summaryrefslogtreecommitdiff
path: root/core/math
diff options
context:
space:
mode:
Diffstat (limited to 'core/math')
-rw-r--r--core/math/basis.cpp508
-rw-r--r--core/math/basis.h42
-rw-r--r--core/math/bvh.h2
-rw-r--r--core/math/convex_hull.cpp2
-rw-r--r--core/math/face3.cpp2
-rw-r--r--core/math/geometry_2d.h2
-rw-r--r--core/math/geometry_3d.cpp16
-rw-r--r--core/math/geometry_3d.h2
-rw-r--r--core/math/plane.h6
-rw-r--r--core/math/quaternion.cpp13
-rw-r--r--core/math/quaternion.h3
-rw-r--r--core/math/vector3.h27
12 files changed, 279 insertions, 346 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index a7f89522d7..0030cb1144 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -354,7 +354,7 @@ void Basis::rotate(const Quaternion &p_quaternion) {
*this = rotated(p_quaternion);
}
-Vector3 Basis::get_rotation_euler() const {
+Vector3 Basis::get_euler_normalized(EulerOrder p_order) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
@@ -365,7 +365,7 @@ Vector3 Basis::get_rotation_euler() const {
m.scale(Vector3(-1, -1, -1));
}
- return m.get_euler();
+ return m.get_euler(p_order);
}
Quaternion Basis::get_rotation_quaternion() const {
@@ -424,218 +424,203 @@ void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) cons
p_angle = -p_angle;
}
-// get_euler_xyz returns a vector containing the Euler angles in the format
-// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
-// (following the convention they are commonly defined in the literature).
-//
-// The current implementation uses XYZ convention (Z is the first rotation),
-// so euler.z is the angle of the (first) rotation around Z axis and so on,
-//
-// And thus, assuming the matrix is a rotation matrix, this function returns
-// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
-// around the z-axis by a and so on.
-Vector3 Basis::get_euler_xyz() const {
- // Euler angles in XYZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz -cy*sz sy
- // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
-
- Vector3 euler;
- real_t sy = elements[0][2];
- if (sy < (1.0 - CMP_EPSILON)) {
- if (sy > -(1.0 - CMP_EPSILON)) {
- // is this a pure Y rotation?
- if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = 0;
- euler.y = atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
+Vector3 Basis::get_euler(EulerOrder p_order) const {
+ switch (p_order) {
+ case EULER_ORDER_XYZ: {
+ // Euler angles in XYZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz -cy*sz sy
+ // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
+ // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
+
+ Vector3 euler;
+ real_t sy = elements[0][2];
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
+ // is this a pure Y rotation?
+ if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = 0;
+ euler.y = atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ } else {
+ euler.x = Math::atan2(-elements[1][2], elements[2][2]);
+ euler.y = Math::asin(sy);
+ euler.z = Math::atan2(-elements[0][1], elements[0][0]);
+ }
+ } else {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = -Math_PI / 2.0;
+ euler.z = 0.0;
+ }
} else {
- euler.x = Math::atan2(-elements[1][2], elements[2][2]);
- euler.y = Math::asin(sy);
- euler.z = Math::atan2(-elements[0][1], elements[0][0]);
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = Math_PI / 2.0;
+ euler.z = 0.0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_XZY: {
+ // Euler angles in XZY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy -sz cz*sy
+ // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
+ // cy*sx*sz cz*sx cx*cy+sx*sz*sy
+
+ Vector3 euler;
+ real_t sz = elements[0][1];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[1][1]);
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = Math::asin(-sz);
+ } else {
+ // It's -1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = -Math::atan2(elements[1][2], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_YXZ: {
+ // Euler angles in YXZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
+ // cx*sz cx*cz -sx
+ // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
+
+ Vector3 euler;
+
+ real_t m12 = elements[1][2];
+
+ if (m12 < (1 - CMP_EPSILON)) {
+ if (m12 > -(1 - CMP_EPSILON)) {
+ // is this a pure X rotation?
+ if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = atan2(-m12, elements[1][1]);
+ euler.y = 0;
+ euler.z = 0;
+ } else {
+ euler.x = asin(-m12);
+ euler.y = atan2(elements[0][2], elements[2][2]);
+ euler.z = atan2(elements[1][0], elements[1][1]);
+ }
+ } else { // m12 == -1
+ euler.x = Math_PI * 0.5;
+ euler.y = atan2(elements[0][1], elements[0][0]);
+ euler.z = 0;
+ }
+ } else { // m12 == 1
+ euler.x = -Math_PI * 0.5;
+ euler.y = -atan2(elements[0][1], elements[0][0]);
+ euler.z = 0;
}
- } else {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = -Math_PI / 2.0;
- euler.z = 0.0;
- }
- } else {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = Math_PI / 2.0;
- euler.z = 0.0;
- }
- return euler;
-}
-
-// set_euler_xyz expects a vector containing the Euler angles in the format
-// (ax,ay,az), where ax is the angle of rotation around x axis,
-// and similar for other axes.
-// The current implementation uses XYZ convention (Z is the first rotation).
-void Basis::set_euler_xyz(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- //optimizer will optimize away all this anyway
- *this = xmat * (ymat * zmat);
-}
-
-Vector3 Basis::get_euler_xzy() const {
- // Euler angles in XZY convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy -sz cz*sy
- // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
- // cy*sx*sz cz*sx cx*cy+sx*sz*sy
-
- Vector3 euler;
- real_t sz = elements[0][1];
- if (sz < (1.0 - CMP_EPSILON)) {
- if (sz > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::atan2(elements[2][1], elements[1][1]);
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
- euler.z = Math::asin(-sz);
- } else {
- // It's -1
- euler.x = -Math::atan2(elements[1][2], elements[2][2]);
- euler.y = 0.0;
- euler.z = Math_PI / 2.0;
- }
- } else {
- // It's 1
- euler.x = -Math::atan2(elements[1][2], elements[2][2]);
- euler.y = 0.0;
- euler.z = -Math_PI / 2.0;
- }
- return euler;
-}
-
-void Basis::set_euler_xzy(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = xmat * zmat * ymat;
-}
-
-Vector3 Basis::get_euler_yzx() const {
- // Euler angles in YZX convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
- // sz cz*cx -cz*sx
- // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
-
- Vector3 euler;
- real_t sz = elements[1][0];
- if (sz < (1.0 - CMP_EPSILON)) {
- if (sz > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::atan2(-elements[1][2], elements[1][1]);
- euler.y = Math::atan2(-elements[2][0], elements[0][0]);
- euler.z = Math::asin(sz);
- } else {
- // It's -1
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
- euler.y = 0.0;
- euler.z = -Math_PI / 2.0;
- }
- } else {
- // It's 1
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
- euler.y = 0.0;
- euler.z = Math_PI / 2.0;
- }
- return euler;
-}
-
-void Basis::set_euler_yzx(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = ymat * zmat * xmat;
-}
-
-// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
-// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
-// as the x, y, and z components of a Vector3 respectively.
-Vector3 Basis::get_euler_yxz() const {
- // Euler angles in YXZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
- // cx*sz cx*cz -sx
- // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
-
- Vector3 euler;
-
- real_t m12 = elements[1][2];
- if (m12 < (1 - CMP_EPSILON)) {
- if (m12 > -(1 - CMP_EPSILON)) {
- // is this a pure X rotation?
- if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = atan2(-m12, elements[1][1]);
- euler.y = 0;
+ return euler;
+ } break;
+ case EULER_ORDER_YZX: {
+ // Euler angles in YZX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
+ // sz cz*cx -cz*sx
+ // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
+
+ Vector3 euler;
+ real_t sz = elements[1][0];
+ if (sz < (1.0 - CMP_EPSILON)) {
+ if (sz > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(-elements[1][2], elements[1][1]);
+ euler.y = Math::atan2(-elements[2][0], elements[0][0]);
+ euler.z = Math::asin(sz);
+ } else {
+ // It's -1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = -Math_PI / 2.0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = 0.0;
+ euler.z = Math_PI / 2.0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_ZXY: {
+ // Euler angles in ZXY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
+ // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
+ // -cx*sy sx cx*cy
+ Vector3 euler;
+ real_t sx = elements[2][1];
+ if (sx < (1.0 - CMP_EPSILON)) {
+ if (sx > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::asin(sx);
+ euler.y = Math::atan2(-elements[2][0], elements[2][2]);
+ euler.z = Math::atan2(-elements[0][1], elements[1][1]);
+ } else {
+ // It's -1
+ euler.x = -Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
+ euler.z = 0;
+ }
+ } else {
+ // It's 1
+ euler.x = Math_PI / 2.0;
+ euler.y = Math::atan2(elements[0][2], elements[0][0]);
euler.z = 0;
+ }
+ return euler;
+ } break;
+ case EULER_ORDER_ZYX: {
+ // Euler angles in ZYX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
+ // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
+ // -sy cy*sx cy*cx
+ Vector3 euler;
+ real_t sy = elements[2][0];
+ if (sy < (1.0 - CMP_EPSILON)) {
+ if (sy > -(1.0 - CMP_EPSILON)) {
+ euler.x = Math::atan2(elements[2][1], elements[2][2]);
+ euler.y = Math::asin(-sy);
+ euler.z = Math::atan2(elements[1][0], elements[0][0]);
+ } else {
+ // It's -1
+ euler.x = 0;
+ euler.y = Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
+ }
} else {
- euler.x = asin(-m12);
- euler.y = atan2(elements[0][2], elements[2][2]);
- euler.z = atan2(elements[1][0], elements[1][1]);
+ // It's 1
+ euler.x = 0;
+ euler.y = -Math_PI / 2.0;
+ euler.z = -Math::atan2(elements[0][1], elements[1][1]);
}
- } else { // m12 == -1
- euler.x = Math_PI * 0.5;
- euler.y = atan2(elements[0][1], elements[0][0]);
- euler.z = 0;
+ return euler;
+ } break;
+ default: {
+ ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)");
}
- } else { // m12 == 1
- euler.x = -Math_PI * 0.5;
- euler.y = -atan2(elements[0][1], elements[0][0]);
- euler.z = 0;
}
-
- return euler;
+ return Vector3();
}
-// set_euler_yxz expects a vector containing the Euler angles in the format
-// (ax,ay,az), where ax is the angle of rotation around x axis,
-// and similar for other axes.
-// The current implementation uses YXZ convention (Z is the first rotation).
-void Basis::set_euler_yxz(const Vector3 &p_euler) {
+void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) {
real_t c, s;
c = Math::cos(p_euler.x);
@@ -650,102 +635,29 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) {
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
- //optimizer will optimize away all this anyway
- *this = ymat * xmat * zmat;
-}
-
-Vector3 Basis::get_euler_zxy() const {
- // Euler angles in ZXY convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
- // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
- // -cx*sy sx cx*cy
- Vector3 euler;
- real_t sx = elements[2][1];
- if (sx < (1.0 - CMP_EPSILON)) {
- if (sx > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::asin(sx);
- euler.y = Math::atan2(-elements[2][0], elements[2][2]);
- euler.z = Math::atan2(-elements[0][1], elements[1][1]);
- } else {
- // It's -1
- euler.x = -Math_PI / 2.0;
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
+ switch (p_order) {
+ case EULER_ORDER_XYZ: {
+ *this = xmat * (ymat * zmat);
+ } break;
+ case EULER_ORDER_XZY: {
+ *this = xmat * zmat * ymat;
+ } break;
+ case EULER_ORDER_YXZ: {
+ *this = ymat * xmat * zmat;
+ } break;
+ case EULER_ORDER_YZX: {
+ *this = ymat * zmat * xmat;
+ } break;
+ case EULER_ORDER_ZXY: {
+ *this = zmat * xmat * ymat;
+ } break;
+ case EULER_ORDER_ZYX: {
+ *this = zmat * ymat * xmat;
+ } break;
+ default: {
+ ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)");
}
- } else {
- // It's 1
- euler.x = Math_PI / 2.0;
- euler.y = Math::atan2(elements[0][2], elements[0][0]);
- euler.z = 0;
}
- return euler;
-}
-
-void Basis::set_euler_zxy(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = zmat * xmat * ymat;
-}
-
-Vector3 Basis::get_euler_zyx() const {
- // Euler angles in ZYX convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
- // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
- // -sy cy*sx cy*cx
- Vector3 euler;
- real_t sy = elements[2][0];
- if (sy < (1.0 - CMP_EPSILON)) {
- if (sy > -(1.0 - CMP_EPSILON)) {
- euler.x = Math::atan2(elements[2][1], elements[2][2]);
- euler.y = Math::asin(-sy);
- euler.z = Math::atan2(elements[1][0], elements[0][0]);
- } else {
- // It's -1
- euler.x = 0;
- euler.y = Math_PI / 2.0;
- euler.z = -Math::atan2(elements[0][1], elements[1][1]);
- }
- } else {
- // It's 1
- euler.x = 0;
- euler.y = -Math_PI / 2.0;
- euler.z = -Math::atan2(elements[0][1], elements[1][1]);
- }
- return euler;
-}
-
-void Basis::set_euler_zyx(const Vector3 &p_euler) {
- real_t c, s;
-
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
-
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
-
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
-
- *this = zmat * ymat * xmat;
}
bool Basis::is_equal_approx(const Basis &p_basis) const {
diff --git a/core/math/basis.h b/core/math/basis.h
index eb107d7e4e..617d005f19 100644
--- a/core/math/basis.h
+++ b/core/math/basis.h
@@ -85,40 +85,35 @@ public:
void rotate(const Quaternion &p_quaternion);
Basis rotated(const Quaternion &p_quaternion) const;
- Vector3 get_rotation_euler() const;
+ enum EulerOrder {
+ EULER_ORDER_XYZ,
+ EULER_ORDER_XZY,
+ EULER_ORDER_YXZ,
+ EULER_ORDER_YZX,
+ EULER_ORDER_ZXY,
+ EULER_ORDER_ZYX
+ };
+
+ Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const;
void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
Quaternion get_rotation_quaternion() const;
- Vector3 get_rotation() const { return get_rotation_euler(); };
void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction);
Vector3 rotref_posscale_decomposition(Basis &rotref) const;
- Vector3 get_euler_xyz() const;
- void set_euler_xyz(const Vector3 &p_euler);
-
- Vector3 get_euler_xzy() const;
- void set_euler_xzy(const Vector3 &p_euler);
-
- Vector3 get_euler_yzx() const;
- void set_euler_yzx(const Vector3 &p_euler);
-
- Vector3 get_euler_yxz() const;
- void set_euler_yxz(const Vector3 &p_euler);
-
- Vector3 get_euler_zxy() const;
- void set_euler_zxy(const Vector3 &p_euler);
-
- Vector3 get_euler_zyx() const;
- void set_euler_zyx(const Vector3 &p_euler);
+ Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const;
+ void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ);
+ static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) {
+ Basis b;
+ b.set_euler(p_euler, p_order);
+ return b;
+ }
Quaternion get_quaternion() const;
void set_quaternion(const Quaternion &p_quaternion);
- Vector3 get_euler() const { return get_euler_yxz(); }
- void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
-
void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
void set_axis_angle(const Vector3 &p_axis, real_t p_phi);
@@ -250,9 +245,6 @@ public:
Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
- Basis(const Vector3 &p_euler) { set_euler(p_euler); }
- Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); }
-
Basis(const Vector3 &p_axis, real_t p_phi) { set_axis_angle(p_axis, p_phi); }
Basis(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_phi, p_scale); }
static Basis from_scale(const Vector3 &p_scale);
diff --git a/core/math/bvh.h b/core/math/bvh.h
index cefbc9b0db..65b8b102a3 100644
--- a/core/math/bvh.h
+++ b/core/math/bvh.h
@@ -200,7 +200,7 @@ public:
// use in conjunction with activate if you have deferred the collision check, and
// set pairable has never been called.
- // (deferred collision checks are a workaround for visual server for historical reasons)
+ // (deferred collision checks are a workaround for rendering server for historical reasons)
void force_collision_check(BVHHandle p_handle) {
if (USE_PAIRS) {
// the aabb should already be up to date in the BVH
diff --git a/core/math/convex_hull.cpp b/core/math/convex_hull.cpp
index f67035c803..684814b1ae 100644
--- a/core/math/convex_hull.cpp
+++ b/core/math/convex_hull.cpp
@@ -594,8 +594,6 @@ private:
IntermediateHull() {
}
-
- void print();
};
enum Orientation { NONE,
diff --git a/core/math/face3.cpp b/core/math/face3.cpp
index 045ab67ce8..31a853e1a9 100644
--- a/core/math/face3.cpp
+++ b/core/math/face3.cpp
@@ -229,7 +229,7 @@ bool Face3::intersects_aabb(const AABB &p_aabb) const {
axis.normalize();
real_t minA, maxA, minB, maxB;
- p_aabb.project_range_in_plane(Plane(axis, 0), minA, maxA);
+ p_aabb.project_range_in_plane(Plane(axis), minA, maxA);
project_range(axis, Transform3D(), minB, maxB);
if (maxA < minB || maxB < minA) {
diff --git a/core/math/geometry_2d.h b/core/math/geometry_2d.h
index 8e5830f9b3..6010159597 100644
--- a/core/math/geometry_2d.h
+++ b/core/math/geometry_2d.h
@@ -37,8 +37,6 @@
#include "core/templates/vector.h"
class Geometry2D {
- Geometry2D();
-
public:
static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) {
Vector2 d1 = q1 - p1; // Direction vector of segment S1.
diff --git a/core/math/geometry_3d.cpp b/core/math/geometry_3d.cpp
index 6628b760e0..88d2656025 100644
--- a/core/math/geometry_3d.cpp
+++ b/core/math/geometry_3d.cpp
@@ -819,11 +819,9 @@ Vector<Plane> Geometry3D::build_sphere_planes(real_t p_radius, int p_lats, int p
planes.push_back(Plane(normal, p_radius));
for (int j = 1; j <= p_lats; j++) {
- // FIXME: This is stupid.
- Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized();
- Vector3 pos = angle * p_radius;
- planes.push_back(Plane(pos, angle));
- planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
+ Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized();
+ planes.push_back(Plane(plane_normal, p_radius));
+ planes.push_back(Plane(plane_normal * axis_neg, p_radius));
}
}
@@ -852,10 +850,10 @@ Vector<Plane> Geometry3D::build_capsule_planes(real_t p_radius, real_t p_height,
planes.push_back(Plane(normal, p_radius));
for (int j = 1; j <= p_lats; j++) {
- Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized();
- Vector3 pos = axis * p_height * 0.5 + angle * p_radius;
- planes.push_back(Plane(pos, angle));
- planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
+ Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized();
+ Vector3 position = axis * p_height * 0.5 + plane_normal * p_radius;
+ planes.push_back(Plane(plane_normal, position));
+ planes.push_back(Plane(plane_normal * axis_neg, position * axis_neg));
}
}
diff --git a/core/math/geometry_3d.h b/core/math/geometry_3d.h
index 766689e222..6a59b34585 100644
--- a/core/math/geometry_3d.h
+++ b/core/math/geometry_3d.h
@@ -36,8 +36,6 @@
#include "core/templates/vector.h"
class Geometry3D {
- Geometry3D();
-
public:
static void get_closest_points_between_segments(const Vector3 &p1, const Vector3 &p2, const Vector3 &q1, const Vector3 &q2, Vector3 &c1, Vector3 &c2) {
// Do the function 'd' as defined by pb. I think it's a dot product of some sort.
diff --git a/core/math/plane.h b/core/math/plane.h
index 2267b28c53..18be5d5d12 100644
--- a/core/math/plane.h
+++ b/core/math/plane.h
@@ -85,8 +85,8 @@ public:
normal(p_a, p_b, p_c),
d(p_d) {}
- _FORCE_INLINE_ Plane(const Vector3 &p_normal, real_t p_d);
- _FORCE_INLINE_ Plane(const Vector3 &p_point, const Vector3 &p_normal);
+ _FORCE_INLINE_ Plane(const Vector3 &p_normal, real_t p_d = 0.0);
+ _FORCE_INLINE_ Plane(const Vector3 &p_normal, const Vector3 &p_point);
_FORCE_INLINE_ Plane(const Vector3 &p_point1, const Vector3 &p_point2, const Vector3 &p_point3, ClockDirection p_dir = CLOCKWISE);
};
@@ -109,7 +109,7 @@ Plane::Plane(const Vector3 &p_normal, real_t p_d) :
d(p_d) {
}
-Plane::Plane(const Vector3 &p_point, const Vector3 &p_normal) :
+Plane::Plane(const Vector3 &p_normal, const Vector3 &p_point) :
normal(p_normal),
d(p_normal.dot(p_point)) {
}
diff --git a/core/math/quaternion.cpp b/core/math/quaternion.cpp
index 3f1d2c58e5..944474686a 100644
--- a/core/math/quaternion.cpp
+++ b/core/math/quaternion.cpp
@@ -44,7 +44,7 @@ real_t Quaternion::angle_to(const Quaternion &p_to) const {
// This implementation uses XYZ convention (Z is the first rotation).
Vector3 Quaternion::get_euler_xyz() const {
Basis m(*this);
- return m.get_euler_xyz();
+ return m.get_euler(Basis::EULER_ORDER_XYZ);
}
// get_euler_yxz returns a vector containing the Euler angles in the format
@@ -56,7 +56,7 @@ Vector3 Quaternion::get_euler_yxz() const {
ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
#endif
Basis m(*this);
- return m.get_euler_yxz();
+ return m.get_euler(Basis::EULER_ORDER_YXZ);
}
void Quaternion::operator*=(const Quaternion &p_q) {
@@ -189,6 +189,15 @@ Quaternion::operator String() const {
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")";
}
+Vector3 Quaternion::get_axis() const {
+ real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
+ return Vector3(x * r, y * r, z * r);
+}
+
+float Quaternion::get_angle() const {
+ return 2 * Math::acos(w);
+}
+
Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
#ifdef MATH_CHECKS
ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
diff --git a/core/math/quaternion.h b/core/math/quaternion.h
index 35324323b3..e20ea74eb4 100644
--- a/core/math/quaternion.h
+++ b/core/math/quaternion.h
@@ -72,6 +72,9 @@ public:
Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const;
Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
+ Vector3 get_axis() const;
+ float get_angle() const;
+
_FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
r_angle = 2 * Math::acos(w);
real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
diff --git a/core/math/vector3.h b/core/math/vector3.h
index e65ac31c02..dc9aa60458 100644
--- a/core/math/vector3.h
+++ b/core/math/vector3.h
@@ -32,9 +32,9 @@
#define VECTOR3_H
#include "core/math/math_funcs.h"
+#include "core/math/vector2.h"
#include "core/math/vector3i.h"
#include "core/string/ustring.h"
-
class Basis;
struct Vector3 {
@@ -103,6 +103,31 @@ struct Vector3 {
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
+ _FORCE_INLINE_ Vector2 octahedron_encode() const {
+ Vector3 n = *this;
+ n /= Math::abs(n.x) + Math::abs(n.y) + Math::abs(n.z);
+ Vector2 o;
+ if (n.z >= 0.0) {
+ o.x = n.x;
+ o.y = n.y;
+ } else {
+ o.x = (1.0 - Math::abs(n.y)) * (n.x >= 0.0 ? 1.0 : -1.0);
+ o.y = (1.0 - Math::abs(n.x)) * (n.y >= 0.0 ? 1.0 : -1.0);
+ }
+ o.x = o.x * 0.5 + 0.5;
+ o.y = o.y * 0.5 + 0.5;
+ return o;
+ }
+
+ static _FORCE_INLINE_ Vector3 octahedron_decode(const Vector2 &p_oct) {
+ Vector2 f(p_oct.x * 2.0 - 1.0, p_oct.y * 2.0 - 1.0);
+ Vector3 n(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y));
+ float t = CLAMP(-n.z, 0.0, 1.0);
+ n.x += n.x >= 0 ? -t : t;
+ n.y += n.y >= 0 ? -t : t;
+ return n.normalized();
+ }
+
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
_FORCE_INLINE_ real_t dot(const Vector3 &p_b) const;
Basis outer(const Vector3 &p_b) const;