_size();
return 2.0f * (d.x * d.y + d.y * d.z + d.z * d.x);
}
@@ -254,8 +266,8 @@ struct BVH_ABB {
min = neg_max;
}
- bool _any_morethan(const Point &p_a, const Point &p_b) const {
- for (int axis = 0; axis < Point::AXIS_COUNT; ++axis) {
+ bool _any_morethan(const POINT &p_a, const POINT &p_b) const {
+ for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
if (p_a[axis] > p_b[axis]) {
return true;
}
@@ -263,8 +275,8 @@ struct BVH_ABB {
return false;
}
- bool _any_lessthan(const Point &p_a, const Point &p_b) const {
- for (int axis = 0; axis < Point::AXIS_COUNT; ++axis) {
+ bool _any_lessthan(const POINT &p_a, const POINT &p_b) const {
+ for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
if (p_a[axis] < p_b[axis]) {
return true;
}
diff --git a/core/math/bvh_cull.inc b/core/math/bvh_cull.inc
index ab468bfd29..11f50e41e6 100644
--- a/core/math/bvh_cull.inc
+++ b/core/math/bvh_cull.inc
@@ -9,20 +9,22 @@ struct CullParams {
T **result_array;
int *subindex_array;
- // nobody truly understands how masks are intended to work.
- uint32_t mask;
- uint32_t pairable_type;
+ // We now process masks etc in a user template function,
+ // and these for simplicity assume even for cull tests there is a
+ // testing object (which has masks etc) for the user cull checks.
+ // This means for cull tests on their own, the client will usually
+ // want to create a dummy object, just in order to specify masks etc.
+ const T *tester;
// optional components for different tests
- Point point;
+ POINT point;
BVHABB_CLASS abb;
typename BVHABB_CLASS::ConvexHull hull;
typename BVHABB_CLASS::Segment segment;
- // when collision testing, non pairable moving items
- // only need to be tested against the pairable tree.
- // collisions with other non pairable items are irrelevant.
- bool test_pairable_only;
+ // When collision testing, we can specify which tree ids
+ // to collide test against with the tree_collision_mask.
+ uint32_t tree_collision_mask;
};
private:
@@ -58,11 +60,22 @@ int cull_convex(CullParams &r_params, bool p_translate_hits = true) {
_cull_hits.clear();
r_params.result_count = 0;
+ uint32_t tree_test_mask = 0;
+
for (int n = 0; n < NUM_TREES; n++) {
+ tree_test_mask <<= 1;
+ if (!tree_test_mask) {
+ tree_test_mask = 1;
+ }
+
if (_root_node_id[n] == BVHCommon::INVALID) {
continue;
}
+ if (!(r_params.tree_collision_mask & tree_test_mask)) {
+ continue;
+ }
+
_cull_convex_iterative(_root_node_id[n], r_params);
}
@@ -77,11 +90,22 @@ int cull_segment(CullParams &r_params, bool p_translate_hits = true) {
_cull_hits.clear();
r_params.result_count = 0;
+ uint32_t tree_test_mask = 0;
+
for (int n = 0; n < NUM_TREES; n++) {
+ tree_test_mask <<= 1;
+ if (!tree_test_mask) {
+ tree_test_mask = 1;
+ }
+
if (_root_node_id[n] == BVHCommon::INVALID) {
continue;
}
+ if (!(r_params.tree_collision_mask & tree_test_mask)) {
+ continue;
+ }
+
_cull_segment_iterative(_root_node_id[n], r_params);
}
@@ -96,11 +120,22 @@ int cull_point(CullParams &r_params, bool p_translate_hits = true) {
_cull_hits.clear();
r_params.result_count = 0;
+ uint32_t tree_test_mask = 0;
+
for (int n = 0; n < NUM_TREES; n++) {
+ tree_test_mask <<= 1;
+ if (!tree_test_mask) {
+ tree_test_mask = 1;
+ }
+
if (_root_node_id[n] == BVHCommon::INVALID) {
continue;
}
+ if (!(r_params.tree_collision_mask & tree_test_mask)) {
+ continue;
+ }
+
_cull_point_iterative(_root_node_id[n], r_params);
}
@@ -115,12 +150,20 @@ int cull_aabb(CullParams &r_params, bool p_translate_hits = true) {
_cull_hits.clear();
r_params.result_count = 0;
+ uint32_t tree_test_mask = 0;
+
for (int n = 0; n < NUM_TREES; n++) {
+ tree_test_mask <<= 1;
+ if (!tree_test_mask) {
+ tree_test_mask = 1;
+ }
+
if (_root_node_id[n] == BVHCommon::INVALID) {
continue;
}
- if ((n == 0) && r_params.test_pairable_only) {
+ // the tree collision mask determines which trees to collide test against
+ if (!(r_params.tree_collision_mask & tree_test_mask)) {
continue;
}
@@ -142,22 +185,6 @@ bool _cull_hits_full(const CullParams &p) {
return (int)_cull_hits.size() >= p.result_max;
}
-// write this logic once for use in all routines
-// double check this as a possible source of bugs in future.
-bool _cull_pairing_mask_test_hit(uint32_t p_maskA, uint32_t p_typeA, uint32_t p_maskB, uint32_t p_typeB) const {
- // double check this as a possible source of bugs in future.
- bool A_match_B = p_maskA & p_typeB;
-
- if (!A_match_B) {
- bool B_match_A = p_maskB & p_typeA;
- if (!B_match_A) {
- return false;
- }
- }
-
- return true;
-}
-
void _cull_hit(uint32_t p_ref_id, CullParams &p) {
// take into account masks etc
// this would be more efficient to do before plane checks,
@@ -165,7 +192,8 @@ void _cull_hit(uint32_t p_ref_id, CullParams &p) {
if (USE_PAIRS) {
const ItemExtra &ex = _extra[p_ref_id];
- if (!_cull_pairing_mask_test_hit(p.mask, p.pairable_type, ex.pairable_mask, ex.pairable_type)) {
+ // user supplied function (for e.g. pairable types and pairable masks in the render tree)
+ if (!USER_CULL_TEST_FUNCTION::user_cull_check(p.tester, ex.userdata)) {
return;
}
}
@@ -294,6 +322,7 @@ bool _cull_point_iterative(uint32_t p_node_id, CullParams &r_params) {
return true;
}
+// Note: This is a very hot loop profiling wise. Take care when changing this and profile.
bool _cull_aabb_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully_within = false) {
// our function parameters to keep on a stack
struct CullAABBParams {
@@ -336,16 +365,26 @@ bool _cull_aabb_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully
_cull_hit(child_id, r_params);
}
} else {
- for (int n = 0; n < leaf.num_items; n++) {
+ // This section is the hottest area in profiling, so
+ // is optimized highly
+ // get this into a local register and preconverted to correct type
+ int leaf_num_items = leaf.num_items;
+
+ BVHABB_CLASS swizzled_tester;
+ swizzled_tester.min = -r_params.abb.neg_max;
+ swizzled_tester.neg_max = -r_params.abb.min;
+
+ for (int n = 0; n < leaf_num_items; n++) {
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
- if (aabb.intersects(r_params.abb)) {
+ if (swizzled_tester.intersects_swizzled(aabb)) {
uint32_t child_id = leaf.get_item_ref_id(n);
// register hit
_cull_hit(child_id, r_params);
}
}
+
} // not fully within
} else {
if (!cap.fully_within) {
diff --git a/core/math/bvh_debug.inc b/core/math/bvh_debug.inc
index 896c36ecf1..2e519ceb3d 100644
--- a/core/math/bvh_debug.inc
+++ b/core/math/bvh_debug.inc
@@ -7,12 +7,12 @@ void _debug_recursive_print_tree(int p_tree_id) const {
}
String _debug_aabb_to_string(const BVHABB_CLASS &aabb) const {
- Point size = aabb.calculate_size();
+ POINT size = aabb.calculate_size();
String sz;
float vol = 0.0;
- for (int i = 0; i < Point::AXES_COUNT; ++i) {
+ for (int i = 0; i < POINT::AXIS_COUNT; ++i) {
sz += "(";
sz += itos(aabb.min[i]);
sz += " ~ ";
diff --git a/core/math/bvh_logic.inc b/core/math/bvh_logic.inc
index c65002a9fd..dd3b135bb5 100644
--- a/core/math/bvh_logic.inc
+++ b/core/math/bvh_logic.inc
@@ -42,9 +42,9 @@ BVHABB_CLASS _logic_abb_merge(const BVHABB_CLASS &a, const BVHABB_CLASS &b) {
//--------------------------------------------------------------------------------------------------
/**
- * @file q3DynamicAABBTree.h
- * @author Randy Gaul
- * @date 10/10/2014
+ * @file q3DynamicAABBTree.h
+ * @author Randy Gaul
+ * @date 10/10/2014
* Copyright (c) 2014 Randy Gaul http://www.randygaul.net
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
@@ -75,11 +75,11 @@ int32_t _logic_balance(int32_t iA, uint32_t p_tree_id) {
return iA;
}
- /* A
- * / \
- * B C
- * / \ / \
- * D E F G
+ /* A
+ * / \
+ * B C
+ * / \ / \
+ * D E F G
*/
CRASH_COND(A->num_children != 2);
diff --git a/core/math/bvh_misc.inc b/core/math/bvh_misc.inc
index 71aa0e4fe0..9b35a1d36d 100644
--- a/core/math/bvh_misc.inc
+++ b/core/math/bvh_misc.inc
@@ -1,11 +1,7 @@
int _handle_get_tree_id(BVHHandle p_handle) const {
if (USE_PAIRS) {
- int tree = 0;
- if (_extra[p_handle.id()].pairable) {
- tree = 1;
- }
- return tree;
+ return _extra[p_handle.id()].tree_id;
}
return 0;
}
diff --git a/core/math/bvh_pair.inc b/core/math/bvh_pair.inc
index a12acec2b6..7b9c7ce6ae 100644
--- a/core/math/bvh_pair.inc
+++ b/core/math/bvh_pair.inc
@@ -14,10 +14,10 @@ struct ItemPairs {
void clear() {
num_pairs = 0;
extended_pairs.reset();
- expanded_aabb = Bounds();
+ expanded_aabb = BOUNDS();
}
- Bounds expanded_aabb;
+ BOUNDS expanded_aabb;
// maybe we can just use the number in the vector TODO
int32_t num_pairs;
@@ -59,4 +59,14 @@ struct ItemPairs {
return userdata;
}
+
+ // experiment : scale the pairing expansion by the number of pairs.
+ // when the number of pairs is high, the density is high and a lower collision margin is better.
+ // when there are few local pairs, a larger margin is more optimal.
+ real_t scale_expansion_margin(real_t p_margin) const {
+ real_t x = real_t(num_pairs) * (1.0 / 9.0);
+ x = MIN(x, 1.0);
+ x = 1.0 - x;
+ return p_margin * x;
+ }
};
diff --git a/core/math/bvh_public.inc b/core/math/bvh_public.inc
index 2c1e406712..36b0bfeb13 100644
--- a/core/math/bvh_public.inc
+++ b/core/math/bvh_public.inc
@@ -1,5 +1,5 @@
public:
-BVHHandle item_add(T *p_userdata, bool p_active, const Bounds &p_aabb, int32_t p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask, bool p_invisible = false) {
+BVHHandle item_add(T *p_userdata, bool p_active, const BOUNDS &p_aabb, int32_t p_subindex, uint32_t p_tree_id, uint32_t p_tree_collision_mask, bool p_invisible = false) {
#ifdef BVH_VERBOSE_TREE
VERBOSE_PRINT("\nitem_add BEFORE");
_debug_recursive_print_tree(0);
@@ -9,6 +9,13 @@ BVHHandle item_add(T *p_userdata, bool p_active, const Bounds &p_aabb, int32_t p
BVHABB_CLASS abb;
abb.from(p_aabb);
+ // NOTE that we do not expand the AABB for the first create even if
+ // leaf expansion is switched on. This is for two reasons:
+ // (1) We don't know if this object will move in future, in which case a non-expanded
+ // bound would be better...
+ // (2) We don't yet know how many objects will be paired, which is used to modify
+ // the expansion margin.
+
// handle to be filled with the new item ref
BVHHandle handle;
@@ -40,29 +47,17 @@ BVHHandle item_add(T *p_userdata, bool p_active, const Bounds &p_aabb, int32_t p
extra->active_ref_id = _active_refs.size();
_active_refs.push_back(ref_id);
- if (USE_PAIRS) {
- extra->pairable_mask = p_pairable_mask;
- extra->pairable_type = p_pairable_type;
- extra->pairable = p_pairable;
- } else {
- // just for safety, in case this gets queried etc
- extra->pairable = 0;
- p_pairable = false;
- }
+ extra->tree_id = p_tree_id;
+ extra->tree_collision_mask = p_tree_collision_mask;
// assign to handle to return
handle.set_id(ref_id);
- uint32_t tree_id = 0;
- if (p_pairable) {
- tree_id = 1;
- }
-
- create_root_node(tree_id);
+ create_root_node(p_tree_id);
// we must choose where to add to tree
if (p_active) {
- ref->tnode_id = _logic_choose_item_add_node(_root_node_id[tree_id], abb);
+ ref->tnode_id = _logic_choose_item_add_node(_root_node_id[p_tree_id], abb);
bool refit = _node_add_item(ref->tnode_id, ref_id, abb);
@@ -70,7 +65,7 @@ BVHHandle item_add(T *p_userdata, bool p_active, const Bounds &p_aabb, int32_t p
// only need to refit from the parent
const TNode &add_node = _nodes[ref->tnode_id];
if (add_node.parent_id != BVHCommon::INVALID) {
- refit_upward_and_balance(add_node.parent_id, tree_id);
+ refit_upward_and_balance(add_node.parent_id, p_tree_id);
}
}
} else {
@@ -103,7 +98,7 @@ void _debug_print_refs() {
}
// returns false if noop
-bool item_move(BVHHandle p_handle, const Bounds &p_aabb) {
+bool item_move(BVHHandle p_handle, const BOUNDS &p_aabb) {
uint32_t ref_id = p_handle.id();
// get the reference
@@ -115,10 +110,19 @@ bool item_move(BVHHandle p_handle, const Bounds &p_aabb) {
BVHABB_CLASS abb;
abb.from(p_aabb);
+#ifdef BVH_EXPAND_LEAF_AABBS
+ if (USE_PAIRS) {
+ // scale the pairing expansion by the number of pairs.
+ abb.expand(_pairs[ref_id].scale_expansion_margin(_pairing_expansion));
+ } else {
+ abb.expand(_pairing_expansion);
+ }
+#endif
+
BVH_ASSERT(ref.tnode_id != BVHCommon::INVALID);
TNode &tnode = _nodes[ref.tnode_id];
- // does it fit within the current aabb?
+ // does it fit within the current leaf aabb?
if (tnode.aabb.is_other_within(abb)) {
// do nothing .. fast path .. not moved enough to need refit
@@ -129,9 +133,24 @@ bool item_move(BVHHandle p_handle, const Bounds &p_aabb) {
BVHABB_CLASS &leaf_abb = leaf.get_aabb(ref.item_id);
// no change?
+#ifdef BVH_EXPAND_LEAF_AABBS
+ BOUNDS leaf_aabb;
+ leaf_abb.to(leaf_aabb);
+
+ // This test should pass in a lot of cases, and by returning false we can avoid
+ // collision pairing checks later, which greatly reduces processing.
+ if (expanded_aabb_encloses_not_shrink(leaf_aabb, p_aabb)) {
+ return false;
+ }
+#else
if (leaf_abb == abb) {
return false;
}
+#endif
+
+#ifdef BVH_VERBOSE_MOVES
+ print_line("item_move " + itos(p_handle.id()) + "(within tnode aabb) : " + _debug_aabb_to_string(abb));
+#endif
leaf_abb = abb;
_integrity_check_all();
@@ -139,6 +158,10 @@ bool item_move(BVHHandle p_handle, const Bounds &p_aabb) {
return true;
}
+#ifdef BVH_VERBOSE_MOVES
+ print_line("item_move " + itos(p_handle.id()) + "(outside tnode aabb) : " + _debug_aabb_to_string(abb));
+#endif
+
uint32_t tree_id = _handle_get_tree_id(p_handle);
// remove and reinsert
@@ -206,7 +229,7 @@ void item_remove(BVHHandle p_handle) {
}
// returns success
-bool item_activate(BVHHandle p_handle, const Bounds &p_aabb) {
+bool item_activate(BVHHandle p_handle, const BOUNDS &p_aabb) {
uint32_t ref_id = p_handle.id();
ItemRef &ref = _refs[ref_id];
if (ref.is_active()) {
@@ -260,12 +283,14 @@ void item_fill_cullparams(BVHHandle p_handle, CullParams &r_params) const {
uint32_t ref_id = p_handle.id();
const ItemExtra &extra = _extra[ref_id];
- // testing from a non pairable item, we only want to test pairable items
- r_params.test_pairable_only = extra.pairable == 0;
+ // which trees does this item want to collide detect against?
+ r_params.tree_collision_mask = extra.tree_collision_mask;
- // we take into account the mask of the item testing from
- r_params.mask = extra.pairable_mask;
- r_params.pairable_type = extra.pairable_type;
+ // The testing user defined object is passed to the user defined cull check function
+ // for masks etc. This is usually a dummy object of type T with masks set.
+ // However, if not using the cull_check callback (i.e. returning true), you can pass
+ // a nullptr instead of dummy object, as it will not be used.
+ r_params.tester = extra.userdata;
}
bool item_is_pairable(const BVHHandle &p_handle) {
@@ -285,7 +310,7 @@ void item_get_ABB(const BVHHandle &p_handle, BVHABB_CLASS &r_abb) {
r_abb = leaf.get_aabb(ref.item_id);
}
-bool item_set_pairable(const BVHHandle &p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
+bool item_set_tree(const BVHHandle &p_handle, uint32_t p_tree_id, uint32_t p_tree_collision_mask) {
// change tree?
uint32_t ref_id = p_handle.id();
@@ -293,13 +318,15 @@ bool item_set_pairable(const BVHHandle &p_handle, bool p_pairable, uint32_t p_pa
ItemRef &ref = _refs[ref_id];
bool active = ref.is_active();
- bool pairable_changed = (ex.pairable != 0) != p_pairable;
- bool state_changed = pairable_changed || (ex.pairable_type != p_pairable_type) || (ex.pairable_mask != p_pairable_mask);
+ bool tree_changed = ex.tree_id != p_tree_id;
+ bool mask_changed = ex.tree_collision_mask != p_tree_collision_mask;
+ bool state_changed = tree_changed | mask_changed;
- ex.pairable_type = p_pairable_type;
- ex.pairable_mask = p_pairable_mask;
+ // Keep an eye on this for bugs of not noticing changes to objects,
+ // especially when changing client user masks that will not be detected as a change
+ // in the BVH. You may need to force a collision check in this case with recheck_pairs().
- if (active && pairable_changed) {
+ if (active && (tree_changed | mask_changed)) {
// record abb
TNode &tnode = _nodes[ref.tnode_id];
TLeaf &leaf = _node_get_leaf(tnode);
@@ -313,7 +340,8 @@ bool item_set_pairable(const BVHHandle &p_handle, bool p_pairable, uint32_t p_pa
// we must set the pairable AFTER getting the current tree
// because the pairable status determines which tree
- ex.pairable = p_pairable;
+ ex.tree_id = p_tree_id;
+ ex.tree_collision_mask = p_tree_collision_mask;
// add to new tree
tree_id = _handle_get_tree_id(p_handle);
@@ -333,7 +361,8 @@ bool item_set_pairable(const BVHHandle &p_handle, bool p_pairable, uint32_t p_pa
}
} else {
// always keep this up to date
- ex.pairable = p_pairable;
+ ex.tree_id = p_tree_id;
+ ex.tree_collision_mask = p_tree_collision_mask;
}
return state_changed;
@@ -403,7 +432,7 @@ void update() {
// if there are no nodes, do nothing, but if there are...
if (bound_valid) {
- Bounds bb;
+ BOUNDS bb;
world_bound.to(bb);
real_t size = bb.get_longest_axis_size();
@@ -421,3 +450,50 @@ void update() {
}
#endif
}
+
+void params_set_pairing_expansion(real_t p_value) {
+ if (p_value < 0.0) {
+#ifdef BVH_ALLOW_AUTO_EXPANSION
+ _auto_pairing_expansion = true;
+#endif
+ return;
+ }
+#ifdef BVH_ALLOW_AUTO_EXPANSION
+ _auto_pairing_expansion = false;
+#endif
+
+ _pairing_expansion = p_value;
+
+ // calculate shrinking threshold
+ const real_t fudge_factor = 1.1;
+ _aabb_shrinkage_threshold = _pairing_expansion * POINT::AXIS_COUNT * 2.0 * fudge_factor;
+}
+
+// This routine is not just an enclose check, it also checks for special case of shrinkage
+bool expanded_aabb_encloses_not_shrink(const BOUNDS &p_expanded_aabb, const BOUNDS &p_aabb) const {
+ if (!p_expanded_aabb.encloses(p_aabb)) {
+ return false;
+ }
+
+ // Check for special case of shrinkage. If the aabb has shrunk
+ // significantly we want to create a new expanded bound, because
+ // the previous expanded bound will have diverged significantly.
+ const POINT &exp_size = p_expanded_aabb.size;
+ const POINT &new_size = p_aabb.size;
+
+ real_t exp_l = 0.0;
+ real_t new_l = 0.0;
+
+ for (int i = 0; i < POINT::AXIS_COUNT; ++i) {
+ exp_l += exp_size[i];
+ new_l += new_size[i];
+ }
+
+ // is difference above some metric
+ real_t diff = exp_l - new_l;
+ if (diff < _aabb_shrinkage_threshold) {
+ return true;
+ }
+
+ return false;
+}
diff --git a/core/math/bvh_split.inc b/core/math/bvh_split.inc
index f19ee8a7da..ff07166d4a 100644
--- a/core/math/bvh_split.inc
+++ b/core/math/bvh_split.inc
@@ -25,16 +25,16 @@ void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, u
return;
}
- Point centre = full_bound.calculate_centre();
- Point size = full_bound.calculate_size();
+ POINT centre = full_bound.calculate_centre();
+ POINT size = full_bound.calculate_size();
- int order[Point::AXIS_COUNT];
+ int order[POINT::AXIS_COUNT];
order[0] = size.min_axis_index();
- order[Point::AXIS_COUNT - 1] = size.max_axis_index();
+ order[POINT::AXIS_COUNT - 1] = size.max_axis_index();
- static_assert(Point::AXIS_COUNT <= 3);
- if (Point::AXIS_COUNT == 3) {
+ static_assert(POINT::AXIS_COUNT <= 3, "BVH POINT::AXIS_COUNT has unexpected size");
+ if (POINT::AXIS_COUNT == 3) {
order[1] = 3 - (order[0] + order[2]);
}
@@ -58,7 +58,7 @@ void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, u
// detect when split on longest axis failed
int min_threshold = MAX_ITEMS / 4;
- int min_group_size[Point::AXIS_COUNT];
+ int min_group_size[POINT::AXIS_COUNT];
min_group_size[0] = MIN(num_a, num_b);
if (min_group_size[0] < min_threshold) {
// slow but sure .. first move everything back into a
@@ -68,7 +68,7 @@ void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, u
num_b = 0;
// now calculate the best split
- for (int axis = 1; axis < Point::AXIS_COUNT; axis++) {
+ for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) {
split_axis = order[axis];
int count = 0;
@@ -86,7 +86,7 @@ void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, u
// best axis
int best_axis = 0;
int best_min = min_group_size[0];
- for (int axis = 1; axis < Point::AXIS_COUNT; axis++) {
+ for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) {
if (min_group_size[axis] > best_min) {
best_min = min_group_size[axis];
best_axis = axis;
diff --git a/core/math/bvh_structs.inc b/core/math/bvh_structs.inc
index 1d1e0e6468..58c8f0479a 100644
--- a/core/math/bvh_structs.inc
+++ b/core/math/bvh_structs.inc
@@ -14,25 +14,38 @@ struct ItemRef {
// extra info kept in separate parallel list to the references,
// as this is less used as keeps cache better
struct ItemExtra {
- uint32_t last_updated_tick;
- uint32_t pairable;
- uint32_t pairable_mask;
- uint32_t pairable_type;
+ // Before doing user defined pairing checks (especially in the find_leavers function),
+ // we may want to check that two items have compatible tree ids and tree masks,
+ // as if they are incompatible they should not pair / collide.
+ bool are_item_trees_compatible(const ItemExtra &p_other) const {
+ uint32_t other_type = 1 << p_other.tree_id;
+ if (tree_collision_mask & other_type) {
+ return true;
+ }
+ uint32_t our_type = 1 << tree_id;
+ if (p_other.tree_collision_mask & our_type) {
+ return true;
+ }
+ return false;
+ }
+
+ // There can be multiple user defined trees
+ uint32_t tree_id;
+
+ // Defines which trees this item should collision check against.
+ // 1 << tree_id, and normally items would collide against there own
+ // tree (but not always).
+ uint32_t tree_collision_mask;
+ uint32_t last_updated_tick;
int32_t subindex;
+ T *userdata;
+
// the active reference is a separate list of which references
// are active so that we can slowly iterate through it over many frames for
// slow optimize.
uint32_t active_ref_id;
-
- T *userdata;
-};
-
-// this is an item OR a child node depending on whether a leaf node
-struct Item {
- BVHABB_CLASS aabb;
- uint32_t item_ref_id;
};
// tree leaf
@@ -47,11 +60,23 @@ private:
public:
// accessors
- BVHABB_CLASS &get_aabb(uint32_t p_id) { return aabbs[p_id]; }
- const BVHABB_CLASS &get_aabb(uint32_t p_id) const { return aabbs[p_id]; }
+ BVHABB_CLASS &get_aabb(uint32_t p_id) {
+ BVH_ASSERT(p_id < MAX_ITEMS);
+ return aabbs[p_id];
+ }
+ const BVHABB_CLASS &get_aabb(uint32_t p_id) const {
+ BVH_ASSERT(p_id < MAX_ITEMS);
+ return aabbs[p_id];
+ }
- uint32_t &get_item_ref_id(uint32_t p_id) { return item_ref_ids[p_id]; }
- const uint32_t &get_item_ref_id(uint32_t p_id) const { return item_ref_ids[p_id]; }
+ uint32_t &get_item_ref_id(uint32_t p_id) {
+ BVH_ASSERT(p_id < MAX_ITEMS);
+ return item_ref_ids[p_id];
+ }
+ const uint32_t &get_item_ref_id(uint32_t p_id) const {
+ BVH_ASSERT(p_id < MAX_ITEMS);
+ return item_ref_ids[p_id];
+ }
bool is_dirty() const { return dirty; }
void set_dirty(bool p) { dirty = p; }
@@ -133,13 +158,13 @@ struct TNode {
// instead of using linked list we maintain
// item references (for quick lookup)
-PooledList<ItemRef, true> _refs;
-PooledList<ItemExtra, true> _extra;
+PooledList<ItemRef, uint32_t, true> _refs;
+PooledList<ItemExtra, uint32_t, true> _extra;
PooledList<ItemPairs> _pairs;
// these 2 are not in sync .. nodes != leaves!
-PooledList<TNode, true> _nodes;
-PooledList<TLeaf, true> _leaves;
+PooledList<TNode, uint32_t, true> _nodes;
+PooledList<TLeaf, uint32_t, true> _leaves;
// we can maintain an un-ordered list of which references are active,
// in order to do a slow incremental optimize of the tree over each frame.
@@ -152,15 +177,11 @@ uint32_t _current_active_ref = 0;
// for pairing collision detection
LocalVector<uint32_t, uint32_t, true> _cull_hits;
-// we now have multiple root nodes, allowing us to store
-// more than 1 tree. This can be more efficient, while sharing the same
-// common lists
-enum { NUM_TREES = 2,
-};
-
-// Tree 0 - Non pairable
-// Tree 1 - Pairable
-// This is more efficient because in physics we only need check non pairable against the pairable tree.
+// We can now have a user definable number of trees.
+// This allows using e.g. a non-pairable and pairable tree,
+// which can be more efficient for example, if we only need check non pairable against the pairable tree.
+// It also may be more efficient in terms of separating static from dynamic objects, by reducing housekeeping.
+// However this is a trade off, as there is a cost of traversing two trees.
uint32_t _root_node_id[NUM_TREES];
// these values may need tweaking according to the project
@@ -177,4 +198,14 @@ bool _auto_node_expansion = true;
// larger values gives more 'sticky' pairing, and is less likely to exhibit tunneling
// we can either use auto mode, where the expansion is based on the root node size, or specify manually
real_t _pairing_expansion = 0.1;
+
+#ifdef BVH_ALLOW_AUTO_EXPANSION
bool _auto_pairing_expansion = true;
+#endif
+
+// when using an expanded bound, we must detect the condition where a new AABB
+// is significantly smaller than the expanded bound, as this is a special case where we
+// should override the optimization and create a new expanded bound.
+// This threshold is derived from the _pairing_expansion, and should be recalculated
+// if _pairing_expansion is changed.
+real_t _aabb_shrinkage_threshold = 0.0;
diff --git a/core/math/bvh_tree.h b/core/math/bvh_tree.h
index c948d83456..cdb2bb4413 100644
--- a/core/math/bvh_tree.h
+++ b/core/math/bvh_tree.h
@@ -48,12 +48,17 @@
#include "core/templates/pooled_list.h"
#include <limits.h>
-#define BVHABB_CLASS BVH_ABB<Bounds, Point>
+#define BVHABB_CLASS BVH_ABB<BOUNDS, POINT>
+
+// not sure if this is better yet so making optional
+#define BVH_EXPAND_LEAF_AABBS
// never do these checks in release
-#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
+#ifdef DEV_ENABLED
//#define BVH_VERBOSE
//#define BVH_VERBOSE_TREE
+//#define BVH_VERBOSE_PAIRING
+//#define BVH_VERBOSE_MOVES
//#define BVH_VERBOSE_FRAME
//#define BVH_CHECKS
@@ -148,7 +153,25 @@ public:
}
};
-template <class T, int MAX_CHILDREN, int MAX_ITEMS, bool USE_PAIRS = false, class Bounds = AABB, class Point = Vector3>
+template <class T>
+class BVH_DummyPairTestFunction {
+public:
+ static bool user_collision_check(T *p_a, T *p_b) {
+ // return false if no collision, decided by masks etc
+ return true;
+ }
+};
+
+template <class T>
+class BVH_DummyCullTestFunction {
+public:
+ static bool user_cull_check(T *p_a, T *p_b) {
+ // return false if no collision
+ return true;
+ }
+};
+
+template <class T, int NUM_TREES, int MAX_CHILDREN, int MAX_ITEMS, class USER_PAIR_TEST_FUNCTION = BVH_DummyPairTestFunction<T>, class USER_CULL_TEST_FUNCTION = BVH_DummyCullTestFunction<T>, bool USE_PAIRS = false, class BOUNDS = AABB, class POINT = Vector3>
class BVH_Tree {
friend class BVH;
@@ -165,6 +188,11 @@ public:
// (as these ids are stored as negative numbers in the node)
uint32_t dummy_leaf_id;
_leaves.request(dummy_leaf_id);
+
+ // In many cases you may want to change this default in the client code,
+ // or expose this value to the user.
+ // This default may make sense for a typically scaled 3d game, but maybe not for 2d on a pixel scale.
+ params_set_pairing_expansion(0.1);
}
private:
@@ -189,7 +217,7 @@ private:
BVH_ASSERT(!parent.is_leaf());
int child_num = parent.find_child(p_old_child_id);
- BVH_ASSERT(child_num != BVHCommon::INVALID);
+ BVH_ASSERT(child_num != -1);
parent.children[child_num] = p_new_child_id;
TNode &new_child = _nodes[p_new_child_id];
@@ -201,7 +229,7 @@ private:
BVH_ASSERT(!parent.is_leaf());
int child_num = parent.find_child(p_child_id);
- BVH_ASSERT(child_num != BVHCommon::INVALID);
+ BVH_ASSERT(child_num != -1);
parent.remove_child_internal(child_num);
@@ -234,7 +262,7 @@ private:
change_root_node(sibling_id, p_tree_id);
// delete the old root node as no longer needed
- _nodes.free(p_parent_id);
+ node_free_node_and_leaf(p_parent_id);
}
return;
@@ -247,7 +275,19 @@ private:
}
// put the node on the free list to recycle
- _nodes.free(p_parent_id);
+ node_free_node_and_leaf(p_parent_id);
+ }
+
+ // A node can either be a node, or a node AND a leaf combo.
+ // Both must be deleted to prevent a leak.
+ void node_free_node_and_leaf(uint32_t p_node_id) {
+ TNode &node = _nodes[p_node_id];
+ if (node.is_leaf()) {
+ int leaf_id = node.get_leaf_id();
+ _leaves.free(leaf_id);
+ }
+
+ _nodes.free(p_node_id);
}
void change_root_node(uint32_t p_new_root_id, uint32_t p_tree_id) {
@@ -339,7 +379,7 @@ private:
refit_upward(parent_id);
// put the node on the free list to recycle
- _nodes.free(owner_node_id);
+ node_free_node_and_leaf(owner_node_id);
}
// else if no parent, it is the root node. Do not delete
diff --git a/core/math/camera_matrix.cpp b/core/math/camera_matrix.cpp
index f5d746ef0f..9443addd22 100644
--- a/core/math/camera_matrix.cpp
+++ b/core/math/camera_matrix.cpp
@@ -436,9 +436,7 @@ void CameraMatrix::invert() {
int pvt_i[4], pvt_j[4]; /* Locations of pivot matrix */
real_t pvt_val; /* Value of current pivot element */
real_t hold; /* Temporary storage */
- real_t determinat; /* Determinant */
-
- determinat = 1.0;
+ real_t determinant = 1.0f;
for (k = 0; k < 4; k++) {
/** Locate k'th pivot element **/
pvt_val = matrix[k][k]; /** Initialize for search **/
@@ -446,7 +444,7 @@ void CameraMatrix::invert() {
pvt_j[k] = k;
for (i = k; i < 4; i++) {
for (j = k; j < 4; j++) {
- if (Math::absd(matrix[i][j]) > Math::absd(pvt_val)) {
+ if (Math::abs(matrix[i][j]) > Math::abs(pvt_val)) {
pvt_i[k] = i;
pvt_j[k] = j;
pvt_val = matrix[i][j];
@@ -455,9 +453,9 @@ void CameraMatrix::invert() {
}
/** Product of pivots, gives determinant when finished **/
- determinat *= pvt_val;
- if (Math::absd(determinat) < 1e-7) {
- return; //(false); /** Matrix is singular (zero determinant). **/
+ determinant *= pvt_val;
+ if (Math::is_zero_approx(determinant)) {
+ return; /** Matrix is singular (zero determinant). **/
}
/** "Interchange" rows (with sign change stuff) **/
@@ -716,17 +714,17 @@ CameraMatrix::operator Transform3D() const {
Transform3D tr;
const real_t *m = &matrix[0][0];
- tr.basis.elements[0][0] = m[0];
- tr.basis.elements[1][0] = m[1];
- tr.basis.elements[2][0] = m[2];
+ tr.basis.rows[0][0] = m[0];
+ tr.basis.rows[1][0] = m[1];
+ tr.basis.rows[2][0] = m[2];
- tr.basis.elements[0][1] = m[4];
- tr.basis.elements[1][1] = m[5];
- tr.basis.elements[2][1] = m[6];
+ tr.basis.rows[0][1] = m[4];
+ tr.basis.rows[1][1] = m[5];
+ tr.basis.rows[2][1] = m[6];
- tr.basis.elements[0][2] = m[8];
- tr.basis.elements[1][2] = m[9];
- tr.basis.elements[2][2] = m[10];
+ tr.basis.rows[0][2] = m[8];
+ tr.basis.rows[1][2] = m[9];
+ tr.basis.rows[2][2] = m[10];
tr.origin.x = m[12];
tr.origin.y = m[13];
@@ -739,17 +737,17 @@ CameraMatrix::CameraMatrix(const Transform3D &p_transform) {
const Transform3D &tr = p_transform;
real_t *m = &matrix[0][0];
- m[0] = tr.basis.elements[0][0];
- m[1] = tr.basis.elements[1][0];
- m[2] = tr.basis.elements[2][0];
+ m[0] = tr.basis.rows[0][0];
+ m[1] = tr.basis.rows[1][0];
+ m[2] = tr.basis.rows[2][0];
m[3] = 0.0;
- m[4] = tr.basis.elements[0][1];
- m[5] = tr.basis.elements[1][1];
- m[6] = tr.basis.elements[2][1];
+ m[4] = tr.basis.rows[0][1];
+ m[5] = tr.basis.rows[1][1];
+ m[6] = tr.basis.rows[2][1];
m[7] = 0.0;
- m[8] = tr.basis.elements[0][2];
- m[9] = tr.basis.elements[1][2];
- m[10] = tr.basis.elements[2][2];
+ m[8] = tr.basis.rows[0][2];
+ m[9] = tr.basis.rows[1][2];
+ m[10] = tr.basis.rows[2][2];
m[11] = 0.0;
m[12] = tr.origin.x;
m[13] = tr.origin.y;
diff --git a/core/math/camera_matrix.h b/core/math/camera_matrix.h
index 285d2ae384..f1aea5e4e8 100644
--- a/core/math/camera_matrix.h
+++ b/core/math/camera_matrix.h
@@ -33,6 +33,7 @@
#include "core/math/math_defs.h"
#include "core/math/vector3.h"
+#include "core/templates/vector.h"
struct AABB;
struct Plane;
diff --git a/core/math/color.h b/core/math/color.h
index 429807e4a6..91e0bf5532 100644
--- a/core/math/color.h
+++ b/core/math/color.h
@@ -138,7 +138,7 @@ struct _NO_DISCARD_ Color {
float cMax = MAX(cRed, MAX(cGreen, cBlue));
- float expp = MAX(-B - 1.0f, floor(Math::log(cMax) / Math_LN2)) + 1.0f + B;
+ float expp = MAX(-B - 1.0f, floor(Math::log(cMax) / (real_t)Math_LN2)) + 1.0f + B;
float sMax = (float)floor((cMax / Math::pow(2.0f, expp - B - N)) + 0.5f);
@@ -169,14 +169,14 @@ struct _NO_DISCARD_ Color {
return res;
}
- _FORCE_INLINE_ Color to_linear() const {
+ _FORCE_INLINE_ Color srgb_to_linear() const {
return Color(
r < 0.04045f ? r * (1.0 / 12.92) : Math::pow((r + 0.055f) * (float)(1.0 / (1 + 0.055)), 2.4f),
g < 0.04045f ? g * (1.0 / 12.92) : Math::pow((g + 0.055f) * (float)(1.0 / (1 + 0.055)), 2.4f),
b < 0.04045f ? b * (1.0 / 12.92) : Math::pow((b + 0.055f) * (float)(1.0 / (1 + 0.055)), 2.4f),
a);
}
- _FORCE_INLINE_ Color to_srgb() const {
+ _FORCE_INLINE_ Color linear_to_srgb() const {
return Color(
r < 0.0031308f ? 12.92f * r : (1.0f + 0.055f) * Math::pow(r, 1.0f / 2.4f) - 0.055f,
g < 0.0031308f ? 12.92f * g : (1.0f + 0.055f) * Math::pow(g, 1.0f / 2.4f) - 0.055f,
diff --git a/core/math/color_names.inc b/core/math/color_names.inc
index 2020bdbfca..654fa83877 100644
--- a/core/math/color_names.inc
+++ b/core/math/color_names.inc
@@ -13,151 +13,151 @@ struct NamedColor {
// modules/mono/glue/GodotSharp/GodotSharp/Core/Colors.cs
static NamedColor named_colors[] = {
- { "ALICE_BLUE", Color(0.94, 0.97, 1.00) },
- { "ANTIQUE_WHITE", Color(0.98, 0.92, 0.84) },
- { "AQUA", Color(0.00, 1.00, 1.00) },
- { "AQUAMARINE", Color(0.50, 1.00, 0.83) },
- { "AZURE", Color(0.94, 1.00, 1.00) },
- { "BEIGE", Color(0.96, 0.96, 0.86) },
- { "BISQUE", Color(1.00, 0.89, 0.77) },
- { "BLACK", Color(0.00, 0.00, 0.00) },
- { "BLANCHED_ALMOND", Color(1.00, 0.92, 0.80) },
- { "BLUE", Color(0.00, 0.00, 1.00) },
- { "BLUE_VIOLET", Color(0.54, 0.17, 0.89) },
- { "BROWN", Color(0.65, 0.16, 0.16) },
- { "BURLYWOOD", Color(0.87, 0.72, 0.53) },
- { "CADET_BLUE", Color(0.37, 0.62, 0.63) },
- { "CHARTREUSE", Color(0.50, 1.00, 0.00) },
- { "CHOCOLATE", Color(0.82, 0.41, 0.12) },
- { "CORAL", Color(1.00, 0.50, 0.31) },
- { "CORNFLOWER_BLUE", Color(0.39, 0.58, 0.93) },
- { "CORNSILK", Color(1.00, 0.97, 0.86) },
- { "CRIMSON", Color(0.86, 0.08, 0.24) },
- { "CYAN", Color(0.00, 1.00, 1.00) },
- { "DARK_BLUE", Color(0.00, 0.00, 0.55) },
- { "DARK_CYAN", Color(0.00, 0.55, 0.55) },
- { "DARK_GOLDENROD", Color(0.72, 0.53, 0.04) },
- { "DARK_GRAY", Color(0.66, 0.66, 0.66) },
- { "DARK_GREEN", Color(0.00, 0.39, 0.00) },
- { "DARK_KHAKI", Color(0.74, 0.72, 0.42) },
- { "DARK_MAGENTA", Color(0.55, 0.00, 0.55) },
- { "DARK_OLIVE_GREEN", Color(0.33, 0.42, 0.18) },
- { "DARK_ORANGE", Color(1.00, 0.55, 0.00) },
- { "DARK_ORCHID", Color(0.60, 0.20, 0.80) },
- { "DARK_RED", Color(0.55, 0.00, 0.00) },
- { "DARK_SALMON", Color(0.91, 0.59, 0.48) },
- { "DARK_SEA_GREEN", Color(0.56, 0.74, 0.56) },
- { "DARK_SLATE_BLUE", Color(0.28, 0.24, 0.55) },
- { "DARK_SLATE_GRAY", Color(0.18, 0.31, 0.31) },
- { "DARK_TURQUOISE", Color(0.00, 0.81, 0.82) },
- { "DARK_VIOLET", Color(0.58, 0.00, 0.83) },
- { "DEEP_PINK", Color(1.00, 0.08, 0.58) },
- { "DEEP_SKY_BLUE", Color(0.00, 0.75, 1.00) },
- { "DIM_GRAY", Color(0.41, 0.41, 0.41) },
- { "DODGER_BLUE", Color(0.12, 0.56, 1.00) },
- { "FIREBRICK", Color(0.70, 0.13, 0.13) },
- { "FLORAL_WHITE", Color(1.00, 0.98, 0.94) },
- { "FOREST_GREEN", Color(0.13, 0.55, 0.13) },
- { "FUCHSIA", Color(1.00, 0.00, 1.00) },
- { "GAINSBORO", Color(0.86, 0.86, 0.86) },
- { "GHOST_WHITE", Color(0.97, 0.97, 1.00) },
- { "GOLD", Color(1.00, 0.84, 0.00) },
- { "GOLDENROD", Color(0.85, 0.65, 0.13) },
- { "GRAY", Color(0.75, 0.75, 0.75) },
- { "GREEN", Color(0.00, 1.00, 0.00) },
- { "GREEN_YELLOW", Color(0.68, 1.00, 0.18) },
- { "HONEYDEW", Color(0.94, 1.00, 0.94) },
- { "HOT_PINK", Color(1.00, 0.41, 0.71) },
- { "INDIAN_RED", Color(0.80, 0.36, 0.36) },
- { "INDIGO", Color(0.29, 0.00, 0.51) },
- { "IVORY", Color(1.00, 1.00, 0.94) },
- { "KHAKI", Color(0.94, 0.90, 0.55) },
- { "LAVENDER", Color(0.90, 0.90, 0.98) },
- { "LAVENDER_BLUSH", Color(1.00, 0.94, 0.96) },
- { "LAWN_GREEN", Color(0.49, 0.99, 0.00) },
- { "LEMON_CHIFFON", Color(1.00, 0.98, 0.80) },
- { "LIGHT_BLUE", Color(0.68, 0.85, 0.90) },
- { "LIGHT_CORAL", Color(0.94, 0.50, 0.50) },
- { "LIGHT_CYAN", Color(0.88, 1.00, 1.00) },
- { "LIGHT_GOLDENROD", Color(0.98, 0.98, 0.82) },
- { "LIGHT_GRAY", Color(0.83, 0.83, 0.83) },
- { "LIGHT_GREEN", Color(0.56, 0.93, 0.56) },
- { "LIGHT_PINK", Color(1.00, 0.71, 0.76) },
- { "LIGHT_SALMON", Color(1.00, 0.63, 0.48) },
- { "LIGHT_SEA_GREEN", Color(0.13, 0.70, 0.67) },
- { "LIGHT_SKY_BLUE", Color(0.53, 0.81, 0.98) },
- { "LIGHT_SLATE_GRAY", Color(0.47, 0.53, 0.60) },
- { "LIGHT_STEEL_BLUE", Color(0.69, 0.77, 0.87) },
- { "LIGHT_YELLOW", Color(1.00, 1.00, 0.88) },
- { "LIME", Color(0.00, 1.00, 0.00) },
- { "LIME_GREEN", Color(0.20, 0.80, 0.20) },
- { "LINEN", Color(0.98, 0.94, 0.90) },
- { "MAGENTA", Color(1.00, 0.00, 1.00) },
- { "MAROON", Color(0.69, 0.19, 0.38) },
- { "MEDIUM_AQUAMARINE", Color(0.40, 0.80, 0.67) },
- { "MEDIUM_BLUE", Color(0.00, 0.00, 0.80) },
- { "MEDIUM_ORCHID", Color(0.73, 0.33, 0.83) },
- { "MEDIUM_PURPLE", Color(0.58, 0.44, 0.86) },
- { "MEDIUM_SEA_GREEN", Color(0.24, 0.70, 0.44) },
- { "MEDIUM_SLATE_BLUE", Color(0.48, 0.41, 0.93) },
- { "MEDIUM_SPRING_GREEN", Color(0.00, 0.98, 0.60) },
- { "MEDIUM_TURQUOISE", Color(0.28, 0.82, 0.80) },
- { "MEDIUM_VIOLET_RED", Color(0.78, 0.08, 0.52) },
- { "MIDNIGHT_BLUE", Color(0.10, 0.10, 0.44) },
- { "MINT_CREAM", Color(0.96, 1.00, 0.98) },
- { "MISTY_ROSE", Color(1.00, 0.89, 0.88) },
- { "MOCCASIN", Color(1.00, 0.89, 0.71) },
- { "NAVAJO_WHITE", Color(1.00, 0.87, 0.68) },
- { "NAVY_BLUE", Color(0.00, 0.00, 0.50) },
- { "OLD_LACE", Color(0.99, 0.96, 0.90) },
- { "OLIVE", Color(0.50, 0.50, 0.00) },
- { "OLIVE_DRAB", Color(0.42, 0.56, 0.14) },
- { "ORANGE", Color(1.00, 0.65, 0.00) },
- { "ORANGE_RED", Color(1.00, 0.27, 0.00) },
- { "ORCHID", Color(0.85, 0.44, 0.84) },
- { "PALE_GOLDENROD", Color(0.93, 0.91, 0.67) },
- { "PALE_GREEN", Color(0.60, 0.98, 0.60) },
- { "PALE_TURQUOISE", Color(0.69, 0.93, 0.93) },
- { "PALE_VIOLET_RED", Color(0.86, 0.44, 0.58) },
- { "PAPAYA_WHIP", Color(1.00, 0.94, 0.84) },
- { "PEACH_PUFF", Color(1.00, 0.85, 0.73) },
- { "PERU", Color(0.80, 0.52, 0.25) },
- { "PINK", Color(1.00, 0.75, 0.80) },
- { "PLUM", Color(0.87, 0.63, 0.87) },
- { "POWDER_BLUE", Color(0.69, 0.88, 0.90) },
- { "PURPLE", Color(0.63, 0.13, 0.94) },
- { "REBECCA_PURPLE", Color(0.40, 0.20, 0.60) },
- { "RED", Color(1.00, 0.00, 0.00) },
- { "ROSY_BROWN", Color(0.74, 0.56, 0.56) },
- { "ROYAL_BLUE", Color(0.25, 0.41, 0.88) },
- { "SADDLE_BROWN", Color(0.55, 0.27, 0.07) },
- { "SALMON", Color(0.98, 0.50, 0.45) },
- { "SANDY_BROWN", Color(0.96, 0.64, 0.38) },
- { "SEA_GREEN", Color(0.18, 0.55, 0.34) },
- { "SEASHELL", Color(1.00, 0.96, 0.93) },
- { "SIENNA", Color(0.63, 0.32, 0.18) },
- { "SILVER", Color(0.75, 0.75, 0.75) },
- { "SKY_BLUE", Color(0.53, 0.81, 0.92) },
- { "SLATE_BLUE", Color(0.42, 0.35, 0.80) },
- { "SLATE_GRAY", Color(0.44, 0.50, 0.56) },
- { "SNOW", Color(1.00, 0.98, 0.98) },
- { "SPRING_GREEN", Color(0.00, 1.00, 0.50) },
- { "STEEL_BLUE", Color(0.27, 0.51, 0.71) },
- { "TAN", Color(0.82, 0.71, 0.55) },
- { "TEAL", Color(0.00, 0.50, 0.50) },
- { "THISTLE", Color(0.85, 0.75, 0.85) },
- { "TOMATO", Color(1.00, 0.39, 0.28) },
- { "TRANSPARENT", Color(1.00, 1.00, 1.00, 0.00) },
- { "TURQUOISE", Color(0.25, 0.88, 0.82) },
- { "VIOLET", Color(0.93, 0.51, 0.93) },
- { "WEB_GRAY", Color(0.50, 0.50, 0.50) },
- { "WEB_GREEN", Color(0.00, 0.50, 0.00) },
- { "WEB_MAROON", Color(0.50, 0.00, 0.00) },
- { "WEB_PURPLE", Color(0.50, 0.00, 0.50) },
- { "WHEAT", Color(0.96, 0.87, 0.70) },
- { "WHITE", Color(1.00, 1.00, 1.00) },
- { "WHITE_SMOKE", Color(0.96, 0.96, 0.96) },
- { "YELLOW", Color(1.00, 1.00, 0.00) },
- { "YELLOW_GREEN", Color(0.60, 0.80, 0.20) },
+ { "ALICE_BLUE", Color::hex(0xF0F8FFFF) },
+ { "ANTIQUE_WHITE", Color::hex(0xFAEBD7FF) },
+ { "AQUA", Color::hex(0x00FFFFFF) },
+ { "AQUAMARINE", Color::hex(0x7FFFD4FF) },
+ { "AZURE", Color::hex(0xF0FFFFFF) },
+ { "BEIGE", Color::hex(0xF5F5DCFF) },
+ { "BISQUE", Color::hex(0xFFE4C4FF) },
+ { "BLACK", Color::hex(0x000000FF) },
+ { "BLANCHED_ALMOND", Color::hex(0xFFEBCDFF) },
+ { "BLUE", Color::hex(0x0000FFFF) },
+ { "BLUE_VIOLET", Color::hex(0x8A2BE2FF) },
+ { "BROWN", Color::hex(0xA52A2AFF) },
+ { "BURLYWOOD", Color::hex(0xDEB887FF) },
+ { "CADET_BLUE", Color::hex(0x5F9EA0FF) },
+ { "CHARTREUSE", Color::hex(0x7FFF00FF) },
+ { "CHOCOLATE", Color::hex(0xD2691EFF) },
+ { "CORAL", Color::hex(0xFF7F50FF) },
+ { "CORNFLOWER_BLUE", Color::hex(0x6495EDFF) },
+ { "CORNSILK", Color::hex(0xFFF8DCFF) },
+ { "CRIMSON", Color::hex(0xDC143CFF) },
+ { "CYAN", Color::hex(0x00FFFFFF) },
+ { "DARK_BLUE", Color::hex(0x00008BFF) },
+ { "DARK_CYAN", Color::hex(0x008B8BFF) },
+ { "DARK_GOLDENROD", Color::hex(0xB8860BFF) },
+ { "DARK_GRAY", Color::hex(0xA9A9A9FF) },
+ { "DARK_GREEN", Color::hex(0x006400FF) },
+ { "DARK_KHAKI", Color::hex(0xBDB76BFF) },
+ { "DARK_MAGENTA", Color::hex(0x8B008BFF) },
+ { "DARK_OLIVE_GREEN", Color::hex(0x556B2FFF) },
+ { "DARK_ORANGE", Color::hex(0xFF8C00FF) },
+ { "DARK_ORCHID", Color::hex(0x9932CCFF) },
+ { "DARK_RED", Color::hex(0x8B0000FF) },
+ { "DARK_SALMON", Color::hex(0xE9967AFF) },
+ { "DARK_SEA_GREEN", Color::hex(0x8FBC8FFF) },
+ { "DARK_SLATE_BLUE", Color::hex(0x483D8BFF) },
+ { "DARK_SLATE_GRAY", Color::hex(0x2F4F4FFF) },
+ { "DARK_TURQUOISE", Color::hex(0x00CED1FF) },
+ { "DARK_VIOLET", Color::hex(0x9400D3FF) },
+ { "DEEP_PINK", Color::hex(0xFF1493FF) },
+ { "DEEP_SKY_BLUE", Color::hex(0x00BFFFFF) },
+ { "DIM_GRAY", Color::hex(0x696969FF) },
+ { "DODGER_BLUE", Color::hex(0x1E90FFFF) },
+ { "FIREBRICK", Color::hex(0xB22222FF) },
+ { "FLORAL_WHITE", Color::hex(0xFFFAF0FF) },
+ { "FOREST_GREEN", Color::hex(0x228B22FF) },
+ { "FUCHSIA", Color::hex(0xFF00FFFF) },
+ { "GAINSBORO", Color::hex(0xDCDCDCFF) },
+ { "GHOST_WHITE", Color::hex(0xF8F8FFFF) },
+ { "GOLD", Color::hex(0xFFD700FF) },
+ { "GOLDENROD", Color::hex(0xDAA520FF) },
+ { "GRAY", Color::hex(0xBEBEBEFF) },
+ { "GREEN", Color::hex(0x00FF00FF) },
+ { "GREEN_YELLOW", Color::hex(0xADFF2FFF) },
+ { "HONEYDEW", Color::hex(0xF0FFF0FF) },
+ { "HOT_PINK", Color::hex(0xFF69B4FF) },
+ { "INDIAN_RED", Color::hex(0xCD5C5CFF) },
+ { "INDIGO", Color::hex(0x4B0082FF) },
+ { "IVORY", Color::hex(0xFFFFF0FF) },
+ { "KHAKI", Color::hex(0xF0E68CFF) },
+ { "LAVENDER", Color::hex(0xE6E6FAFF) },
+ { "LAVENDER_BLUSH", Color::hex(0xFFF0F5FF) },
+ { "LAWN_GREEN", Color::hex(0x7CFC00FF) },
+ { "LEMON_CHIFFON", Color::hex(0xFFFACDFF) },
+ { "LIGHT_BLUE", Color::hex(0xADD8E6FF) },
+ { "LIGHT_CORAL", Color::hex(0xF08080FF) },
+ { "LIGHT_CYAN", Color::hex(0xE0FFFFFF) },
+ { "LIGHT_GOLDENROD", Color::hex(0xFAFAD2FF) },
+ { "LIGHT_GRAY", Color::hex(0xD3D3D3FF) },
+ { "LIGHT_GREEN", Color::hex(0x90EE90FF) },
+ { "LIGHT_PINK", Color::hex(0xFFB6C1FF) },
+ { "LIGHT_SALMON", Color::hex(0xFFA07AFF) },
+ { "LIGHT_SEA_GREEN", Color::hex(0x20B2AAFF) },
+ { "LIGHT_SKY_BLUE", Color::hex(0x87CEFAFF) },
+ { "LIGHT_SLATE_GRAY", Color::hex(0x778899FF) },
+ { "LIGHT_STEEL_BLUE", Color::hex(0xB0C4DEFF) },
+ { "LIGHT_YELLOW", Color::hex(0xFFFFE0FF) },
+ { "LIME", Color::hex(0x00FF00FF) },
+ { "LIME_GREEN", Color::hex(0x32CD32FF) },
+ { "LINEN", Color::hex(0xFAF0E6FF) },
+ { "MAGENTA", Color::hex(0xFF00FFFF) },
+ { "MAROON", Color::hex(0xB03060FF) },
+ { "MEDIUM_AQUAMARINE", Color::hex(0x66CDAAFF) },
+ { "MEDIUM_BLUE", Color::hex(0x0000CDFF) },
+ { "MEDIUM_ORCHID", Color::hex(0xBA55D3FF) },
+ { "MEDIUM_PURPLE", Color::hex(0x9370DBFF) },
+ { "MEDIUM_SEA_GREEN", Color::hex(0x3CB371FF) },
+ { "MEDIUM_SLATE_BLUE", Color::hex(0x7B68EEFF) },
+ { "MEDIUM_SPRING_GREEN", Color::hex(0x00FA9AFF) },
+ { "MEDIUM_TURQUOISE", Color::hex(0x48D1CCFF) },
+ { "MEDIUM_VIOLET_RED", Color::hex(0xC71585FF) },
+ { "MIDNIGHT_BLUE", Color::hex(0x191970FF) },
+ { "MINT_CREAM", Color::hex(0xF5FFFAFF) },
+ { "MISTY_ROSE", Color::hex(0xFFE4E1FF) },
+ { "MOCCASIN", Color::hex(0xFFE4B5FF) },
+ { "NAVAJO_WHITE", Color::hex(0xFFDEADFF) },
+ { "NAVY_BLUE", Color::hex(0x000080FF) },
+ { "OLD_LACE", Color::hex(0xFDF5E6FF) },
+ { "OLIVE", Color::hex(0x808000FF) },
+ { "OLIVE_DRAB", Color::hex(0x6B8E23FF) },
+ { "ORANGE", Color::hex(0xFFA500FF) },
+ { "ORANGE_RED", Color::hex(0xFF4500FF) },
+ { "ORCHID", Color::hex(0xDA70D6FF) },
+ { "PALE_GOLDENROD", Color::hex(0xEEE8AAFF) },
+ { "PALE_GREEN", Color::hex(0x98FB98FF) },
+ { "PALE_TURQUOISE", Color::hex(0xAFEEEEFF) },
+ { "PALE_VIOLET_RED", Color::hex(0xDB7093FF) },
+ { "PAPAYA_WHIP", Color::hex(0xFFEFD5FF) },
+ { "PEACH_PUFF", Color::hex(0xFFDAB9FF) },
+ { "PERU", Color::hex(0xCD853FFF) },
+ { "PINK", Color::hex(0xFFC0CBFF) },
+ { "PLUM", Color::hex(0xDDA0DDFF) },
+ { "POWDER_BLUE", Color::hex(0xB0E0E6FF) },
+ { "PURPLE", Color::hex(0xA020F0FF) },
+ { "REBECCA_PURPLE", Color::hex(0x663399FF) },
+ { "RED", Color::hex(0xFF0000FF) },
+ { "ROSY_BROWN", Color::hex(0xBC8F8FFF) },
+ { "ROYAL_BLUE", Color::hex(0x4169E1FF) },
+ { "SADDLE_BROWN", Color::hex(0x8B4513FF) },
+ { "SALMON", Color::hex(0xFA8072FF) },
+ { "SANDY_BROWN", Color::hex(0xF4A460FF) },
+ { "SEA_GREEN", Color::hex(0x2E8B57FF) },
+ { "SEASHELL", Color::hex(0xFFF5EEFF) },
+ { "SIENNA", Color::hex(0xA0522DFF) },
+ { "SILVER", Color::hex(0xC0C0C0FF) },
+ { "SKY_BLUE", Color::hex(0x87CEEBFF) },
+ { "SLATE_BLUE", Color::hex(0x6A5ACDFF) },
+ { "SLATE_GRAY", Color::hex(0x708090FF) },
+ { "SNOW", Color::hex(0xFFFAFAFF) },
+ { "SPRING_GREEN", Color::hex(0x00FF7FFF) },
+ { "STEEL_BLUE", Color::hex(0x4682B4FF) },
+ { "TAN", Color::hex(0xD2B48CFF) },
+ { "TEAL", Color::hex(0x008080FF) },
+ { "THISTLE", Color::hex(0xD8BFD8FF) },
+ { "TOMATO", Color::hex(0xFF6347FF) },
+ { "TRANSPARENT", Color::hex(0xFFFFFF00) },
+ { "TURQUOISE", Color::hex(0x40E0D0FF) },
+ { "VIOLET", Color::hex(0xEE82EEFF) },
+ { "WEB_GRAY", Color::hex(0x808080FF) },
+ { "WEB_GREEN", Color::hex(0x008000FF) },
+ { "WEB_MAROON", Color::hex(0x800000FF) },
+ { "WEB_PURPLE", Color::hex(0x800080FF) },
+ { "WHEAT", Color::hex(0xF5DEB3FF) },
+ { "WHITE", Color::hex(0xFFFFFFFF) },
+ { "WHITE_SMOKE", Color::hex(0xF5F5F5FF) },
+ { "YELLOW", Color::hex(0xFFFF00FF) },
+ { "YELLOW_GREEN", Color::hex(0x9ACD32FF) },
{ nullptr, Color() },
};
diff --git a/core/math/convex_hull.cpp b/core/math/convex_hull.cpp
index bd292f4c2a..996f4f4d67 100644
--- a/core/math/convex_hull.cpp
+++ b/core/math/convex_hull.cpp
@@ -509,7 +509,7 @@ public:
Face() {
}
- void init(Vertex *p_a, Vertex *p_b, Vertex *p_c) {
+ void init(Vertex *p_a, const Vertex *p_b, const Vertex *p_c) {
nearby_vertex = p_a;
origin = p_a->point;
dir0 = *p_b - *p_a;
@@ -614,7 +614,7 @@ private:
static Orientation get_orientation(const Edge *p_prev, const Edge *p_next, const Point32 &p_s, const Point32 &p_t);
Edge *find_max_angle(bool p_ccw, const Vertex *p_start, const Point32 &p_s, const Point64 &p_rxs, const Point64 &p_ssxrxs, Rational64 &p_min_cot);
- void find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, Vertex *p_stop0, Vertex *p_stop1);
+ void find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, const Vertex *p_stop0, const Vertex *p_stop1);
Edge *new_edge_pair(Vertex *p_from, Vertex *p_to);
@@ -666,7 +666,7 @@ public:
face_pool.reset(true);
}
- Vertex *vertex_list;
+ Vertex *vertex_list = nullptr;
void compute(const Vector3 *p_coords, int32_t p_count);
@@ -1189,7 +1189,7 @@ ConvexHullInternal::Edge *ConvexHullInternal::find_max_angle(bool p_ccw, const V
return min_edge;
}
-void ConvexHullInternal::find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, Vertex *p_stop0, Vertex *p_stop1) {
+void ConvexHullInternal::find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, const Vertex *p_stop0, const Vertex *p_stop1) {
Edge *start0 = p_e0;
Edge *start1 = p_e1;
Point32 et0 = start0 ? start0->target->point : p_c0->point;
diff --git a/core/math/expression.cpp b/core/math/expression.cpp
index 0ddac9744e..9dd1257474 100644
--- a/core/math/expression.cpp
+++ b/core/math/expression.cpp
@@ -1440,7 +1440,7 @@ bool Expression::_execute(const Array &p_inputs, Object *p_instance, Expression:
}
Callable::CallError ce;
- base.call(call->method, (const Variant **)argp.ptr(), argp.size(), r_ret, ce);
+ base.callp(call->method, (const Variant **)argp.ptr(), argp.size(), r_ret, ce);
if (ce.error != Callable::CallError::CALL_OK) {
r_error_str = vformat(RTR("On call to '%s':"), String(call->method));
diff --git a/core/math/expression.h b/core/math/expression.h
index 9b87bdd6ec..d43cc4091a 100644
--- a/core/math/expression.h
+++ b/core/math/expression.h
@@ -147,7 +147,7 @@ private:
bool is_op = false;
union {
Variant::Operator op;
- ENode *node;
+ ENode *node = nullptr;
};
};
diff --git a/core/math/face3.cpp b/core/math/face3.cpp
index 9c968df19b..fb92f6b0df 100644
--- a/core/math/face3.cpp
+++ b/core/math/face3.cpp
@@ -42,7 +42,7 @@ int Face3::split_by_plane(const Plane &p_plane, Face3 p_res[3], bool p_is_point_
int below_count = 0;
for (int i = 0; i < 3; i++) {
- if (p_plane.has_point(vertex[i], CMP_EPSILON)) { // point is in plane
+ if (p_plane.has_point(vertex[i], (real_t)CMP_EPSILON)) { // point is in plane
ERR_FAIL_COND_V(above_count >= 4, 0);
above[above_count++] = vertex[i];
@@ -117,7 +117,7 @@ bool Face3::intersects_segment(const Vector3 &p_from, const Vector3 &p_dir, Vect
bool Face3::is_degenerate() const {
Vector3 normal = vec3_cross(vertex[0] - vertex[1], vertex[0] - vertex[2]);
- return (normal.length_squared() < CMP_EPSILON2);
+ return (normal.length_squared() < (real_t)CMP_EPSILON2);
}
Face3::Side Face3::get_side_of(const Face3 &p_face, ClockDirection p_clock_dir) const {
@@ -208,7 +208,7 @@ bool Face3::intersects_aabb(const AABB &p_aabb) const {
/** TEST ALL EDGES **/
- Vector3 edge_norms[3] = {
+ const Vector3 edge_norms[3] = {
vertex[0] - vertex[1],
vertex[1] - vertex[2],
vertex[2] - vertex[0],
diff --git a/core/math/face3.h b/core/math/face3.h
index c61d6ad66e..23260336fa 100644
--- a/core/math/face3.h
+++ b/core/math/face3.h
@@ -133,7 +133,7 @@ bool Face3::intersects_aabb2(const AABB &p_aabb) const {
#undef TEST_AXIS
- Vector3 edge_norms[3] = {
+ const Vector3 edge_norms[3] = {
vertex[0] - vertex[1],
vertex[1] - vertex[2],
vertex[2] - vertex[0],
diff --git a/core/math/geometry_2d.cpp b/core/math/geometry_2d.cpp
index b1af91c49c..31fade5a99 100644
--- a/core/math/geometry_2d.cpp
+++ b/core/math/geometry_2d.cpp
@@ -74,14 +74,14 @@ Vector<Vector<Vector2>> Geometry2D::decompose_polygon_in_convex(Vector<Point2> p
struct _AtlasWorkRect {
Size2i s;
Point2i p;
- int idx;
+ int idx = 0;
_FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; };
};
struct _AtlasWorkRectResult {
Vector<_AtlasWorkRect> result;
- int max_w;
- int max_h;
+ int max_w = 0;
+ int max_h = 0;
};
void Geometry2D::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
@@ -218,10 +218,10 @@ Vector<Vector<Point2>> Geometry2D::_polypaths_do_operation(PolyBooleanOperation
// Need to scale points (Clipper's requirement for robust computation).
for (int i = 0; i != p_polypath_a.size(); ++i) {
- path_a << IntPoint(p_polypath_a[i].x * SCALE_FACTOR, p_polypath_a[i].y * SCALE_FACTOR);
+ path_a << IntPoint(p_polypath_a[i].x * (real_t)SCALE_FACTOR, p_polypath_a[i].y * (real_t)SCALE_FACTOR);
}
for (int i = 0; i != p_polypath_b.size(); ++i) {
- path_b << IntPoint(p_polypath_b[i].x * SCALE_FACTOR, p_polypath_b[i].y * SCALE_FACTOR);
+ path_b << IntPoint(p_polypath_b[i].x * (real_t)SCALE_FACTOR, p_polypath_b[i].y * (real_t)SCALE_FACTOR);
}
Clipper clp;
clp.AddPath(path_a, ptSubject, !is_a_open); // Forward compatible with Clipper 10.0.0.
@@ -246,8 +246,8 @@ Vector<Vector<Point2>> Geometry2D::_polypaths_do_operation(PolyBooleanOperation
for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
polypath.push_back(Point2(
- static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
- static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
+ static_cast<real_t>(scaled_path[j].X) / (real_t)SCALE_FACTOR,
+ static_cast<real_t>(scaled_path[j].Y) / (real_t)SCALE_FACTOR));
}
polypaths.push_back(polypath);
}
@@ -290,17 +290,17 @@ Vector<Vector<Point2>> Geometry2D::_polypath_offset(const Vector<Point2> &p_poly
et = etOpenRound;
break;
}
- ClipperOffset co(2.0, 0.25f * SCALE_FACTOR); // Defaults from ClipperOffset.
+ ClipperOffset co(2.0, 0.25f * (real_t)SCALE_FACTOR); // Defaults from ClipperOffset.
Path path;
// Need to scale points (Clipper's requirement for robust computation).
for (int i = 0; i != p_polypath.size(); ++i) {
- path << IntPoint(p_polypath[i].x * SCALE_FACTOR, p_polypath[i].y * SCALE_FACTOR);
+ path << IntPoint(p_polypath[i].x * (real_t)SCALE_FACTOR, p_polypath[i].y * (real_t)SCALE_FACTOR);
}
co.AddPath(path, jt, et);
Paths paths;
- co.Execute(paths, p_delta * SCALE_FACTOR); // Inflate/deflate.
+ co.Execute(paths, p_delta * (real_t)SCALE_FACTOR); // Inflate/deflate.
// Have to scale points down now.
Vector<Vector<Point2>> polypaths;
@@ -312,8 +312,8 @@ Vector<Vector<Point2>> Geometry2D::_polypath_offset(const Vector<Point2> &p_poly
for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
polypath.push_back(Point2(
- static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
- static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
+ static_cast<real_t>(scaled_path[j].X) / (real_t)SCALE_FACTOR,
+ static_cast<real_t>(scaled_path[j].Y) / (real_t)SCALE_FACTOR));
}
polypaths.push_back(polypath);
}
diff --git a/core/math/geometry_2d.h b/core/math/geometry_2d.h
index 4fdb8ee36a..62786d69be 100644
--- a/core/math/geometry_2d.h
+++ b/core/math/geometry_2d.h
@@ -51,20 +51,20 @@ public:
real_t f = d2.dot(r);
real_t s, t;
// Check if either or both segments degenerate into points.
- if (a <= CMP_EPSILON && e <= CMP_EPSILON) {
+ if (a <= (real_t)CMP_EPSILON && e <= (real_t)CMP_EPSILON) {
// Both segments degenerate into points.
c1 = p1;
c2 = p2;
return Math::sqrt((c1 - c2).dot(c1 - c2));
}
- if (a <= CMP_EPSILON) {
+ if (a <= (real_t)CMP_EPSILON) {
// First segment degenerates into a point.
s = 0.0;
t = f / e; // s = 0 => t = (b*s + f) / e = f / e
t = CLAMP(t, 0.0f, 1.0f);
} else {
real_t c = d1.dot(r);
- if (e <= CMP_EPSILON) {
+ if (e <= (real_t)CMP_EPSILON) {
// Second segment degenerates into a point.
t = 0.0;
s = CLAMP(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a
@@ -185,7 +185,7 @@ public:
D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y);
// Fail if C x B and D x B have the same sign (segments don't intersect).
- if ((C.y < -CMP_EPSILON && D.y < -CMP_EPSILON) || (C.y > CMP_EPSILON && D.y > CMP_EPSILON)) {
+ if ((C.y < (real_t)-CMP_EPSILON && D.y < (real_t)-CMP_EPSILON) || (C.y > (real_t)CMP_EPSILON && D.y > (real_t)CMP_EPSILON)) {
return false;
}
@@ -198,7 +198,7 @@ public:
real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y);
// Fail if segment C-D crosses line A-B outside of segment A-B.
- if (ABpos < 0 || ABpos > 1.0f) {
+ if ((ABpos < 0) || (ABpos > 1)) {
return false;
}
diff --git a/core/math/geometry_3d.cpp b/core/math/geometry_3d.cpp
index 7eeb37df46..f76de079e4 100644
--- a/core/math/geometry_3d.cpp
+++ b/core/math/geometry_3d.cpp
@@ -879,7 +879,7 @@ Vector<Vector3> Geometry3D::compute_convex_mesh_points(const Plane *p_planes, in
for (int n = 0; n < p_plane_count; n++) {
if (n != i && n != j && n != k) {
real_t dp = p_planes[n].normal.dot(convex_shape_point);
- if (dp - p_planes[n].d > CMP_EPSILON) {
+ if (dp - p_planes[n].d > (real_t)CMP_EPSILON) {
excluded = true;
break;
}
@@ -904,8 +904,8 @@ Vector<Vector3> Geometry3D::compute_convex_mesh_points(const Plane *p_planes, in
/* dt of 1d function using squared distance */
static void edt(float *f, int stride, int n) {
float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1));
- int *v = (int *)&(d[n]);
- float *z = (float *)&v[n];
+ int *v = reinterpret_cast<int *>(&(d[n]));
+ float *z = reinterpret_cast<float *>(&v[n]);
int k = 0;
v[0] = 0;
diff --git a/core/math/geometry_3d.h b/core/math/geometry_3d.h
index 482c7ea604..59c56906f4 100644
--- a/core/math/geometry_3d.h
+++ b/core/math/geometry_3d.h
@@ -76,7 +76,7 @@ public:
real_t tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0
// Compute the line parameters of the two closest points.
- if (D < CMP_EPSILON) { // The lines are almost parallel.
+ if (D < (real_t)CMP_EPSILON) { // The lines are almost parallel.
sN = 0.0f; // Force using point P0 on segment S1
sD = 1.0f; // to prevent possible division by 0.0 later.
tN = e;
@@ -142,7 +142,7 @@ public:
Vector3 s = p_from - p_v0;
real_t u = f * s.dot(h);
- if (u < 0.0f || u > 1.0f) {
+ if ((u < 0.0f) || (u > 1.0f)) {
return false;
}
@@ -150,7 +150,7 @@ public:
real_t v = f * p_dir.dot(q);
- if (v < 0.0f || u + v > 1.0f) {
+ if ((v < 0.0f) || (u + v > 1.0f)) {
return false;
}
@@ -183,7 +183,7 @@ public:
Vector3 s = p_from - p_v0;
real_t u = f * s.dot(h);
- if (u < 0.0f || u > 1.0f) {
+ if ((u < 0.0f) || (u > 1.0f)) {
return false;
}
@@ -191,7 +191,7 @@ public:
real_t v = f * rel.dot(q);
- if (v < 0.0f || u + v > 1.0f) {
+ if ((v < 0.0f) || (u + v > 1.0f)) {
return false;
}
@@ -199,7 +199,7 @@ public:
// the intersection point is on the line.
real_t t = f * e2.dot(q);
- if (t > CMP_EPSILON && t <= 1.0f) { // Ray intersection.
+ if (t > (real_t)CMP_EPSILON && t <= 1.0f) { // Ray intersection.
if (r_res) {
*r_res = p_from + rel * t;
}
@@ -213,7 +213,7 @@ public:
Vector3 sphere_pos = p_sphere_pos - p_from;
Vector3 rel = (p_to - p_from);
real_t rel_l = rel.length();
- if (rel_l < CMP_EPSILON) {
+ if (rel_l < (real_t)CMP_EPSILON) {
return false; // Both points are the same.
}
Vector3 normal = rel / rel_l;
@@ -229,7 +229,7 @@ public:
real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance;
real_t inters_d = sphere_d;
- if (inters_d2 >= CMP_EPSILON) {
+ if (inters_d2 >= (real_t)CMP_EPSILON) {
inters_d -= Math::sqrt(inters_d2);
}
@@ -253,7 +253,7 @@ public:
static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr, int p_cylinder_axis = 2) {
Vector3 rel = (p_to - p_from);
real_t rel_l = rel.length();
- if (rel_l < CMP_EPSILON) {
+ if (rel_l < (real_t)CMP_EPSILON) {
return false; // Both points are the same.
}
@@ -269,7 +269,7 @@ public:
Vector3 axis_dir;
- if (crs_l < CMP_EPSILON) {
+ if (crs_l < (real_t)CMP_EPSILON) {
Vector3 side_axis;
side_axis[(p_cylinder_axis + 1) % 3] = 1.0f; // Any side axis OK.
axis_dir = side_axis;
@@ -285,7 +285,7 @@ public:
// Convert to 2D.
real_t w2 = p_radius * p_radius - dist * dist;
- if (w2 < CMP_EPSILON) {
+ if (w2 < (real_t)CMP_EPSILON) {
return false; // Avoid numerical error.
}
Size2 size(Math::sqrt(w2), p_height * 0.5f);
@@ -366,7 +366,7 @@ public:
Vector3 rel = p_to - p_from;
real_t rel_l = rel.length();
- if (rel_l < CMP_EPSILON) {
+ if (rel_l < (real_t)CMP_EPSILON) {
return false;
}
@@ -379,7 +379,7 @@ public:
real_t den = p.normal.dot(dir);
- if (Math::abs(den) <= CMP_EPSILON) {
+ if (Math::abs(den) <= (real_t)CMP_EPSILON) {
continue; // Ignore parallel plane.
}
@@ -564,11 +564,11 @@ public:
for (int a = 0; a < polygon.size(); a++) {
real_t dist = p_plane.distance_to(polygon[a]);
- if (dist < -CMP_POINT_IN_PLANE_EPSILON) {
+ if (dist < (real_t)-CMP_POINT_IN_PLANE_EPSILON) {
location_cache[a] = LOC_INSIDE;
inside_count++;
} else {
- if (dist > CMP_POINT_IN_PLANE_EPSILON) {
+ if (dist > (real_t)CMP_POINT_IN_PLANE_EPSILON) {
location_cache[a] = LOC_OUTSIDE;
outside_count++;
} else {
diff --git a/core/math/math_fieldwise.cpp b/core/math/math_fieldwise.cpp
index 1717ecd74b..4be4809e3f 100644
--- a/core/math/math_fieldwise.cpp
+++ b/core/math/math_fieldwise.cpp
@@ -115,12 +115,12 @@ Variant fieldwise_assign(const Variant &p_target, const Variant &p_source, const
case Variant::TRANSFORM2D: {
SETUP_TYPE(Transform2D)
- /**/ TRY_TRANSFER_FIELD("xx", elements[0][0])
- else TRY_TRANSFER_FIELD("xy", elements[0][1])
- else TRY_TRANSFER_FIELD("yx", elements[1][0])
- else TRY_TRANSFER_FIELD("yy", elements[1][1])
- else TRY_TRANSFER_FIELD("ox", elements[2][0])
- else TRY_TRANSFER_FIELD("oy", elements[2][1])
+ /**/ TRY_TRANSFER_FIELD("xx", columns[0][0])
+ else TRY_TRANSFER_FIELD("xy", columns[0][1])
+ else TRY_TRANSFER_FIELD("yx", columns[1][0])
+ else TRY_TRANSFER_FIELD("yy", columns[1][1])
+ else TRY_TRANSFER_FIELD("ox", columns[2][0])
+ else TRY_TRANSFER_FIELD("oy", columns[2][1])
return target;
}
@@ -128,15 +128,15 @@ Variant fieldwise_assign(const Variant &p_target, const Variant &p_source, const
case Variant::BASIS: {
SETUP_TYPE(Basis)
- /**/ TRY_TRANSFER_FIELD("xx", elements[0][0])
- else TRY_TRANSFER_FIELD("xy", elements[0][1])
- else TRY_TRANSFER_FIELD("xz", elements[0][2])
- else TRY_TRANSFER_FIELD("yx", elements[1][0])
- else TRY_TRANSFER_FIELD("yy", elements[1][1])
- else TRY_TRANSFER_FIELD("yz", elements[1][2])
- else TRY_TRANSFER_FIELD("zx", elements[2][0])
- else TRY_TRANSFER_FIELD("zy", elements[2][1])
- else TRY_TRANSFER_FIELD("zz", elements[2][2])
+ /**/ TRY_TRANSFER_FIELD("xx", rows[0][0])
+ else TRY_TRANSFER_FIELD("xy", rows[0][1])
+ else TRY_TRANSFER_FIELD("xz", rows[0][2])
+ else TRY_TRANSFER_FIELD("yx", rows[1][0])
+ else TRY_TRANSFER_FIELD("yy", rows[1][1])
+ else TRY_TRANSFER_FIELD("yz", rows[1][2])
+ else TRY_TRANSFER_FIELD("zx", rows[2][0])
+ else TRY_TRANSFER_FIELD("zy", rows[2][1])
+ else TRY_TRANSFER_FIELD("zz", rows[2][2])
return target;
}
@@ -144,15 +144,15 @@ Variant fieldwise_assign(const Variant &p_target, const Variant &p_source, const
case Variant::TRANSFORM3D: {
SETUP_TYPE(Transform3D)
- /**/ TRY_TRANSFER_FIELD("xx", basis.elements[0][0])
- else TRY_TRANSFER_FIELD("xy", basis.elements[0][1])
- else TRY_TRANSFER_FIELD("xz", basis.elements[0][2])
- else TRY_TRANSFER_FIELD("yx", basis.elements[1][0])
- else TRY_TRANSFER_FIELD("yy", basis.elements[1][1])
- else TRY_TRANSFER_FIELD("yz", basis.elements[1][2])
- else TRY_TRANSFER_FIELD("zx", basis.elements[2][0])
- else TRY_TRANSFER_FIELD("zy", basis.elements[2][1])
- else TRY_TRANSFER_FIELD("zz", basis.elements[2][2])
+ /**/ TRY_TRANSFER_FIELD("xx", basis.rows[0][0])
+ else TRY_TRANSFER_FIELD("xy", basis.rows[0][1])
+ else TRY_TRANSFER_FIELD("xz", basis.rows[0][2])
+ else TRY_TRANSFER_FIELD("yx", basis.rows[1][0])
+ else TRY_TRANSFER_FIELD("yy", basis.rows[1][1])
+ else TRY_TRANSFER_FIELD("yz", basis.rows[1][2])
+ else TRY_TRANSFER_FIELD("zx", basis.rows[2][0])
+ else TRY_TRANSFER_FIELD("zy", basis.rows[2][1])
+ else TRY_TRANSFER_FIELD("zz", basis.rows[2][2])
else TRY_TRANSFER_FIELD("xo", origin.x)
else TRY_TRANSFER_FIELD("yo", origin.y)
else TRY_TRANSFER_FIELD("zo", origin.z)
diff --git a/core/math/math_funcs.h b/core/math/math_funcs.h
index 47e5ab2709..068bc0397e 100644
--- a/core/math/math_funcs.h
+++ b/core/math/math_funcs.h
@@ -64,7 +64,7 @@ public:
static _ALWAYS_INLINE_ float sinc(float p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
static _ALWAYS_INLINE_ double sinc(double p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
- static _ALWAYS_INLINE_ float sincn(float p_x) { return sinc(Math_PI * p_x); }
+ static _ALWAYS_INLINE_ float sincn(float p_x) { return sinc((float)Math_PI * p_x); }
static _ALWAYS_INLINE_ double sincn(double p_x) { return sinc(Math_PI * p_x); }
static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
@@ -103,6 +103,9 @@ public:
static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); }
static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); }
+ static _ALWAYS_INLINE_ double log1p(double p_x) { return ::log1p(p_x); }
+ static _ALWAYS_INLINE_ float log1p(float p_x) { return ::log1pf(p_x); }
+
static _ALWAYS_INLINE_ double log2(double p_x) { return ::log2(p_x); }
static _ALWAYS_INLINE_ float log2(float p_x) { return ::log2f(p_x); }
@@ -187,7 +190,7 @@ public:
static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
double value = Math::fmod(p_x, p_y);
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
+ if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
value += p_y;
}
value += 0.0;
@@ -195,7 +198,7 @@ public:
}
static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
float value = Math::fmod(p_x, p_y);
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
+ if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
value += p_y;
}
value += 0.0f;
@@ -220,17 +223,17 @@ public:
static _ALWAYS_INLINE_ int64_t posmod(int64_t p_x, int64_t p_y) {
int64_t value = p_x % p_y;
- if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
+ if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
value += p_y;
}
return value;
}
static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y * (Math_PI / 180.0); }
- static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y * (Math_PI / 180.0); }
+ static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y * (float)(Math_PI / 180.0); }
static _ALWAYS_INLINE_ double rad2deg(double p_y) { return p_y * (180.0 / Math_PI); }
- static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y * (180.0 / Math_PI); }
+ static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y * (float)(180.0 / Math_PI); }
static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; }
static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; }
@@ -285,10 +288,10 @@ public:
static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) { return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta; }
static _ALWAYS_INLINE_ double linear2db(double p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
- static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
+ static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log(p_linear) * (float)8.6858896380650365530225783783321; }
static _ALWAYS_INLINE_ double db2linear(double p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
- static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
+ static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp(p_db * (float)0.11512925464970228420089957273422); }
static _ALWAYS_INLINE_ double round(double p_val) { return ::round(p_val); }
static _ALWAYS_INLINE_ float round(float p_val) { return ::roundf(p_val); }
@@ -322,7 +325,7 @@ public:
// double only, as these functions are mainly used by the editor and not performance-critical,
static double ease(double p_x, double p_c);
static int step_decimals(double p_step);
- static int range_step_decimals(double p_step);
+ static int range_step_decimals(double p_step); // For editor use only.
static double snapped(double p_value, double p_step);
static uint32_t larger_prime(uint32_t p_val);
@@ -345,9 +348,9 @@ public:
return true;
}
// Then check for approximate equality.
- float tolerance = CMP_EPSILON * abs(a);
- if (tolerance < CMP_EPSILON) {
- tolerance = CMP_EPSILON;
+ float tolerance = (float)CMP_EPSILON * abs(a);
+ if (tolerance < (float)CMP_EPSILON) {
+ tolerance = (float)CMP_EPSILON;
}
return abs(a - b) < tolerance;
}
@@ -362,7 +365,7 @@ public:
}
static _ALWAYS_INLINE_ bool is_zero_approx(float s) {
- return abs(s) < CMP_EPSILON;
+ return abs(s) < (float)CMP_EPSILON;
}
static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b) {
@@ -473,16 +476,16 @@ public:
uint32_t x = ci.ui;
uint32_t sign = (unsigned short)(x >> 31);
uint32_t mantissa;
- uint32_t exp;
+ uint32_t exponent;
uint16_t hf;
// get mantissa
mantissa = x & ((1 << 23) - 1);
// get exponent bits
- exp = x & (0xFF << 23);
- if (exp >= 0x47800000) {
+ exponent = x & (0xFF << 23);
+ if (exponent >= 0x47800000) {
// check if the original single precision float number is a NaN
- if (mantissa && (exp == (0xFF << 23))) {
+ if (mantissa && (exponent == (0xFF << 23))) {
// we have a single precision NaN
mantissa = (1 << 23) - 1;
} else {
@@ -493,17 +496,18 @@ public:
(uint16_t)(mantissa >> 13);
}
// check if exponent is <= -15
- else if (exp <= 0x38000000) {
- /*// store a denorm half-float value or zero
- exp = (0x38000000 - exp) >> 23;
- mantissa >>= (14 + exp);
-
- hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
- */
+ else if (exponent <= 0x38000000) {
+ /*
+ // store a denorm half-float value or zero
+ exponent = (0x38000000 - exponent) >> 23;
+ mantissa >>= (14 + exponent);
+
+ hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
+ */
hf = 0; //denormals do not work for 3D, convert to zero
} else {
hf = (((uint16_t)sign) << 15) |
- (uint16_t)((exp - 0x38000000) >> 13) |
+ (uint16_t)((exponent - 0x38000000) >> 13) |
(uint16_t)(mantissa >> 13);
}
diff --git a/core/math/octree.h b/core/math/octree.h
index e73f8213b3..65ab9e2292 100644
--- a/core/math/octree.h
+++ b/core/math/octree.h
@@ -134,7 +134,7 @@ private:
List<PairData *, AL> pair_list;
struct OctantOwner {
- Octant *octant;
+ Octant *octant = nullptr;
typename List<Element *, AL>::Element *E;
}; // an element can be in max 8 octants
@@ -147,7 +147,7 @@ private:
int refcount;
bool intersect;
Element *A, *B;
- void *ud;
+ void *ud = nullptr;
typename List<PairData *, AL>::Element *eA, *eB;
};
@@ -156,18 +156,18 @@ private:
ElementMap element_map;
PairMap pair_map;
- PairCallback pair_callback;
- UnpairCallback unpair_callback;
- void *pair_callback_userdata;
- void *unpair_callback_userdata;
+ PairCallback pair_callback = nullptr;
+ UnpairCallback unpair_callback = nullptr;
+ void *pair_callback_userdata = nullptr;
+ void *unpair_callback_userdata = nullptr;
- OctreeElementID last_element_id;
- uint64_t pass;
+ OctreeElementID last_element_id = 1;
+ uint64_t pass = 1;
- real_t unit_size;
- Octant *root;
- int octant_count;
- int pair_count;
+ real_t unit_size = 1.0;
+ Octant *root = nullptr;
+ int octant_count = 0;
+ int pair_count = 0;
_FORCE_INLINE_ void _pair_check(PairData *p_pair) {
bool intersect = p_pair->A->aabb.intersects_inclusive(p_pair->B->aabb);
@@ -294,7 +294,7 @@ private:
const Vector3 *points;
int point_count;
T **result_array;
- int *result_idx;
+ int *result_idx = nullptr;
int result_max;
uint32_t mask;
};
@@ -1265,18 +1265,7 @@ void Octree<T, use_pairs, AL>::set_unpair_callback(UnpairCallback p_callback, vo
template <class T, bool use_pairs, class AL>
Octree<T, use_pairs, AL>::Octree(real_t p_unit_size) {
- last_element_id = 1;
- pass = 1;
unit_size = p_unit_size;
- root = nullptr;
-
- octant_count = 0;
- pair_count = 0;
-
- pair_callback = nullptr;
- unpair_callback = nullptr;
- pair_callback_userdata = nullptr;
- unpair_callback_userdata = nullptr;
}
#endif // OCTREE_H
diff --git a/core/math/plane.cpp b/core/math/plane.cpp
index 0ce8aed51c..6881ad4014 100644
--- a/core/math/plane.cpp
+++ b/core/math/plane.cpp
@@ -106,7 +106,7 @@ bool Plane::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3
real_t dist = (normal.dot(p_from) - d) / den;
//printf("dist is %i\n",dist);
- if (dist > CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist
+ if (dist > (real_t)CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist
return false;
}
@@ -129,7 +129,7 @@ bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vec
real_t dist = (normal.dot(p_begin) - d) / den;
//printf("dist is %i\n",dist);
- if (dist < -CMP_EPSILON || dist > (1.0f + CMP_EPSILON)) {
+ if (dist < (real_t)-CMP_EPSILON || dist > (1.0f + (real_t)CMP_EPSILON)) {
return false;
}
diff --git a/core/math/quaternion.cpp b/core/math/quaternion.cpp
index ade252d628..11bfcc1a6f 100644
--- a/core/math/quaternion.cpp
+++ b/core/math/quaternion.cpp
@@ -102,6 +102,22 @@ Quaternion Quaternion::inverse() const {
return Quaternion(-x, -y, -z, w);
}
+Quaternion Quaternion::log() const {
+ Quaternion src = *this;
+ Vector3 src_v = src.get_axis() * src.get_angle();
+ return Quaternion(src_v.x, src_v.y, src_v.z, 0);
+}
+
+Quaternion Quaternion::exp() const {
+ Quaternion src = *this;
+ Vector3 src_v = Vector3(src.x, src.y, src.z);
+ float theta = src_v.length();
+ if (theta < CMP_EPSILON) {
+ return Quaternion(0, 0, 0, 1);
+ }
+ return Quaternion(src_v.normalized(), theta);
+}
+
Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
@@ -129,7 +145,7 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con
// calculate coefficients
- if ((1.0f - cosom) > CMP_EPSILON) {
+ if ((1.0f - cosom) > (real_t)CMP_EPSILON) {
// standard case (slerp)
omega = Math::acos(cosom);
sinom = Math::sin(omega);
@@ -190,6 +206,9 @@ Quaternion::operator String() const {
}
Vector3 Quaternion::get_axis() const {
+ if (Math::abs(w) > 1 - CMP_EPSILON) {
+ return Vector3(x, y, z);
+ }
real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
return Vector3(x * r, y * r, z * r);
}
diff --git a/core/math/quaternion.h b/core/math/quaternion.h
index f8a2c6456e..9801746659 100644
--- a/core/math/quaternion.h
+++ b/core/math/quaternion.h
@@ -60,6 +60,8 @@ struct _NO_DISCARD_ Quaternion {
Quaternion normalized() const;
bool is_normalized() const;
Quaternion inverse() const;
+ Quaternion log() const;
+ Quaternion exp() const;
_FORCE_INLINE_ real_t dot(const Quaternion &p_q) const;
real_t angle_to(const Quaternion &p_to) const;
@@ -145,7 +147,7 @@ struct _NO_DISCARD_ Quaternion {
Vector3 c = v0.cross(v1);
real_t d = v0.dot(v1);
- if (d < -1.0f + CMP_EPSILON) {
+ if (d < -1.0f + (real_t)CMP_EPSILON) {
x = 0;
y = 1;
z = 0;
diff --git a/core/math/random_pcg.h b/core/math/random_pcg.h
index 974dbbfc2e..a088b30d17 100644
--- a/core/math/random_pcg.h
+++ b/core/math/random_pcg.h
@@ -61,8 +61,8 @@ static int __bsr_clz32(uint32_t x) {
class RandomPCG {
pcg32_random_t pcg;
- uint64_t current_seed; // The seed the current generator state started from.
- uint64_t current_inc;
+ uint64_t current_seed = 0; // The seed the current generator state started from.
+ uint64_t current_inc = 0;
public:
static const uint64_t DEFAULT_SEED = 12047754176567800795U;
@@ -129,7 +129,7 @@ public:
return p_mean + p_deviation * (cos(Math_TAU * randd()) * sqrt(-2.0 * log(randd()))); // Box-Muller transform
}
_FORCE_INLINE_ float randfn(float p_mean, float p_deviation) {
- return p_mean + p_deviation * (cos(Math_TAU * randf()) * sqrt(-2.0 * log(randf()))); // Box-Muller transform
+ return p_mean + p_deviation * (cos((float)Math_TAU * randf()) * sqrt(-2.0 * log(randf()))); // Box-Muller transform
}
double random(double p_from, double p_to);
diff --git a/core/math/rect2.cpp b/core/math/rect2.cpp
index d6e20bdc3c..9e78ead816 100644
--- a/core/math/rect2.cpp
+++ b/core/math/rect2.cpp
@@ -201,33 +201,33 @@ next4:
Vector2(position.x + size.x, position.y + size.y),
};
- real_t maxa = p_xform.elements[0].dot(xf_points2[0]);
+ real_t maxa = p_xform.columns[0].dot(xf_points2[0]);
real_t mina = maxa;
- real_t dp = p_xform.elements[0].dot(xf_points2[1]);
+ real_t dp = p_xform.columns[0].dot(xf_points2[1]);
maxa = MAX(dp, maxa);
mina = MIN(dp, mina);
- dp = p_xform.elements[0].dot(xf_points2[2]);
+ dp = p_xform.columns[0].dot(xf_points2[2]);
maxa = MAX(dp, maxa);
mina = MIN(dp, mina);
- dp = p_xform.elements[0].dot(xf_points2[3]);
+ dp = p_xform.columns[0].dot(xf_points2[3]);
maxa = MAX(dp, maxa);
mina = MIN(dp, mina);
- real_t maxb = p_xform.elements[0].dot(xf_points[0]);
+ real_t maxb = p_xform.columns[0].dot(xf_points[0]);
real_t minb = maxb;
- dp = p_xform.elements[0].dot(xf_points[1]);
+ dp = p_xform.columns[0].dot(xf_points[1]);
maxb = MAX(dp, maxb);
minb = MIN(dp, minb);
- dp = p_xform.elements[0].dot(xf_points[2]);
+ dp = p_xform.columns[0].dot(xf_points[2]);
maxb = MAX(dp, maxb);
minb = MIN(dp, minb);
- dp = p_xform.elements[0].dot(xf_points[3]);
+ dp = p_xform.columns[0].dot(xf_points[3]);
maxb = MAX(dp, maxb);
minb = MIN(dp, minb);
@@ -238,33 +238,33 @@ next4:
return false;
}
- maxa = p_xform.elements[1].dot(xf_points2[0]);
+ maxa = p_xform.columns[1].dot(xf_points2[0]);
mina = maxa;
- dp = p_xform.elements[1].dot(xf_points2[1]);
+ dp = p_xform.columns[1].dot(xf_points2[1]);
maxa = MAX(dp, maxa);
mina = MIN(dp, mina);
- dp = p_xform.elements[1].dot(xf_points2[2]);
+ dp = p_xform.columns[1].dot(xf_points2[2]);
maxa = MAX(dp, maxa);
mina = MIN(dp, mina);
- dp = p_xform.elements[1].dot(xf_points2[3]);
+ dp = p_xform.columns[1].dot(xf_points2[3]);
maxa = MAX(dp, maxa);
mina = MIN(dp, mina);
- maxb = p_xform.elements[1].dot(xf_points[0]);
+ maxb = p_xform.columns[1].dot(xf_points[0]);
minb = maxb;
- dp = p_xform.elements[1].dot(xf_points[1]);
+ dp = p_xform.columns[1].dot(xf_points[1]);
maxb = MAX(dp, maxb);
minb = MIN(dp, minb);
- dp = p_xform.elements[1].dot(xf_points[2]);
+ dp = p_xform.columns[1].dot(xf_points[2]);
maxb = MAX(dp, maxb);
minb = MIN(dp, minb);
- dp = p_xform.elements[1].dot(xf_points[3]);
+ dp = p_xform.columns[1].dot(xf_points[3]);
maxb = MAX(dp, maxb);
minb = MIN(dp, minb);
diff --git a/core/math/transform_2d.cpp b/core/math/transform_2d.cpp
index 55c1f06ff5..cbd2fd3fa1 100644
--- a/core/math/transform_2d.cpp
+++ b/core/math/transform_2d.cpp
@@ -35,8 +35,8 @@
void Transform2D::invert() {
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
// Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
- SWAP(elements[0][1], elements[1][0]);
- elements[2] = basis_xform(-elements[2]);
+ SWAP(columns[0][1], columns[1][0]);
+ columns[2] = basis_xform(-columns[2]);
}
Transform2D Transform2D::inverse() const {
@@ -52,11 +52,11 @@ void Transform2D::affine_invert() {
#endif
real_t idet = 1.0f / det;
- SWAP(elements[0][0], elements[1][1]);
- elements[0] *= Vector2(idet, -idet);
- elements[1] *= Vector2(-idet, idet);
+ SWAP(columns[0][0], columns[1][1]);
+ columns[0] *= Vector2(idet, -idet);
+ columns[1] *= Vector2(-idet, idet);
- elements[2] = basis_xform(-elements[2]);
+ columns[2] = basis_xform(-columns[2]);
}
Transform2D Transform2D::affine_inverse() const {
@@ -65,75 +65,75 @@ Transform2D Transform2D::affine_inverse() const {
return inv;
}
-void Transform2D::rotate(const real_t p_phi) {
- *this = Transform2D(p_phi, Vector2()) * (*this);
+void Transform2D::rotate(const real_t p_angle) {
+ *this = Transform2D(p_angle, Vector2()) * (*this);
}
real_t Transform2D::get_skew() const {
real_t det = basis_determinant();
- return Math::acos(elements[0].normalized().dot(SIGN(det) * elements[1].normalized())) - Math_PI * 0.5f;
+ return Math::acos(columns[0].normalized().dot(SIGN(det) * columns[1].normalized())) - (real_t)Math_PI * 0.5f;
}
void Transform2D::set_skew(const real_t p_angle) {
real_t det = basis_determinant();
- elements[1] = SIGN(det) * elements[0].rotated((Math_PI * 0.5f + p_angle)).normalized() * elements[1].length();
+ columns[1] = SIGN(det) * columns[0].rotated(((real_t)Math_PI * 0.5f + p_angle)).normalized() * columns[1].length();
}
real_t Transform2D::get_rotation() const {
- return Math::atan2(elements[0].y, elements[0].x);
+ return Math::atan2(columns[0].y, columns[0].x);
}
void Transform2D::set_rotation(const real_t p_rot) {
Size2 scale = get_scale();
real_t cr = Math::cos(p_rot);
real_t sr = Math::sin(p_rot);
- elements[0][0] = cr;
- elements[0][1] = sr;
- elements[1][0] = -sr;
- elements[1][1] = cr;
+ columns[0][0] = cr;
+ columns[0][1] = sr;
+ columns[1][0] = -sr;
+ columns[1][1] = cr;
set_scale(scale);
}
Transform2D::Transform2D(const real_t p_rot, const Vector2 &p_pos) {
real_t cr = Math::cos(p_rot);
real_t sr = Math::sin(p_rot);
- elements[0][0] = cr;
- elements[0][1] = sr;
- elements[1][0] = -sr;
- elements[1][1] = cr;
- elements[2] = p_pos;
+ columns[0][0] = cr;
+ columns[0][1] = sr;
+ columns[1][0] = -sr;
+ columns[1][1] = cr;
+ columns[2] = p_pos;
}
Transform2D::Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t p_skew, const Vector2 &p_pos) {
- elements[0][0] = Math::cos(p_rot) * p_scale.x;
- elements[1][1] = Math::cos(p_rot + p_skew) * p_scale.y;
- elements[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y;
- elements[0][1] = Math::sin(p_rot) * p_scale.x;
- elements[2] = p_pos;
+ columns[0][0] = Math::cos(p_rot) * p_scale.x;
+ columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y;
+ columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y;
+ columns[0][1] = Math::sin(p_rot) * p_scale.x;
+ columns[2] = p_pos;
}
Size2 Transform2D::get_scale() const {
real_t det_sign = SIGN(basis_determinant());
- return Size2(elements[0].length(), det_sign * elements[1].length());
+ return Size2(columns[0].length(), det_sign * columns[1].length());
}
void Transform2D::set_scale(const Size2 &p_scale) {
- elements[0].normalize();
- elements[1].normalize();
- elements[0] *= p_scale.x;
- elements[1] *= p_scale.y;
+ columns[0].normalize();
+ columns[1].normalize();
+ columns[0] *= p_scale.x;
+ columns[1] *= p_scale.y;
}
void Transform2D::scale(const Size2 &p_scale) {
scale_basis(p_scale);
- elements[2] *= p_scale;
+ columns[2] *= p_scale;
}
void Transform2D::scale_basis(const Size2 &p_scale) {
- elements[0][0] *= p_scale.x;
- elements[0][1] *= p_scale.y;
- elements[1][0] *= p_scale.x;
- elements[1][1] *= p_scale.y;
+ columns[0][0] *= p_scale.x;
+ columns[0][1] *= p_scale.y;
+ columns[1][0] *= p_scale.x;
+ columns[1][1] *= p_scale.y;
}
void Transform2D::translate(const real_t p_tx, const real_t p_ty) {
@@ -141,21 +141,21 @@ void Transform2D::translate(const real_t p_tx, const real_t p_ty) {
}
void Transform2D::translate(const Vector2 &p_translation) {
- elements[2] += basis_xform(p_translation);
+ columns[2] += basis_xform(p_translation);
}
void Transform2D::orthonormalize() {
// Gram-Schmidt Process
- Vector2 x = elements[0];
- Vector2 y = elements[1];
+ Vector2 x = columns[0];
+ Vector2 y = columns[1];
x.normalize();
y = (y - x * (x.dot(y)));
y.normalize();
- elements[0] = x;
- elements[1] = y;
+ columns[0] = x;
+ columns[1] = y;
}
Transform2D Transform2D::orthonormalized() const {
@@ -165,7 +165,7 @@ Transform2D Transform2D::orthonormalized() const {
}
bool Transform2D::is_equal_approx(const Transform2D &p_transform) const {
- return elements[0].is_equal_approx(p_transform.elements[0]) && elements[1].is_equal_approx(p_transform.elements[1]) && elements[2].is_equal_approx(p_transform.elements[2]);
+ return columns[0].is_equal_approx(p_transform.columns[0]) && columns[1].is_equal_approx(p_transform.columns[1]) && columns[2].is_equal_approx(p_transform.columns[2]);
}
Transform2D Transform2D::looking_at(const Vector2 &p_target) const {
@@ -177,7 +177,7 @@ Transform2D Transform2D::looking_at(const Vector2 &p_target) const {
bool Transform2D::operator==(const Transform2D &p_transform) const {
for (int i = 0; i < 3; i++) {
- if (elements[i] != p_transform.elements[i]) {
+ if (columns[i] != p_transform.columns[i]) {
return false;
}
}
@@ -187,7 +187,7 @@ bool Transform2D::operator==(const Transform2D &p_transform) const {
bool Transform2D::operator!=(const Transform2D &p_transform) const {
for (int i = 0; i < 3; i++) {
- if (elements[i] != p_transform.elements[i]) {
+ if (columns[i] != p_transform.columns[i]) {
return true;
}
}
@@ -196,19 +196,19 @@ bool Transform2D::operator!=(const Transform2D &p_transform) const {
}
void Transform2D::operator*=(const Transform2D &p_transform) {
- elements[2] = xform(p_transform.elements[2]);
+ columns[2] = xform(p_transform.columns[2]);
real_t x0, x1, y0, y1;
- x0 = tdotx(p_transform.elements[0]);
- x1 = tdoty(p_transform.elements[0]);
- y0 = tdotx(p_transform.elements[1]);
- y1 = tdoty(p_transform.elements[1]);
+ x0 = tdotx(p_transform.columns[0]);
+ x1 = tdoty(p_transform.columns[0]);
+ y0 = tdotx(p_transform.columns[1]);
+ y1 = tdoty(p_transform.columns[1]);
- elements[0][0] = x0;
- elements[0][1] = x1;
- elements[1][0] = y0;
- elements[1][1] = y1;
+ columns[0][0] = x0;
+ columns[0][1] = x1;
+ columns[1][0] = y0;
+ columns[1][1] = y1;
}
Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
@@ -231,7 +231,7 @@ Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
Transform2D Transform2D::untranslated() const {
Transform2D copy = *this;
- copy.elements[2] = Vector2();
+ copy.columns[2] = Vector2();
return copy;
}
@@ -241,14 +241,14 @@ Transform2D Transform2D::translated(const Vector2 &p_offset) const {
return copy;
}
-Transform2D Transform2D::rotated(const real_t p_phi) const {
+Transform2D Transform2D::rotated(const real_t p_angle) const {
Transform2D copy = *this;
- copy.rotate(p_phi);
+ copy.rotate(p_angle);
return copy;
}
real_t Transform2D::basis_determinant() const {
- return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
+ return columns[0].x * columns[1].y - columns[0].y * columns[1].x;
}
Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, const real_t p_c) const {
@@ -287,9 +287,9 @@ Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, const
}
void Transform2D::operator*=(const real_t p_val) {
- elements[0] *= p_val;
- elements[1] *= p_val;
- elements[2] *= p_val;
+ columns[0] *= p_val;
+ columns[1] *= p_val;
+ columns[2] *= p_val;
}
Transform2D Transform2D::operator*(const real_t p_val) const {
@@ -299,7 +299,7 @@ Transform2D Transform2D::operator*(const real_t p_val) const {
}
Transform2D::operator String() const {
- return "[X: " + elements[0].operator String() +
- ", Y: " + elements[1].operator String() +
- ", O: " + elements[2].operator String() + "]";
+ return "[X: " + columns[0].operator String() +
+ ", Y: " + columns[1].operator String() +
+ ", O: " + columns[2].operator String() + "]";
}
diff --git a/core/math/transform_2d.h b/core/math/transform_2d.h
index f4546c13c8..72d34a5d4c 100644
--- a/core/math/transform_2d.h
+++ b/core/math/transform_2d.h
@@ -39,33 +39,24 @@
class String;
struct _NO_DISCARD_ Transform2D {
- // Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper":
- // M = (elements[0][0] elements[1][0])
- // (elements[0][1] elements[1][1])
- // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i].
- // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here.
+ // Warning #1: basis of Transform2D is stored differently from Basis. In terms of columns array, the basis matrix looks like "on paper":
+ // M = (columns[0][0] columns[1][0])
+ // (columns[0][1] columns[1][1])
+ // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as columns[i].
+ // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to columns[1][0] here.
// This requires additional care when working with explicit indices.
// See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading.
// Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down,
// and angle is measure from +X to +Y in a clockwise-fashion.
- Vector2 elements[3];
+ Vector2 columns[3];
- _FORCE_INLINE_ real_t tdotx(const Vector2 &v) const { return elements[0][0] * v.x + elements[1][0] * v.y; }
- _FORCE_INLINE_ real_t tdoty(const Vector2 &v) const { return elements[0][1] * v.x + elements[1][1] * v.y; }
+ _FORCE_INLINE_ real_t tdotx(const Vector2 &v) const { return columns[0][0] * v.x + columns[1][0] * v.y; }
+ _FORCE_INLINE_ real_t tdoty(const Vector2 &v) const { return columns[0][1] * v.x + columns[1][1] * v.y; }
- const Vector2 &operator[](int p_idx) const { return elements[p_idx]; }
- Vector2 &operator[](int p_idx) { return elements[p_idx]; }
-
- _FORCE_INLINE_ Vector2 get_axis(int p_axis) const {
- ERR_FAIL_INDEX_V(p_axis, 3, Vector2());
- return elements[p_axis];
- }
- _FORCE_INLINE_ void set_axis(int p_axis, const Vector2 &p_vec) {
- ERR_FAIL_INDEX(p_axis, 3);
- elements[p_axis] = p_vec;
- }
+ const Vector2 &operator[](int p_idx) const { return columns[p_idx]; }
+ Vector2 &operator[](int p_idx) { return columns[p_idx]; }
void invert();
Transform2D inverse() const;
@@ -79,7 +70,7 @@ struct _NO_DISCARD_ Transform2D {
void set_skew(const real_t p_angle);
_FORCE_INLINE_ void set_rotation_and_scale(const real_t p_rot, const Size2 &p_scale);
_FORCE_INLINE_ void set_rotation_scale_and_skew(const real_t p_rot, const Size2 &p_scale, const real_t p_skew);
- void rotate(const real_t p_phi);
+ void rotate(const real_t p_angle);
void scale(const Size2 &p_scale);
void scale_basis(const Size2 &p_scale);
@@ -91,13 +82,13 @@ struct _NO_DISCARD_ Transform2D {
Size2 get_scale() const;
void set_scale(const Size2 &p_scale);
- _FORCE_INLINE_ const Vector2 &get_origin() const { return elements[2]; }
- _FORCE_INLINE_ void set_origin(const Vector2 &p_origin) { elements[2] = p_origin; }
+ _FORCE_INLINE_ const Vector2 &get_origin() const { return columns[2]; }
+ _FORCE_INLINE_ void set_origin(const Vector2 &p_origin) { columns[2] = p_origin; }
Transform2D scaled(const Size2 &p_scale) const;
Transform2D basis_scaled(const Size2 &p_scale) const;
Transform2D translated(const Vector2 &p_offset) const;
- Transform2D rotated(const real_t p_phi) const;
+ Transform2D rotated(const real_t p_angle) const;
Transform2D untranslated() const;
@@ -129,18 +120,18 @@ struct _NO_DISCARD_ Transform2D {
operator String() const;
Transform2D(const real_t xx, const real_t xy, const real_t yx, const real_t yy, const real_t ox, const real_t oy) {
- elements[0][0] = xx;
- elements[0][1] = xy;
- elements[1][0] = yx;
- elements[1][1] = yy;
- elements[2][0] = ox;
- elements[2][1] = oy;
+ columns[0][0] = xx;
+ columns[0][1] = xy;
+ columns[1][0] = yx;
+ columns[1][1] = yy;
+ columns[2][0] = ox;
+ columns[2][1] = oy;
}
Transform2D(const Vector2 &p_x, const Vector2 &p_y, const Vector2 &p_origin) {
- elements[0] = p_x;
- elements[1] = p_y;
- elements[2] = p_origin;
+ columns[0] = p_x;
+ columns[1] = p_y;
+ columns[2] = p_origin;
}
Transform2D(const real_t p_rot, const Vector2 &p_pos);
@@ -148,8 +139,8 @@ struct _NO_DISCARD_ Transform2D {
Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t p_skew, const Vector2 &p_pos);
Transform2D() {
- elements[0][0] = 1.0;
- elements[1][1] = 1.0;
+ columns[0][0] = 1.0;
+ columns[1][1] = 1.0;
}
};
@@ -161,28 +152,28 @@ Vector2 Transform2D::basis_xform(const Vector2 &p_vec) const {
Vector2 Transform2D::basis_xform_inv(const Vector2 &p_vec) const {
return Vector2(
- elements[0].dot(p_vec),
- elements[1].dot(p_vec));
+ columns[0].dot(p_vec),
+ columns[1].dot(p_vec));
}
Vector2 Transform2D::xform(const Vector2 &p_vec) const {
return Vector2(
tdotx(p_vec),
tdoty(p_vec)) +
- elements[2];
+ columns[2];
}
Vector2 Transform2D::xform_inv(const Vector2 &p_vec) const {
- Vector2 v = p_vec - elements[2];
+ Vector2 v = p_vec - columns[2];
return Vector2(
- elements[0].dot(v),
- elements[1].dot(v));
+ columns[0].dot(v),
+ columns[1].dot(v));
}
Rect2 Transform2D::xform(const Rect2 &p_rect) const {
- Vector2 x = elements[0] * p_rect.size.x;
- Vector2 y = elements[1] * p_rect.size.y;
+ Vector2 x = columns[0] * p_rect.size.x;
+ Vector2 y = columns[1] * p_rect.size.y;
Vector2 pos = xform(p_rect.position);
Rect2 new_rect;
@@ -194,17 +185,17 @@ Rect2 Transform2D::xform(const Rect2 &p_rect) const {
}
void Transform2D::set_rotation_and_scale(const real_t p_rot, const Size2 &p_scale) {
- elements[0][0] = Math::cos(p_rot) * p_scale.x;
- elements[1][1] = Math::cos(p_rot) * p_scale.y;
- elements[1][0] = -Math::sin(p_rot) * p_scale.y;
- elements[0][1] = Math::sin(p_rot) * p_scale.x;
+ columns[0][0] = Math::cos(p_rot) * p_scale.x;
+ columns[1][1] = Math::cos(p_rot) * p_scale.y;
+ columns[1][0] = -Math::sin(p_rot) * p_scale.y;
+ columns[0][1] = Math::sin(p_rot) * p_scale.x;
}
void Transform2D::set_rotation_scale_and_skew(const real_t p_rot, const Size2 &p_scale, const real_t p_skew) {
- elements[0][0] = Math::cos(p_rot) * p_scale.x;
- elements[1][1] = Math::cos(p_rot + p_skew) * p_scale.y;
- elements[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y;
- elements[0][1] = Math::sin(p_rot) * p_scale.x;
+ columns[0][0] = Math::cos(p_rot) * p_scale.x;
+ columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y;
+ columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y;
+ columns[0][1] = Math::sin(p_rot) * p_scale.x;
}
Rect2 Transform2D::xform_inv(const Rect2 &p_rect) const {
diff --git a/core/math/transform_3d.cpp b/core/math/transform_3d.cpp
index e5374315e2..76b31daa76 100644
--- a/core/math/transform_3d.cpp
+++ b/core/math/transform_3d.cpp
@@ -57,16 +57,16 @@ Transform3D Transform3D::inverse() const {
return ret;
}
-void Transform3D::rotate(const Vector3 &p_axis, real_t p_phi) {
- *this = rotated(p_axis, p_phi);
+void Transform3D::rotate(const Vector3 &p_axis, real_t p_angle) {
+ *this = rotated(p_axis, p_angle);
}
-Transform3D Transform3D::rotated(const Vector3 &p_axis, real_t p_phi) const {
- return Transform3D(Basis(p_axis, p_phi), Vector3()) * (*this);
+Transform3D Transform3D::rotated(const Vector3 &p_axis, real_t p_angle) const {
+ return Transform3D(Basis(p_axis, p_angle), Vector3()) * (*this);
}
-void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_phi) {
- basis.rotate(p_axis, p_phi);
+void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_angle) {
+ basis.rotate(p_axis, p_angle);
}
Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
@@ -194,9 +194,9 @@ Transform3D Transform3D::operator*(const real_t p_val) const {
}
Transform3D::operator String() const {
- return "[X: " + basis.get_axis(0).operator String() +
- ", Y: " + basis.get_axis(1).operator String() +
- ", Z: " + basis.get_axis(2).operator String() +
+ return "[X: " + basis.get_column(0).operator String() +
+ ", Y: " + basis.get_column(1).operator String() +
+ ", Z: " + basis.get_column(2).operator String() +
", O: " + origin.operator String() + "]";
}
@@ -207,9 +207,9 @@ Transform3D::Transform3D(const Basis &p_basis, const Vector3 &p_origin) :
Transform3D::Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin) :
origin(p_origin) {
- basis.set_axis(0, p_x);
- basis.set_axis(1, p_y);
- basis.set_axis(2, p_z);
+ basis.set_column(0, p_x);
+ basis.set_column(1, p_y);
+ basis.set_column(2, p_z);
}
Transform3D::Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) {
diff --git a/core/math/transform_3d.h b/core/math/transform_3d.h
index 3b4762e221..25832434cd 100644
--- a/core/math/transform_3d.h
+++ b/core/math/transform_3d.h
@@ -45,10 +45,10 @@ struct _NO_DISCARD_ Transform3D {
void affine_invert();
Transform3D affine_inverse() const;
- Transform3D rotated(const Vector3 &p_axis, real_t p_phi) const;
+ Transform3D rotated(const Vector3 &p_axis, real_t p_angle) const;
- void rotate(const Vector3 &p_axis, real_t p_phi);
- void rotate_basis(const Vector3 &p_axis, real_t p_phi);
+ void rotate(const Vector3 &p_axis, real_t p_angle);
+ void rotate_basis(const Vector3 &p_axis, real_t p_angle);
void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0));
Transform3D looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0)) const;
@@ -135,9 +135,9 @@ _FORCE_INLINE_ Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const {
Vector3 v = p_vector - origin;
return Vector3(
- (basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z),
- (basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z),
- (basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z));
+ (basis.rows[0][0] * v.x) + (basis.rows[1][0] * v.y) + (basis.rows[2][0] * v.z),
+ (basis.rows[0][1] * v.x) + (basis.rows[1][1] * v.y) + (basis.rows[2][1] * v.z),
+ (basis.rows[0][2] * v.x) + (basis.rows[1][2] * v.y) + (basis.rows[2][2] * v.z));
}
// Neither the plane regular xform or xform_inv are particularly efficient,
diff --git a/core/math/triangle_mesh.cpp b/core/math/triangle_mesh.cpp
index debc5cd00d..e146c4a4e3 100644
--- a/core/math/triangle_mesh.cpp
+++ b/core/math/triangle_mesh.cpp
@@ -231,14 +231,14 @@ Vector3 TriangleMesh::get_area_normal(const AABB &p_aabb) const {
}
case VISIT_LEFT_BIT: {
stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.left | TEST_AABB_BIT;
level++;
+ stack[level] = b.left | TEST_AABB_BIT;
continue;
}
case VISIT_RIGHT_BIT: {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.right | TEST_AABB_BIT;
level++;
+ stack[level] = b.right | TEST_AABB_BIT;
continue;
}
case VISIT_DONE_BIT: {
@@ -331,14 +331,14 @@ bool TriangleMesh::intersect_segment(const Vector3 &p_begin, const Vector3 &p_en
}
case VISIT_LEFT_BIT: {
stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.left | TEST_AABB_BIT;
level++;
+ stack[level] = b.left | TEST_AABB_BIT;
continue;
}
case VISIT_RIGHT_BIT: {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.right | TEST_AABB_BIT;
level++;
+ stack[level] = b.right | TEST_AABB_BIT;
continue;
}
case VISIT_DONE_BIT: {
@@ -431,14 +431,14 @@ bool TriangleMesh::intersect_ray(const Vector3 &p_begin, const Vector3 &p_dir, V
}
case VISIT_LEFT_BIT: {
stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.left | TEST_AABB_BIT;
level++;
+ stack[level] = b.left | TEST_AABB_BIT;
continue;
}
case VISIT_RIGHT_BIT: {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.right | TEST_AABB_BIT;
level++;
+ stack[level] = b.right | TEST_AABB_BIT;
continue;
}
case VISIT_DONE_BIT: {
@@ -551,14 +551,14 @@ bool TriangleMesh::intersect_convex_shape(const Plane *p_planes, int p_plane_cou
}
case VISIT_LEFT_BIT: {
stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.left | TEST_AABB_BIT;
level++;
+ stack[level] = b.left | TEST_AABB_BIT;
continue;
}
case VISIT_RIGHT_BIT: {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.right | TEST_AABB_BIT;
level++;
+ stack[level] = b.right | TEST_AABB_BIT;
continue;
}
case VISIT_DONE_BIT: {
@@ -644,14 +644,14 @@ bool TriangleMesh::inside_convex_shape(const Plane *p_planes, int p_plane_count,
}
case VISIT_LEFT_BIT: {
stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.left | TEST_AABB_BIT;
level++;
+ stack[level] = b.left | TEST_AABB_BIT;
continue;
}
case VISIT_RIGHT_BIT: {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
- stack[level + 1] = b.right | TEST_AABB_BIT;
level++;
+ stack[level] = b.right | TEST_AABB_BIT;
continue;
}
case VISIT_DONE_BIT: {
diff --git a/core/math/vector2.cpp b/core/math/vector2.cpp
index ed4266b115..a27227905c 100644
--- a/core/math/vector2.cpp
+++ b/core/math/vector2.cpp
@@ -163,7 +163,7 @@ Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
Vector2 v = *this;
Vector2 vd = p_to - v;
real_t len = vd.length();
- return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
+ return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
diff --git a/core/math/vector2.h b/core/math/vector2.h
index a2680b84fc..bd67299f33 100644
--- a/core/math/vector2.h
+++ b/core/math/vector2.h
@@ -31,6 +31,7 @@
#ifndef VECTOR2_H
#define VECTOR2_H
+#include "core/error/error_macros.h"
#include "core/math/math_funcs.h"
class String;
@@ -60,9 +61,11 @@ struct _NO_DISCARD_ Vector2 {
};
_FORCE_INLINE_ real_t &operator[](int p_idx) {
+ DEV_ASSERT((unsigned int)p_idx < 2);
return coord[p_idx];
}
_FORCE_INLINE_ const real_t &operator[](int p_idx) const {
+ DEV_ASSERT((unsigned int)p_idx < 2);
return coord[p_idx];
}
diff --git a/core/math/vector2i.h b/core/math/vector2i.h
index 3f5f12d4dd..13b70031bd 100644
--- a/core/math/vector2i.h
+++ b/core/math/vector2i.h
@@ -31,6 +31,7 @@
#ifndef VECTOR2I_H
#define VECTOR2I_H
+#include "core/error/error_macros.h"
#include "core/math/math_funcs.h"
class String;
@@ -58,9 +59,11 @@ struct _NO_DISCARD_ Vector2i {
};
_FORCE_INLINE_ int32_t &operator[](int p_idx) {
+ DEV_ASSERT((unsigned int)p_idx < 2);
return coord[p_idx];
}
_FORCE_INLINE_ const int32_t &operator[](int p_idx) const {
+ DEV_ASSERT((unsigned int)p_idx < 2);
return coord[p_idx];
}
diff --git a/core/math/vector3.cpp b/core/math/vector3.cpp
index 998c437a22..f94f39b7f2 100644
--- a/core/math/vector3.cpp
+++ b/core/math/vector3.cpp
@@ -31,14 +31,17 @@
#include "vector3.h"
#include "core/math/basis.h"
+#include "core/math/vector2.h"
+#include "core/math/vector3i.h"
+#include "core/string/ustring.h"
-void Vector3::rotate(const Vector3 &p_axis, const real_t p_phi) {
- *this = Basis(p_axis, p_phi).xform(*this);
+void Vector3::rotate(const Vector3 &p_axis, const real_t p_angle) {
+ *this = Basis(p_axis, p_angle).xform(*this);
}
-Vector3 Vector3::rotated(const Vector3 &p_axis, const real_t p_phi) const {
+Vector3 Vector3::rotated(const Vector3 &p_axis, const real_t p_angle) const {
Vector3 r = *this;
- r.rotate(p_axis, p_phi);
+ r.rotate(p_axis, p_angle);
return r;
}
@@ -94,7 +97,32 @@ Vector3 Vector3::move_toward(const Vector3 &p_to, const real_t p_delta) const {
Vector3 v = *this;
Vector3 vd = p_to - v;
real_t len = vd.length();
- return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
+ return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta;
+}
+
+Vector2 Vector3::octahedron_encode() const {
+ Vector3 n = *this;
+ n /= Math::abs(n.x) + Math::abs(n.y) + Math::abs(n.z);
+ Vector2 o;
+ if (n.z >= 0.0f) {
+ o.x = n.x;
+ o.y = n.y;
+ } else {
+ o.x = (1.0f - Math::abs(n.y)) * (n.x >= 0.0f ? 1.0f : -1.0f);
+ o.y = (1.0f - Math::abs(n.x)) * (n.y >= 0.0f ? 1.0f : -1.0f);
+ }
+ o.x = o.x * 0.5f + 0.5f;
+ o.y = o.y * 0.5f + 0.5f;
+ return o;
+}
+
+Vector3 Vector3::octahedron_decode(const Vector2 &p_oct) {
+ Vector2 f(p_oct.x * 2.0f - 1.0f, p_oct.y * 2.0f - 1.0f);
+ Vector3 n(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y));
+ float t = CLAMP(-n.z, 0.0f, 1.0f);
+ n.x += n.x >= 0 ? -t : t;
+ n.y += n.y >= 0 ? -t : t;
+ return n.normalized();
}
Basis Vector3::outer(const Vector3 &p_with) const {
@@ -112,3 +140,7 @@ bool Vector3::is_equal_approx(const Vector3 &p_v) const {
Vector3::operator String() const {
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ")";
}
+
+Vector3::operator Vector3i() const {
+ return Vector3i(x, y, z);
+}
diff --git a/core/math/vector3.h b/core/math/vector3.h
index c1da159e00..8891532f42 100644
--- a/core/math/vector3.h
+++ b/core/math/vector3.h
@@ -31,12 +31,13 @@
#ifndef VECTOR3_H
#define VECTOR3_H
+#include "core/error/error_macros.h"
#include "core/math/math_funcs.h"
-#include "core/math/vector2.h"
-#include "core/math/vector3i.h"
-#include "core/string/ustring.h"
+class String;
struct Basis;
+struct Vector2;
+struct Vector3i;
struct _NO_DISCARD_ Vector3 {
static const int AXIS_COUNT = 3;
@@ -58,10 +59,12 @@ struct _NO_DISCARD_ Vector3 {
};
_FORCE_INLINE_ const real_t &operator[](const int p_axis) const {
+ DEV_ASSERT((unsigned int)p_axis < 3);
return coord[p_axis];
}
_FORCE_INLINE_ real_t &operator[](const int p_axis) {
+ DEV_ASSERT((unsigned int)p_axis < 3);
return coord[p_axis];
}
@@ -94,8 +97,8 @@ struct _NO_DISCARD_ Vector3 {
void snap(const Vector3 p_val);
Vector3 snapped(const Vector3 p_val) const;
- void rotate(const Vector3 &p_axis, const real_t p_phi);
- Vector3 rotated(const Vector3 &p_axis, const real_t p_phi) const;
+ void rotate(const Vector3 &p_axis, const real_t p_angle);
+ Vector3 rotated(const Vector3 &p_axis, const real_t p_angle) const;
/* Static Methods between 2 vector3s */
@@ -104,30 +107,8 @@ struct _NO_DISCARD_ Vector3 {
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
- _FORCE_INLINE_ Vector2 octahedron_encode() const {
- Vector3 n = *this;
- n /= Math::abs(n.x) + Math::abs(n.y) + Math::abs(n.z);
- Vector2 o;
- if (n.z >= 0.0f) {
- o.x = n.x;
- o.y = n.y;
- } else {
- o.x = (1.0f - Math::abs(n.y)) * (n.x >= 0.0f ? 1.0f : -1.0f);
- o.y = (1.0f - Math::abs(n.x)) * (n.y >= 0.0f ? 1.0f : -1.0f);
- }
- o.x = o.x * 0.5f + 0.5f;
- o.y = o.y * 0.5f + 0.5f;
- return o;
- }
-
- static _FORCE_INLINE_ Vector3 octahedron_decode(const Vector2 &p_oct) {
- Vector2 f(p_oct.x * 2.0f - 1.0f, p_oct.y * 2.0f - 1.0f);
- Vector3 n(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y));
- float t = CLAMP(-n.z, 0.0f, 1.0f);
- n.x += n.x >= 0 ? -t : t;
- n.y += n.y >= 0 ? -t : t;
- return n.normalized();
- }
+ Vector2 octahedron_encode() const;
+ static Vector3 octahedron_decode(const Vector2 &p_oct);
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_with) const;
_FORCE_INLINE_ real_t dot(const Vector3 &p_with) const;
@@ -183,16 +164,9 @@ struct _NO_DISCARD_ Vector3 {
_FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const;
operator String() const;
- _FORCE_INLINE_ operator Vector3i() const {
- return Vector3i(x, y, z);
- }
+ operator Vector3i() const;
_FORCE_INLINE_ Vector3() {}
- _FORCE_INLINE_ Vector3(const Vector3i &p_ivec) {
- x = p_ivec.x;
- y = p_ivec.y;
- z = p_ivec.z;
- }
_FORCE_INLINE_ Vector3(const real_t p_x, const real_t p_y, const real_t p_z) {
x = p_x;
y = p_y;
@@ -344,7 +318,7 @@ Vector3 &Vector3::operator*=(const real_t p_scalar) {
}
// Multiplication operators required to workaround issues with LLVM using implicit conversion
-// to Vector2i instead for integers where it should not.
+// to Vector3i instead for integers where it should not.
_FORCE_INLINE_ Vector3 operator*(const float p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
diff --git a/core/math/vector3i.cpp b/core/math/vector3i.cpp
index ac79b3c7ea..b8e74ea6d2 100644
--- a/core/math/vector3i.cpp
+++ b/core/math/vector3i.cpp
@@ -30,6 +30,9 @@
#include "vector3i.h"
+#include "core/math/vector3.h"
+#include "core/string/ustring.h"
+
void Vector3i::set_axis(const int p_axis, const int32_t p_value) {
ERR_FAIL_INDEX(p_axis, 3);
coord[p_axis] = p_value;
@@ -58,3 +61,7 @@ Vector3i Vector3i::clamp(const Vector3i &p_min, const Vector3i &p_max) const {
Vector3i::operator String() const {
return "(" + itos(x) + ", " + itos(y) + ", " + itos(z) + ")";
}
+
+Vector3i::operator Vector3() const {
+ return Vector3(x, y, z);
+}
diff --git a/core/math/vector3i.h b/core/math/vector3i.h
index d166de80aa..b49c1142ed 100644
--- a/core/math/vector3i.h
+++ b/core/math/vector3i.h
@@ -31,9 +31,11 @@
#ifndef VECTOR3I_H
#define VECTOR3I_H
+#include "core/error/error_macros.h"
#include "core/math/math_funcs.h"
-#include "core/string/ustring.h"
-#include "core/typedefs.h"
+
+class String;
+struct Vector3;
struct _NO_DISCARD_ Vector3i {
enum Axis {
@@ -53,10 +55,12 @@ struct _NO_DISCARD_ Vector3i {
};
_FORCE_INLINE_ const int32_t &operator[](const int p_axis) const {
+ DEV_ASSERT((unsigned int)p_axis < 3);
return coord[p_axis];
}
_FORCE_INLINE_ int32_t &operator[](const int p_axis) {
+ DEV_ASSERT((unsigned int)p_axis < 3);
return coord[p_axis];
}
@@ -105,6 +109,7 @@ struct _NO_DISCARD_ Vector3i {
_FORCE_INLINE_ bool operator>=(const Vector3i &p_v) const;
operator String() const;
+ operator Vector3() const;
_FORCE_INLINE_ Vector3i() {}
_FORCE_INLINE_ Vector3i(const int32_t p_x, const int32_t p_y, const int32_t p_z) {