diff options
Diffstat (limited to 'core/math')
-rw-r--r-- | core/math/basis.cpp | 508 | ||||
-rw-r--r-- | core/math/basis.h | 42 | ||||
-rw-r--r-- | core/math/bvh.h | 2 | ||||
-rw-r--r-- | core/math/convex_hull.cpp | 2 | ||||
-rw-r--r-- | core/math/face3.cpp | 2 | ||||
-rw-r--r-- | core/math/geometry_2d.h | 2 | ||||
-rw-r--r-- | core/math/geometry_3d.cpp | 16 | ||||
-rw-r--r-- | core/math/geometry_3d.h | 2 | ||||
-rw-r--r-- | core/math/plane.h | 6 | ||||
-rw-r--r-- | core/math/quaternion.cpp | 13 | ||||
-rw-r--r-- | core/math/quaternion.h | 3 | ||||
-rw-r--r-- | core/math/vector3.h | 27 |
12 files changed, 279 insertions, 346 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp index a7f89522d7..0030cb1144 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -354,7 +354,7 @@ void Basis::rotate(const Quaternion &p_quaternion) { *this = rotated(p_quaternion); } -Vector3 Basis::get_rotation_euler() const { +Vector3 Basis::get_euler_normalized(EulerOrder p_order) const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. @@ -365,7 +365,7 @@ Vector3 Basis::get_rotation_euler() const { m.scale(Vector3(-1, -1, -1)); } - return m.get_euler(); + return m.get_euler(p_order); } Quaternion Basis::get_rotation_quaternion() const { @@ -424,218 +424,203 @@ void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) cons p_angle = -p_angle; } -// get_euler_xyz returns a vector containing the Euler angles in the format -// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last -// (following the convention they are commonly defined in the literature). -// -// The current implementation uses XYZ convention (Z is the first rotation), -// so euler.z is the angle of the (first) rotation around Z axis and so on, -// -// And thus, assuming the matrix is a rotation matrix, this function returns -// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates -// around the z-axis by a and so on. -Vector3 Basis::get_euler_xyz() const { - // Euler angles in XYZ convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cy*cz -cy*sz sy - // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx - // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy - - Vector3 euler; - real_t sy = elements[0][2]; - if (sy < (1.0 - CMP_EPSILON)) { - if (sy > -(1.0 - CMP_EPSILON)) { - // is this a pure Y rotation? - if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { - // return the simplest form (human friendlier in editor and scripts) - euler.x = 0; - euler.y = atan2(elements[0][2], elements[0][0]); - euler.z = 0; +Vector3 Basis::get_euler(EulerOrder p_order) const { + switch (p_order) { + case EULER_ORDER_XYZ: { + // Euler angles in XYZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz -cy*sz sy + // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx + // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy + + Vector3 euler; + real_t sy = elements[0][2]; + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { + // is this a pure Y rotation? + if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = 0; + euler.y = atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } else { + euler.x = Math::atan2(-elements[1][2], elements[2][2]); + euler.y = Math::asin(sy); + euler.z = Math::atan2(-elements[0][1], elements[0][0]); + } + } else { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = -Math_PI / 2.0; + euler.z = 0.0; + } } else { - euler.x = Math::atan2(-elements[1][2], elements[2][2]); - euler.y = Math::asin(sy); - euler.z = Math::atan2(-elements[0][1], elements[0][0]); + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = Math_PI / 2.0; + euler.z = 0.0; + } + return euler; + } break; + case EULER_ORDER_XZY: { + // Euler angles in XZY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy -sz cz*sy + // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx + // cy*sx*sz cz*sx cx*cy+sx*sz*sy + + Vector3 euler; + real_t sz = elements[0][1]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = Math::asin(-sz); + } else { + // It's -1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + return euler; + } break; + case EULER_ORDER_YXZ: { + // Euler angles in YXZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy + // cx*sz cx*cz -sx + // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx + + Vector3 euler; + + real_t m12 = elements[1][2]; + + if (m12 < (1 - CMP_EPSILON)) { + if (m12 > -(1 - CMP_EPSILON)) { + // is this a pure X rotation? + if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = atan2(-m12, elements[1][1]); + euler.y = 0; + euler.z = 0; + } else { + euler.x = asin(-m12); + euler.y = atan2(elements[0][2], elements[2][2]); + euler.z = atan2(elements[1][0], elements[1][1]); + } + } else { // m12 == -1 + euler.x = Math_PI * 0.5; + euler.y = atan2(elements[0][1], elements[0][0]); + euler.z = 0; + } + } else { // m12 == 1 + euler.x = -Math_PI * 0.5; + euler.y = -atan2(elements[0][1], elements[0][0]); + euler.z = 0; } - } else { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = -Math_PI / 2.0; - euler.z = 0.0; - } - } else { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = Math_PI / 2.0; - euler.z = 0.0; - } - return euler; -} - -// set_euler_xyz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// The current implementation uses XYZ convention (Z is the first rotation). -void Basis::set_euler_xyz(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - //optimizer will optimize away all this anyway - *this = xmat * (ymat * zmat); -} - -Vector3 Basis::get_euler_xzy() const { - // Euler angles in XZY convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cz*cy -sz cz*sy - // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx - // cy*sx*sz cz*sx cx*cy+sx*sz*sy - - Vector3 euler; - real_t sz = elements[0][1]; - if (sz < (1.0 - CMP_EPSILON)) { - if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = Math::atan2(elements[0][2], elements[0][0]); - euler.z = Math::asin(-sz); - } else { - // It's -1 - euler.x = -Math::atan2(elements[1][2], elements[2][2]); - euler.y = 0.0; - euler.z = Math_PI / 2.0; - } - } else { - // It's 1 - euler.x = -Math::atan2(elements[1][2], elements[2][2]); - euler.y = 0.0; - euler.z = -Math_PI / 2.0; - } - return euler; -} - -void Basis::set_euler_xzy(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = xmat * zmat * ymat; -} - -Vector3 Basis::get_euler_yzx() const { - // Euler angles in YZX convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx - // sz cz*cx -cz*sx - // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx - - Vector3 euler; - real_t sz = elements[1][0]; - if (sz < (1.0 - CMP_EPSILON)) { - if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(-elements[1][2], elements[1][1]); - euler.y = Math::atan2(-elements[2][0], elements[0][0]); - euler.z = Math::asin(sz); - } else { - // It's -1 - euler.x = Math::atan2(elements[2][1], elements[2][2]); - euler.y = 0.0; - euler.z = -Math_PI / 2.0; - } - } else { - // It's 1 - euler.x = Math::atan2(elements[2][1], elements[2][2]); - euler.y = 0.0; - euler.z = Math_PI / 2.0; - } - return euler; -} - -void Basis::set_euler_yzx(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = ymat * zmat * xmat; -} - -// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, -// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned -// as the x, y, and z components of a Vector3 respectively. -Vector3 Basis::get_euler_yxz() const { - // Euler angles in YXZ convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy - // cx*sz cx*cz -sx - // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx - - Vector3 euler; - - real_t m12 = elements[1][2]; - if (m12 < (1 - CMP_EPSILON)) { - if (m12 > -(1 - CMP_EPSILON)) { - // is this a pure X rotation? - if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { - // return the simplest form (human friendlier in editor and scripts) - euler.x = atan2(-m12, elements[1][1]); - euler.y = 0; + return euler; + } break; + case EULER_ORDER_YZX: { + // Euler angles in YZX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx + // sz cz*cx -cz*sx + // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx + + Vector3 euler; + real_t sz = elements[1][0]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(-elements[1][2], elements[1][1]); + euler.y = Math::atan2(-elements[2][0], elements[0][0]); + euler.z = Math::asin(sz); + } else { + // It's -1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + return euler; + } break; + case EULER_ORDER_ZXY: { + // Euler angles in ZXY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx + // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx + // -cx*sy sx cx*cy + Vector3 euler; + real_t sx = elements[2][1]; + if (sx < (1.0 - CMP_EPSILON)) { + if (sx > -(1.0 - CMP_EPSILON)) { + euler.x = Math::asin(sx); + euler.y = Math::atan2(-elements[2][0], elements[2][2]); + euler.z = Math::atan2(-elements[0][1], elements[1][1]); + } else { + // It's -1 + euler.x = -Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + } else { + // It's 1 + euler.x = Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); euler.z = 0; + } + return euler; + } break; + case EULER_ORDER_ZYX: { + // Euler angles in ZYX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy + // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx + // -sy cy*sx cy*cx + Vector3 euler; + real_t sy = elements[2][0]; + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = Math::asin(-sy); + euler.z = Math::atan2(elements[1][0], elements[0][0]); + } else { + // It's -1 + euler.x = 0; + euler.y = Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); + } } else { - euler.x = asin(-m12); - euler.y = atan2(elements[0][2], elements[2][2]); - euler.z = atan2(elements[1][0], elements[1][1]); + // It's 1 + euler.x = 0; + euler.y = -Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); } - } else { // m12 == -1 - euler.x = Math_PI * 0.5; - euler.y = atan2(elements[0][1], elements[0][0]); - euler.z = 0; + return euler; + } break; + default: { + ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)"); } - } else { // m12 == 1 - euler.x = -Math_PI * 0.5; - euler.y = -atan2(elements[0][1], elements[0][0]); - euler.z = 0; } - - return euler; + return Vector3(); } -// set_euler_yxz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// The current implementation uses YXZ convention (Z is the first rotation). -void Basis::set_euler_yxz(const Vector3 &p_euler) { +void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) { real_t c, s; c = Math::cos(p_euler.x); @@ -650,102 +635,29 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) { s = Math::sin(p_euler.z); Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - //optimizer will optimize away all this anyway - *this = ymat * xmat * zmat; -} - -Vector3 Basis::get_euler_zxy() const { - // Euler angles in ZXY convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx - // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx - // -cx*sy sx cx*cy - Vector3 euler; - real_t sx = elements[2][1]; - if (sx < (1.0 - CMP_EPSILON)) { - if (sx > -(1.0 - CMP_EPSILON)) { - euler.x = Math::asin(sx); - euler.y = Math::atan2(-elements[2][0], elements[2][2]); - euler.z = Math::atan2(-elements[0][1], elements[1][1]); - } else { - // It's -1 - euler.x = -Math_PI / 2.0; - euler.y = Math::atan2(elements[0][2], elements[0][0]); - euler.z = 0; + switch (p_order) { + case EULER_ORDER_XYZ: { + *this = xmat * (ymat * zmat); + } break; + case EULER_ORDER_XZY: { + *this = xmat * zmat * ymat; + } break; + case EULER_ORDER_YXZ: { + *this = ymat * xmat * zmat; + } break; + case EULER_ORDER_YZX: { + *this = ymat * zmat * xmat; + } break; + case EULER_ORDER_ZXY: { + *this = zmat * xmat * ymat; + } break; + case EULER_ORDER_ZYX: { + *this = zmat * ymat * xmat; + } break; + default: { + ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)"); } - } else { - // It's 1 - euler.x = Math_PI / 2.0; - euler.y = Math::atan2(elements[0][2], elements[0][0]); - euler.z = 0; } - return euler; -} - -void Basis::set_euler_zxy(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = zmat * xmat * ymat; -} - -Vector3 Basis::get_euler_zyx() const { - // Euler angles in ZYX convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy - // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx - // -sy cy*sx cy*cx - Vector3 euler; - real_t sy = elements[2][0]; - if (sy < (1.0 - CMP_EPSILON)) { - if (sy > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(elements[2][1], elements[2][2]); - euler.y = Math::asin(-sy); - euler.z = Math::atan2(elements[1][0], elements[0][0]); - } else { - // It's -1 - euler.x = 0; - euler.y = Math_PI / 2.0; - euler.z = -Math::atan2(elements[0][1], elements[1][1]); - } - } else { - // It's 1 - euler.x = 0; - euler.y = -Math_PI / 2.0; - euler.z = -Math::atan2(elements[0][1], elements[1][1]); - } - return euler; -} - -void Basis::set_euler_zyx(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = zmat * ymat * xmat; } bool Basis::is_equal_approx(const Basis &p_basis) const { diff --git a/core/math/basis.h b/core/math/basis.h index eb107d7e4e..617d005f19 100644 --- a/core/math/basis.h +++ b/core/math/basis.h @@ -85,40 +85,35 @@ public: void rotate(const Quaternion &p_quaternion); Basis rotated(const Quaternion &p_quaternion) const; - Vector3 get_rotation_euler() const; + enum EulerOrder { + EULER_ORDER_XYZ, + EULER_ORDER_XZY, + EULER_ORDER_YXZ, + EULER_ORDER_YZX, + EULER_ORDER_ZXY, + EULER_ORDER_ZYX + }; + + Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const; void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const; void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const; Quaternion get_rotation_quaternion() const; - Vector3 get_rotation() const { return get_rotation_euler(); }; void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction); Vector3 rotref_posscale_decomposition(Basis &rotref) const; - Vector3 get_euler_xyz() const; - void set_euler_xyz(const Vector3 &p_euler); - - Vector3 get_euler_xzy() const; - void set_euler_xzy(const Vector3 &p_euler); - - Vector3 get_euler_yzx() const; - void set_euler_yzx(const Vector3 &p_euler); - - Vector3 get_euler_yxz() const; - void set_euler_yxz(const Vector3 &p_euler); - - Vector3 get_euler_zxy() const; - void set_euler_zxy(const Vector3 &p_euler); - - Vector3 get_euler_zyx() const; - void set_euler_zyx(const Vector3 &p_euler); + Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const; + void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ); + static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) { + Basis b; + b.set_euler(p_euler, p_order); + return b; + } Quaternion get_quaternion() const; void set_quaternion(const Quaternion &p_quaternion); - Vector3 get_euler() const { return get_euler_yxz(); } - void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); } - void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const; void set_axis_angle(const Vector3 &p_axis, real_t p_phi); @@ -250,9 +245,6 @@ public: Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); }; Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); } - Basis(const Vector3 &p_euler) { set_euler(p_euler); } - Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); } - Basis(const Vector3 &p_axis, real_t p_phi) { set_axis_angle(p_axis, p_phi); } Basis(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_phi, p_scale); } static Basis from_scale(const Vector3 &p_scale); diff --git a/core/math/bvh.h b/core/math/bvh.h index cefbc9b0db..65b8b102a3 100644 --- a/core/math/bvh.h +++ b/core/math/bvh.h @@ -200,7 +200,7 @@ public: // use in conjunction with activate if you have deferred the collision check, and // set pairable has never been called. - // (deferred collision checks are a workaround for visual server for historical reasons) + // (deferred collision checks are a workaround for rendering server for historical reasons) void force_collision_check(BVHHandle p_handle) { if (USE_PAIRS) { // the aabb should already be up to date in the BVH diff --git a/core/math/convex_hull.cpp b/core/math/convex_hull.cpp index f67035c803..684814b1ae 100644 --- a/core/math/convex_hull.cpp +++ b/core/math/convex_hull.cpp @@ -594,8 +594,6 @@ private: IntermediateHull() { } - - void print(); }; enum Orientation { NONE, diff --git a/core/math/face3.cpp b/core/math/face3.cpp index 045ab67ce8..31a853e1a9 100644 --- a/core/math/face3.cpp +++ b/core/math/face3.cpp @@ -229,7 +229,7 @@ bool Face3::intersects_aabb(const AABB &p_aabb) const { axis.normalize(); real_t minA, maxA, minB, maxB; - p_aabb.project_range_in_plane(Plane(axis, 0), minA, maxA); + p_aabb.project_range_in_plane(Plane(axis), minA, maxA); project_range(axis, Transform3D(), minB, maxB); if (maxA < minB || maxB < minA) { diff --git a/core/math/geometry_2d.h b/core/math/geometry_2d.h index 8e5830f9b3..6010159597 100644 --- a/core/math/geometry_2d.h +++ b/core/math/geometry_2d.h @@ -37,8 +37,6 @@ #include "core/templates/vector.h" class Geometry2D { - Geometry2D(); - public: static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) { Vector2 d1 = q1 - p1; // Direction vector of segment S1. diff --git a/core/math/geometry_3d.cpp b/core/math/geometry_3d.cpp index 6628b760e0..88d2656025 100644 --- a/core/math/geometry_3d.cpp +++ b/core/math/geometry_3d.cpp @@ -819,11 +819,9 @@ Vector<Plane> Geometry3D::build_sphere_planes(real_t p_radius, int p_lats, int p planes.push_back(Plane(normal, p_radius)); for (int j = 1; j <= p_lats; j++) { - // FIXME: This is stupid. - Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized(); - Vector3 pos = angle * p_radius; - planes.push_back(Plane(pos, angle)); - planes.push_back(Plane(pos * axis_neg, angle * axis_neg)); + Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized(); + planes.push_back(Plane(plane_normal, p_radius)); + planes.push_back(Plane(plane_normal * axis_neg, p_radius)); } } @@ -852,10 +850,10 @@ Vector<Plane> Geometry3D::build_capsule_planes(real_t p_radius, real_t p_height, planes.push_back(Plane(normal, p_radius)); for (int j = 1; j <= p_lats; j++) { - Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized(); - Vector3 pos = axis * p_height * 0.5 + angle * p_radius; - planes.push_back(Plane(pos, angle)); - planes.push_back(Plane(pos * axis_neg, angle * axis_neg)); + Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized(); + Vector3 position = axis * p_height * 0.5 + plane_normal * p_radius; + planes.push_back(Plane(plane_normal, position)); + planes.push_back(Plane(plane_normal * axis_neg, position * axis_neg)); } } diff --git a/core/math/geometry_3d.h b/core/math/geometry_3d.h index 766689e222..6a59b34585 100644 --- a/core/math/geometry_3d.h +++ b/core/math/geometry_3d.h @@ -36,8 +36,6 @@ #include "core/templates/vector.h" class Geometry3D { - Geometry3D(); - public: static void get_closest_points_between_segments(const Vector3 &p1, const Vector3 &p2, const Vector3 &q1, const Vector3 &q2, Vector3 &c1, Vector3 &c2) { // Do the function 'd' as defined by pb. I think it's a dot product of some sort. diff --git a/core/math/plane.h b/core/math/plane.h index 2267b28c53..18be5d5d12 100644 --- a/core/math/plane.h +++ b/core/math/plane.h @@ -85,8 +85,8 @@ public: normal(p_a, p_b, p_c), d(p_d) {} - _FORCE_INLINE_ Plane(const Vector3 &p_normal, real_t p_d); - _FORCE_INLINE_ Plane(const Vector3 &p_point, const Vector3 &p_normal); + _FORCE_INLINE_ Plane(const Vector3 &p_normal, real_t p_d = 0.0); + _FORCE_INLINE_ Plane(const Vector3 &p_normal, const Vector3 &p_point); _FORCE_INLINE_ Plane(const Vector3 &p_point1, const Vector3 &p_point2, const Vector3 &p_point3, ClockDirection p_dir = CLOCKWISE); }; @@ -109,7 +109,7 @@ Plane::Plane(const Vector3 &p_normal, real_t p_d) : d(p_d) { } -Plane::Plane(const Vector3 &p_point, const Vector3 &p_normal) : +Plane::Plane(const Vector3 &p_normal, const Vector3 &p_point) : normal(p_normal), d(p_normal.dot(p_point)) { } diff --git a/core/math/quaternion.cpp b/core/math/quaternion.cpp index 3f1d2c58e5..944474686a 100644 --- a/core/math/quaternion.cpp +++ b/core/math/quaternion.cpp @@ -44,7 +44,7 @@ real_t Quaternion::angle_to(const Quaternion &p_to) const { // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_xyz() const { Basis m(*this); - return m.get_euler_xyz(); + return m.get_euler(Basis::EULER_ORDER_XYZ); } // get_euler_yxz returns a vector containing the Euler angles in the format @@ -56,7 +56,7 @@ Vector3 Quaternion::get_euler_yxz() const { ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); #endif Basis m(*this); - return m.get_euler_yxz(); + return m.get_euler(Basis::EULER_ORDER_YXZ); } void Quaternion::operator*=(const Quaternion &p_q) { @@ -189,6 +189,15 @@ Quaternion::operator String() const { return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")"; } +Vector3 Quaternion::get_axis() const { + real_t r = ((real_t)1) / Math::sqrt(1 - w * w); + return Vector3(x * r, y * r, z * r); +} + +float Quaternion::get_angle() const { + return 2 * Math::acos(w); +} + Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); diff --git a/core/math/quaternion.h b/core/math/quaternion.h index 35324323b3..e20ea74eb4 100644 --- a/core/math/quaternion.h +++ b/core/math/quaternion.h @@ -72,6 +72,9 @@ public: Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; + Vector3 get_axis() const; + float get_angle() const; + _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = 2 * Math::acos(w); real_t r = ((real_t)1) / Math::sqrt(1 - w * w); diff --git a/core/math/vector3.h b/core/math/vector3.h index e65ac31c02..dc9aa60458 100644 --- a/core/math/vector3.h +++ b/core/math/vector3.h @@ -32,9 +32,9 @@ #define VECTOR3_H #include "core/math/math_funcs.h" +#include "core/math/vector2.h" #include "core/math/vector3i.h" #include "core/string/ustring.h" - class Basis; struct Vector3 { @@ -103,6 +103,31 @@ struct Vector3 { Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const; Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const; + _FORCE_INLINE_ Vector2 octahedron_encode() const { + Vector3 n = *this; + n /= Math::abs(n.x) + Math::abs(n.y) + Math::abs(n.z); + Vector2 o; + if (n.z >= 0.0) { + o.x = n.x; + o.y = n.y; + } else { + o.x = (1.0 - Math::abs(n.y)) * (n.x >= 0.0 ? 1.0 : -1.0); + o.y = (1.0 - Math::abs(n.x)) * (n.y >= 0.0 ? 1.0 : -1.0); + } + o.x = o.x * 0.5 + 0.5; + o.y = o.y * 0.5 + 0.5; + return o; + } + + static _FORCE_INLINE_ Vector3 octahedron_decode(const Vector2 &p_oct) { + Vector2 f(p_oct.x * 2.0 - 1.0, p_oct.y * 2.0 - 1.0); + Vector3 n(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y)); + float t = CLAMP(-n.z, 0.0, 1.0); + n.x += n.x >= 0 ? -t : t; + n.y += n.y >= 0 ? -t : t; + return n.normalized(); + } + _FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const; _FORCE_INLINE_ real_t dot(const Vector3 &p_b) const; Basis outer(const Vector3 &p_b) const; |