summaryrefslogtreecommitdiff
path: root/core/math
diff options
context:
space:
mode:
Diffstat (limited to 'core/math')
-rw-r--r--core/math/a_star.cpp6
-rw-r--r--core/math/a_star.h4
-rw-r--r--core/math/a_star_grid_2d.cpp589
-rw-r--r--core/math/a_star_grid_2d.h178
-rw-r--r--core/math/aabb.cpp7
-rw-r--r--core/math/aabb.h12
-rw-r--r--core/math/audio_frame.h2
-rw-r--r--core/math/basis.cpp128
-rw-r--r--core/math/basis.h10
-rw-r--r--core/math/bvh.h2
-rw-r--r--core/math/bvh_abb.h8
-rw-r--r--core/math/bvh_public.inc6
-rw-r--r--core/math/bvh_split.inc4
-rw-r--r--core/math/bvh_structs.inc4
-rw-r--r--core/math/bvh_tree.h3
-rw-r--r--core/math/color.cpp80
-rw-r--r--core/math/color.h31
-rw-r--r--core/math/convex_hull.h6
-rw-r--r--core/math/delaunay_3d.h37
-rw-r--r--core/math/expression.cpp54
-rw-r--r--core/math/geometry_3d.cpp107
-rw-r--r--core/math/geometry_3d.h92
-rw-r--r--core/math/math_fieldwise.cpp75
-rw-r--r--core/math/math_funcs.h138
-rw-r--r--core/math/plane.cpp6
-rw-r--r--core/math/plane.h7
-rw-r--r--core/math/projection.cpp (renamed from core/math/camera_matrix.cpp)463
-rw-r--r--core/math/projection.h (renamed from core/math/camera_matrix.h)76
-rw-r--r--core/math/quaternion.cpp126
-rw-r--r--core/math/quaternion.h13
-rw-r--r--core/math/rect2.cpp4
-rw-r--r--core/math/rect2.h17
-rw-r--r--core/math/rect2i.h6
-rw-r--r--core/math/transform_2d.cpp46
-rw-r--r--core/math/transform_2d.h10
-rw-r--r--core/math/transform_3d.cpp61
-rw-r--r--core/math/transform_3d.h10
-rw-r--r--core/math/triangle_mesh.cpp18
-rw-r--r--core/math/vector2.cpp8
-rw-r--r--core/math/vector2.h14
-rw-r--r--core/math/vector2i.h4
-rw-r--r--core/math/vector3.cpp44
-rw-r--r--core/math/vector3.h31
-rw-r--r--core/math/vector3i.cpp10
-rw-r--r--core/math/vector3i.h7
-rw-r--r--core/math/vector4.cpp195
-rw-r--r--core/math/vector4.h299
-rw-r--r--core/math/vector4i.cpp83
-rw-r--r--core/math/vector4i.h337
49 files changed, 2841 insertions, 637 deletions
diff --git a/core/math/a_star.cpp b/core/math/a_star.cpp
index 41a0848d01..b4281820e2 100644
--- a/core/math/a_star.cpp
+++ b/core/math/a_star.cpp
@@ -209,8 +209,8 @@ bool AStar3D::has_point(int64_t p_id) const {
return points.has(p_id);
}
-Array AStar3D::get_point_ids() {
- Array point_list;
+PackedInt64Array AStar3D::get_point_ids() {
+ PackedInt64Array point_list;
for (OAHashMap<int64_t, Point *>::Iterator it = points.iter(); it.valid; it = points.next_iter(it)) {
point_list.push_back(*(it.key));
@@ -605,7 +605,7 @@ Vector<int64_t> AStar2D::get_point_connections(int64_t p_id) {
return astar.get_point_connections(p_id);
}
-Array AStar2D::get_point_ids() {
+PackedInt64Array AStar2D::get_point_ids() {
return astar.get_point_ids();
}
diff --git a/core/math/a_star.h b/core/math/a_star.h
index c1497d133f..a9e2a62bb2 100644
--- a/core/math/a_star.h
+++ b/core/math/a_star.h
@@ -133,7 +133,7 @@ public:
void remove_point(int64_t p_id);
bool has_point(int64_t p_id) const;
Vector<int64_t> get_point_connections(int64_t p_id);
- Array get_point_ids();
+ PackedInt64Array get_point_ids();
void set_point_disabled(int64_t p_id, bool p_disabled = true);
bool is_point_disabled(int64_t p_id) const;
@@ -183,7 +183,7 @@ public:
void remove_point(int64_t p_id);
bool has_point(int64_t p_id) const;
Vector<int64_t> get_point_connections(int64_t p_id);
- Array get_point_ids();
+ PackedInt64Array get_point_ids();
void set_point_disabled(int64_t p_id, bool p_disabled = true);
bool is_point_disabled(int64_t p_id) const;
diff --git a/core/math/a_star_grid_2d.cpp b/core/math/a_star_grid_2d.cpp
new file mode 100644
index 0000000000..c30acf32bb
--- /dev/null
+++ b/core/math/a_star_grid_2d.cpp
@@ -0,0 +1,589 @@
+/*************************************************************************/
+/* a_star_grid_2d.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "a_star_grid_2d.h"
+
+#include "core/variant/typed_array.h"
+
+static real_t heuristic_euclidian(const Vector2i &p_from, const Vector2i &p_to) {
+ real_t dx = (real_t)ABS(p_to.x - p_from.x);
+ real_t dy = (real_t)ABS(p_to.y - p_from.y);
+ return (real_t)Math::sqrt(dx * dx + dy * dy);
+}
+
+static real_t heuristic_manhattan(const Vector2i &p_from, const Vector2i &p_to) {
+ real_t dx = (real_t)ABS(p_to.x - p_from.x);
+ real_t dy = (real_t)ABS(p_to.y - p_from.y);
+ return dx + dy;
+}
+
+static real_t heuristic_octile(const Vector2i &p_from, const Vector2i &p_to) {
+ real_t dx = (real_t)ABS(p_to.x - p_from.x);
+ real_t dy = (real_t)ABS(p_to.y - p_from.y);
+ real_t F = Math_SQRT2 - 1;
+ return (dx < dy) ? F * dx + dy : F * dy + dx;
+}
+
+static real_t heuristic_chebyshev(const Vector2i &p_from, const Vector2i &p_to) {
+ real_t dx = (real_t)ABS(p_to.x - p_from.x);
+ real_t dy = (real_t)ABS(p_to.y - p_from.y);
+ return MAX(dx, dy);
+}
+
+static real_t (*heuristics[AStarGrid2D::HEURISTIC_MAX])(const Vector2i &, const Vector2i &) = { heuristic_euclidian, heuristic_manhattan, heuristic_octile, heuristic_chebyshev };
+
+void AStarGrid2D::set_size(const Size2i &p_size) {
+ ERR_FAIL_COND(p_size.x < 0 || p_size.y < 0);
+ if (p_size != size) {
+ size = p_size;
+ dirty = true;
+ }
+}
+
+Size2i AStarGrid2D::get_size() const {
+ return size;
+}
+
+void AStarGrid2D::set_offset(const Vector2 &p_offset) {
+ if (!offset.is_equal_approx(p_offset)) {
+ offset = p_offset;
+ dirty = true;
+ }
+}
+
+Vector2 AStarGrid2D::get_offset() const {
+ return offset;
+}
+
+void AStarGrid2D::set_cell_size(const Size2 &p_cell_size) {
+ if (!cell_size.is_equal_approx(p_cell_size)) {
+ cell_size = p_cell_size;
+ dirty = true;
+ }
+}
+
+Size2 AStarGrid2D::get_cell_size() const {
+ return cell_size;
+}
+
+void AStarGrid2D::update() {
+ points.clear();
+ for (int64_t y = 0; y < size.y; y++) {
+ LocalVector<Point> line;
+ for (int64_t x = 0; x < size.x; x++) {
+ line.push_back(Point(Vector2i(x, y), offset + Vector2(x, y) * cell_size));
+ }
+ points.push_back(line);
+ }
+ dirty = false;
+}
+
+bool AStarGrid2D::is_in_bounds(int p_x, int p_y) const {
+ return p_x >= 0 && p_x < size.width && p_y >= 0 && p_y < size.height;
+}
+
+bool AStarGrid2D::is_in_boundsv(const Vector2i &p_id) const {
+ return p_id.x >= 0 && p_id.x < size.width && p_id.y >= 0 && p_id.y < size.height;
+}
+
+bool AStarGrid2D::is_dirty() const {
+ return dirty;
+}
+
+void AStarGrid2D::set_jumping_enabled(bool p_enabled) {
+ jumping_enabled = p_enabled;
+}
+
+bool AStarGrid2D::is_jumping_enabled() const {
+ return jumping_enabled;
+}
+
+void AStarGrid2D::set_diagonal_mode(DiagonalMode p_diagonal_mode) {
+ ERR_FAIL_INDEX((int)p_diagonal_mode, (int)DIAGONAL_MODE_MAX);
+ diagonal_mode = p_diagonal_mode;
+}
+
+AStarGrid2D::DiagonalMode AStarGrid2D::get_diagonal_mode() const {
+ return diagonal_mode;
+}
+
+void AStarGrid2D::set_default_heuristic(Heuristic p_heuristic) {
+ ERR_FAIL_INDEX((int)p_heuristic, (int)HEURISTIC_MAX);
+ default_heuristic = p_heuristic;
+}
+
+AStarGrid2D::Heuristic AStarGrid2D::get_default_heuristic() const {
+ return default_heuristic;
+}
+
+void AStarGrid2D::set_point_solid(const Vector2i &p_id, bool p_solid) {
+ ERR_FAIL_COND_MSG(dirty, "Grid is not initialized. Call the update method.");
+ ERR_FAIL_COND_MSG(!is_in_boundsv(p_id), vformat("Can't set if point is disabled. Point out of bounds (%s/%s, %s/%s).", p_id.x, size.width, p_id.y, size.height));
+ points[p_id.y][p_id.x].solid = p_solid;
+}
+
+bool AStarGrid2D::is_point_solid(const Vector2i &p_id) const {
+ ERR_FAIL_COND_V_MSG(dirty, false, "Grid is not initialized. Call the update method.");
+ ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_id), false, vformat("Can't get if point is disabled. Point out of bounds (%s/%s, %s/%s).", p_id.x, size.width, p_id.y, size.height));
+ return points[p_id.y][p_id.x].solid;
+}
+
+AStarGrid2D::Point *AStarGrid2D::_jump(Point *p_from, Point *p_to) {
+ if (!p_to || p_to->solid) {
+ return nullptr;
+ }
+ if (p_to == end) {
+ return p_to;
+ }
+
+ int64_t from_x = p_from->id.x;
+ int64_t from_y = p_from->id.y;
+
+ int64_t to_x = p_to->id.x;
+ int64_t to_y = p_to->id.y;
+
+ int64_t dx = to_x - from_x;
+ int64_t dy = to_y - from_y;
+
+ if (diagonal_mode == DIAGONAL_MODE_ALWAYS || diagonal_mode == DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE) {
+ if (dx != 0 && dy != 0) {
+ if ((_is_walkable(to_x - dx, to_y + dy) && !_is_walkable(to_x - dx, to_y)) || (_is_walkable(to_x + dx, to_y - dy) && !_is_walkable(to_x, to_y - dy))) {
+ return p_to;
+ }
+ if (_jump(p_to, _get_point(to_x + dx, to_y)) != nullptr) {
+ return p_to;
+ }
+ if (_jump(p_to, _get_point(to_x, to_y + dy)) != nullptr) {
+ return p_to;
+ }
+ } else {
+ if (dx != 0) {
+ if ((_is_walkable(to_x + dx, to_y + 1) && !_is_walkable(to_x, to_y + 1)) || (_is_walkable(to_x + dx, to_y - 1) && !_is_walkable(to_x, to_y - 1))) {
+ return p_to;
+ }
+ } else {
+ if ((_is_walkable(to_x + 1, to_y + dy) && !_is_walkable(to_x + 1, to_y)) || (_is_walkable(to_x - 1, to_y + dy) && !_is_walkable(to_x - 1, to_y))) {
+ return p_to;
+ }
+ }
+ }
+ if (_is_walkable(to_x + dx, to_y + dy) && (diagonal_mode == DIAGONAL_MODE_ALWAYS || (_is_walkable(to_x + dx, to_y) || _is_walkable(to_x, to_y + dy)))) {
+ return _jump(p_to, _get_point(to_x + dx, to_y + dy));
+ }
+ } else if (diagonal_mode == DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES) {
+ if (dx != 0 && dy != 0) {
+ if ((_is_walkable(to_x + dx, to_y + dy) && !_is_walkable(to_x, to_y + dy)) || !_is_walkable(to_x + dx, to_y)) {
+ return p_to;
+ }
+ if (_jump(p_to, _get_point(to_x + dx, to_y)) != nullptr) {
+ return p_to;
+ }
+ if (_jump(p_to, _get_point(to_x, to_y + dy)) != nullptr) {
+ return p_to;
+ }
+ } else {
+ if (dx != 0) {
+ if ((_is_walkable(to_x, to_y + 1) && !_is_walkable(to_x - dx, to_y + 1)) || (_is_walkable(to_x, to_y - 1) && !_is_walkable(to_x - dx, to_y - 1))) {
+ return p_to;
+ }
+ } else {
+ if ((_is_walkable(to_x + 1, to_y) && !_is_walkable(to_x + 1, to_y - dy)) || (_is_walkable(to_x - 1, to_y) && !_is_walkable(to_x - 1, to_y - dy))) {
+ return p_to;
+ }
+ }
+ }
+ if (_is_walkable(to_x + dx, to_y + dy) && _is_walkable(to_x + dx, to_y) && _is_walkable(to_x, to_y + dy)) {
+ return _jump(p_to, _get_point(to_x + dx, to_y + dy));
+ }
+ } else { // DIAGONAL_MODE_NEVER
+ if (dx != 0) {
+ if (!_is_walkable(to_x + dx, to_y)) {
+ return p_to;
+ }
+ if (_jump(p_to, _get_point(to_x, to_y + 1)) != nullptr) {
+ return p_to;
+ }
+ if (_jump(p_to, _get_point(to_x, to_y - 1)) != nullptr) {
+ return p_to;
+ }
+ } else {
+ if (!_is_walkable(to_x, to_y + dy)) {
+ return p_to;
+ }
+ if (_jump(p_to, _get_point(to_x + 1, to_y)) != nullptr) {
+ return p_to;
+ }
+ if (_jump(p_to, _get_point(to_x - 1, to_y)) != nullptr) {
+ return p_to;
+ }
+ }
+ if (_is_walkable(to_x + dx, to_y + dy) && _is_walkable(to_x + dx, to_y) && _is_walkable(to_x, to_y + dy)) {
+ return _jump(p_to, _get_point(to_x + dx, to_y + dy));
+ }
+ }
+ return nullptr;
+}
+
+void AStarGrid2D::_get_nbors(Point *p_point, List<Point *> &r_nbors) {
+ bool ts0 = false, td0 = false,
+ ts1 = false, td1 = false,
+ ts2 = false, td2 = false,
+ ts3 = false, td3 = false;
+
+ Point *left = nullptr;
+ Point *right = nullptr;
+ Point *top = nullptr;
+ Point *bottom = nullptr;
+
+ Point *top_left = nullptr;
+ Point *top_right = nullptr;
+ Point *bottom_left = nullptr;
+ Point *bottom_right = nullptr;
+
+ {
+ bool has_left = false;
+ bool has_right = false;
+
+ if (p_point->id.x - 1 >= 0) {
+ left = _get_point_unchecked(p_point->id.x - 1, p_point->id.y);
+ has_left = true;
+ }
+ if (p_point->id.x + 1 < size.width) {
+ right = _get_point_unchecked(p_point->id.x + 1, p_point->id.y);
+ has_right = true;
+ }
+ if (p_point->id.y - 1 >= 0) {
+ top = _get_point_unchecked(p_point->id.x, p_point->id.y - 1);
+ if (has_left) {
+ top_left = _get_point_unchecked(p_point->id.x - 1, p_point->id.y - 1);
+ }
+ if (has_right) {
+ top_right = _get_point_unchecked(p_point->id.x + 1, p_point->id.y - 1);
+ }
+ }
+ if (p_point->id.y + 1 < size.height) {
+ bottom = _get_point_unchecked(p_point->id.x, p_point->id.y + 1);
+ if (has_left) {
+ bottom_left = _get_point_unchecked(p_point->id.x - 1, p_point->id.y + 1);
+ }
+ if (has_right) {
+ bottom_right = _get_point_unchecked(p_point->id.x + 1, p_point->id.y + 1);
+ }
+ }
+ }
+
+ if (top && !top->solid) {
+ r_nbors.push_back(top);
+ ts0 = true;
+ }
+ if (right && !right->solid) {
+ r_nbors.push_back(right);
+ ts1 = true;
+ }
+ if (bottom && !bottom->solid) {
+ r_nbors.push_back(bottom);
+ ts2 = true;
+ }
+ if (left && !left->solid) {
+ r_nbors.push_back(left);
+ ts3 = true;
+ }
+
+ switch (diagonal_mode) {
+ case DIAGONAL_MODE_ALWAYS: {
+ td0 = true;
+ td1 = true;
+ td2 = true;
+ td3 = true;
+ } break;
+ case DIAGONAL_MODE_NEVER: {
+ } break;
+ case DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE: {
+ td0 = ts3 || ts0;
+ td1 = ts0 || ts1;
+ td2 = ts1 || ts2;
+ td3 = ts2 || ts3;
+ } break;
+ case DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES: {
+ td0 = ts3 && ts0;
+ td1 = ts0 && ts1;
+ td2 = ts1 && ts2;
+ td3 = ts2 && ts3;
+ } break;
+ default:
+ break;
+ }
+
+ if (td0 && (top_left && !top_left->solid)) {
+ r_nbors.push_back(top_left);
+ }
+ if (td1 && (top_right && !top_right->solid)) {
+ r_nbors.push_back(top_right);
+ }
+ if (td2 && (bottom_right && !bottom_right->solid)) {
+ r_nbors.push_back(bottom_right);
+ }
+ if (td3 && (bottom_left && !bottom_left->solid)) {
+ r_nbors.push_back(bottom_left);
+ }
+}
+
+bool AStarGrid2D::_solve(Point *p_begin_point, Point *p_end_point) {
+ pass++;
+
+ if (p_end_point->solid) {
+ return false;
+ }
+
+ bool found_route = false;
+
+ Vector<Point *> open_list;
+ SortArray<Point *, SortPoints> sorter;
+
+ p_begin_point->g_score = 0;
+ p_begin_point->f_score = _estimate_cost(p_begin_point->id, p_end_point->id);
+ open_list.push_back(p_begin_point);
+ end = p_end_point;
+
+ while (!open_list.is_empty()) {
+ Point *p = open_list[0]; // The currently processed point.
+
+ if (p == p_end_point) {
+ found_route = true;
+ break;
+ }
+
+ sorter.pop_heap(0, open_list.size(), open_list.ptrw()); // Remove the current point from the open list.
+ open_list.remove_at(open_list.size() - 1);
+ p->closed_pass = pass; // Mark the point as closed.
+
+ List<Point *> nbors;
+ _get_nbors(p, nbors);
+ for (List<Point *>::Element *E = nbors.front(); E; E = E->next()) {
+ Point *e = E->get(); // The neighbour point.
+ if (jumping_enabled) {
+ e = _jump(p, e);
+ if (!e || e->closed_pass == pass) {
+ continue;
+ }
+ } else {
+ if (e->solid || e->closed_pass == pass) {
+ continue;
+ }
+ }
+
+ real_t tentative_g_score = p->g_score + _compute_cost(p->id, e->id);
+ bool new_point = false;
+
+ if (e->open_pass != pass) { // The point wasn't inside the open list.
+ e->open_pass = pass;
+ open_list.push_back(e);
+ new_point = true;
+ } else if (tentative_g_score >= e->g_score) { // The new path is worse than the previous.
+ continue;
+ }
+
+ e->prev_point = p;
+ e->g_score = tentative_g_score;
+ e->f_score = e->g_score + _estimate_cost(e->id, p_end_point->id);
+
+ if (new_point) { // The position of the new points is already known.
+ sorter.push_heap(0, open_list.size() - 1, 0, e, open_list.ptrw());
+ } else {
+ sorter.push_heap(0, open_list.find(e), 0, e, open_list.ptrw());
+ }
+ }
+ }
+
+ return found_route;
+}
+
+real_t AStarGrid2D::_estimate_cost(const Vector2i &p_from_id, const Vector2i &p_to_id) {
+ real_t scost;
+ if (GDVIRTUAL_CALL(_estimate_cost, p_from_id, p_to_id, scost)) {
+ return scost;
+ }
+ return heuristics[default_heuristic](p_from_id, p_to_id);
+}
+
+real_t AStarGrid2D::_compute_cost(const Vector2i &p_from_id, const Vector2i &p_to_id) {
+ real_t scost;
+ if (GDVIRTUAL_CALL(_compute_cost, p_from_id, p_to_id, scost)) {
+ return scost;
+ }
+ return heuristics[default_heuristic](p_from_id, p_to_id);
+}
+
+void AStarGrid2D::clear() {
+ points.clear();
+ size = Vector2i();
+}
+
+Vector<Vector2> AStarGrid2D::get_point_path(const Vector2i &p_from_id, const Vector2i &p_to_id) {
+ ERR_FAIL_COND_V_MSG(dirty, Vector<Vector2>(), "Grid is not initialized. Call the update method.");
+ ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_from_id), Vector<Vector2>(), vformat("Can't get id path. Point out of bounds (%s/%s, %s/%s)", p_from_id.x, size.width, p_from_id.y, size.height));
+ ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_to_id), Vector<Vector2>(), vformat("Can't get id path. Point out of bounds (%s/%s, %s/%s)", p_to_id.x, size.width, p_to_id.y, size.height));
+
+ Point *a = _get_point(p_from_id.x, p_from_id.y);
+ Point *b = _get_point(p_to_id.x, p_to_id.y);
+
+ if (a == b) {
+ Vector<Vector2> ret;
+ ret.push_back(a->pos);
+ return ret;
+ }
+
+ Point *begin_point = a;
+ Point *end_point = b;
+
+ bool found_route = _solve(begin_point, end_point);
+ if (!found_route) {
+ return Vector<Vector2>();
+ }
+
+ Point *p = end_point;
+ int64_t pc = 1;
+ while (p != begin_point) {
+ pc++;
+ p = p->prev_point;
+ }
+
+ Vector<Vector2> path;
+ path.resize(pc);
+
+ {
+ Vector2 *w = path.ptrw();
+
+ p = end_point;
+ int64_t idx = pc - 1;
+ while (p != begin_point) {
+ w[idx--] = p->pos;
+ p = p->prev_point;
+ }
+
+ w[0] = p->pos;
+ }
+
+ return path;
+}
+
+TypedArray<Vector2i> AStarGrid2D::get_id_path(const Vector2i &p_from_id, const Vector2i &p_to_id) {
+ ERR_FAIL_COND_V_MSG(dirty, TypedArray<Vector2i>(), "Grid is not initialized. Call the update method.");
+ ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_from_id), TypedArray<Vector2i>(), vformat("Can't get id path. Point out of bounds (%s/%s, %s/%s)", p_from_id.x, size.width, p_from_id.y, size.height));
+ ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_to_id), TypedArray<Vector2i>(), vformat("Can't get id path. Point out of bounds (%s/%s, %s/%s)", p_to_id.x, size.width, p_to_id.y, size.height));
+
+ Point *a = _get_point(p_from_id.x, p_from_id.y);
+ Point *b = _get_point(p_to_id.x, p_to_id.y);
+
+ if (a == b) {
+ TypedArray<Vector2i> ret;
+ ret.push_back(a);
+ return ret;
+ }
+
+ Point *begin_point = a;
+ Point *end_point = b;
+
+ bool found_route = _solve(begin_point, end_point);
+ if (!found_route) {
+ return TypedArray<Vector2i>();
+ }
+
+ Point *p = end_point;
+ int64_t pc = 1;
+ while (p != begin_point) {
+ pc++;
+ p = p->prev_point;
+ }
+
+ TypedArray<Vector2i> path;
+ path.resize(pc);
+
+ {
+ p = end_point;
+ int64_t idx = pc - 1;
+ while (p != begin_point) {
+ path[idx--] = p->id;
+ p = p->prev_point;
+ }
+
+ path[0] = p->id;
+ }
+
+ return path;
+}
+
+void AStarGrid2D::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_size", "size"), &AStarGrid2D::set_size);
+ ClassDB::bind_method(D_METHOD("get_size"), &AStarGrid2D::get_size);
+ ClassDB::bind_method(D_METHOD("set_offset", "offset"), &AStarGrid2D::set_offset);
+ ClassDB::bind_method(D_METHOD("get_offset"), &AStarGrid2D::get_offset);
+ ClassDB::bind_method(D_METHOD("set_cell_size", "cell_size"), &AStarGrid2D::set_cell_size);
+ ClassDB::bind_method(D_METHOD("get_cell_size"), &AStarGrid2D::get_cell_size);
+ ClassDB::bind_method(D_METHOD("is_in_bounds", "x", "y"), &AStarGrid2D::is_in_bounds);
+ ClassDB::bind_method(D_METHOD("is_in_boundsv", "id"), &AStarGrid2D::is_in_boundsv);
+ ClassDB::bind_method(D_METHOD("is_dirty"), &AStarGrid2D::is_dirty);
+ ClassDB::bind_method(D_METHOD("update"), &AStarGrid2D::update);
+ ClassDB::bind_method(D_METHOD("set_jumping_enabled", "enabled"), &AStarGrid2D::set_jumping_enabled);
+ ClassDB::bind_method(D_METHOD("is_jumping_enabled"), &AStarGrid2D::is_jumping_enabled);
+ ClassDB::bind_method(D_METHOD("set_diagonal_mode", "mode"), &AStarGrid2D::set_diagonal_mode);
+ ClassDB::bind_method(D_METHOD("get_diagonal_mode"), &AStarGrid2D::get_diagonal_mode);
+ ClassDB::bind_method(D_METHOD("set_default_heuristic", "heuristic"), &AStarGrid2D::set_default_heuristic);
+ ClassDB::bind_method(D_METHOD("get_default_heuristic"), &AStarGrid2D::get_default_heuristic);
+ ClassDB::bind_method(D_METHOD("set_point_solid", "id", "solid"), &AStarGrid2D::set_point_solid, DEFVAL(true));
+ ClassDB::bind_method(D_METHOD("is_point_solid", "id"), &AStarGrid2D::is_point_solid);
+ ClassDB::bind_method(D_METHOD("clear"), &AStarGrid2D::clear);
+
+ ClassDB::bind_method(D_METHOD("get_point_path", "from_id", "to_id"), &AStarGrid2D::get_point_path);
+ ClassDB::bind_method(D_METHOD("get_id_path", "from_id", "to_id"), &AStarGrid2D::get_id_path);
+
+ GDVIRTUAL_BIND(_estimate_cost, "from_id", "to_id")
+ GDVIRTUAL_BIND(_compute_cost, "from_id", "to_id")
+
+ ADD_PROPERTY(PropertyInfo(Variant::VECTOR2I, "size"), "set_size", "get_size");
+ ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "offset"), "set_offset", "get_offset");
+ ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "cell_size"), "set_cell_size", "get_cell_size");
+
+ ADD_PROPERTY(PropertyInfo(Variant::BOOL, "jumping_enabled"), "set_jumping_enabled", "is_jumping_enabled");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "default_heuristic", PROPERTY_HINT_ENUM, "Euclidean,Manhattan,Octile,Chebyshev,Max"), "set_default_heuristic", "get_default_heuristic");
+ ADD_PROPERTY(PropertyInfo(Variant::INT, "diagonal_mode", PROPERTY_HINT_ENUM, "Never,Always,At Least One Walkable,Only If No Obstacles,Max"), "set_diagonal_mode", "get_diagonal_mode");
+
+ BIND_ENUM_CONSTANT(HEURISTIC_EUCLIDEAN);
+ BIND_ENUM_CONSTANT(HEURISTIC_MANHATTAN);
+ BIND_ENUM_CONSTANT(HEURISTIC_OCTILE);
+ BIND_ENUM_CONSTANT(HEURISTIC_CHEBYSHEV);
+ BIND_ENUM_CONSTANT(HEURISTIC_MAX);
+
+ BIND_ENUM_CONSTANT(DIAGONAL_MODE_ALWAYS);
+ BIND_ENUM_CONSTANT(DIAGONAL_MODE_NEVER);
+ BIND_ENUM_CONSTANT(DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE);
+ BIND_ENUM_CONSTANT(DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES);
+ BIND_ENUM_CONSTANT(DIAGONAL_MODE_MAX);
+}
diff --git a/core/math/a_star_grid_2d.h b/core/math/a_star_grid_2d.h
new file mode 100644
index 0000000000..1002f18738
--- /dev/null
+++ b/core/math/a_star_grid_2d.h
@@ -0,0 +1,178 @@
+/*************************************************************************/
+/* a_star_grid_2d.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef A_STAR_GRID_2D_H
+#define A_STAR_GRID_2D_H
+
+#include "core/object/gdvirtual.gen.inc"
+#include "core/object/ref_counted.h"
+#include "core/object/script_language.h"
+#include "core/templates/list.h"
+#include "core/templates/local_vector.h"
+
+class AStarGrid2D : public RefCounted {
+ GDCLASS(AStarGrid2D, RefCounted);
+
+public:
+ enum DiagonalMode {
+ DIAGONAL_MODE_ALWAYS,
+ DIAGONAL_MODE_NEVER,
+ DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE,
+ DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES,
+ DIAGONAL_MODE_MAX,
+ };
+
+ enum Heuristic {
+ HEURISTIC_EUCLIDEAN,
+ HEURISTIC_MANHATTAN,
+ HEURISTIC_OCTILE,
+ HEURISTIC_CHEBYSHEV,
+ HEURISTIC_MAX,
+ };
+
+private:
+ Size2i size;
+ Vector2 offset;
+ Size2 cell_size = Size2(1, 1);
+ bool dirty = false;
+
+ bool jumping_enabled = false;
+ DiagonalMode diagonal_mode = DIAGONAL_MODE_ALWAYS;
+ Heuristic default_heuristic = HEURISTIC_EUCLIDEAN;
+
+ struct Point {
+ Vector2i id;
+
+ bool solid = false;
+ Vector2 pos;
+
+ // Used for pathfinding.
+ Point *prev_point = nullptr;
+ real_t g_score = 0;
+ real_t f_score = 0;
+ uint64_t open_pass = 0;
+ uint64_t closed_pass = 0;
+
+ Point() {}
+
+ Point(const Vector2i &p_id, const Vector2 &p_pos) :
+ id(p_id), pos(p_pos) {}
+ };
+
+ struct SortPoints {
+ _FORCE_INLINE_ bool operator()(const Point *A, const Point *B) const { // Returns true when the Point A is worse than Point B.
+ if (A->f_score > B->f_score) {
+ return true;
+ } else if (A->f_score < B->f_score) {
+ return false;
+ } else {
+ return A->g_score < B->g_score; // If the f_costs are the same then prioritize the points that are further away from the start.
+ }
+ }
+ };
+
+ LocalVector<LocalVector<Point>> points;
+ Point *end = nullptr;
+
+ uint64_t pass = 1;
+
+private: // Internal routines.
+ _FORCE_INLINE_ bool _is_walkable(int64_t p_x, int64_t p_y) const {
+ if (p_x >= 0 && p_y >= 0 && p_x < size.width && p_y < size.height) {
+ return !points[p_y][p_x].solid;
+ }
+ return false;
+ }
+
+ _FORCE_INLINE_ Point *_get_point(int64_t p_x, int64_t p_y) {
+ if (p_x >= 0 && p_y >= 0 && p_x < size.width && p_y < size.height) {
+ return &points[p_y][p_x];
+ }
+ return nullptr;
+ }
+
+ _FORCE_INLINE_ Point *_get_point_unchecked(int64_t p_x, int64_t p_y) {
+ return &points[p_y][p_x];
+ }
+
+ void _get_nbors(Point *p_point, List<Point *> &r_nbors);
+ Point *_jump(Point *p_from, Point *p_to);
+ bool _solve(Point *p_begin_point, Point *p_end_point);
+
+protected:
+ static void _bind_methods();
+
+ virtual real_t _estimate_cost(const Vector2i &p_from_id, const Vector2i &p_to_id);
+ virtual real_t _compute_cost(const Vector2i &p_from_id, const Vector2i &p_to_id);
+
+ GDVIRTUAL2RC(real_t, _estimate_cost, Vector2i, Vector2i)
+ GDVIRTUAL2RC(real_t, _compute_cost, Vector2i, Vector2i)
+
+public:
+ void set_size(const Size2i &p_size);
+ Size2i get_size() const;
+
+ void set_offset(const Vector2 &p_offset);
+ Vector2 get_offset() const;
+
+ void set_cell_size(const Size2 &p_cell_size);
+ Size2 get_cell_size() const;
+
+ void update();
+
+ int get_width() const;
+ int get_height() const;
+
+ bool is_in_bounds(int p_x, int p_y) const;
+ bool is_in_boundsv(const Vector2i &p_id) const;
+ bool is_dirty() const;
+
+ void set_jumping_enabled(bool p_enabled);
+ bool is_jumping_enabled() const;
+
+ void set_diagonal_mode(DiagonalMode p_diagonal_mode);
+ DiagonalMode get_diagonal_mode() const;
+
+ void set_default_heuristic(Heuristic p_heuristic);
+ Heuristic get_default_heuristic() const;
+
+ void set_point_solid(const Vector2i &p_id, bool p_solid = true);
+ bool is_point_solid(const Vector2i &p_id) const;
+
+ void clear();
+
+ Vector<Vector2> get_point_path(const Vector2i &p_from, const Vector2i &p_to);
+ TypedArray<Vector2i> get_id_path(const Vector2i &p_from, const Vector2i &p_to);
+};
+
+VARIANT_ENUM_CAST(AStarGrid2D::DiagonalMode);
+VARIANT_ENUM_CAST(AStarGrid2D::Heuristic);
+
+#endif // A_STAR_GRID_2D_H
diff --git a/core/math/aabb.cpp b/core/math/aabb.cpp
index 4c89be7f4d..fcf245d2ad 100644
--- a/core/math/aabb.cpp
+++ b/core/math/aabb.cpp
@@ -30,7 +30,7 @@
#include "aabb.h"
-#include "core/string/print_string.h"
+#include "core/string/ustring.h"
#include "core/variant/variant.h"
real_t AABB::get_volume() const {
@@ -76,6 +76,10 @@ bool AABB::is_equal_approx(const AABB &p_aabb) const {
return position.is_equal_approx(p_aabb.position) && size.is_equal_approx(p_aabb.size);
}
+bool AABB::is_finite() const {
+ return position.is_finite() && size.is_finite();
+}
+
AABB AABB::intersection(const AABB &p_aabb) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
@@ -403,6 +407,7 @@ Variant AABB::intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to
}
return Variant();
}
+
Variant AABB::intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const {
Vector3 inters;
if (intersects_ray(p_from, p_dir, &inters)) {
diff --git a/core/math/aabb.h b/core/math/aabb.h
index e88ba33531..9d5837ad37 100644
--- a/core/math/aabb.h
+++ b/core/math/aabb.h
@@ -31,7 +31,6 @@
#ifndef AABB_H
#define AABB_H
-#include "core/math/math_defs.h"
#include "core/math/plane.h"
#include "core/math/vector3.h"
@@ -47,12 +46,12 @@ struct _NO_DISCARD_ AABB {
Vector3 size;
real_t get_volume() const;
- _FORCE_INLINE_ bool has_no_volume() const {
- return (size.x <= 0 || size.y <= 0 || size.z <= 0);
+ _FORCE_INLINE_ bool has_volume() const {
+ return size.x > 0.0f && size.y > 0.0f && size.z > 0.0f;
}
- _FORCE_INLINE_ bool has_no_surface() const {
- return (size.x <= 0 && size.y <= 0 && size.z <= 0);
+ _FORCE_INLINE_ bool has_surface() const {
+ return size.x > 0.0f || size.y > 0.0f || size.z > 0.0f;
}
const Vector3 &get_position() const { return position; }
@@ -64,6 +63,7 @@ struct _NO_DISCARD_ AABB {
bool operator!=(const AABB &p_rval) const;
bool is_equal_approx(const AABB &p_aabb) const;
+ bool is_finite() const;
_FORCE_INLINE_ bool intersects(const AABB &p_aabb) const; /// Both AABBs overlap
_FORCE_INLINE_ bool intersects_inclusive(const AABB &p_aabb) const; /// Both AABBs (or their faces) overlap
_FORCE_INLINE_ bool encloses(const AABB &p_aabb) const; /// p_aabb is completely inside this
@@ -101,7 +101,7 @@ struct _NO_DISCARD_ AABB {
_FORCE_INLINE_ void expand_to(const Vector3 &p_vector); /** expand to contain a point if necessary */
_FORCE_INLINE_ AABB abs() const {
- return AABB(Vector3(position.x + MIN(size.x, 0), position.y + MIN(size.y, 0), position.z + MIN(size.z, 0)), size.abs());
+ return AABB(Vector3(position.x + MIN(size.x, (real_t)0), position.y + MIN(size.y, (real_t)0), position.z + MIN(size.z, (real_t)0)), size.abs());
}
Variant intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to) const;
diff --git a/core/math/audio_frame.h b/core/math/audio_frame.h
index b3d63c0094..1a80faaa12 100644
--- a/core/math/audio_frame.h
+++ b/core/math/audio_frame.h
@@ -48,7 +48,7 @@ static inline float undenormalise(volatile float f) {
}
static const float AUDIO_PEAK_OFFSET = 0.0000000001f;
-static const float AUDIO_MIN_PEAK_DB = -200.0f; // linear2db(AUDIO_PEAK_OFFSET)
+static const float AUDIO_MIN_PEAK_DB = -200.0f; // linear_to_db(AUDIO_PEAK_OFFSET)
struct AudioFrame {
//left and right samples
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index f8e7c47107..9b8188eed8 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -31,7 +31,7 @@
#include "basis.h"
#include "core/math/math_funcs.h"
-#include "core/string/print_string.h"
+#include "core/string/ustring.h"
#define cofac(row1, col1, row2, col2) \
(rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1])
@@ -142,8 +142,8 @@ bool Basis::is_symmetric() const {
#endif
Basis Basis::diagonalize() {
-//NOTE: only implemented for symmetric matrices
-//with the Jacobi iterative method
+// NOTE: only implemented for symmetric matrices
+// with the Jacobi iterative method
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!is_symmetric(), Basis());
#endif
@@ -691,6 +691,10 @@ bool Basis::is_equal_approx(const Basis &p_basis) const {
return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]);
}
+bool Basis::is_finite() const {
+ return rows[0].is_finite() && rows[1].is_finite() && rows[2].is_finite();
+}
+
bool Basis::operator==(const Basis &p_matrix) const {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
@@ -749,95 +753,33 @@ Quaternion Basis::get_quaternion() const {
return Quaternion(temp[0], temp[1], temp[2], temp[3]);
}
-static const Basis _ortho_bases[24] = {
- Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
- Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
- Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
- Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
- Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
- Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
- Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
- Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
- Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
- Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
- Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
- Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
- Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
- Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
- Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
- Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
- Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
- Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
- Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
- Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
- Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
- Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
- Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
- Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
-};
-
-int Basis::get_orthogonal_index() const {
- //could be sped up if i come up with a way
- Basis orth = *this;
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- real_t v = orth[i][j];
- if (v > 0.5f) {
- v = 1.0f;
- } else if (v < -0.5f) {
- v = -1.0f;
- } else {
- v = 0;
- }
-
- orth[i][j] = v;
- }
- }
-
- for (int i = 0; i < 24; i++) {
- if (_ortho_bases[i] == orth) {
- return i;
- }
- }
-
- return 0;
-}
-
-void Basis::set_orthogonal_index(int p_index) {
- //there only exist 24 orthogonal bases in r3
- ERR_FAIL_INDEX(p_index, 24);
-
- *this = _ortho_bases[p_index];
-}
-
void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
/* checking this is a bad idea, because obtaining from scaled transform is a valid use case
#ifdef MATH_CHECKS
ERR_FAIL_COND(!is_rotation());
#endif
-*/
- real_t angle, x, y, z; // variables for result
- real_t angle_epsilon = 0.1; // margin to distinguish between 0 and 180 degrees
-
- if ((Math::abs(rows[1][0] - rows[0][1]) < CMP_EPSILON) && (Math::abs(rows[2][0] - rows[0][2]) < CMP_EPSILON) && (Math::abs(rows[2][1] - rows[1][2]) < CMP_EPSILON)) {
- // singularity found
- // first check for identity matrix which must have +1 for all terms
- // in leading diagonal and zero in other terms
- if ((Math::abs(rows[1][0] + rows[0][1]) < angle_epsilon) && (Math::abs(rows[2][0] + rows[0][2]) < angle_epsilon) && (Math::abs(rows[2][1] + rows[1][2]) < angle_epsilon) && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < angle_epsilon)) {
- // this singularity is identity matrix so angle = 0
+ */
+
+ // https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
+ real_t x, y, z; // Variables for result.
+ if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) {
+ // Singularity found.
+ // First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms.
+ if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) {
+ // This singularity is identity matrix so angle = 0.
r_axis = Vector3(0, 1, 0);
r_angle = 0;
return;
}
- // otherwise this singularity is angle = 180
- angle = Math_PI;
+ // Otherwise this singularity is angle = 180.
real_t xx = (rows[0][0] + 1) / 2;
real_t yy = (rows[1][1] + 1) / 2;
real_t zz = (rows[2][2] + 1) / 2;
- real_t xy = (rows[1][0] + rows[0][1]) / 4;
- real_t xz = (rows[2][0] + rows[0][2]) / 4;
- real_t yz = (rows[2][1] + rows[1][2]) / 4;
- if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term
+ real_t xy = (rows[0][1] + rows[1][0]) / 4;
+ real_t xz = (rows[0][2] + rows[2][0]) / 4;
+ real_t yz = (rows[1][2] + rows[2][1]) / 4;
+
+ if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term.
if (xx < CMP_EPSILON) {
x = 0;
y = Math_SQRT12;
@@ -847,7 +789,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
y = xy / x;
z = xz / x;
}
- } else if (yy > zz) { // rows[1][1] is the largest diagonal term
+ } else if (yy > zz) { // rows[1][1] is the largest diagonal term.
if (yy < CMP_EPSILON) {
x = Math_SQRT12;
y = 0;
@@ -857,7 +799,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
x = xy / y;
z = yz / y;
}
- } else { // rows[2][2] is the largest diagonal term so base result on this
+ } else { // rows[2][2] is the largest diagonal term so base result on this.
if (zz < CMP_EPSILON) {
x = Math_SQRT12;
y = Math_SQRT12;
@@ -869,22 +811,24 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
}
}
r_axis = Vector3(x, y, z);
- r_angle = angle;
+ r_angle = Math_PI;
return;
}
- // as we have reached here there are no singularities so we can handle normally
- real_t s = Math::sqrt((rows[1][2] - rows[2][1]) * (rows[1][2] - rows[2][1]) + (rows[2][0] - rows[0][2]) * (rows[2][0] - rows[0][2]) + (rows[0][1] - rows[1][0]) * (rows[0][1] - rows[1][0])); // s=|axis||sin(angle)|, used to normalise
+ // As we have reached here there are no singularities so we can handle normally.
+ double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalise.
- angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2);
- if (angle < 0) {
- s = -s;
+ if (Math::abs(s) < CMP_EPSILON) {
+ // Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above.
+ s = 1;
}
+
x = (rows[2][1] - rows[1][2]) / s;
y = (rows[0][2] - rows[2][0]) / s;
z = (rows[1][0] - rows[0][1]) / s;
r_axis = Vector3(x, y, z);
- r_angle = angle;
+ // CLAMP to avoid NaN if the value passed to acos is not in [0,1].
+ r_angle = Math::acos(CLAMP((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2, (real_t)0.0, (real_t)1.0));
}
void Basis::set_quaternion(const Quaternion &p_quaternion) {
@@ -1094,13 +1038,13 @@ void Basis::rotate_sh(real_t *p_values) {
Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) {
#ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(p_target.is_equal_approx(Vector3()), Basis(), "The target vector can't be zero.");
- ERR_FAIL_COND_V_MSG(p_up.is_equal_approx(Vector3()), Basis(), "The up vector can't be zero.");
+ ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero.");
+ ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero.");
#endif
Vector3 v_z = -p_target.normalized();
Vector3 v_x = p_up.cross(v_z);
#ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(v_x.is_equal_approx(Vector3()), Basis(), "The target vector and up vector can't be parallel to each other.");
+ ERR_FAIL_COND_V_MSG(v_x.is_zero_approx(), Basis(), "The target vector and up vector can't be parallel to each other.");
#endif
v_x.normalize();
Vector3 v_y = v_z.cross(v_x);
diff --git a/core/math/basis.h b/core/math/basis.h
index 4be325cdd2..69bef5a7be 100644
--- a/core/math/basis.h
+++ b/core/math/basis.h
@@ -134,6 +134,7 @@ struct _NO_DISCARD_ Basis {
}
bool is_equal_approx(const Basis &p_basis) const;
+ bool is_finite() const;
bool operator==(const Basis &p_matrix) const;
bool operator!=(const Basis &p_matrix) const;
@@ -149,9 +150,6 @@ struct _NO_DISCARD_ Basis {
_FORCE_INLINE_ void operator*=(const real_t p_val);
_FORCE_INLINE_ Basis operator*(const real_t p_val) const;
- int get_orthogonal_index() const;
- void set_orthogonal_index(int p_index);
-
bool is_orthogonal() const;
bool is_diagonal() const;
bool is_rotation() const;
@@ -241,10 +239,8 @@ struct _NO_DISCARD_ Basis {
Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
static Basis from_scale(const Vector3 &p_scale);
- _FORCE_INLINE_ Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) {
- rows[0] = row0;
- rows[1] = row1;
- rows[2] = row2;
+ _FORCE_INLINE_ Basis(const Vector3 &p_x_axis, const Vector3 &p_y_axis, const Vector3 &p_z_axis) {
+ set_columns(p_x_axis, p_y_axis, p_z_axis);
}
_FORCE_INLINE_ Basis() {}
diff --git a/core/math/bvh.h b/core/math/bvh.h
index 9f6ab9f736..b5f5eda3e6 100644
--- a/core/math/bvh.h
+++ b/core/math/bvh.h
@@ -302,7 +302,7 @@ public:
tree.update();
_check_for_collisions();
#ifdef BVH_INTEGRITY_CHECKS
- tree.integrity_check_all();
+ tree._integrity_check_all();
#endif
}
diff --git a/core/math/bvh_abb.h b/core/math/bvh_abb.h
index 8a44f1c4da..699f7de604 100644
--- a/core/math/bvh_abb.h
+++ b/core/math/bvh_abb.h
@@ -251,7 +251,9 @@ struct BVH_ABB {
void expand(real_t p_change) {
POINT change;
- change.set_all(p_change);
+ for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
+ change[axis] = p_change;
+ }
grow(change);
}
@@ -262,7 +264,9 @@ struct BVH_ABB {
}
void set_to_max_opposite_extents() {
- neg_max.set_all(FLT_MAX);
+ for (int axis = 0; axis < POINT::AXIS_COUNT; ++axis) {
+ neg_max[axis] = FLT_MAX;
+ }
min = neg_max;
}
diff --git a/core/math/bvh_public.inc b/core/math/bvh_public.inc
index 36b0bfeb13..fc1c67a21b 100644
--- a/core/math/bvh_public.inc
+++ b/core/math/bvh_public.inc
@@ -2,7 +2,7 @@ public:
BVHHandle item_add(T *p_userdata, bool p_active, const BOUNDS &p_aabb, int32_t p_subindex, uint32_t p_tree_id, uint32_t p_tree_collision_mask, bool p_invisible = false) {
#ifdef BVH_VERBOSE_TREE
VERBOSE_PRINT("\nitem_add BEFORE");
- _debug_recursive_print_tree(0);
+ _debug_recursive_print_tree(p_tree_id);
VERBOSE_PRINT("\n");
#endif
@@ -78,8 +78,8 @@ BVHHandle item_add(T *p_userdata, bool p_active, const BOUNDS &p_aabb, int32_t p
mem += _nodes.estimate_memory_use();
String sz = _debug_aabb_to_string(abb);
- VERBOSE_PRINT("\titem_add [" + itos(ref_id) + "] " + itos(_refs.size()) + " refs,\t" + itos(_nodes.size()) + " nodes " + sz);
- VERBOSE_PRINT("mem use : " + itos(mem) + ", num nodes : " + itos(_nodes.size()));
+ VERBOSE_PRINT("\titem_add [" + itos(ref_id) + "] " + itos(_refs.used_size()) + " refs,\t" + itos(_nodes.used_size()) + " nodes " + sz);
+ VERBOSE_PRINT("mem use : " + itos(mem) + ", num nodes reserved : " + itos(_nodes.reserved_size()));
#endif
diff --git a/core/math/bvh_split.inc b/core/math/bvh_split.inc
index ff07166d4a..180bbfb511 100644
--- a/core/math/bvh_split.inc
+++ b/core/math/bvh_split.inc
@@ -13,7 +13,7 @@ void _split_inform_references(uint32_t p_node_id) {
void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds, const BVHABB_CLASS full_bound) {
// special case for low leaf sizes .. should static compile out
- if (MAX_ITEMS < 4) {
+ if constexpr (MAX_ITEMS < 4) {
uint32_t ind = group_a[0];
// add to b
@@ -34,7 +34,7 @@ void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, u
order[POINT::AXIS_COUNT - 1] = size.max_axis_index();
static_assert(POINT::AXIS_COUNT <= 3, "BVH POINT::AXIS_COUNT has unexpected size");
- if (POINT::AXIS_COUNT == 3) {
+ if constexpr (POINT::AXIS_COUNT == 3) {
order[1] = 3 - (order[0] + order[2]);
}
diff --git a/core/math/bvh_structs.inc b/core/math/bvh_structs.inc
index 58c8f0479a..06f6e5d05d 100644
--- a/core/math/bvh_structs.inc
+++ b/core/math/bvh_structs.inc
@@ -100,7 +100,11 @@ public:
num_items++;
return id;
}
+#ifdef DEV_ENABLED
return -1;
+#else
+ ERR_FAIL_V_MSG(0, "BVH request_item error.");
+#endif
}
};
diff --git a/core/math/bvh_tree.h b/core/math/bvh_tree.h
index cdb2bb4413..3836e92a83 100644
--- a/core/math/bvh_tree.h
+++ b/core/math/bvh_tree.h
@@ -43,7 +43,6 @@
#include "core/math/bvh_abb.h"
#include "core/math/geometry_3d.h"
#include "core/math/vector3.h"
-#include "core/string/print_string.h"
#include "core/templates/local_vector.h"
#include "core/templates/pooled_list.h"
#include <limits.h>
@@ -235,7 +234,7 @@ private:
// no need to keep back references for children at the moment
- uint32_t sibling_id; // always a node id, as tnode is never a leaf
+ uint32_t sibling_id = 0; // always a node id, as tnode is never a leaf
bool sibling_present = false;
// if there are more children, or this is the root node, don't try and delete
diff --git a/core/math/color.cpp b/core/math/color.cpp
index 4bdeafd2f2..f223853f6b 100644
--- a/core/math/color.cpp
+++ b/core/math/color.cpp
@@ -32,85 +32,85 @@
#include "color_names.inc"
#include "core/math/math_funcs.h"
-#include "core/string/print_string.h"
+#include "core/string/ustring.h"
#include "core/templates/rb_map.h"
#include "thirdparty/misc/ok_color.h"
uint32_t Color::to_argb32() const {
- uint32_t c = (uint8_t)Math::round(a * 255);
+ uint32_t c = (uint8_t)Math::round(a * 255.0f);
c <<= 8;
- c |= (uint8_t)Math::round(r * 255);
+ c |= (uint8_t)Math::round(r * 255.0f);
c <<= 8;
- c |= (uint8_t)Math::round(g * 255);
+ c |= (uint8_t)Math::round(g * 255.0f);
c <<= 8;
- c |= (uint8_t)Math::round(b * 255);
+ c |= (uint8_t)Math::round(b * 255.0f);
return c;
}
uint32_t Color::to_abgr32() const {
- uint32_t c = (uint8_t)Math::round(a * 255);
+ uint32_t c = (uint8_t)Math::round(a * 255.0f);
c <<= 8;
- c |= (uint8_t)Math::round(b * 255);
+ c |= (uint8_t)Math::round(b * 255.0f);
c <<= 8;
- c |= (uint8_t)Math::round(g * 255);
+ c |= (uint8_t)Math::round(g * 255.0f);
c <<= 8;
- c |= (uint8_t)Math::round(r * 255);
+ c |= (uint8_t)Math::round(r * 255.0f);
return c;
}
uint32_t Color::to_rgba32() const {
- uint32_t c = (uint8_t)Math::round(r * 255);
+ uint32_t c = (uint8_t)Math::round(r * 255.0f);
c <<= 8;
- c |= (uint8_t)Math::round(g * 255);
+ c |= (uint8_t)Math::round(g * 255.0f);
c <<= 8;
- c |= (uint8_t)Math::round(b * 255);
+ c |= (uint8_t)Math::round(b * 255.0f);
c <<= 8;
- c |= (uint8_t)Math::round(a * 255);
+ c |= (uint8_t)Math::round(a * 255.0f);
return c;
}
uint64_t Color::to_abgr64() const {
- uint64_t c = (uint16_t)Math::round(a * 65535);
+ uint64_t c = (uint16_t)Math::round(a * 65535.0f);
c <<= 16;
- c |= (uint16_t)Math::round(b * 65535);
+ c |= (uint16_t)Math::round(b * 65535.0f);
c <<= 16;
- c |= (uint16_t)Math::round(g * 65535);
+ c |= (uint16_t)Math::round(g * 65535.0f);
c <<= 16;
- c |= (uint16_t)Math::round(r * 65535);
+ c |= (uint16_t)Math::round(r * 65535.0f);
return c;
}
uint64_t Color::to_argb64() const {
- uint64_t c = (uint16_t)Math::round(a * 65535);
+ uint64_t c = (uint16_t)Math::round(a * 65535.0f);
c <<= 16;
- c |= (uint16_t)Math::round(r * 65535);
+ c |= (uint16_t)Math::round(r * 65535.0f);
c <<= 16;
- c |= (uint16_t)Math::round(g * 65535);
+ c |= (uint16_t)Math::round(g * 65535.0f);
c <<= 16;
- c |= (uint16_t)Math::round(b * 65535);
+ c |= (uint16_t)Math::round(b * 65535.0f);
return c;
}
uint64_t Color::to_rgba64() const {
- uint64_t c = (uint16_t)Math::round(r * 65535);
+ uint64_t c = (uint16_t)Math::round(r * 65535.0f);
c <<= 16;
- c |= (uint16_t)Math::round(g * 65535);
+ c |= (uint16_t)Math::round(g * 65535.0f);
c <<= 16;
- c |= (uint16_t)Math::round(b * 65535);
+ c |= (uint16_t)Math::round(b * 65535.0f);
c <<= 16;
- c |= (uint16_t)Math::round(a * 65535);
+ c |= (uint16_t)Math::round(a * 65535.0f);
return c;
}
String _to_hex(float p_val) {
- int v = Math::round(p_val * 255);
+ int v = Math::round(p_val * 255.0f);
v = CLAMP(v, 0, 255);
String ret;
@@ -150,8 +150,8 @@ float Color::get_h() const {
float delta = max - min;
- if (delta == 0) {
- return 0;
+ if (delta == 0.0f) {
+ return 0.0f;
}
float h;
@@ -164,7 +164,7 @@ float Color::get_h() const {
}
h /= 6.0f;
- if (h < 0) {
+ if (h < 0.0f) {
h += 1.0f;
}
@@ -179,7 +179,7 @@ float Color::get_s() const {
float delta = max - min;
- return (max != 0) ? (delta / max) : 0;
+ return (max != 0.0f) ? (delta / max) : 0.0f;
}
float Color::get_v() const {
@@ -193,7 +193,7 @@ void Color::set_hsv(float p_h, float p_s, float p_v, float p_alpha) {
float f, p, q, t;
a = p_alpha;
- if (p_s == 0) {
+ if (p_s == 0.0f) {
// Achromatic (grey)
r = g = b = p_v;
return;
@@ -204,9 +204,9 @@ void Color::set_hsv(float p_h, float p_s, float p_v, float p_alpha) {
i = Math::floor(p_h);
f = p_h - i;
- p = p_v * (1 - p_s);
- q = p_v * (1 - p_s * f);
- t = p_v * (1 - p_s * (1 - f));
+ p = p_v * (1.0f - p_s);
+ q = p_v * (1.0f - p_s * f);
+ t = p_v * (1.0f - p_s * (1.0f - f));
switch (i) {
case 0: // Red is the dominant color
@@ -347,7 +347,7 @@ Color Color::html(const String &p_rgba) {
ERR_FAIL_V_MSG(Color(), "Invalid color code: " + p_rgba + ".");
}
- float r, g, b, a = 1.0;
+ float r, g, b, a = 1.0f;
if (is_shorthand) {
r = _parse_col4(color, 0) / 15.0f;
g = _parse_col4(color, 1) / 15.0f;
@@ -363,10 +363,10 @@ Color Color::html(const String &p_rgba) {
a = _parse_col8(color, 6) / 255.0f;
}
}
- ERR_FAIL_COND_V_MSG(r < 0, Color(), "Invalid color code: " + p_rgba + ".");
- ERR_FAIL_COND_V_MSG(g < 0, Color(), "Invalid color code: " + p_rgba + ".");
- ERR_FAIL_COND_V_MSG(b < 0, Color(), "Invalid color code: " + p_rgba + ".");
- ERR_FAIL_COND_V_MSG(a < 0, Color(), "Invalid color code: " + p_rgba + ".");
+ ERR_FAIL_COND_V_MSG(r < 0.0f, Color(), "Invalid color code: " + p_rgba + ".");
+ ERR_FAIL_COND_V_MSG(g < 0.0f, Color(), "Invalid color code: " + p_rgba + ".");
+ ERR_FAIL_COND_V_MSG(b < 0.0f, Color(), "Invalid color code: " + p_rgba + ".");
+ ERR_FAIL_COND_V_MSG(a < 0.0f, Color(), "Invalid color code: " + p_rgba + ".");
return Color(r, g, b, a);
}
@@ -474,7 +474,7 @@ Color Color::from_rgbe9995(uint32_t p_rgbe) {
float g = (p_rgbe >> 9) & 0x1ff;
float b = (p_rgbe >> 18) & 0x1ff;
float e = (p_rgbe >> 27);
- float m = Math::pow(2, e - 15.0f - 9.0f);
+ float m = Math::pow(2.0f, e - 15.0f - 9.0f);
float rd = r * m;
float gd = g * m;
diff --git a/core/math/color.h b/core/math/color.h
index 0afa6006a8..a23a4953ce 100644
--- a/core/math/color.h
+++ b/core/math/color.h
@@ -32,7 +32,8 @@
#define COLOR_H
#include "core/math/math_funcs.h"
-#include "core/string/ustring.h"
+
+class String;
struct _NO_DISCARD_ Color {
union {
@@ -55,11 +56,11 @@ struct _NO_DISCARD_ Color {
float get_h() const;
float get_s() const;
float get_v() const;
- void set_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0);
+ void set_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0f);
float get_ok_hsl_h() const;
float get_ok_hsl_s() const;
float get_ok_hsl_l() const;
- void set_ok_hsl(float p_h, float p_s, float p_l, float p_alpha = 1.0);
+ void set_ok_hsl(float p_h, float p_s, float p_l, float p_alpha = 1.0f);
_FORCE_INLINE_ float &operator[](int p_idx) {
return components[p_idx];
@@ -175,9 +176,9 @@ struct _NO_DISCARD_ Color {
_FORCE_INLINE_ Color srgb_to_linear() const {
return Color(
- r < 0.04045f ? r * (1.0 / 12.92) : Math::pow((r + 0.055f) * (float)(1.0 / (1 + 0.055)), 2.4f),
- g < 0.04045f ? g * (1.0 / 12.92) : Math::pow((g + 0.055f) * (float)(1.0 / (1 + 0.055)), 2.4f),
- b < 0.04045f ? b * (1.0 / 12.92) : Math::pow((b + 0.055f) * (float)(1.0 / (1 + 0.055)), 2.4f),
+ r < 0.04045f ? r * (1.0f / 12.92f) : Math::pow((r + 0.055f) * (float)(1.0 / (1.0 + 0.055)), 2.4f),
+ g < 0.04045f ? g * (1.0f / 12.92f) : Math::pow((g + 0.055f) * (float)(1.0 / (1.0 + 0.055)), 2.4f),
+ b < 0.04045f ? b * (1.0f / 12.92f) : Math::pow((b + 0.055f) * (float)(1.0 / (1.0 + 0.055)), 2.4f),
a);
}
_FORCE_INLINE_ Color linear_to_srgb() const {
@@ -198,11 +199,11 @@ struct _NO_DISCARD_ Color {
static String get_named_color_name(int p_idx);
static Color get_named_color(int p_idx);
static Color from_string(const String &p_string, const Color &p_default);
- static Color from_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0);
- static Color from_ok_hsl(float p_h, float p_s, float p_l, float p_alpha = 1.0);
+ static Color from_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0f);
+ static Color from_ok_hsl(float p_h, float p_s, float p_l, float p_alpha = 1.0f);
static Color from_rgbe9995(uint32_t p_rgbe);
- _FORCE_INLINE_ bool operator<(const Color &p_color) const; //used in set keys
+ _FORCE_INLINE_ bool operator<(const Color &p_color) const; // Used in set keys.
operator String() const;
// For the binder.
@@ -215,12 +216,12 @@ struct _NO_DISCARD_ Color {
_FORCE_INLINE_ void set_a8(int32_t a8) { a = (CLAMP(a8, 0, 255) / 255.0f); }
_FORCE_INLINE_ int32_t get_a8() const { return int32_t(CLAMP(Math::round(a * 255.0f), 0.0f, 255.0f)); }
- _FORCE_INLINE_ void set_h(float p_h) { set_hsv(p_h, get_s(), get_v()); }
- _FORCE_INLINE_ void set_s(float p_s) { set_hsv(get_h(), p_s, get_v()); }
- _FORCE_INLINE_ void set_v(float p_v) { set_hsv(get_h(), get_s(), p_v); }
- _FORCE_INLINE_ void set_ok_hsl_h(float p_h) { set_ok_hsl(p_h, get_ok_hsl_s(), get_ok_hsl_l()); }
- _FORCE_INLINE_ void set_ok_hsl_s(float p_s) { set_ok_hsl(get_ok_hsl_h(), p_s, get_ok_hsl_l()); }
- _FORCE_INLINE_ void set_ok_hsl_l(float p_l) { set_ok_hsl(get_ok_hsl_h(), get_ok_hsl_s(), p_l); }
+ _FORCE_INLINE_ void set_h(float p_h) { set_hsv(p_h, get_s(), get_v(), a); }
+ _FORCE_INLINE_ void set_s(float p_s) { set_hsv(get_h(), p_s, get_v(), a); }
+ _FORCE_INLINE_ void set_v(float p_v) { set_hsv(get_h(), get_s(), p_v, a); }
+ _FORCE_INLINE_ void set_ok_hsl_h(float p_h) { set_ok_hsl(p_h, get_ok_hsl_s(), get_ok_hsl_l(), a); }
+ _FORCE_INLINE_ void set_ok_hsl_s(float p_s) { set_ok_hsl(get_ok_hsl_h(), p_s, get_ok_hsl_l(), a); }
+ _FORCE_INLINE_ void set_ok_hsl_l(float p_l) { set_ok_hsl(get_ok_hsl_h(), get_ok_hsl_s(), p_l, a); }
_FORCE_INLINE_ Color() {}
diff --git a/core/math/convex_hull.h b/core/math/convex_hull.h
index bd86fe0eba..cc41a794bd 100644
--- a/core/math/convex_hull.h
+++ b/core/math/convex_hull.h
@@ -28,6 +28,9 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
+#ifndef CONVEX_HULL_H
+#define CONVEX_HULL_H
+
/*
Copyright (c) 2011 Ole Kniemeyer, MAXON, www.maxon.net
This software is provided 'as-is', without any express or implied warranty.
@@ -40,9 +43,6 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
-#ifndef CONVEX_HULL_H
-#define CONVEX_HULL_H
-
#include "core/math/geometry_3d.h"
#include "core/math/vector3.h"
#include "core/templates/local_vector.h"
diff --git a/core/math/delaunay_3d.h b/core/math/delaunay_3d.h
index 4ab00e1f34..3f8fe09445 100644
--- a/core/math/delaunay_3d.h
+++ b/core/math/delaunay_3d.h
@@ -33,9 +33,8 @@
#include "core/io/file_access.h"
#include "core/math/aabb.h"
-#include "core/math/camera_matrix.h"
+#include "core/math/projection.h"
#include "core/math/vector3.h"
-#include "core/string/print_string.h"
#include "core/templates/local_vector.h"
#include "core/templates/oa_hash_map.h"
#include "core/templates/vector.h"
@@ -184,27 +183,27 @@ class Delaunay3D {
return true;
}
- CameraMatrix cm;
+ Projection cm;
- cm.matrix[0][0] = p_points[p_simplex.points[0]].x;
- cm.matrix[0][1] = p_points[p_simplex.points[1]].x;
- cm.matrix[0][2] = p_points[p_simplex.points[2]].x;
- cm.matrix[0][3] = p_points[p_simplex.points[3]].x;
+ cm.columns[0][0] = p_points[p_simplex.points[0]].x;
+ cm.columns[0][1] = p_points[p_simplex.points[1]].x;
+ cm.columns[0][2] = p_points[p_simplex.points[2]].x;
+ cm.columns[0][3] = p_points[p_simplex.points[3]].x;
- cm.matrix[1][0] = p_points[p_simplex.points[0]].y;
- cm.matrix[1][1] = p_points[p_simplex.points[1]].y;
- cm.matrix[1][2] = p_points[p_simplex.points[2]].y;
- cm.matrix[1][3] = p_points[p_simplex.points[3]].y;
+ cm.columns[1][0] = p_points[p_simplex.points[0]].y;
+ cm.columns[1][1] = p_points[p_simplex.points[1]].y;
+ cm.columns[1][2] = p_points[p_simplex.points[2]].y;
+ cm.columns[1][3] = p_points[p_simplex.points[3]].y;
- cm.matrix[2][0] = p_points[p_simplex.points[0]].z;
- cm.matrix[2][1] = p_points[p_simplex.points[1]].z;
- cm.matrix[2][2] = p_points[p_simplex.points[2]].z;
- cm.matrix[2][3] = p_points[p_simplex.points[3]].z;
+ cm.columns[2][0] = p_points[p_simplex.points[0]].z;
+ cm.columns[2][1] = p_points[p_simplex.points[1]].z;
+ cm.columns[2][2] = p_points[p_simplex.points[2]].z;
+ cm.columns[2][3] = p_points[p_simplex.points[3]].z;
- cm.matrix[3][0] = 1.0;
- cm.matrix[3][1] = 1.0;
- cm.matrix[3][2] = 1.0;
- cm.matrix[3][3] = 1.0;
+ cm.columns[3][0] = 1.0;
+ cm.columns[3][1] = 1.0;
+ cm.columns[3][2] = 1.0;
+ cm.columns[3][3] = 1.0;
return ABS(cm.determinant()) <= CMP_EPSILON;
}
diff --git a/core/math/expression.cpp b/core/math/expression.cpp
index e230b69dc9..dcec3929fe 100644
--- a/core/math/expression.cpp
+++ b/core/math/expression.cpp
@@ -560,7 +560,7 @@ const char *Expression::token_name[TK_MAX] = {
};
Expression::ENode *Expression::_parse_expression() {
- Vector<ExpressionNode> expression;
+ Vector<ExpressionNode> expression_nodes;
while (true) {
//keep appending stuff to expression
@@ -838,14 +838,14 @@ Expression::ENode *Expression::_parse_expression() {
ExpressionNode e;
e.is_op = true;
e.op = Variant::OP_NEGATE;
- expression.push_back(e);
+ expression_nodes.push_back(e);
continue;
} break;
case TK_OP_NOT: {
ExpressionNode e;
e.is_op = true;
e.op = Variant::OP_NOT;
- expression.push_back(e);
+ expression_nodes.push_back(e);
continue;
} break;
@@ -960,7 +960,7 @@ Expression::ENode *Expression::_parse_expression() {
ExpressionNode e;
e.is_op = false;
e.node = expr;
- expression.push_back(e);
+ expression_nodes.push_back(e);
}
//ok finally look for an operator
@@ -1054,19 +1054,19 @@ Expression::ENode *Expression::_parse_expression() {
ExpressionNode e;
e.is_op = true;
e.op = op;
- expression.push_back(e);
+ expression_nodes.push_back(e);
}
}
/* Reduce the set of expressions and place them in an operator tree, respecting precedence */
- while (expression.size() > 1) {
+ while (expression_nodes.size() > 1) {
int next_op = -1;
int min_priority = 0xFFFFF;
bool is_unary = false;
- for (int i = 0; i < expression.size(); i++) {
- if (!expression[i].is_op) {
+ for (int i = 0; i < expression_nodes.size(); i++) {
+ if (!expression_nodes[i].is_op) {
continue;
}
@@ -1074,7 +1074,7 @@ Expression::ENode *Expression::_parse_expression() {
bool unary = false;
- switch (expression[i].op) {
+ switch (expression_nodes[i].op) {
case Variant::OP_POWER:
priority = 0;
break;
@@ -1130,7 +1130,7 @@ Expression::ENode *Expression::_parse_expression() {
priority = 14;
break;
default: {
- _set_error("Parser bug, invalid operator in expression: " + itos(expression[i].op));
+ _set_error("Parser bug, invalid operator in expression: " + itos(expression_nodes[i].op));
return nullptr;
}
}
@@ -1153,9 +1153,9 @@ Expression::ENode *Expression::_parse_expression() {
// OK! create operator..
if (is_unary) {
int expr_pos = next_op;
- while (expression[expr_pos].is_op) {
+ while (expression_nodes[expr_pos].is_op) {
expr_pos++;
- if (expr_pos == expression.size()) {
+ if (expr_pos == expression_nodes.size()) {
//can happen..
_set_error("Unexpected end of expression...");
return nullptr;
@@ -1165,29 +1165,29 @@ Expression::ENode *Expression::_parse_expression() {
//consecutively do unary operators
for (int i = expr_pos - 1; i >= next_op; i--) {
OperatorNode *op = alloc_node<OperatorNode>();
- op->op = expression[i].op;
- op->nodes[0] = expression[i + 1].node;
+ op->op = expression_nodes[i].op;
+ op->nodes[0] = expression_nodes[i + 1].node;
op->nodes[1] = nullptr;
- expression.write[i].is_op = false;
- expression.write[i].node = op;
- expression.remove_at(i + 1);
+ expression_nodes.write[i].is_op = false;
+ expression_nodes.write[i].node = op;
+ expression_nodes.remove_at(i + 1);
}
} else {
- if (next_op < 1 || next_op >= (expression.size() - 1)) {
+ if (next_op < 1 || next_op >= (expression_nodes.size() - 1)) {
_set_error("Parser bug...");
ERR_FAIL_V(nullptr);
}
OperatorNode *op = alloc_node<OperatorNode>();
- op->op = expression[next_op].op;
+ op->op = expression_nodes[next_op].op;
- if (expression[next_op - 1].is_op) {
+ if (expression_nodes[next_op - 1].is_op) {
_set_error("Parser bug...");
ERR_FAIL_V(nullptr);
}
- if (expression[next_op + 1].is_op) {
+ if (expression_nodes[next_op + 1].is_op) {
// this is not invalid and can really appear
// but it becomes invalid anyway because no binary op
// can be followed by a unary op in a valid combination,
@@ -1197,17 +1197,17 @@ Expression::ENode *Expression::_parse_expression() {
return nullptr;
}
- op->nodes[0] = expression[next_op - 1].node; //expression goes as left
- op->nodes[1] = expression[next_op + 1].node; //next expression goes as right
+ op->nodes[0] = expression_nodes[next_op - 1].node; //expression goes as left
+ op->nodes[1] = expression_nodes[next_op + 1].node; //next expression goes as right
//replace all 3 nodes by this operator and make it an expression
- expression.write[next_op - 1].node = op;
- expression.remove_at(next_op);
- expression.remove_at(next_op);
+ expression_nodes.write[next_op - 1].node = op;
+ expression_nodes.remove_at(next_op);
+ expression_nodes.remove_at(next_op);
}
}
- return expression[0].node;
+ return expression_nodes[0].node;
}
bool Expression::_compile_expression() {
diff --git a/core/math/geometry_3d.cpp b/core/math/geometry_3d.cpp
index ec96753c79..c5871358ed 100644
--- a/core/math/geometry_3d.cpp
+++ b/core/math/geometry_3d.cpp
@@ -30,11 +30,114 @@
#include "geometry_3d.h"
-#include "core/string/print_string.h"
-
#include "thirdparty/misc/clipper.hpp"
#include "thirdparty/misc/polypartition.h"
+void Geometry3D::get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt) {
+ // Based on David Eberly's Computation of Distance Between Line Segments algorithm.
+
+ Vector3 p = p_p1 - p_p0;
+ Vector3 q = p_q1 - p_q0;
+ Vector3 r = p_p0 - p_q0;
+
+ real_t a = p.dot(p);
+ real_t b = p.dot(q);
+ real_t c = q.dot(q);
+ real_t d = p.dot(r);
+ real_t e = q.dot(r);
+
+ real_t s = 0.0f;
+ real_t t = 0.0f;
+
+ real_t det = a * c - b * b;
+ if (det > CMP_EPSILON) {
+ // Non-parallel segments
+ real_t bte = b * e;
+ real_t ctd = c * d;
+
+ if (bte <= ctd) {
+ // s <= 0.0f
+ if (e <= 0.0f) {
+ // t <= 0.0f
+ s = (-d >= a ? 1 : (-d > 0.0f ? -d / a : 0.0f));
+ t = 0.0f;
+ } else if (e < c) {
+ // 0.0f < t < 1
+ s = 0.0f;
+ t = e / c;
+ } else {
+ // t >= 1
+ s = (b - d >= a ? 1 : (b - d > 0.0f ? (b - d) / a : 0.0f));
+ t = 1;
+ }
+ } else {
+ // s > 0.0f
+ s = bte - ctd;
+ if (s >= det) {
+ // s >= 1
+ if (b + e <= 0.0f) {
+ // t <= 0.0f
+ s = (-d <= 0.0f ? 0.0f : (-d < a ? -d / a : 1));
+ t = 0.0f;
+ } else if (b + e < c) {
+ // 0.0f < t < 1
+ s = 1;
+ t = (b + e) / c;
+ } else {
+ // t >= 1
+ s = (b - d <= 0.0f ? 0.0f : (b - d < a ? (b - d) / a : 1));
+ t = 1;
+ }
+ } else {
+ // 0.0f < s < 1
+ real_t ate = a * e;
+ real_t btd = b * d;
+
+ if (ate <= btd) {
+ // t <= 0.0f
+ s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a));
+ t = 0.0f;
+ } else {
+ // t > 0.0f
+ t = ate - btd;
+ if (t >= det) {
+ // t >= 1
+ s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a));
+ t = 1;
+ } else {
+ // 0.0f < t < 1
+ s /= det;
+ t /= det;
+ }
+ }
+ }
+ }
+ } else {
+ // Parallel segments
+ if (e <= 0.0f) {
+ s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a));
+ t = 0.0f;
+ } else if (e >= c) {
+ s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a));
+ t = 1;
+ } else {
+ s = 0.0f;
+ t = e / c;
+ }
+ }
+
+ r_ps = (1 - s) * p_p0 + s * p_p1;
+ r_qt = (1 - t) * p_q0 + t * p_q1;
+}
+
+real_t Geometry3D::get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1) {
+ Vector3 ps;
+ Vector3 qt;
+ get_closest_points_between_segments(p_p0, p_p1, p_q0, p_q1, ps, qt);
+ Vector3 st = qt - ps;
+ return st.length();
+}
+
void Geometry3D::MeshData::optimize_vertices() {
HashMap<int, int> vtx_remap;
diff --git a/core/math/geometry_3d.h b/core/math/geometry_3d.h
index 59c56906f4..e5ace9db72 100644
--- a/core/math/geometry_3d.h
+++ b/core/math/geometry_3d.h
@@ -37,96 +37,8 @@
class Geometry3D {
public:
- static void get_closest_points_between_segments(const Vector3 &p1, const Vector3 &p2, const Vector3 &q1, const Vector3 &q2, Vector3 &c1, Vector3 &c2) {
-// Do the function 'd' as defined by pb. I think it's a dot product of some sort.
-#define d_of(m, n, o, p) ((m.x - n.x) * (o.x - p.x) + (m.y - n.y) * (o.y - p.y) + (m.z - n.z) * (o.z - p.z))
-
- // Calculate the parametric position on the 2 curves, mua and mub.
- real_t mua = (d_of(p1, q1, q2, q1) * d_of(q2, q1, p2, p1) - d_of(p1, q1, p2, p1) * d_of(q2, q1, q2, q1)) / (d_of(p2, p1, p2, p1) * d_of(q2, q1, q2, q1) - d_of(q2, q1, p2, p1) * d_of(q2, q1, p2, p1));
- real_t mub = (d_of(p1, q1, q2, q1) + mua * d_of(q2, q1, p2, p1)) / d_of(q2, q1, q2, q1);
-
- // Clip the value between [0..1] constraining the solution to lie on the original curves.
- if (mua < 0) {
- mua = 0;
- }
- if (mub < 0) {
- mub = 0;
- }
- if (mua > 1) {
- mua = 1;
- }
- if (mub > 1) {
- mub = 1;
- }
- c1 = p1.lerp(p2, mua);
- c2 = q1.lerp(q2, mub);
- }
-
- static real_t get_closest_distance_between_segments(const Vector3 &p_from_a, const Vector3 &p_to_a, const Vector3 &p_from_b, const Vector3 &p_to_b) {
- Vector3 u = p_to_a - p_from_a;
- Vector3 v = p_to_b - p_from_b;
- Vector3 w = p_from_a - p_to_a;
- real_t a = u.dot(u); // Always >= 0
- real_t b = u.dot(v);
- real_t c = v.dot(v); // Always >= 0
- real_t d = u.dot(w);
- real_t e = v.dot(w);
- real_t D = a * c - b * b; // Always >= 0
- real_t sc, sN, sD = D; // sc = sN / sD, default sD = D >= 0
- real_t tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0
-
- // Compute the line parameters of the two closest points.
- if (D < (real_t)CMP_EPSILON) { // The lines are almost parallel.
- sN = 0.0f; // Force using point P0 on segment S1
- sD = 1.0f; // to prevent possible division by 0.0 later.
- tN = e;
- tD = c;
- } else { // Get the closest points on the infinite lines
- sN = (b * e - c * d);
- tN = (a * e - b * d);
- if (sN < 0.0f) { // sc < 0 => the s=0 edge is visible.
- sN = 0.0f;
- tN = e;
- tD = c;
- } else if (sN > sD) { // sc > 1 => the s=1 edge is visible.
- sN = sD;
- tN = e + b;
- tD = c;
- }
- }
-
- if (tN < 0.0f) { // tc < 0 => the t=0 edge is visible.
- tN = 0.0f;
- // Recompute sc for this edge.
- if (-d < 0.0f) {
- sN = 0.0f;
- } else if (-d > a) {
- sN = sD;
- } else {
- sN = -d;
- sD = a;
- }
- } else if (tN > tD) { // tc > 1 => the t=1 edge is visible.
- tN = tD;
- // Recompute sc for this edge.
- if ((-d + b) < 0.0f) {
- sN = 0;
- } else if ((-d + b) > a) {
- sN = sD;
- } else {
- sN = (-d + b);
- sD = a;
- }
- }
- // Finally do the division to get sc and tc.
- sc = (Math::is_zero_approx(sN) ? 0.0f : sN / sD);
- tc = (Math::is_zero_approx(tN) ? 0.0f : tN / tD);
-
- // Get the difference of the two closest points.
- Vector3 dP = w + (sc * u) - (tc * v); // = S1(sc) - S2(tc)
-
- return dP.length(); // Return the closest distance.
- }
+ static void get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt);
+ static real_t get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1);
static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) {
Vector3 e1 = p_v1 - p_v0;
diff --git a/core/math/math_fieldwise.cpp b/core/math/math_fieldwise.cpp
index 4be4809e3f..7b30b9a98c 100644
--- a/core/math/math_fieldwise.cpp
+++ b/core/math/math_fieldwise.cpp
@@ -56,6 +56,15 @@ Variant fieldwise_assign(const Variant &p_target, const Variant &p_source, const
return target;
}
+ case Variant::VECTOR2I: {
+ SETUP_TYPE(Vector2i)
+
+ /**/ TRY_TRANSFER_FIELD("x", x)
+ else TRY_TRANSFER_FIELD("y", y)
+
+ return target;
+ }
+
case Variant::RECT2: {
SETUP_TYPE(Rect2)
@@ -67,6 +76,17 @@ Variant fieldwise_assign(const Variant &p_target, const Variant &p_source, const
return target;
}
+ case Variant::RECT2I: {
+ SETUP_TYPE(Rect2i)
+
+ /**/ TRY_TRANSFER_FIELD("x", position.x)
+ else TRY_TRANSFER_FIELD("y", position.y)
+ else TRY_TRANSFER_FIELD("w", size.x)
+ else TRY_TRANSFER_FIELD("h", size.y)
+
+ return target;
+ }
+
case Variant::VECTOR3: {
SETUP_TYPE(Vector3)
@@ -77,6 +97,38 @@ Variant fieldwise_assign(const Variant &p_target, const Variant &p_source, const
return target;
}
+ case Variant::VECTOR3I: {
+ SETUP_TYPE(Vector3i)
+
+ /**/ TRY_TRANSFER_FIELD("x", x)
+ else TRY_TRANSFER_FIELD("y", y)
+ else TRY_TRANSFER_FIELD("z", z)
+
+ return target;
+ }
+
+ case Variant::VECTOR4: {
+ SETUP_TYPE(Vector4)
+
+ /**/ TRY_TRANSFER_FIELD("x", x)
+ else TRY_TRANSFER_FIELD("y", y)
+ else TRY_TRANSFER_FIELD("z", z)
+ else TRY_TRANSFER_FIELD("w", w)
+
+ return target;
+ }
+
+ case Variant::VECTOR4I: {
+ SETUP_TYPE(Vector4i)
+
+ /**/ TRY_TRANSFER_FIELD("x", x)
+ else TRY_TRANSFER_FIELD("y", y)
+ else TRY_TRANSFER_FIELD("z", z)
+ else TRY_TRANSFER_FIELD("w", w)
+
+ return target;
+ }
+
case Variant::PLANE: {
SETUP_TYPE(Plane)
@@ -160,6 +212,29 @@ Variant fieldwise_assign(const Variant &p_target, const Variant &p_source, const
return target;
}
+ case Variant::PROJECTION: {
+ SETUP_TYPE(Projection)
+
+ /**/ TRY_TRANSFER_FIELD("xx", columns[0].x)
+ else TRY_TRANSFER_FIELD("xy", columns[0].y)
+ else TRY_TRANSFER_FIELD("xz", columns[0].z)
+ else TRY_TRANSFER_FIELD("xw", columns[0].w)
+ else TRY_TRANSFER_FIELD("yx", columns[1].x)
+ else TRY_TRANSFER_FIELD("yy", columns[1].y)
+ else TRY_TRANSFER_FIELD("yz", columns[1].z)
+ else TRY_TRANSFER_FIELD("yw", columns[1].w)
+ else TRY_TRANSFER_FIELD("zx", columns[2].x)
+ else TRY_TRANSFER_FIELD("zy", columns[2].y)
+ else TRY_TRANSFER_FIELD("zz", columns[2].z)
+ else TRY_TRANSFER_FIELD("zw", columns[2].w)
+ else TRY_TRANSFER_FIELD("xo", columns[3].x)
+ else TRY_TRANSFER_FIELD("yo", columns[3].y)
+ else TRY_TRANSFER_FIELD("zo", columns[3].z)
+ else TRY_TRANSFER_FIELD("wo", columns[3].w)
+
+ return target;
+ }
+
default: {
ERR_FAIL_V(p_target);
}
diff --git a/core/math/math_funcs.h b/core/math/math_funcs.h
index 53deb9bd42..0af529ad98 100644
--- a/core/math/math_funcs.h
+++ b/core/math/math_funcs.h
@@ -184,6 +184,9 @@ public:
#endif
}
+ static _ALWAYS_INLINE_ bool is_finite(double p_val) { return isfinite(p_val); }
+ static _ALWAYS_INLINE_ bool is_finite(float p_val) { return isfinite(p_val); }
+
static _ALWAYS_INLINE_ double abs(double g) { return absd(g); }
static _ALWAYS_INLINE_ float abs(float g) { return absf(g); }
static _ALWAYS_INLINE_ int abs(int g) { return g > 0 ? g : -g; }
@@ -229,11 +232,11 @@ public:
return value;
}
- static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y * (Math_PI / 180.0); }
- static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y * (float)(Math_PI / 180.0); }
+ static _ALWAYS_INLINE_ double deg_to_rad(double p_y) { return p_y * (Math_PI / 180.0); }
+ static _ALWAYS_INLINE_ float deg_to_rad(float p_y) { return p_y * (float)(Math_PI / 180.0); }
- static _ALWAYS_INLINE_ double rad2deg(double p_y) { return p_y * (180.0 / Math_PI); }
- static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y * (float)(180.0 / Math_PI); }
+ static _ALWAYS_INLINE_ double rad_to_deg(double p_y) { return p_y * (180.0 / Math_PI); }
+ static _ALWAYS_INLINE_ float rad_to_deg(float p_y) { return p_y * (float)(180.0 / Math_PI); }
static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; }
static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; }
@@ -253,6 +256,92 @@ public:
(-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight));
}
+ static _ALWAYS_INLINE_ double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
+ double from_rot = fmod(p_from, Math_TAU);
+
+ double pre_diff = fmod(p_pre - from_rot, Math_TAU);
+ double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
+
+ double to_diff = fmod(p_to - from_rot, Math_TAU);
+ double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
+
+ double post_diff = fmod(p_post - to_rot, Math_TAU);
+ double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
+
+ return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
+ }
+
+ static _ALWAYS_INLINE_ float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
+ float from_rot = fmod(p_from, (float)Math_TAU);
+
+ float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
+ float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
+
+ float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
+ float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
+
+ float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
+ float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
+
+ return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
+ }
+
+ static _ALWAYS_INLINE_ double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
+ double p_to_t, double p_pre_t, double p_post_t) {
+ /* Barry-Goldman method */
+ double t = Math::lerp(0.0, p_to_t, p_weight);
+ double a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t);
+ double a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t);
+ double a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t));
+ double b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t));
+ double b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t);
+ return Math::lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t);
+ }
+
+ static _ALWAYS_INLINE_ float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
+ float p_to_t, float p_pre_t, float p_post_t) {
+ /* Barry-Goldman method */
+ float t = Math::lerp(0.0f, p_to_t, p_weight);
+ float a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t);
+ float a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t);
+ float a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t));
+ float b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t));
+ float b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t);
+ return Math::lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t);
+ }
+
+ static _ALWAYS_INLINE_ double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
+ double p_to_t, double p_pre_t, double p_post_t) {
+ double from_rot = fmod(p_from, Math_TAU);
+
+ double pre_diff = fmod(p_pre - from_rot, Math_TAU);
+ double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
+
+ double to_diff = fmod(p_to - from_rot, Math_TAU);
+ double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
+
+ double post_diff = fmod(p_post - to_rot, Math_TAU);
+ double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
+
+ return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
+ }
+
+ static _ALWAYS_INLINE_ float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
+ float p_to_t, float p_pre_t, float p_post_t) {
+ float from_rot = fmod(p_from, (float)Math_TAU);
+
+ float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
+ float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
+
+ float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
+ float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
+
+ float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
+ float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
+
+ return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
+ }
+
static _ALWAYS_INLINE_ double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
/* Formula from Wikipedia article on Bezier curves. */
double omt = (1.0 - p_t);
@@ -263,6 +352,7 @@ public:
return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
}
+
static _ALWAYS_INLINE_ float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
/* Formula from Wikipedia article on Bezier curves. */
float omt = (1.0f - p_t);
@@ -285,11 +375,19 @@ public:
return p_from + distance * p_weight;
}
- static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) { return (p_value - p_from) / (p_to - p_from); }
- static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) { return (p_value - p_from) / (p_to - p_from); }
+ static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) {
+ return (p_value - p_from) / (p_to - p_from);
+ }
+ static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) {
+ return (p_value - p_from) / (p_to - p_from);
+ }
- static _ALWAYS_INLINE_ double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); }
- static _ALWAYS_INLINE_ float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); }
+ static _ALWAYS_INLINE_ double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
+ return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
+ }
+ static _ALWAYS_INLINE_ float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
+ return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
+ }
static _ALWAYS_INLINE_ double smoothstep(double p_from, double p_to, double p_s) {
if (is_equal_approx(p_from, p_to)) {
@@ -305,14 +403,26 @@ public:
float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f);
return s * s * (3.0f - 2.0f * s);
}
- static _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) { return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta; }
- static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) { return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta; }
+ static _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) {
+ return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
+ }
+ static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) {
+ return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
+ }
- static _ALWAYS_INLINE_ double linear2db(double p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
- static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log(p_linear) * (float)8.6858896380650365530225783783321; }
+ static _ALWAYS_INLINE_ double linear_to_db(double p_linear) {
+ return Math::log(p_linear) * 8.6858896380650365530225783783321;
+ }
+ static _ALWAYS_INLINE_ float linear_to_db(float p_linear) {
+ return Math::log(p_linear) * (float)8.6858896380650365530225783783321;
+ }
- static _ALWAYS_INLINE_ double db2linear(double p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
- static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp(p_db * (float)0.11512925464970228420089957273422); }
+ static _ALWAYS_INLINE_ double db_to_linear(double p_db) {
+ return Math::exp(p_db * 0.11512925464970228420089957273422);
+ }
+ static _ALWAYS_INLINE_ float db_to_linear(float p_db) {
+ return Math::exp(p_db * (float)0.11512925464970228420089957273422);
+ }
static _ALWAYS_INLINE_ double round(double p_val) { return ::round(p_val); }
static _ALWAYS_INLINE_ float round(float p_val) { return ::roundf(p_val); }
diff --git a/core/math/plane.cpp b/core/math/plane.cpp
index 6881ad4014..a5d2fe5628 100644
--- a/core/math/plane.cpp
+++ b/core/math/plane.cpp
@@ -147,6 +147,7 @@ Variant Plane::intersect_3_bind(const Plane &p_plane1, const Plane &p_plane2) co
return Variant();
}
}
+
Variant Plane::intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const {
Vector3 inters;
if (intersects_ray(p_from, p_dir, &inters)) {
@@ -155,6 +156,7 @@ Variant Plane::intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir)
return Variant();
}
}
+
Variant Plane::intersects_segment_bind(const Vector3 &p_begin, const Vector3 &p_end) const {
Vector3 inters;
if (intersects_segment(p_begin, p_end, &inters)) {
@@ -174,6 +176,10 @@ bool Plane::is_equal_approx(const Plane &p_plane) const {
return normal.is_equal_approx(p_plane.normal) && Math::is_equal_approx(d, p_plane.d);
}
+bool Plane::is_finite() const {
+ return normal.is_finite() && Math::is_finite(d);
+}
+
Plane::operator String() const {
return "[N: " + normal.operator String() + ", D: " + String::num_real(d, false) + "]";
}
diff --git a/core/math/plane.h b/core/math/plane.h
index 66c1741662..77da59fb27 100644
--- a/core/math/plane.h
+++ b/core/math/plane.h
@@ -52,7 +52,7 @@ struct _NO_DISCARD_ Plane {
_FORCE_INLINE_ bool is_point_over(const Vector3 &p_point) const; ///< Point is over plane
_FORCE_INLINE_ real_t distance_to(const Vector3 &p_point) const;
- _FORCE_INLINE_ bool has_point(const Vector3 &p_point, real_t _epsilon = CMP_EPSILON) const;
+ _FORCE_INLINE_ bool has_point(const Vector3 &p_point, real_t p_tolerance = CMP_EPSILON) const;
/* intersections */
@@ -74,6 +74,7 @@ struct _NO_DISCARD_ Plane {
Plane operator-() const { return Plane(-normal, -d); }
bool is_equal_approx(const Plane &p_plane) const;
bool is_equal_approx_any_side(const Plane &p_plane) const;
+ bool is_finite() const;
_FORCE_INLINE_ bool operator==(const Plane &p_plane) const;
_FORCE_INLINE_ bool operator!=(const Plane &p_plane) const;
@@ -97,10 +98,10 @@ real_t Plane::distance_to(const Vector3 &p_point) const {
return (normal.dot(p_point) - d);
}
-bool Plane::has_point(const Vector3 &p_point, real_t _epsilon) const {
+bool Plane::has_point(const Vector3 &p_point, real_t p_tolerance) const {
real_t dist = normal.dot(p_point) - d;
dist = ABS(dist);
- return (dist <= _epsilon);
+ return (dist <= p_tolerance);
}
Plane::Plane(const Vector3 &p_normal, real_t p_d) :
diff --git a/core/math/camera_matrix.cpp b/core/math/projection.cpp
index 57c53b0adb..70cc9b5f7c 100644
--- a/core/math/camera_matrix.cpp
+++ b/core/math/projection.cpp
@@ -1,5 +1,5 @@
/*************************************************************************/
-/* camera_matrix.cpp */
+/* projection.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
@@ -28,72 +28,234 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
-#include "camera_matrix.h"
+#include "projection.h"
#include "core/math/aabb.h"
#include "core/math/math_funcs.h"
#include "core/math/plane.h"
#include "core/math/rect2.h"
#include "core/math/transform_3d.h"
-#include "core/string/print_string.h"
-
-float CameraMatrix::determinant() const {
- return matrix[0][3] * matrix[1][2] * matrix[2][1] * matrix[3][0] - matrix[0][2] * matrix[1][3] * matrix[2][1] * matrix[3][0] -
- matrix[0][3] * matrix[1][1] * matrix[2][2] * matrix[3][0] + matrix[0][1] * matrix[1][3] * matrix[2][2] * matrix[3][0] +
- matrix[0][2] * matrix[1][1] * matrix[2][3] * matrix[3][0] - matrix[0][1] * matrix[1][2] * matrix[2][3] * matrix[3][0] -
- matrix[0][3] * matrix[1][2] * matrix[2][0] * matrix[3][1] + matrix[0][2] * matrix[1][3] * matrix[2][0] * matrix[3][1] +
- matrix[0][3] * matrix[1][0] * matrix[2][2] * matrix[3][1] - matrix[0][0] * matrix[1][3] * matrix[2][2] * matrix[3][1] -
- matrix[0][2] * matrix[1][0] * matrix[2][3] * matrix[3][1] + matrix[0][0] * matrix[1][2] * matrix[2][3] * matrix[3][1] +
- matrix[0][3] * matrix[1][1] * matrix[2][0] * matrix[3][2] - matrix[0][1] * matrix[1][3] * matrix[2][0] * matrix[3][2] -
- matrix[0][3] * matrix[1][0] * matrix[2][1] * matrix[3][2] + matrix[0][0] * matrix[1][3] * matrix[2][1] * matrix[3][2] +
- matrix[0][1] * matrix[1][0] * matrix[2][3] * matrix[3][2] - matrix[0][0] * matrix[1][1] * matrix[2][3] * matrix[3][2] -
- matrix[0][2] * matrix[1][1] * matrix[2][0] * matrix[3][3] + matrix[0][1] * matrix[1][2] * matrix[2][0] * matrix[3][3] +
- matrix[0][2] * matrix[1][0] * matrix[2][1] * matrix[3][3] - matrix[0][0] * matrix[1][2] * matrix[2][1] * matrix[3][3] -
- matrix[0][1] * matrix[1][0] * matrix[2][2] * matrix[3][3] + matrix[0][0] * matrix[1][1] * matrix[2][2] * matrix[3][3];
-}
-
-void CameraMatrix::set_identity() {
+#include "core/string/ustring.h"
+
+float Projection::determinant() const {
+ return columns[0][3] * columns[1][2] * columns[2][1] * columns[3][0] - columns[0][2] * columns[1][3] * columns[2][1] * columns[3][0] -
+ columns[0][3] * columns[1][1] * columns[2][2] * columns[3][0] + columns[0][1] * columns[1][3] * columns[2][2] * columns[3][0] +
+ columns[0][2] * columns[1][1] * columns[2][3] * columns[3][0] - columns[0][1] * columns[1][2] * columns[2][3] * columns[3][0] -
+ columns[0][3] * columns[1][2] * columns[2][0] * columns[3][1] + columns[0][2] * columns[1][3] * columns[2][0] * columns[3][1] +
+ columns[0][3] * columns[1][0] * columns[2][2] * columns[3][1] - columns[0][0] * columns[1][3] * columns[2][2] * columns[3][1] -
+ columns[0][2] * columns[1][0] * columns[2][3] * columns[3][1] + columns[0][0] * columns[1][2] * columns[2][3] * columns[3][1] +
+ columns[0][3] * columns[1][1] * columns[2][0] * columns[3][2] - columns[0][1] * columns[1][3] * columns[2][0] * columns[3][2] -
+ columns[0][3] * columns[1][0] * columns[2][1] * columns[3][2] + columns[0][0] * columns[1][3] * columns[2][1] * columns[3][2] +
+ columns[0][1] * columns[1][0] * columns[2][3] * columns[3][2] - columns[0][0] * columns[1][1] * columns[2][3] * columns[3][2] -
+ columns[0][2] * columns[1][1] * columns[2][0] * columns[3][3] + columns[0][1] * columns[1][2] * columns[2][0] * columns[3][3] +
+ columns[0][2] * columns[1][0] * columns[2][1] * columns[3][3] - columns[0][0] * columns[1][2] * columns[2][1] * columns[3][3] -
+ columns[0][1] * columns[1][0] * columns[2][2] * columns[3][3] + columns[0][0] * columns[1][1] * columns[2][2] * columns[3][3];
+}
+
+void Projection::set_identity() {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
- matrix[i][j] = (i == j) ? 1 : 0;
+ columns[i][j] = (i == j) ? 1 : 0;
}
}
}
-void CameraMatrix::set_zero() {
+void Projection::set_zero() {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
- matrix[i][j] = 0;
+ columns[i][j] = 0;
}
}
}
-Plane CameraMatrix::xform4(const Plane &p_vec4) const {
+Plane Projection::xform4(const Plane &p_vec4) const {
Plane ret;
- ret.normal.x = matrix[0][0] * p_vec4.normal.x + matrix[1][0] * p_vec4.normal.y + matrix[2][0] * p_vec4.normal.z + matrix[3][0] * p_vec4.d;
- ret.normal.y = matrix[0][1] * p_vec4.normal.x + matrix[1][1] * p_vec4.normal.y + matrix[2][1] * p_vec4.normal.z + matrix[3][1] * p_vec4.d;
- ret.normal.z = matrix[0][2] * p_vec4.normal.x + matrix[1][2] * p_vec4.normal.y + matrix[2][2] * p_vec4.normal.z + matrix[3][2] * p_vec4.d;
- ret.d = matrix[0][3] * p_vec4.normal.x + matrix[1][3] * p_vec4.normal.y + matrix[2][3] * p_vec4.normal.z + matrix[3][3] * p_vec4.d;
+ ret.normal.x = columns[0][0] * p_vec4.normal.x + columns[1][0] * p_vec4.normal.y + columns[2][0] * p_vec4.normal.z + columns[3][0] * p_vec4.d;
+ ret.normal.y = columns[0][1] * p_vec4.normal.x + columns[1][1] * p_vec4.normal.y + columns[2][1] * p_vec4.normal.z + columns[3][1] * p_vec4.d;
+ ret.normal.z = columns[0][2] * p_vec4.normal.x + columns[1][2] * p_vec4.normal.y + columns[2][2] * p_vec4.normal.z + columns[3][2] * p_vec4.d;
+ ret.d = columns[0][3] * p_vec4.normal.x + columns[1][3] * p_vec4.normal.y + columns[2][3] * p_vec4.normal.z + columns[3][3] * p_vec4.d;
return ret;
}
-void CameraMatrix::adjust_perspective_znear(real_t p_new_znear) {
+Vector4 Projection::xform(const Vector4 &p_vec4) const {
+ return Vector4(
+ columns[0][0] * p_vec4.x + columns[1][0] * p_vec4.y + columns[2][0] * p_vec4.z + columns[3][0] * p_vec4.w,
+ columns[0][1] * p_vec4.x + columns[1][1] * p_vec4.y + columns[2][1] * p_vec4.z + columns[3][1] * p_vec4.w,
+ columns[0][2] * p_vec4.x + columns[1][2] * p_vec4.y + columns[2][2] * p_vec4.z + columns[3][2] * p_vec4.w,
+ columns[0][3] * p_vec4.x + columns[1][3] * p_vec4.y + columns[2][3] * p_vec4.z + columns[3][3] * p_vec4.w);
+}
+Vector4 Projection::xform_inv(const Vector4 &p_vec4) const {
+ return Vector4(
+ columns[0][0] * p_vec4.x + columns[0][1] * p_vec4.y + columns[0][2] * p_vec4.z + columns[0][3] * p_vec4.w,
+ columns[1][0] * p_vec4.x + columns[1][1] * p_vec4.y + columns[1][2] * p_vec4.z + columns[1][3] * p_vec4.w,
+ columns[2][0] * p_vec4.x + columns[2][1] * p_vec4.y + columns[2][2] * p_vec4.z + columns[2][3] * p_vec4.w,
+ columns[3][0] * p_vec4.x + columns[3][1] * p_vec4.y + columns[3][2] * p_vec4.z + columns[3][3] * p_vec4.w);
+}
+
+void Projection::adjust_perspective_znear(real_t p_new_znear) {
real_t zfar = get_z_far();
real_t znear = p_new_znear;
real_t deltaZ = zfar - znear;
- matrix[2][2] = -(zfar + znear) / deltaZ;
- matrix[3][2] = -2 * znear * zfar / deltaZ;
+ columns[2][2] = -(zfar + znear) / deltaZ;
+ columns[3][2] = -2 * znear * zfar / deltaZ;
+}
+
+Projection Projection::create_depth_correction(bool p_flip_y) {
+ Projection proj;
+ proj.set_depth_correction(p_flip_y);
+ return proj;
+}
+
+Projection Projection::create_light_atlas_rect(const Rect2 &p_rect) {
+ Projection proj;
+ proj.set_light_atlas_rect(p_rect);
+ return proj;
+}
+
+Projection Projection::create_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov) {
+ Projection proj;
+ proj.set_perspective(p_fovy_degrees, p_aspect, p_z_near, p_z_far, p_flip_fov);
+ return proj;
+}
+
+Projection Projection::create_perspective_hmd(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) {
+ Projection proj;
+ proj.set_perspective(p_fovy_degrees, p_aspect, p_z_near, p_z_far, p_flip_fov, p_eye, p_intraocular_dist, p_convergence_dist);
+ return proj;
+}
+
+Projection Projection::create_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far) {
+ Projection proj;
+ proj.set_for_hmd(p_eye, p_aspect, p_intraocular_dist, p_display_width, p_display_to_lens, p_oversample, p_z_near, p_z_far);
+ return proj;
+}
+
+Projection Projection::create_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
+ Projection proj;
+ proj.set_orthogonal(p_left, p_right, p_bottom, p_top, p_zfar, p_zfar);
+ return proj;
+}
+
+Projection Projection::create_orthogonal_aspect(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov) {
+ Projection proj;
+ proj.set_orthogonal(p_size, p_aspect, p_znear, p_zfar, p_flip_fov);
+ return proj;
+}
+
+Projection Projection::create_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) {
+ Projection proj;
+ proj.set_frustum(p_left, p_right, p_bottom, p_top, p_near, p_far);
+ return proj;
+}
+
+Projection Projection::create_frustum_aspect(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov) {
+ Projection proj;
+ proj.set_frustum(p_size, p_aspect, p_offset, p_near, p_far, p_flip_fov);
+ return proj;
+}
+
+Projection Projection::create_fit_aabb(const AABB &p_aabb) {
+ Projection proj;
+ proj.scale_translate_to_fit(p_aabb);
+ return proj;
+}
+
+Projection Projection::perspective_znear_adjusted(real_t p_new_znear) const {
+ Projection proj = *this;
+ proj.adjust_perspective_znear(p_new_znear);
+ return proj;
+}
+
+Plane Projection::get_projection_plane(Planes p_plane) const {
+ const real_t *matrix = (const real_t *)columns;
+
+ switch (p_plane) {
+ case PLANE_NEAR: {
+ Plane new_plane = Plane(matrix[3] + matrix[2],
+ matrix[7] + matrix[6],
+ matrix[11] + matrix[10],
+ matrix[15] + matrix[14]);
+
+ new_plane.normal = -new_plane.normal;
+ new_plane.normalize();
+ return new_plane;
+ } break;
+ case PLANE_FAR: {
+ Plane new_plane = Plane(matrix[3] - matrix[2],
+ matrix[7] - matrix[6],
+ matrix[11] - matrix[10],
+ matrix[15] - matrix[14]);
+
+ new_plane.normal = -new_plane.normal;
+ new_plane.normalize();
+ return new_plane;
+ } break;
+ case PLANE_LEFT: {
+ Plane new_plane = Plane(matrix[3] + matrix[0],
+ matrix[7] + matrix[4],
+ matrix[11] + matrix[8],
+ matrix[15] + matrix[12]);
+
+ new_plane.normal = -new_plane.normal;
+ new_plane.normalize();
+ return new_plane;
+ } break;
+ case PLANE_TOP: {
+ Plane new_plane = Plane(matrix[3] - matrix[1],
+ matrix[7] - matrix[5],
+ matrix[11] - matrix[9],
+ matrix[15] - matrix[13]);
+
+ new_plane.normal = -new_plane.normal;
+ new_plane.normalize();
+ return new_plane;
+ } break;
+ case PLANE_RIGHT: {
+ Plane new_plane = Plane(matrix[3] - matrix[0],
+ matrix[7] - matrix[4],
+ matrix[11] - matrix[8],
+ matrix[15] - matrix[12]);
+
+ new_plane.normal = -new_plane.normal;
+ new_plane.normalize();
+ return new_plane;
+ } break;
+ case PLANE_BOTTOM: {
+ Plane new_plane = Plane(matrix[3] + matrix[1],
+ matrix[7] + matrix[5],
+ matrix[11] + matrix[9],
+ matrix[15] + matrix[13]);
+
+ new_plane.normal = -new_plane.normal;
+ new_plane.normalize();
+ return new_plane;
+ } break;
+ }
+
+ return Plane();
+}
+
+Projection Projection::flipped_y() const {
+ Projection proj = *this;
+ proj.flip_y();
+ return proj;
}
-void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov) {
+Projection Projection ::jitter_offseted(const Vector2 &p_offset) const {
+ Projection proj = *this;
+ proj.add_jitter_offset(p_offset);
+ return proj;
+}
+
+void Projection::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov) {
if (p_flip_fov) {
p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
}
real_t sine, cotangent, deltaZ;
- real_t radians = Math::deg2rad(p_fovy_degrees / 2.0);
+ real_t radians = Math::deg_to_rad(p_fovy_degrees / 2.0);
deltaZ = p_z_far - p_z_near;
sine = Math::sin(radians);
@@ -105,22 +267,22 @@ void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_
set_identity();
- matrix[0][0] = cotangent / p_aspect;
- matrix[1][1] = cotangent;
- matrix[2][2] = -(p_z_far + p_z_near) / deltaZ;
- matrix[2][3] = -1;
- matrix[3][2] = -2 * p_z_near * p_z_far / deltaZ;
- matrix[3][3] = 0;
+ columns[0][0] = cotangent / p_aspect;
+ columns[1][1] = cotangent;
+ columns[2][2] = -(p_z_far + p_z_near) / deltaZ;
+ columns[2][3] = -1;
+ columns[3][2] = -2 * p_z_near * p_z_far / deltaZ;
+ columns[3][3] = 0;
}
-void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) {
+void Projection::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) {
if (p_flip_fov) {
p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
}
real_t left, right, modeltranslation, ymax, xmax, frustumshift;
- ymax = p_z_near * tan(Math::deg2rad(p_fovy_degrees / 2.0));
+ ymax = p_z_near * tan(Math::deg_to_rad(p_fovy_degrees / 2.0));
xmax = ymax * p_aspect;
frustumshift = (p_intraocular_dist / 2.0) * p_z_near / p_convergence_dist;
@@ -145,13 +307,13 @@ void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_
set_frustum(left, right, -ymax, ymax, p_z_near, p_z_far);
// translate matrix by (modeltranslation, 0.0, 0.0)
- CameraMatrix cm;
+ Projection cm;
cm.set_identity();
- cm.matrix[3][0] = modeltranslation;
+ cm.columns[3][0] = modeltranslation;
*this = *this * cm;
}
-void CameraMatrix::set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far) {
+void Projection::set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far) {
// we first calculate our base frustum on our values without taking our lens magnification into account.
real_t f1 = (p_intraocular_dist * 0.5) / p_display_to_lens;
real_t f2 = ((p_display_width - p_intraocular_dist) * 0.5) / p_display_to_lens;
@@ -179,19 +341,19 @@ void CameraMatrix::set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_
}
}
-void CameraMatrix::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
+void Projection::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
set_identity();
- matrix[0][0] = 2.0 / (p_right - p_left);
- matrix[3][0] = -((p_right + p_left) / (p_right - p_left));
- matrix[1][1] = 2.0 / (p_top - p_bottom);
- matrix[3][1] = -((p_top + p_bottom) / (p_top - p_bottom));
- matrix[2][2] = -2.0 / (p_zfar - p_znear);
- matrix[3][2] = -((p_zfar + p_znear) / (p_zfar - p_znear));
- matrix[3][3] = 1.0;
+ columns[0][0] = 2.0 / (p_right - p_left);
+ columns[3][0] = -((p_right + p_left) / (p_right - p_left));
+ columns[1][1] = 2.0 / (p_top - p_bottom);
+ columns[3][1] = -((p_top + p_bottom) / (p_top - p_bottom));
+ columns[2][2] = -2.0 / (p_zfar - p_znear);
+ columns[3][2] = -((p_zfar + p_znear) / (p_zfar - p_znear));
+ columns[3][3] = 1.0;
}
-void CameraMatrix::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov) {
+void Projection::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov) {
if (!p_flip_fov) {
p_size *= p_aspect;
}
@@ -199,12 +361,12 @@ void CameraMatrix::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear
set_orthogonal(-p_size / 2, +p_size / 2, -p_size / p_aspect / 2, +p_size / p_aspect / 2, p_znear, p_zfar);
}
-void CameraMatrix::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) {
+void Projection::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) {
ERR_FAIL_COND(p_right <= p_left);
ERR_FAIL_COND(p_top <= p_bottom);
ERR_FAIL_COND(p_far <= p_near);
- real_t *te = &matrix[0][0];
+ real_t *te = &columns[0][0];
real_t x = 2 * p_near / (p_right - p_left);
real_t y = 2 * p_near / (p_top - p_bottom);
@@ -231,7 +393,7 @@ void CameraMatrix::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, r
te[15] = 0;
}
-void CameraMatrix::set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov) {
+void Projection::set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov) {
if (!p_flip_fov) {
p_size *= p_aspect;
}
@@ -239,8 +401,8 @@ void CameraMatrix::set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset,
set_frustum(-p_size / 2 + p_offset.x, +p_size / 2 + p_offset.x, -p_size / p_aspect / 2 + p_offset.y, +p_size / p_aspect / 2 + p_offset.y, p_near, p_far);
}
-real_t CameraMatrix::get_z_far() const {
- const real_t *matrix = (const real_t *)this->matrix;
+real_t Projection::get_z_far() const {
+ const real_t *matrix = (const real_t *)columns;
Plane new_plane = Plane(matrix[3] - matrix[2],
matrix[7] - matrix[6],
matrix[11] - matrix[10],
@@ -252,8 +414,8 @@ real_t CameraMatrix::get_z_far() const {
return new_plane.d;
}
-real_t CameraMatrix::get_z_near() const {
- const real_t *matrix = (const real_t *)this->matrix;
+real_t Projection::get_z_near() const {
+ const real_t *matrix = (const real_t *)columns;
Plane new_plane = Plane(matrix[3] + matrix[2],
matrix[7] + matrix[6],
matrix[11] + matrix[10],
@@ -263,8 +425,8 @@ real_t CameraMatrix::get_z_near() const {
return new_plane.d;
}
-Vector2 CameraMatrix::get_viewport_half_extents() const {
- const real_t *matrix = (const real_t *)this->matrix;
+Vector2 Projection::get_viewport_half_extents() const {
+ const real_t *matrix = (const real_t *)columns;
///////--- Near Plane ---///////
Plane near_plane = Plane(matrix[3] + matrix[2],
matrix[7] + matrix[6],
@@ -291,8 +453,8 @@ Vector2 CameraMatrix::get_viewport_half_extents() const {
return Vector2(res.x, res.y);
}
-Vector2 CameraMatrix::get_far_plane_half_extents() const {
- const real_t *matrix = (const real_t *)this->matrix;
+Vector2 Projection::get_far_plane_half_extents() const {
+ const real_t *matrix = (const real_t *)columns;
///////--- Far Plane ---///////
Plane far_plane = Plane(matrix[3] - matrix[2],
matrix[7] - matrix[6],
@@ -319,7 +481,7 @@ Vector2 CameraMatrix::get_far_plane_half_extents() const {
return Vector2(res.x, res.y);
}
-bool CameraMatrix::get_endpoints(const Transform3D &p_transform, Vector3 *p_8points) const {
+bool Projection::get_endpoints(const Transform3D &p_transform, Vector3 *p_8points) const {
Vector<Plane> planes = get_projection_planes(Transform3D());
const Planes intersections[8][3] = {
{ PLANE_FAR, PLANE_LEFT, PLANE_TOP },
@@ -334,7 +496,10 @@ bool CameraMatrix::get_endpoints(const Transform3D &p_transform, Vector3 *p_8poi
for (int i = 0; i < 8; i++) {
Vector3 point;
- bool res = planes[intersections[i][0]].intersect_3(planes[intersections[i][1]], planes[intersections[i][2]], &point);
+ Plane a = planes[intersections[i][0]];
+ Plane b = planes[intersections[i][1]];
+ Plane c = planes[intersections[i][2]];
+ bool res = a.intersect_3(b, c, &point);
ERR_FAIL_COND_V(!res, false);
p_8points[i] = p_transform.xform(point);
}
@@ -342,7 +507,7 @@ bool CameraMatrix::get_endpoints(const Transform3D &p_transform, Vector3 *p_8poi
return true;
}
-Vector<Plane> CameraMatrix::get_projection_planes(const Transform3D &p_transform) const {
+Vector<Plane> Projection::get_projection_planes(const Transform3D &p_transform) const {
/** Fast Plane Extraction from combined modelview/projection matrices.
* References:
* https://web.archive.org/web/20011221205252/https://www.markmorley.com/opengl/frustumculling.html
@@ -352,7 +517,7 @@ Vector<Plane> CameraMatrix::get_projection_planes(const Transform3D &p_transform
Vector<Plane> planes;
planes.resize(6);
- const real_t *matrix = (const real_t *)this->matrix;
+ const real_t *matrix = (const real_t *)columns;
Plane new_plane;
@@ -425,13 +590,13 @@ Vector<Plane> CameraMatrix::get_projection_planes(const Transform3D &p_transform
return planes;
}
-CameraMatrix CameraMatrix::inverse() const {
- CameraMatrix cm = *this;
+Projection Projection::inverse() const {
+ Projection cm = *this;
cm.invert();
return cm;
}
-void CameraMatrix::invert() {
+void Projection::invert() {
int i, j, k;
int pvt_i[4], pvt_j[4]; /* Locations of pivot matrix */
real_t pvt_val; /* Value of current pivot element */
@@ -439,15 +604,15 @@ void CameraMatrix::invert() {
real_t determinant = 1.0f;
for (k = 0; k < 4; k++) {
/** Locate k'th pivot element **/
- pvt_val = matrix[k][k]; /** Initialize for search **/
+ pvt_val = columns[k][k]; /** Initialize for search **/
pvt_i[k] = k;
pvt_j[k] = k;
for (i = k; i < 4; i++) {
for (j = k; j < 4; j++) {
- if (Math::abs(matrix[i][j]) > Math::abs(pvt_val)) {
+ if (Math::abs(columns[i][j]) > Math::abs(pvt_val)) {
pvt_i[k] = i;
pvt_j[k] = j;
- pvt_val = matrix[i][j];
+ pvt_val = columns[i][j];
}
}
}
@@ -462,9 +627,9 @@ void CameraMatrix::invert() {
i = pvt_i[k];
if (i != k) { /** If rows are different **/
for (j = 0; j < 4; j++) {
- hold = -matrix[k][j];
- matrix[k][j] = matrix[i][j];
- matrix[i][j] = hold;
+ hold = -columns[k][j];
+ columns[k][j] = columns[i][j];
+ columns[i][j] = hold;
}
}
@@ -472,25 +637,25 @@ void CameraMatrix::invert() {
j = pvt_j[k];
if (j != k) { /** If columns are different **/
for (i = 0; i < 4; i++) {
- hold = -matrix[i][k];
- matrix[i][k] = matrix[i][j];
- matrix[i][j] = hold;
+ hold = -columns[i][k];
+ columns[i][k] = columns[i][j];
+ columns[i][j] = hold;
}
}
/** Divide column by minus pivot value **/
for (i = 0; i < 4; i++) {
if (i != k) {
- matrix[i][k] /= (-pvt_val);
+ columns[i][k] /= (-pvt_val);
}
}
/** Reduce the matrix **/
for (i = 0; i < 4; i++) {
- hold = matrix[i][k];
+ hold = columns[i][k];
for (j = 0; j < 4; j++) {
if (i != k && j != k) {
- matrix[i][j] += hold * matrix[k][j];
+ columns[i][j] += hold * columns[k][j];
}
}
}
@@ -498,12 +663,12 @@ void CameraMatrix::invert() {
/** Divide row by pivot **/
for (j = 0; j < 4; j++) {
if (j != k) {
- matrix[k][j] /= pvt_val;
+ columns[k][j] /= pvt_val;
}
}
/** Replace pivot by reciprocal (at last we can touch it). **/
- matrix[k][k] = 1.0 / pvt_val;
+ columns[k][k] = 1.0 / pvt_val;
}
/* That was most of the work, one final pass of row/column interchange */
@@ -512,51 +677,51 @@ void CameraMatrix::invert() {
i = pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */
if (i != k) { /* If rows are different */
for (j = 0; j < 4; j++) {
- hold = matrix[k][j];
- matrix[k][j] = -matrix[i][j];
- matrix[i][j] = hold;
+ hold = columns[k][j];
+ columns[k][j] = -columns[i][j];
+ columns[i][j] = hold;
}
}
j = pvt_i[k]; /* Columns to swap correspond to pivot ROW */
if (j != k) { /* If columns are different */
for (i = 0; i < 4; i++) {
- hold = matrix[i][k];
- matrix[i][k] = -matrix[i][j];
- matrix[i][j] = hold;
+ hold = columns[i][k];
+ columns[i][k] = -columns[i][j];
+ columns[i][j] = hold;
}
}
}
}
-void CameraMatrix::flip_y() {
+void Projection::flip_y() {
for (int i = 0; i < 4; i++) {
- matrix[1][i] = -matrix[1][i];
+ columns[1][i] = -columns[1][i];
}
}
-CameraMatrix::CameraMatrix() {
+Projection::Projection() {
set_identity();
}
-CameraMatrix CameraMatrix::operator*(const CameraMatrix &p_matrix) const {
- CameraMatrix new_matrix;
+Projection Projection::operator*(const Projection &p_matrix) const {
+ Projection new_matrix;
for (int j = 0; j < 4; j++) {
for (int i = 0; i < 4; i++) {
real_t ab = 0;
for (int k = 0; k < 4; k++) {
- ab += matrix[k][i] * p_matrix.matrix[j][k];
+ ab += columns[k][i] * p_matrix.columns[j][k];
}
- new_matrix.matrix[j][i] = ab;
+ new_matrix.columns[j][i] = ab;
}
}
return new_matrix;
}
-void CameraMatrix::set_depth_correction(bool p_flip_y) {
- real_t *m = &matrix[0][0];
+void Projection::set_depth_correction(bool p_flip_y) {
+ real_t *m = &columns[0][0];
m[0] = 1;
m[1] = 0.0;
@@ -576,8 +741,8 @@ void CameraMatrix::set_depth_correction(bool p_flip_y) {
m[15] = 1.0;
}
-void CameraMatrix::set_light_bias() {
- real_t *m = &matrix[0][0];
+void Projection::set_light_bias() {
+ real_t *m = &columns[0][0];
m[0] = 0.5;
m[1] = 0.0;
@@ -597,8 +762,8 @@ void CameraMatrix::set_light_bias() {
m[15] = 1.0;
}
-void CameraMatrix::set_light_atlas_rect(const Rect2 &p_rect) {
- real_t *m = &matrix[0][0];
+void Projection::set_light_atlas_rect(const Rect2 &p_rect) {
+ real_t *m = &columns[0][0];
m[0] = p_rect.size.width;
m[1] = 0.0;
@@ -618,34 +783,34 @@ void CameraMatrix::set_light_atlas_rect(const Rect2 &p_rect) {
m[15] = 1.0;
}
-CameraMatrix::operator String() const {
+Projection::operator String() const {
String str;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
- str += String((j > 0) ? ", " : "\n") + rtos(matrix[i][j]);
+ str += String((j > 0) ? ", " : "\n") + rtos(columns[i][j]);
}
}
return str;
}
-real_t CameraMatrix::get_aspect() const {
+real_t Projection::get_aspect() const {
Vector2 vp_he = get_viewport_half_extents();
return vp_he.x / vp_he.y;
}
-int CameraMatrix::get_pixels_per_meter(int p_for_pixel_width) const {
+int Projection::get_pixels_per_meter(int p_for_pixel_width) const {
Vector3 result = xform(Vector3(1, 0, -1));
return int((result.x * 0.5 + 0.5) * p_for_pixel_width);
}
-bool CameraMatrix::is_orthogonal() const {
- return matrix[3][3] == 1.0;
+bool Projection::is_orthogonal() const {
+ return columns[3][3] == 1.0;
}
-real_t CameraMatrix::get_fov() const {
- const real_t *matrix = (const real_t *)this->matrix;
+real_t Projection::get_fov() const {
+ const real_t *matrix = (const real_t *)columns;
Plane right_plane = Plane(matrix[3] - matrix[0],
matrix[7] - matrix[4],
@@ -654,7 +819,7 @@ real_t CameraMatrix::get_fov() const {
right_plane.normalize();
if ((matrix[8] == 0) && (matrix[9] == 0)) {
- return Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x))) * 2.0;
+ return Math::rad_to_deg(Math::acos(Math::abs(right_plane.normal.x))) * 2.0;
} else {
// our frustum is asymmetrical need to calculate the left planes angle separately..
Plane left_plane = Plane(matrix[3] + matrix[0],
@@ -663,11 +828,11 @@ real_t CameraMatrix::get_fov() const {
matrix[15] + matrix[12]);
left_plane.normalize();
- return Math::rad2deg(Math::acos(Math::abs(left_plane.normal.x))) + Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x)));
+ return Math::rad_to_deg(Math::acos(Math::abs(left_plane.normal.x))) + Math::rad_to_deg(Math::acos(Math::abs(right_plane.normal.x)));
}
}
-float CameraMatrix::get_lod_multiplier() const {
+float Projection::get_lod_multiplier() const {
if (is_orthogonal()) {
return get_viewport_half_extents().x;
} else {
@@ -676,48 +841,49 @@ float CameraMatrix::get_lod_multiplier() const {
return 1.0 / (zn / width);
}
- //usage is lod_size / (lod_distance * multiplier) < threshold
+ // Usage is lod_size / (lod_distance * multiplier) < threshold
}
-void CameraMatrix::make_scale(const Vector3 &p_scale) {
+
+void Projection::make_scale(const Vector3 &p_scale) {
set_identity();
- matrix[0][0] = p_scale.x;
- matrix[1][1] = p_scale.y;
- matrix[2][2] = p_scale.z;
+ columns[0][0] = p_scale.x;
+ columns[1][1] = p_scale.y;
+ columns[2][2] = p_scale.z;
}
-void CameraMatrix::scale_translate_to_fit(const AABB &p_aabb) {
+void Projection::scale_translate_to_fit(const AABB &p_aabb) {
Vector3 min = p_aabb.position;
Vector3 max = p_aabb.position + p_aabb.size;
- matrix[0][0] = 2 / (max.x - min.x);
- matrix[1][0] = 0;
- matrix[2][0] = 0;
- matrix[3][0] = -(max.x + min.x) / (max.x - min.x);
+ columns[0][0] = 2 / (max.x - min.x);
+ columns[1][0] = 0;
+ columns[2][0] = 0;
+ columns[3][0] = -(max.x + min.x) / (max.x - min.x);
- matrix[0][1] = 0;
- matrix[1][1] = 2 / (max.y - min.y);
- matrix[2][1] = 0;
- matrix[3][1] = -(max.y + min.y) / (max.y - min.y);
+ columns[0][1] = 0;
+ columns[1][1] = 2 / (max.y - min.y);
+ columns[2][1] = 0;
+ columns[3][1] = -(max.y + min.y) / (max.y - min.y);
- matrix[0][2] = 0;
- matrix[1][2] = 0;
- matrix[2][2] = 2 / (max.z - min.z);
- matrix[3][2] = -(max.z + min.z) / (max.z - min.z);
+ columns[0][2] = 0;
+ columns[1][2] = 0;
+ columns[2][2] = 2 / (max.z - min.z);
+ columns[3][2] = -(max.z + min.z) / (max.z - min.z);
- matrix[0][3] = 0;
- matrix[1][3] = 0;
- matrix[2][3] = 0;
- matrix[3][3] = 1;
+ columns[0][3] = 0;
+ columns[1][3] = 0;
+ columns[2][3] = 0;
+ columns[3][3] = 1;
}
-void CameraMatrix::add_jitter_offset(const Vector2 &p_offset) {
- matrix[3][0] += p_offset.x;
- matrix[3][1] += p_offset.y;
+void Projection::add_jitter_offset(const Vector2 &p_offset) {
+ columns[3][0] += p_offset.x;
+ columns[3][1] += p_offset.y;
}
-CameraMatrix::operator Transform3D() const {
+Projection::operator Transform3D() const {
Transform3D tr;
- const real_t *m = &matrix[0][0];
+ const real_t *m = &columns[0][0];
tr.basis.rows[0][0] = m[0];
tr.basis.rows[1][0] = m[1];
@@ -738,9 +904,16 @@ CameraMatrix::operator Transform3D() const {
return tr;
}
-CameraMatrix::CameraMatrix(const Transform3D &p_transform) {
+Projection::Projection(const Vector4 &p_x, const Vector4 &p_y, const Vector4 &p_z, const Vector4 &p_w) {
+ columns[0] = p_x;
+ columns[1] = p_y;
+ columns[2] = p_z;
+ columns[3] = p_w;
+}
+
+Projection::Projection(const Transform3D &p_transform) {
const Transform3D &tr = p_transform;
- real_t *m = &matrix[0][0];
+ real_t *m = &columns[0][0];
m[0] = tr.basis.rows[0][0];
m[1] = tr.basis.rows[1][0];
@@ -760,5 +933,5 @@ CameraMatrix::CameraMatrix(const Transform3D &p_transform) {
m[15] = 1.0;
}
-CameraMatrix::~CameraMatrix() {
+Projection::~Projection() {
}
diff --git a/core/math/camera_matrix.h b/core/math/projection.h
index a4051cee3b..38fb9781ae 100644
--- a/core/math/camera_matrix.h
+++ b/core/math/projection.h
@@ -1,5 +1,5 @@
/*************************************************************************/
-/* camera_matrix.h */
+/* projection.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
@@ -28,12 +28,14 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
-#ifndef CAMERA_MATRIX_H
-#define CAMERA_MATRIX_H
+#ifndef PROJECTION_H
+#define PROJECTION_H
-#include "core/math/math_defs.h"
#include "core/math/vector3.h"
-#include "core/templates/vector.h"
+#include "core/math/vector4.h"
+
+template <class T>
+class Vector;
struct AABB;
struct Plane;
@@ -41,7 +43,7 @@ struct Rect2;
struct Transform3D;
struct Vector2;
-struct CameraMatrix {
+struct _NO_DISCARD_ Projection {
enum Planes {
PLANE_NEAR,
PLANE_FAR,
@@ -51,13 +53,24 @@ struct CameraMatrix {
PLANE_BOTTOM
};
- real_t matrix[4][4];
+ Vector4 columns[4];
+
+ _FORCE_INLINE_ const Vector4 &operator[](const int p_axis) const {
+ DEV_ASSERT((unsigned int)p_axis < 4);
+ return columns[p_axis];
+ }
+
+ _FORCE_INLINE_ Vector4 &operator[](const int p_axis) {
+ DEV_ASSERT((unsigned int)p_axis < 4);
+ return columns[p_axis];
+ }
float determinant() const;
void set_identity();
void set_zero();
void set_light_bias();
void set_depth_correction(bool p_flip_y = true);
+
void set_light_atlas_rect(const Rect2 &p_rect);
void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov = false);
void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist);
@@ -68,8 +81,23 @@ struct CameraMatrix {
void set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov = false);
void adjust_perspective_znear(real_t p_new_znear);
+ static Projection create_depth_correction(bool p_flip_y);
+ static Projection create_light_atlas_rect(const Rect2 &p_rect);
+ static Projection create_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov = false);
+ static Projection create_perspective_hmd(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist);
+ static Projection create_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far);
+ static Projection create_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar);
+ static Projection create_orthogonal_aspect(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov = false);
+ static Projection create_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far);
+ static Projection create_frustum_aspect(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov = false);
+ static Projection create_fit_aabb(const AABB &p_aabb);
+ Projection perspective_znear_adjusted(real_t p_new_znear) const;
+ Plane get_projection_plane(Planes p_plane) const;
+ Projection flipped_y() const;
+ Projection jitter_offseted(const Vector2 &p_offset) const;
+
static real_t get_fovy(real_t p_fovx, real_t p_aspect) {
- return Math::rad2deg(Math::atan(p_aspect * Math::tan(Math::deg2rad(p_fovx) * 0.5)) * 2.0);
+ return Math::rad_to_deg(Math::atan(p_aspect * Math::tan(Math::deg_to_rad(p_fovx) * 0.5)) * 2.0);
}
real_t get_z_far() const;
@@ -85,13 +113,16 @@ struct CameraMatrix {
Vector2 get_far_plane_half_extents() const;
void invert();
- CameraMatrix inverse() const;
+ Projection inverse() const;
- CameraMatrix operator*(const CameraMatrix &p_matrix) const;
+ Projection operator*(const Projection &p_matrix) const;
Plane xform4(const Plane &p_vec4) const;
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vec3) const;
+ Vector4 xform(const Vector4 &p_vec4) const;
+ Vector4 xform_inv(const Vector4 &p_vec4) const;
+
operator String() const;
void scale_translate_to_fit(const AABB &p_aabb);
@@ -102,10 +133,10 @@ struct CameraMatrix {
void flip_y();
- bool operator==(const CameraMatrix &p_cam) const {
+ bool operator==(const Projection &p_cam) const {
for (uint32_t i = 0; i < 4; i++) {
for (uint32_t j = 0; j < 4; j++) {
- if (matrix[i][j] != p_cam.matrix[i][j]) {
+ if (columns[i][j] != p_cam.columns[i][j]) {
return false;
}
}
@@ -113,24 +144,25 @@ struct CameraMatrix {
return true;
}
- bool operator!=(const CameraMatrix &p_cam) const {
+ bool operator!=(const Projection &p_cam) const {
return !(*this == p_cam);
}
float get_lod_multiplier() const;
- CameraMatrix();
- CameraMatrix(const Transform3D &p_transform);
- ~CameraMatrix();
+ Projection();
+ Projection(const Vector4 &p_x, const Vector4 &p_y, const Vector4 &p_z, const Vector4 &p_w);
+ Projection(const Transform3D &p_transform);
+ ~Projection();
};
-Vector3 CameraMatrix::xform(const Vector3 &p_vec3) const {
+Vector3 Projection::xform(const Vector3 &p_vec3) const {
Vector3 ret;
- ret.x = matrix[0][0] * p_vec3.x + matrix[1][0] * p_vec3.y + matrix[2][0] * p_vec3.z + matrix[3][0];
- ret.y = matrix[0][1] * p_vec3.x + matrix[1][1] * p_vec3.y + matrix[2][1] * p_vec3.z + matrix[3][1];
- ret.z = matrix[0][2] * p_vec3.x + matrix[1][2] * p_vec3.y + matrix[2][2] * p_vec3.z + matrix[3][2];
- real_t w = matrix[0][3] * p_vec3.x + matrix[1][3] * p_vec3.y + matrix[2][3] * p_vec3.z + matrix[3][3];
+ ret.x = columns[0][0] * p_vec3.x + columns[1][0] * p_vec3.y + columns[2][0] * p_vec3.z + columns[3][0];
+ ret.y = columns[0][1] * p_vec3.x + columns[1][1] * p_vec3.y + columns[2][1] * p_vec3.z + columns[3][1];
+ ret.z = columns[0][2] * p_vec3.x + columns[1][2] * p_vec3.y + columns[2][2] * p_vec3.z + columns[3][2];
+ real_t w = columns[0][3] * p_vec3.x + columns[1][3] * p_vec3.y + columns[2][3] * p_vec3.z + columns[3][3];
return ret / w;
}
-#endif // CAMERA_MATRIX_H
+#endif // PROJECTION_H
diff --git a/core/math/quaternion.cpp b/core/math/quaternion.cpp
index 11bfcc1a6f..6a5f29f3d8 100644
--- a/core/math/quaternion.cpp
+++ b/core/math/quaternion.cpp
@@ -31,7 +31,7 @@
#include "quaternion.h"
#include "core/math/basis.h"
-#include "core/string/print_string.h"
+#include "core/string/ustring.h"
real_t Quaternion::angle_to(const Quaternion &p_to) const {
real_t d = dot(p_to);
@@ -79,6 +79,10 @@ bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const {
return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w);
}
+bool Quaternion::is_finite() const {
+ return Math::is_finite(x) && Math::is_finite(y) && Math::is_finite(z) && Math::is_finite(w);
+}
+
real_t Quaternion::length() const {
return Math::sqrt(length_squared());
}
@@ -111,11 +115,12 @@ Quaternion Quaternion::log() const {
Quaternion Quaternion::exp() const {
Quaternion src = *this;
Vector3 src_v = Vector3(src.x, src.y, src.z);
- float theta = src_v.length();
- if (theta < CMP_EPSILON) {
+ real_t theta = src_v.length();
+ src_v = src_v.normalized();
+ if (theta < CMP_EPSILON || !src_v.is_normalized()) {
return Quaternion(0, 0, 0, 1);
}
- return Quaternion(src_v.normalized(), theta);
+ return Quaternion(src_v, theta);
}
Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
@@ -132,15 +137,9 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con
// adjust signs (if necessary)
if (cosom < 0.0f) {
cosom = -cosom;
- to1.x = -p_to.x;
- to1.y = -p_to.y;
- to1.z = -p_to.z;
- to1.w = -p_to.w;
+ to1 = -p_to;
} else {
- to1.x = p_to.x;
- to1.y = p_to.y;
- to1.z = p_to.z;
- to1.w = p_to.w;
+ to1 = p_to;
}
// calculate coefficients
@@ -189,16 +188,105 @@ Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) c
invFactor * from.w + newFactor * p_to.w);
}
-Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
+Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
+ ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
+#endif
+ Quaternion from_q = *this;
+ Quaternion pre_q = p_pre_a;
+ Quaternion to_q = p_b;
+ Quaternion post_q = p_post_b;
+
+ // Align flip phases.
+ from_q = Basis(from_q).get_rotation_quaternion();
+ pre_q = Basis(pre_q).get_rotation_quaternion();
+ to_q = Basis(to_q).get_rotation_quaternion();
+ post_q = Basis(post_q).get_rotation_quaternion();
+
+ // Flip quaternions to shortest path if necessary.
+ bool flip1 = signbit(from_q.dot(pre_q));
+ pre_q = flip1 ? -pre_q : pre_q;
+ bool flip2 = signbit(from_q.dot(to_q));
+ to_q = flip2 ? -to_q : to_q;
+ bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q));
+ post_q = flip3 ? -post_q : post_q;
+
+ // Calc by Expmap in from_q space.
+ Quaternion ln_from = Quaternion(0, 0, 0, 0);
+ Quaternion ln_to = (from_q.inverse() * to_q).log();
+ Quaternion ln_pre = (from_q.inverse() * pre_q).log();
+ Quaternion ln_post = (from_q.inverse() * post_q).log();
+ Quaternion ln = Quaternion(0, 0, 0, 0);
+ ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight);
+ ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight);
+ ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);
+ Quaternion q1 = from_q * ln.exp();
+
+ // Calc by Expmap in to_q space.
+ ln_from = (to_q.inverse() * from_q).log();
+ ln_to = Quaternion(0, 0, 0, 0);
+ ln_pre = (to_q.inverse() * pre_q).log();
+ ln_post = (to_q.inverse() * post_q).log();
+ ln = Quaternion(0, 0, 0, 0);
+ ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight);
+ ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight);
+ ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);
+ Quaternion q2 = to_q * ln.exp();
+
+ // To cancel error made by Expmap ambiguity, do blends.
+ return q1.slerp(q2, p_weight);
+}
+
+Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight,
+ const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
#endif
- //the only way to do slerp :|
- real_t t2 = (1.0f - p_weight) * p_weight * 2;
- Quaternion sp = this->slerp(p_b, p_weight);
- Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight);
- return sp.slerpni(sq, t2);
+ Quaternion from_q = *this;
+ Quaternion pre_q = p_pre_a;
+ Quaternion to_q = p_b;
+ Quaternion post_q = p_post_b;
+
+ // Align flip phases.
+ from_q = Basis(from_q).get_rotation_quaternion();
+ pre_q = Basis(pre_q).get_rotation_quaternion();
+ to_q = Basis(to_q).get_rotation_quaternion();
+ post_q = Basis(post_q).get_rotation_quaternion();
+
+ // Flip quaternions to shortest path if necessary.
+ bool flip1 = signbit(from_q.dot(pre_q));
+ pre_q = flip1 ? -pre_q : pre_q;
+ bool flip2 = signbit(from_q.dot(to_q));
+ to_q = flip2 ? -to_q : to_q;
+ bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q));
+ post_q = flip3 ? -post_q : post_q;
+
+ // Calc by Expmap in from_q space.
+ Quaternion ln_from = Quaternion(0, 0, 0, 0);
+ Quaternion ln_to = (from_q.inverse() * to_q).log();
+ Quaternion ln_pre = (from_q.inverse() * pre_q).log();
+ Quaternion ln_post = (from_q.inverse() * post_q).log();
+ Quaternion ln = Quaternion(0, 0, 0, 0);
+ ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ Quaternion q1 = from_q * ln.exp();
+
+ // Calc by Expmap in to_q space.
+ ln_from = (to_q.inverse() * from_q).log();
+ ln_to = Quaternion(0, 0, 0, 0);
+ ln_pre = (to_q.inverse() * pre_q).log();
+ ln_post = (to_q.inverse() * post_q).log();
+ ln = Quaternion(0, 0, 0, 0);
+ ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ Quaternion q2 = to_q * ln.exp();
+
+ // To cancel error made by Expmap ambiguity, do blends.
+ return q1.slerp(q2, p_weight);
}
Quaternion::operator String() const {
@@ -213,7 +301,7 @@ Vector3 Quaternion::get_axis() const {
return Vector3(x * r, y * r, z * r);
}
-float Quaternion::get_angle() const {
+real_t Quaternion::get_angle() const {
return 2 * Math::acos(w);
}
diff --git a/core/math/quaternion.h b/core/math/quaternion.h
index 9801746659..7aa400aa8c 100644
--- a/core/math/quaternion.h
+++ b/core/math/quaternion.h
@@ -31,10 +31,10 @@
#ifndef QUATERNION_H
#define QUATERNION_H
-#include "core/math/math_defs.h"
#include "core/math/math_funcs.h"
#include "core/math/vector3.h"
-#include "core/string/ustring.h"
+
+class String;
struct _NO_DISCARD_ Quaternion {
union {
@@ -55,6 +55,7 @@ struct _NO_DISCARD_ Quaternion {
}
_FORCE_INLINE_ real_t length_squared() const;
bool is_equal_approx(const Quaternion &p_quaternion) const;
+ bool is_finite() const;
real_t length() const;
void normalize();
Quaternion normalized() const;
@@ -71,10 +72,11 @@ struct _NO_DISCARD_ Quaternion {
Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const;
Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const;
- Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
+ Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
+ Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
Vector3 get_axis() const;
- float get_angle() const;
+ real_t get_angle() const;
_FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
r_angle = 2 * Math::acos(w);
@@ -142,8 +144,7 @@ struct _NO_DISCARD_ Quaternion {
w = p_q.w;
}
- Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc
- {
+ Quaternion(const Vector3 &v0, const Vector3 &v1) { // Shortest arc.
Vector3 c = v0.cross(v1);
real_t d = v0.dot(v1);
diff --git a/core/math/rect2.cpp b/core/math/rect2.cpp
index 9e78ead816..facf4eb3c4 100644
--- a/core/math/rect2.cpp
+++ b/core/math/rect2.cpp
@@ -38,6 +38,10 @@ bool Rect2::is_equal_approx(const Rect2 &p_rect) const {
return position.is_equal_approx(p_rect.position) && size.is_equal_approx(p_rect.size);
}
+bool Rect2::is_finite() const {
+ return position.is_finite() && size.is_finite();
+}
+
bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0)) {
diff --git a/core/math/rect2.h b/core/math/rect2.h
index 679af933c2..9863405d8e 100644
--- a/core/math/rect2.h
+++ b/core/math/rect2.h
@@ -140,8 +140,8 @@ struct _NO_DISCARD_ Rect2 {
((p_rect.position.y + p_rect.size.y) <= (position.y + size.y));
}
- _FORCE_INLINE_ bool has_no_area() const {
- return (size.x <= 0 || size.y <= 0);
+ _FORCE_INLINE_ bool has_area() const {
+ return size.x > 0.0f && size.y > 0.0f;
}
// Returns the instersection between two Rect2s or an empty Rect2 if there is no intersection
@@ -178,7 +178,7 @@ struct _NO_DISCARD_ Rect2 {
new_rect.size.x = MAX(p_rect.position.x + p_rect.size.x, position.x + size.x);
new_rect.size.y = MAX(p_rect.position.y + p_rect.size.y, position.y + size.y);
- new_rect.size = new_rect.size - new_rect.position; //make relative again
+ new_rect.size = new_rect.size - new_rect.position; // Make relative again.
return new_rect;
}
@@ -207,6 +207,7 @@ struct _NO_DISCARD_ Rect2 {
}
bool is_equal_approx(const Rect2 &p_rect) const;
+ bool is_finite() const;
bool operator==(const Rect2 &p_rect) const { return position == p_rect.position && size == p_rect.size; }
bool operator!=(const Rect2 &p_rect) const { return position != p_rect.position || size != p_rect.size; }
@@ -253,7 +254,7 @@ struct _NO_DISCARD_ Rect2 {
return r;
}
- inline void expand_to(const Vector2 &p_vector) { //in place function for speed
+ inline void expand_to(const Vector2 &p_vector) { // In place function for speed.
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0)) {
ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size.");
@@ -281,7 +282,7 @@ struct _NO_DISCARD_ Rect2 {
}
_FORCE_INLINE_ Rect2 abs() const {
- return Rect2(Point2(position.x + MIN(size.x, 0), position.y + MIN(size.y, 0)), size.abs());
+ return Rect2(Point2(position.x + MIN(size.x, (real_t)0), position.y + MIN(size.y, (real_t)0)), size.abs());
}
Vector2 get_support(const Vector2 &p_normal) const {
@@ -311,7 +312,7 @@ struct _NO_DISCARD_ Rect2 {
continue;
}
- //check inside
+ // Check inside.
Vector2 tg = r.orthogonal();
float s = tg.dot(center) - tg.dot(a);
if (s < 0.0f) {
@@ -320,7 +321,7 @@ struct _NO_DISCARD_ Rect2 {
side_minus++;
}
- //check ray box
+ // Check ray box.
r /= l;
Vector2 ir(1.0f / r.x, 1.0f / r.y);
@@ -341,7 +342,7 @@ struct _NO_DISCARD_ Rect2 {
}
if (side_plus * side_minus == 0) {
- return true; //all inside
+ return true; // All inside.
} else {
return false;
}
diff --git a/core/math/rect2i.h b/core/math/rect2i.h
index db1459a3e6..c92f2cae02 100644
--- a/core/math/rect2i.h
+++ b/core/math/rect2i.h
@@ -83,8 +83,8 @@ struct _NO_DISCARD_ Rect2i {
((p_rect.position.y + p_rect.size.y) <= (position.y + size.y));
}
- _FORCE_INLINE_ bool has_no_area() const {
- return (size.x <= 0 || size.y <= 0);
+ _FORCE_INLINE_ bool has_area() const {
+ return size.x > 0 && size.y > 0;
}
// Returns the instersection between two Rect2is or an empty Rect2i if there is no intersection
@@ -121,7 +121,7 @@ struct _NO_DISCARD_ Rect2i {
new_rect.size.x = MAX(p_rect.position.x + p_rect.size.x, position.x + size.x);
new_rect.size.y = MAX(p_rect.position.y + p_rect.size.y, position.y + size.y);
- new_rect.size = new_rect.size - new_rect.position; //make relative again
+ new_rect.size = new_rect.size - new_rect.position; // Make relative again.
return new_rect;
}
diff --git a/core/math/transform_2d.cpp b/core/math/transform_2d.cpp
index cbd2fd3fa1..548a82d254 100644
--- a/core/math/transform_2d.cpp
+++ b/core/math/transform_2d.cpp
@@ -136,11 +136,11 @@ void Transform2D::scale_basis(const Size2 &p_scale) {
columns[1][1] *= p_scale.y;
}
-void Transform2D::translate(const real_t p_tx, const real_t p_ty) {
- translate(Vector2(p_tx, p_ty));
+void Transform2D::translate_local(const real_t p_tx, const real_t p_ty) {
+ translate_local(Vector2(p_tx, p_ty));
}
-void Transform2D::translate(const Vector2 &p_translation) {
+void Transform2D::translate_local(const Vector2 &p_translation) {
columns[2] += basis_xform(p_translation);
}
@@ -168,6 +168,10 @@ bool Transform2D::is_equal_approx(const Transform2D &p_transform) const {
return columns[0].is_equal_approx(p_transform.columns[0]) && columns[1].is_equal_approx(p_transform.columns[1]) && columns[2].is_equal_approx(p_transform.columns[2]);
}
+bool Transform2D::is_finite() const {
+ return columns[0].is_finite() && columns[1].is_finite() && columns[2].is_finite();
+}
+
Transform2D Transform2D::looking_at(const Vector2 &p_target) const {
Transform2D return_trans = Transform2D(get_rotation(), get_origin());
Vector2 target_position = affine_inverse().xform(p_target);
@@ -217,18 +221,24 @@ Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
return t;
}
-Transform2D Transform2D::scaled(const Size2 &p_scale) const {
+Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
Transform2D copy = *this;
- copy.scale(p_scale);
+ copy.scale_basis(p_scale);
return copy;
}
-Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
+Transform2D Transform2D::scaled(const Size2 &p_scale) const {
+ // Equivalent to left multiplication
Transform2D copy = *this;
- copy.scale_basis(p_scale);
+ copy.scale(p_scale);
return copy;
}
+Transform2D Transform2D::scaled_local(const Size2 &p_scale) const {
+ // Equivalent to right multiplication
+ return Transform2D(columns[0] * p_scale.x, columns[1] * p_scale.y, columns[2]);
+}
+
Transform2D Transform2D::untranslated() const {
Transform2D copy = *this;
copy.columns[2] = Vector2();
@@ -236,15 +246,23 @@ Transform2D Transform2D::untranslated() const {
}
Transform2D Transform2D::translated(const Vector2 &p_offset) const {
- Transform2D copy = *this;
- copy.translate(p_offset);
- return copy;
+ // Equivalent to left multiplication
+ return Transform2D(columns[0], columns[1], columns[2] + p_offset);
+}
+
+Transform2D Transform2D::translated_local(const Vector2 &p_offset) const {
+ // Equivalent to right multiplication
+ return Transform2D(columns[0], columns[1], columns[2] + basis_xform(p_offset));
}
Transform2D Transform2D::rotated(const real_t p_angle) const {
- Transform2D copy = *this;
- copy.rotate(p_angle);
- return copy;
+ // Equivalent to left multiplication
+ return Transform2D(p_angle, Vector2()) * (*this);
+}
+
+Transform2D Transform2D::rotated_local(const real_t p_angle) const {
+ // Equivalent to right multiplication
+ return (*this) * Transform2D(p_angle, Vector2()); // Could be optimized, because origin transform can be skipped.
}
real_t Transform2D::basis_determinant() const {
@@ -268,7 +286,7 @@ Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, const
real_t dot = v1.dot(v2);
- dot = CLAMP(dot, -1.0f, 1.0f);
+ dot = CLAMP(dot, (real_t)-1.0, (real_t)1.0);
Vector2 v;
diff --git a/core/math/transform_2d.h b/core/math/transform_2d.h
index 72d34a5d4c..2b11f36535 100644
--- a/core/math/transform_2d.h
+++ b/core/math/transform_2d.h
@@ -74,8 +74,8 @@ struct _NO_DISCARD_ Transform2D {
void scale(const Size2 &p_scale);
void scale_basis(const Size2 &p_scale);
- void translate(const real_t p_tx, const real_t p_ty);
- void translate(const Vector2 &p_translation);
+ void translate_local(const real_t p_tx, const real_t p_ty);
+ void translate_local(const Vector2 &p_translation);
real_t basis_determinant() const;
@@ -85,16 +85,20 @@ struct _NO_DISCARD_ Transform2D {
_FORCE_INLINE_ const Vector2 &get_origin() const { return columns[2]; }
_FORCE_INLINE_ void set_origin(const Vector2 &p_origin) { columns[2] = p_origin; }
- Transform2D scaled(const Size2 &p_scale) const;
Transform2D basis_scaled(const Size2 &p_scale) const;
+ Transform2D scaled(const Size2 &p_scale) const;
+ Transform2D scaled_local(const Size2 &p_scale) const;
Transform2D translated(const Vector2 &p_offset) const;
+ Transform2D translated_local(const Vector2 &p_offset) const;
Transform2D rotated(const real_t p_angle) const;
+ Transform2D rotated_local(const real_t p_angle) const;
Transform2D untranslated() const;
void orthonormalize();
Transform2D orthonormalized() const;
bool is_equal_approx(const Transform2D &p_transform) const;
+ bool is_finite() const;
Transform2D looking_at(const Vector2 &p_target) const;
diff --git a/core/math/transform_3d.cpp b/core/math/transform_3d.cpp
index 76b31daa76..3285cbd664 100644
--- a/core/math/transform_3d.cpp
+++ b/core/math/transform_3d.cpp
@@ -31,7 +31,7 @@
#include "transform_3d.h"
#include "core/math/math_funcs.h"
-#include "core/string/print_string.h"
+#include "core/string/ustring.h"
void Transform3D::affine_invert() {
basis.invert();
@@ -62,7 +62,15 @@ void Transform3D::rotate(const Vector3 &p_axis, real_t p_angle) {
}
Transform3D Transform3D::rotated(const Vector3 &p_axis, real_t p_angle) const {
- return Transform3D(Basis(p_axis, p_angle), Vector3()) * (*this);
+ // Equivalent to left multiplication
+ Basis p_basis(p_axis, p_angle);
+ return Transform3D(p_basis * basis, p_basis.xform(origin));
+}
+
+Transform3D Transform3D::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
+ // Equivalent to right multiplication
+ Basis p_basis(p_axis, p_angle);
+ return Transform3D(basis * p_basis, origin);
}
void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_angle) {
@@ -70,19 +78,23 @@ void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_angle) {
}
Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V_MSG(origin.is_equal_approx(p_target), Transform3D(), "The transform's origin and target can't be equal.");
+#endif
Transform3D t = *this;
t.basis = Basis::looking_at(p_target - origin, p_up);
return t;
}
void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_MSG(p_eye.is_equal_approx(p_target), "The eye and target vectors can't be equal.");
+#endif
basis = Basis::looking_at(p_target - p_eye, p_up);
origin = p_eye;
}
-Transform3D Transform3D::sphere_interpolate_with(const Transform3D &p_transform, real_t p_c) const {
- /* not sure if very "efficient" but good enough? */
-
+Transform3D Transform3D::interpolate_with(const Transform3D &p_transform, real_t p_c) const {
Transform3D interp;
Vector3 src_scale = basis.get_scale();
@@ -99,44 +111,43 @@ Transform3D Transform3D::sphere_interpolate_with(const Transform3D &p_transform,
return interp;
}
-Transform3D Transform3D::interpolate_with(const Transform3D &p_transform, real_t p_c) const {
- Transform3D interp;
-
- interp.basis = basis.lerp(p_transform.basis, p_c);
- interp.origin = origin.lerp(p_transform.origin, p_c);
-
- return interp;
-}
-
void Transform3D::scale(const Vector3 &p_scale) {
basis.scale(p_scale);
origin *= p_scale;
}
Transform3D Transform3D::scaled(const Vector3 &p_scale) const {
- Transform3D t = *this;
- t.scale(p_scale);
- return t;
+ // Equivalent to left multiplication
+ return Transform3D(basis.scaled(p_scale), origin * p_scale);
+}
+
+Transform3D Transform3D::scaled_local(const Vector3 &p_scale) const {
+ // Equivalent to right multiplication
+ return Transform3D(basis.scaled_local(p_scale), origin);
}
void Transform3D::scale_basis(const Vector3 &p_scale) {
basis.scale(p_scale);
}
-void Transform3D::translate(real_t p_tx, real_t p_ty, real_t p_tz) {
- translate(Vector3(p_tx, p_ty, p_tz));
+void Transform3D::translate_local(real_t p_tx, real_t p_ty, real_t p_tz) {
+ translate_local(Vector3(p_tx, p_ty, p_tz));
}
-void Transform3D::translate(const Vector3 &p_translation) {
+void Transform3D::translate_local(const Vector3 &p_translation) {
for (int i = 0; i < 3; i++) {
origin[i] += basis[i].dot(p_translation);
}
}
Transform3D Transform3D::translated(const Vector3 &p_translation) const {
- Transform3D t = *this;
- t.translate(p_translation);
- return t;
+ // Equivalent to left multiplication
+ return Transform3D(basis, origin + p_translation);
+}
+
+Transform3D Transform3D::translated_local(const Vector3 &p_translation) const {
+ // Equivalent to right multiplication
+ return Transform3D(basis, origin + basis.xform(p_translation));
}
void Transform3D::orthonormalize() {
@@ -163,6 +174,10 @@ bool Transform3D::is_equal_approx(const Transform3D &p_transform) const {
return basis.is_equal_approx(p_transform.basis) && origin.is_equal_approx(p_transform.origin);
}
+bool Transform3D::is_finite() const {
+ return basis.is_finite() && origin.is_finite();
+}
+
bool Transform3D::operator==(const Transform3D &p_transform) const {
return (basis == p_transform.basis && origin == p_transform.origin);
}
diff --git a/core/math/transform_3d.h b/core/math/transform_3d.h
index 25832434cd..cb347aa1c1 100644
--- a/core/math/transform_3d.h
+++ b/core/math/transform_3d.h
@@ -34,6 +34,7 @@
#include "core/math/aabb.h"
#include "core/math/basis.h"
#include "core/math/plane.h"
+#include "core/templates/vector.h"
struct _NO_DISCARD_ Transform3D {
Basis basis;
@@ -46,6 +47,7 @@ struct _NO_DISCARD_ Transform3D {
Transform3D affine_inverse() const;
Transform3D rotated(const Vector3 &p_axis, real_t p_angle) const;
+ Transform3D rotated_local(const Vector3 &p_axis, real_t p_angle) const;
void rotate(const Vector3 &p_axis, real_t p_angle);
void rotate_basis(const Vector3 &p_axis, real_t p_angle);
@@ -55,10 +57,12 @@ struct _NO_DISCARD_ Transform3D {
void scale(const Vector3 &p_scale);
Transform3D scaled(const Vector3 &p_scale) const;
+ Transform3D scaled_local(const Vector3 &p_scale) const;
void scale_basis(const Vector3 &p_scale);
- void translate(real_t p_tx, real_t p_ty, real_t p_tz);
- void translate(const Vector3 &p_translation);
+ void translate_local(real_t p_tx, real_t p_ty, real_t p_tz);
+ void translate_local(const Vector3 &p_translation);
Transform3D translated(const Vector3 &p_translation) const;
+ Transform3D translated_local(const Vector3 &p_translation) const;
const Basis &get_basis() const { return basis; }
void set_basis(const Basis &p_basis) { basis = p_basis; }
@@ -71,6 +75,7 @@ struct _NO_DISCARD_ Transform3D {
void orthogonalize();
Transform3D orthogonalized() const;
bool is_equal_approx(const Transform3D &p_transform) const;
+ bool is_finite() const;
bool operator==(const Transform3D &p_transform) const;
bool operator!=(const Transform3D &p_transform) const;
@@ -100,7 +105,6 @@ struct _NO_DISCARD_ Transform3D {
void operator*=(const real_t p_val);
Transform3D operator*(const real_t p_val) const;
- Transform3D sphere_interpolate_with(const Transform3D &p_transform, real_t p_c) const;
Transform3D interpolate_with(const Transform3D &p_transform, real_t p_c) const;
_FORCE_INLINE_ Transform3D inverse_xform(const Transform3D &t) const {
diff --git a/core/math/triangle_mesh.cpp b/core/math/triangle_mesh.cpp
index 4433559e6d..6515c55a85 100644
--- a/core/math/triangle_mesh.cpp
+++ b/core/math/triangle_mesh.cpp
@@ -215,10 +215,8 @@ Vector3 TriangleMesh::get_area_normal(const AABB &p_aabb) const {
switch (stack[level] >> VISITED_BIT_SHIFT) {
case TEST_AABB_BIT: {
- bool valid = b.aabb.intersects(p_aabb);
- if (!valid) {
+ if (!b.aabb.intersects(p_aabb)) {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
-
} else {
if (b.face_index >= 0) {
const Triangle &s = triangleptr[b.face_index];
@@ -302,12 +300,8 @@ bool TriangleMesh::intersect_segment(const Vector3 &p_begin, const Vector3 &p_en
switch (stack[level] >> VISITED_BIT_SHIFT) {
case TEST_AABB_BIT: {
- bool valid = b.aabb.intersects_segment(p_begin, p_end);
- //bool valid = b.aabb.intersects(ray_aabb);
-
- if (!valid) {
+ if (!b.aabb.intersects_segment(p_begin, p_end)) {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
-
} else {
if (b.face_index >= 0) {
const Triangle &s = triangleptr[b.face_index];
@@ -407,10 +401,8 @@ bool TriangleMesh::intersect_ray(const Vector3 &p_begin, const Vector3 &p_dir, V
switch (stack[level] >> VISITED_BIT_SHIFT) {
case TEST_AABB_BIT: {
- bool valid = b.aabb.intersects_ray(p_begin, p_dir);
- if (!valid) {
+ if (!b.aabb.intersects_ray(p_begin, p_dir)) {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
-
} else {
if (b.face_index >= 0) {
const Triangle &s = triangleptr[b.face_index];
@@ -508,10 +500,8 @@ bool TriangleMesh::intersect_convex_shape(const Plane *p_planes, int p_plane_cou
switch (stack[level] >> VISITED_BIT_SHIFT) {
case TEST_AABB_BIT: {
- bool valid = b.aabb.intersects_convex_shape(p_planes, p_plane_count, p_points, p_point_count);
- if (!valid) {
+ if (!b.aabb.intersects_convex_shape(p_planes, p_plane_count, p_points, p_point_count)) {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
-
} else {
if (b.face_index >= 0) {
const Triangle &s = triangleptr[b.face_index];
diff --git a/core/math/vector2.cpp b/core/math/vector2.cpp
index d9b5d55454..5366587126 100644
--- a/core/math/vector2.cpp
+++ b/core/math/vector2.cpp
@@ -182,6 +182,14 @@ bool Vector2::is_equal_approx(const Vector2 &p_v) const {
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
}
+bool Vector2::is_zero_approx() const {
+ return Math::is_zero_approx(x) && Math::is_zero_approx(y);
+}
+
+bool Vector2::is_finite() const {
+ return Math::is_finite(x) && Math::is_finite(y);
+}
+
Vector2::operator String() const {
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ")";
}
diff --git a/core/math/vector2.h b/core/math/vector2.h
index 91d3d3a56b..5775d8e735 100644
--- a/core/math/vector2.h
+++ b/core/math/vector2.h
@@ -69,10 +69,6 @@ struct _NO_DISCARD_ Vector2 {
return coord[p_idx];
}
- _FORCE_INLINE_ void set_all(const real_t p_value) {
- x = y = p_value;
- }
-
_FORCE_INLINE_ Vector2::Axis min_axis_index() const {
return x < y ? Vector2::AXIS_X : Vector2::AXIS_Y;
}
@@ -114,6 +110,7 @@ struct _NO_DISCARD_ Vector2 {
_FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const;
+ _FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
_FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const;
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
@@ -123,6 +120,8 @@ struct _NO_DISCARD_ Vector2 {
Vector2 reflect(const Vector2 &p_normal) const;
bool is_equal_approx(const Vector2 &p_v) const;
+ bool is_zero_approx() const;
+ bool is_finite() const;
Vector2 operator+(const Vector2 &p_v) const;
void operator+=(const Vector2 &p_v);
@@ -270,6 +269,13 @@ Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, c
return res;
}
+Vector2 Vector2::cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
+ Vector2 res = *this;
+ res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ return res;
+}
+
Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const {
Vector2 res = *this;
diff --git a/core/math/vector2i.h b/core/math/vector2i.h
index 13b70031bd..e131bdea94 100644
--- a/core/math/vector2i.h
+++ b/core/math/vector2i.h
@@ -38,6 +38,8 @@ class String;
struct Vector2;
struct _NO_DISCARD_ Vector2i {
+ static const int AXIS_COUNT = 2;
+
enum Axis {
AXIS_X,
AXIS_Y,
@@ -115,7 +117,7 @@ struct _NO_DISCARD_ Vector2i {
real_t aspect() const { return width / (real_t)height; }
Vector2i sign() const { return Vector2i(SIGN(x), SIGN(y)); }
- Vector2i abs() const { return Vector2i(ABS(x), ABS(y)); }
+ Vector2i abs() const { return Vector2i(Math::abs(x), Math::abs(y)); }
Vector2i clamp(const Vector2i &p_min, const Vector2i &p_max) const;
operator String() const;
diff --git a/core/math/vector3.cpp b/core/math/vector3.cpp
index d71d365053..b106200c4a 100644
--- a/core/math/vector3.cpp
+++ b/core/math/vector3.cpp
@@ -45,16 +45,6 @@ Vector3 Vector3::rotated(const Vector3 &p_axis, const real_t p_angle) const {
return r;
}
-void Vector3::set_axis(const int p_axis, const real_t p_value) {
- ERR_FAIL_INDEX(p_axis, 3);
- coord[p_axis] = p_value;
-}
-
-real_t Vector3::get_axis(const int p_axis) const {
- ERR_FAIL_INDEX_V(p_axis, 3, 0);
- return operator[](p_axis);
-}
-
Vector3 Vector3::clamp(const Vector3 &p_min, const Vector3 &p_max) const {
return Vector3(
CLAMP(x, p_min.x, p_max.x),
@@ -117,18 +107,42 @@ Vector3 Vector3::octahedron_decode(const Vector2 &p_oct) {
return n.normalized();
}
-Basis Vector3::outer(const Vector3 &p_with) const {
- Vector3 row0(x * p_with.x, x * p_with.y, x * p_with.z);
- Vector3 row1(y * p_with.x, y * p_with.y, y * p_with.z);
- Vector3 row2(z * p_with.x, z * p_with.y, z * p_with.z);
+Vector2 Vector3::octahedron_tangent_encode(const float sign) const {
+ Vector2 res = this->octahedron_encode();
+ res.y = res.y * 0.5f + 0.5f;
+ res.y = sign >= 0.0f ? res.y : 1 - res.y;
+ return res;
+}
- return Basis(row0, row1, row2);
+Vector3 Vector3::octahedron_tangent_decode(const Vector2 &p_oct, float *sign) {
+ Vector2 oct_compressed = p_oct;
+ oct_compressed.y = oct_compressed.y * 2 - 1;
+ *sign = oct_compressed.y >= 0.0f ? 1.0f : -1.0f;
+ oct_compressed.y = Math::abs(oct_compressed.y);
+ Vector3 res = Vector3::octahedron_decode(oct_compressed);
+ return res;
+}
+
+Basis Vector3::outer(const Vector3 &p_with) const {
+ Basis basis;
+ basis.rows[0] = Vector3(x * p_with.x, x * p_with.y, x * p_with.z);
+ basis.rows[1] = Vector3(y * p_with.x, y * p_with.y, y * p_with.z);
+ basis.rows[2] = Vector3(z * p_with.x, z * p_with.y, z * p_with.z);
+ return basis;
}
bool Vector3::is_equal_approx(const Vector3 &p_v) const {
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y) && Math::is_equal_approx(z, p_v.z);
}
+bool Vector3::is_zero_approx() const {
+ return Math::is_zero_approx(x) && Math::is_zero_approx(y) && Math::is_zero_approx(z);
+}
+
+bool Vector3::is_finite() const {
+ return Math::is_finite(x) && Math::is_finite(y) && Math::is_finite(z);
+}
+
Vector3::operator String() const {
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ")";
}
diff --git a/core/math/vector3.h b/core/math/vector3.h
index 970416234d..19771eb312 100644
--- a/core/math/vector3.h
+++ b/core/math/vector3.h
@@ -68,13 +68,6 @@ struct _NO_DISCARD_ Vector3 {
return coord[p_axis];
}
- void set_axis(const int p_axis, const real_t p_value);
- real_t get_axis(const int p_axis) const;
-
- _FORCE_INLINE_ void set_all(const real_t p_value) {
- x = y = z = p_value;
- }
-
_FORCE_INLINE_ Vector3::Axis min_axis_index() const {
return x < y ? (x < z ? Vector3::AXIS_X : Vector3::AXIS_Z) : (y < z ? Vector3::AXIS_Y : Vector3::AXIS_Z);
}
@@ -105,12 +98,15 @@ struct _NO_DISCARD_ Vector3 {
_FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
+ _FORCE_INLINE_ Vector3 cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
_FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
Vector2 octahedron_encode() const;
static Vector3 octahedron_decode(const Vector2 &p_oct);
+ Vector2 octahedron_tangent_encode(const float sign) const;
+ static Vector3 octahedron_tangent_decode(const Vector2 &p_oct, float *sign);
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_with) const;
_FORCE_INLINE_ real_t dot(const Vector3 &p_with) const;
@@ -139,6 +135,8 @@ struct _NO_DISCARD_ Vector3 {
_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
bool is_equal_approx(const Vector3 &p_v) const;
+ bool is_zero_approx() const;
+ bool is_finite() const;
/* Operators */
@@ -217,16 +215,25 @@ Vector3 Vector3::lerp(const Vector3 &p_to, const real_t p_weight) const {
}
Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const {
+ // This method seems more complicated than it really is, since we write out
+ // the internals of some methods for efficiency (mainly, checking length).
real_t start_length_sq = length_squared();
real_t end_length_sq = p_to.length_squared();
if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
return lerp(p_to, p_weight);
}
+ Vector3 axis = cross(p_to);
+ real_t axis_length_sq = axis.length_squared();
+ if (unlikely(axis_length_sq == 0.0f)) {
+ // Colinear vectors have no rotation axis or angle between them, so the best we can do is lerp.
+ return lerp(p_to, p_weight);
+ }
+ axis /= Math::sqrt(axis_length_sq);
real_t start_length = Math::sqrt(start_length_sq);
real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
real_t angle = angle_to(p_to);
- return rotated(cross(p_to).normalized(), angle * p_weight) * (result_length / start_length);
+ return rotated(axis, angle * p_weight) * (result_length / start_length);
}
Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const {
@@ -237,6 +244,14 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, c
return res;
}
+Vector3 Vector3::cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
+ Vector3 res = *this;
+ res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ res.z = Math::cubic_interpolate_in_time(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ return res;
+}
+
Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
Vector3 res = *this;
diff --git a/core/math/vector3i.cpp b/core/math/vector3i.cpp
index b8e74ea6d2..b248f35035 100644
--- a/core/math/vector3i.cpp
+++ b/core/math/vector3i.cpp
@@ -33,16 +33,6 @@
#include "core/math/vector3.h"
#include "core/string/ustring.h"
-void Vector3i::set_axis(const int p_axis, const int32_t p_value) {
- ERR_FAIL_INDEX(p_axis, 3);
- coord[p_axis] = p_value;
-}
-
-int32_t Vector3i::get_axis(const int p_axis) const {
- ERR_FAIL_INDEX_V(p_axis, 3, 0);
- return operator[](p_axis);
-}
-
Vector3i::Axis Vector3i::min_axis_index() const {
return x < y ? (x < z ? Vector3i::AXIS_X : Vector3i::AXIS_Z) : (y < z ? Vector3i::AXIS_Y : Vector3i::AXIS_Z);
}
diff --git a/core/math/vector3i.h b/core/math/vector3i.h
index b49c1142ed..710fd96376 100644
--- a/core/math/vector3i.h
+++ b/core/math/vector3i.h
@@ -38,6 +38,8 @@ class String;
struct Vector3;
struct _NO_DISCARD_ Vector3i {
+ static const int AXIS_COUNT = 3;
+
enum Axis {
AXIS_X,
AXIS_Y,
@@ -64,9 +66,6 @@ struct _NO_DISCARD_ Vector3i {
return coord[p_axis];
}
- void set_axis(const int p_axis, const int32_t p_value);
- int32_t get_axis(const int p_axis) const;
-
Vector3i::Axis min_axis_index() const;
Vector3i::Axis max_axis_index() const;
@@ -128,7 +127,7 @@ double Vector3i::length() const {
}
Vector3i Vector3i::abs() const {
- return Vector3i(ABS(x), ABS(y), ABS(z));
+ return Vector3i(Math::abs(x), Math::abs(y), Math::abs(z));
}
Vector3i Vector3i::sign() const {
diff --git a/core/math/vector4.cpp b/core/math/vector4.cpp
new file mode 100644
index 0000000000..3b189f7ed4
--- /dev/null
+++ b/core/math/vector4.cpp
@@ -0,0 +1,195 @@
+/*************************************************************************/
+/* vector4.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "vector4.h"
+
+#include "core/string/ustring.h"
+
+Vector4::Axis Vector4::min_axis_index() const {
+ uint32_t min_index = 0;
+ real_t min_value = x;
+ for (uint32_t i = 1; i < 4; i++) {
+ if (operator[](i) <= min_value) {
+ min_index = i;
+ min_value = operator[](i);
+ }
+ }
+ return Vector4::Axis(min_index);
+}
+
+Vector4::Axis Vector4::max_axis_index() const {
+ uint32_t max_index = 0;
+ real_t max_value = x;
+ for (uint32_t i = 1; i < 4; i++) {
+ if (operator[](i) > max_value) {
+ max_index = i;
+ max_value = operator[](i);
+ }
+ }
+ return Vector4::Axis(max_index);
+}
+
+bool Vector4::is_equal_approx(const Vector4 &p_vec4) const {
+ return Math::is_equal_approx(x, p_vec4.x) && Math::is_equal_approx(y, p_vec4.y) && Math::is_equal_approx(z, p_vec4.z) && Math::is_equal_approx(w, p_vec4.w);
+}
+
+bool Vector4::is_zero_approx() const {
+ return Math::is_zero_approx(x) && Math::is_zero_approx(y) && Math::is_zero_approx(z) && Math::is_zero_approx(w);
+}
+
+bool Vector4::is_finite() const {
+ return Math::is_finite(x) && Math::is_finite(y) && Math::is_finite(z) && Math::is_finite(w);
+}
+
+real_t Vector4::length() const {
+ return Math::sqrt(length_squared());
+}
+
+void Vector4::normalize() {
+ real_t lengthsq = length_squared();
+ if (lengthsq == 0) {
+ x = y = z = w = 0;
+ } else {
+ real_t length = Math::sqrt(lengthsq);
+ x /= length;
+ y /= length;
+ z /= length;
+ w /= length;
+ }
+}
+
+Vector4 Vector4::normalized() const {
+ Vector4 v = *this;
+ v.normalize();
+ return v;
+}
+
+bool Vector4::is_normalized() const {
+ return Math::is_equal_approx(length_squared(), (real_t)1, (real_t)UNIT_EPSILON);
+}
+
+real_t Vector4::distance_to(const Vector4 &p_to) const {
+ return (p_to - *this).length();
+}
+
+real_t Vector4::distance_squared_to(const Vector4 &p_to) const {
+ return (p_to - *this).length_squared();
+}
+
+Vector4 Vector4::direction_to(const Vector4 &p_to) const {
+ Vector4 ret(p_to.x - x, p_to.y - y, p_to.z - z, p_to.w - w);
+ ret.normalize();
+ return ret;
+}
+
+Vector4 Vector4::abs() const {
+ return Vector4(Math::abs(x), Math::abs(y), Math::abs(z), Math::abs(w));
+}
+
+Vector4 Vector4::sign() const {
+ return Vector4(SIGN(x), SIGN(y), SIGN(z), SIGN(w));
+}
+
+Vector4 Vector4::floor() const {
+ return Vector4(Math::floor(x), Math::floor(y), Math::floor(z), Math::floor(w));
+}
+
+Vector4 Vector4::ceil() const {
+ return Vector4(Math::ceil(x), Math::ceil(y), Math::ceil(z), Math::ceil(w));
+}
+
+Vector4 Vector4::round() const {
+ return Vector4(Math::round(x), Math::round(y), Math::round(z), Math::round(w));
+}
+
+Vector4 Vector4::lerp(const Vector4 &p_to, const real_t p_weight) const {
+ return Vector4(
+ x + (p_weight * (p_to.x - x)),
+ y + (p_weight * (p_to.y - y)),
+ z + (p_weight * (p_to.z - z)),
+ w + (p_weight * (p_to.w - w)));
+}
+
+Vector4 Vector4::cubic_interpolate(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, const real_t p_weight) const {
+ Vector4 res = *this;
+ res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
+ res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
+ res.z = Math::cubic_interpolate(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight);
+ res.w = Math::cubic_interpolate(res.w, p_b.w, p_pre_a.w, p_post_b.w, p_weight);
+ return res;
+}
+
+Vector4 Vector4::cubic_interpolate_in_time(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
+ Vector4 res = *this;
+ res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ res.z = Math::cubic_interpolate_in_time(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ res.w = Math::cubic_interpolate_in_time(res.w, p_b.w, p_pre_a.w, p_post_b.w, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
+ return res;
+}
+
+Vector4 Vector4::posmod(const real_t p_mod) const {
+ return Vector4(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod), Math::fposmod(w, p_mod));
+}
+
+Vector4 Vector4::posmodv(const Vector4 &p_modv) const {
+ return Vector4(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z), Math::fposmod(w, p_modv.w));
+}
+
+void Vector4::snap(const Vector4 &p_step) {
+ x = Math::snapped(x, p_step.x);
+ y = Math::snapped(y, p_step.y);
+ z = Math::snapped(z, p_step.z);
+ w = Math::snapped(w, p_step.w);
+}
+
+Vector4 Vector4::snapped(const Vector4 &p_step) const {
+ Vector4 v = *this;
+ v.snap(p_step);
+ return v;
+}
+
+Vector4 Vector4::inverse() const {
+ return Vector4(1.0f / x, 1.0f / y, 1.0f / z, 1.0f / w);
+}
+
+Vector4 Vector4::clamp(const Vector4 &p_min, const Vector4 &p_max) const {
+ return Vector4(
+ CLAMP(x, p_min.x, p_max.x),
+ CLAMP(y, p_min.y, p_max.y),
+ CLAMP(z, p_min.z, p_max.z),
+ CLAMP(w, p_min.w, p_max.w));
+}
+
+Vector4::operator String() const {
+ return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")";
+}
+
+static_assert(sizeof(Vector4) == 4 * sizeof(real_t));
diff --git a/core/math/vector4.h b/core/math/vector4.h
new file mode 100644
index 0000000000..7c4bdc1788
--- /dev/null
+++ b/core/math/vector4.h
@@ -0,0 +1,299 @@
+/*************************************************************************/
+/* vector4.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef VECTOR4_H
+#define VECTOR4_H
+
+#include "core/error/error_macros.h"
+#include "core/math/math_funcs.h"
+
+class String;
+
+struct _NO_DISCARD_ Vector4 {
+ static const int AXIS_COUNT = 4;
+
+ enum Axis {
+ AXIS_X,
+ AXIS_Y,
+ AXIS_Z,
+ AXIS_W,
+ };
+
+ union {
+ struct {
+ real_t x;
+ real_t y;
+ real_t z;
+ real_t w;
+ };
+ real_t components[4] = { 0, 0, 0, 0 };
+ };
+
+ _FORCE_INLINE_ real_t &operator[](const int p_axis) {
+ DEV_ASSERT((unsigned int)p_axis < 4);
+ return components[p_axis];
+ }
+ _FORCE_INLINE_ const real_t &operator[](const int p_axis) const {
+ DEV_ASSERT((unsigned int)p_axis < 4);
+ return components[p_axis];
+ }
+
+ Vector4::Axis min_axis_index() const;
+ Vector4::Axis max_axis_index() const;
+
+ _FORCE_INLINE_ real_t length_squared() const;
+ bool is_equal_approx(const Vector4 &p_vec4) const;
+ bool is_zero_approx() const;
+ bool is_finite() const;
+ real_t length() const;
+ void normalize();
+ Vector4 normalized() const;
+ bool is_normalized() const;
+
+ real_t distance_to(const Vector4 &p_to) const;
+ real_t distance_squared_to(const Vector4 &p_to) const;
+ Vector4 direction_to(const Vector4 &p_to) const;
+
+ Vector4 abs() const;
+ Vector4 sign() const;
+ Vector4 floor() const;
+ Vector4 ceil() const;
+ Vector4 round() const;
+ Vector4 lerp(const Vector4 &p_to, const real_t p_weight) const;
+ Vector4 cubic_interpolate(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, const real_t p_weight) const;
+ Vector4 cubic_interpolate_in_time(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
+
+ Vector4 posmod(const real_t p_mod) const;
+ Vector4 posmodv(const Vector4 &p_modv) const;
+ void snap(const Vector4 &p_step);
+ Vector4 snapped(const Vector4 &p_step) const;
+ Vector4 clamp(const Vector4 &p_min, const Vector4 &p_max) const;
+
+ Vector4 inverse() const;
+ _FORCE_INLINE_ real_t dot(const Vector4 &p_vec4) const;
+
+ _FORCE_INLINE_ void operator+=(const Vector4 &p_vec4);
+ _FORCE_INLINE_ void operator-=(const Vector4 &p_vec4);
+ _FORCE_INLINE_ void operator*=(const Vector4 &p_vec4);
+ _FORCE_INLINE_ void operator/=(const Vector4 &p_vec4);
+ _FORCE_INLINE_ void operator*=(const real_t &s);
+ _FORCE_INLINE_ void operator/=(const real_t &s);
+ _FORCE_INLINE_ Vector4 operator+(const Vector4 &p_vec4) const;
+ _FORCE_INLINE_ Vector4 operator-(const Vector4 &p_vec4) const;
+ _FORCE_INLINE_ Vector4 operator*(const Vector4 &p_vec4) const;
+ _FORCE_INLINE_ Vector4 operator/(const Vector4 &p_vec4) const;
+ _FORCE_INLINE_ Vector4 operator-() const;
+ _FORCE_INLINE_ Vector4 operator*(const real_t &s) const;
+ _FORCE_INLINE_ Vector4 operator/(const real_t &s) const;
+
+ _FORCE_INLINE_ bool operator==(const Vector4 &p_vec4) const;
+ _FORCE_INLINE_ bool operator!=(const Vector4 &p_vec4) const;
+ _FORCE_INLINE_ bool operator>(const Vector4 &p_vec4) const;
+ _FORCE_INLINE_ bool operator<(const Vector4 &p_vec4) const;
+ _FORCE_INLINE_ bool operator>=(const Vector4 &p_vec4) const;
+ _FORCE_INLINE_ bool operator<=(const Vector4 &p_vec4) const;
+
+ operator String() const;
+
+ _FORCE_INLINE_ Vector4() {}
+
+ _FORCE_INLINE_ Vector4(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
+ x(p_x),
+ y(p_y),
+ z(p_z),
+ w(p_w) {
+ }
+
+ Vector4(const Vector4 &p_vec4) :
+ x(p_vec4.x),
+ y(p_vec4.y),
+ z(p_vec4.z),
+ w(p_vec4.w) {
+ }
+
+ void operator=(const Vector4 &p_vec4) {
+ x = p_vec4.x;
+ y = p_vec4.y;
+ z = p_vec4.z;
+ w = p_vec4.w;
+ }
+};
+
+real_t Vector4::dot(const Vector4 &p_vec4) const {
+ return x * p_vec4.x + y * p_vec4.y + z * p_vec4.z + w * p_vec4.w;
+}
+
+real_t Vector4::length_squared() const {
+ return dot(*this);
+}
+
+void Vector4::operator+=(const Vector4 &p_vec4) {
+ x += p_vec4.x;
+ y += p_vec4.y;
+ z += p_vec4.z;
+ w += p_vec4.w;
+}
+
+void Vector4::operator-=(const Vector4 &p_vec4) {
+ x -= p_vec4.x;
+ y -= p_vec4.y;
+ z -= p_vec4.z;
+ w -= p_vec4.w;
+}
+
+void Vector4::operator*=(const Vector4 &p_vec4) {
+ x *= p_vec4.x;
+ y *= p_vec4.y;
+ z *= p_vec4.z;
+ w *= p_vec4.w;
+}
+
+void Vector4::operator/=(const Vector4 &p_vec4) {
+ x /= p_vec4.x;
+ y /= p_vec4.y;
+ z /= p_vec4.z;
+ w /= p_vec4.w;
+}
+void Vector4::operator*=(const real_t &s) {
+ x *= s;
+ y *= s;
+ z *= s;
+ w *= s;
+}
+
+void Vector4::operator/=(const real_t &s) {
+ *this *= 1.0f / s;
+}
+
+Vector4 Vector4::operator+(const Vector4 &p_vec4) const {
+ return Vector4(x + p_vec4.x, y + p_vec4.y, z + p_vec4.z, w + p_vec4.w);
+}
+
+Vector4 Vector4::operator-(const Vector4 &p_vec4) const {
+ return Vector4(x - p_vec4.x, y - p_vec4.y, z - p_vec4.z, w - p_vec4.w);
+}
+
+Vector4 Vector4::operator*(const Vector4 &p_vec4) const {
+ return Vector4(x * p_vec4.x, y * p_vec4.y, z * p_vec4.z, w * p_vec4.w);
+}
+
+Vector4 Vector4::operator/(const Vector4 &p_vec4) const {
+ return Vector4(x / p_vec4.x, y / p_vec4.y, z / p_vec4.z, w / p_vec4.w);
+}
+
+Vector4 Vector4::operator-() const {
+ return Vector4(-x, -y, -z, -w);
+}
+
+Vector4 Vector4::operator*(const real_t &s) const {
+ return Vector4(x * s, y * s, z * s, w * s);
+}
+
+Vector4 Vector4::operator/(const real_t &s) const {
+ return *this * (1.0f / s);
+}
+
+bool Vector4::operator==(const Vector4 &p_vec4) const {
+ return x == p_vec4.x && y == p_vec4.y && z == p_vec4.z && w == p_vec4.w;
+}
+
+bool Vector4::operator!=(const Vector4 &p_vec4) const {
+ return x != p_vec4.x || y != p_vec4.y || z != p_vec4.z || w != p_vec4.w;
+}
+
+bool Vector4::operator<(const Vector4 &p_v) const {
+ if (x == p_v.x) {
+ if (y == p_v.y) {
+ if (z == p_v.z) {
+ return w < p_v.w;
+ }
+ return z < p_v.z;
+ }
+ return y < p_v.y;
+ }
+ return x < p_v.x;
+}
+
+bool Vector4::operator>(const Vector4 &p_v) const {
+ if (x == p_v.x) {
+ if (y == p_v.y) {
+ if (z == p_v.z) {
+ return w > p_v.w;
+ }
+ return z > p_v.z;
+ }
+ return y > p_v.y;
+ }
+ return x > p_v.x;
+}
+
+bool Vector4::operator<=(const Vector4 &p_v) const {
+ if (x == p_v.x) {
+ if (y == p_v.y) {
+ if (z == p_v.z) {
+ return w <= p_v.w;
+ }
+ return z < p_v.z;
+ }
+ return y < p_v.y;
+ }
+ return x < p_v.x;
+}
+
+bool Vector4::operator>=(const Vector4 &p_v) const {
+ if (x == p_v.x) {
+ if (y == p_v.y) {
+ if (z == p_v.z) {
+ return w >= p_v.w;
+ }
+ return z > p_v.z;
+ }
+ return y > p_v.y;
+ }
+ return x > p_v.x;
+}
+
+_FORCE_INLINE_ Vector4 operator*(const float p_scalar, const Vector4 &p_vec) {
+ return p_vec * p_scalar;
+}
+
+_FORCE_INLINE_ Vector4 operator*(const double p_scalar, const Vector4 &p_vec) {
+ return p_vec * p_scalar;
+}
+
+_FORCE_INLINE_ Vector4 operator*(const int32_t p_scalar, const Vector4 &p_vec) {
+ return p_vec * p_scalar;
+}
+
+_FORCE_INLINE_ Vector4 operator*(const int64_t p_scalar, const Vector4 &p_vec) {
+ return p_vec * p_scalar;
+}
+
+#endif // VECTOR4_H
diff --git a/core/math/vector4i.cpp b/core/math/vector4i.cpp
new file mode 100644
index 0000000000..77f6fbd5b7
--- /dev/null
+++ b/core/math/vector4i.cpp
@@ -0,0 +1,83 @@
+/*************************************************************************/
+/* vector4i.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "vector4i.h"
+
+#include "core/math/vector4.h"
+#include "core/string/ustring.h"
+
+Vector4i::Axis Vector4i::min_axis_index() const {
+ uint32_t min_index = 0;
+ int32_t min_value = x;
+ for (uint32_t i = 1; i < 4; i++) {
+ if (operator[](i) <= min_value) {
+ min_index = i;
+ min_value = operator[](i);
+ }
+ }
+ return Vector4i::Axis(min_index);
+}
+
+Vector4i::Axis Vector4i::max_axis_index() const {
+ uint32_t max_index = 0;
+ int32_t max_value = x;
+ for (uint32_t i = 1; i < 4; i++) {
+ if (operator[](i) > max_value) {
+ max_index = i;
+ max_value = operator[](i);
+ }
+ }
+ return Vector4i::Axis(max_index);
+}
+
+Vector4i Vector4i::clamp(const Vector4i &p_min, const Vector4i &p_max) const {
+ return Vector4i(
+ CLAMP(x, p_min.x, p_max.x),
+ CLAMP(y, p_min.y, p_max.y),
+ CLAMP(z, p_min.z, p_max.z),
+ CLAMP(w, p_min.w, p_max.w));
+}
+
+Vector4i::operator String() const {
+ return "(" + itos(x) + ", " + itos(y) + ", " + itos(z) + ", " + itos(w) + ")";
+}
+
+Vector4i::operator Vector4() const {
+ return Vector4(x, y, z, w);
+}
+
+Vector4i::Vector4i(const Vector4 &p_vec4) {
+ x = (int32_t)p_vec4.x;
+ y = (int32_t)p_vec4.y;
+ z = (int32_t)p_vec4.z;
+ w = (int32_t)p_vec4.w;
+}
+
+static_assert(sizeof(Vector4i) == 4 * sizeof(int32_t));
diff --git a/core/math/vector4i.h b/core/math/vector4i.h
new file mode 100644
index 0000000000..a32414bb18
--- /dev/null
+++ b/core/math/vector4i.h
@@ -0,0 +1,337 @@
+/*************************************************************************/
+/* vector4i.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef VECTOR4I_H
+#define VECTOR4I_H
+
+#include "core/error/error_macros.h"
+#include "core/math/math_funcs.h"
+
+class String;
+struct Vector4;
+
+struct _NO_DISCARD_ Vector4i {
+ static const int AXIS_COUNT = 4;
+
+ enum Axis {
+ AXIS_X,
+ AXIS_Y,
+ AXIS_Z,
+ AXIS_W,
+ };
+
+ union {
+ struct {
+ int32_t x;
+ int32_t y;
+ int32_t z;
+ int32_t w;
+ };
+
+ int32_t coord[4] = { 0 };
+ };
+
+ _FORCE_INLINE_ const int32_t &operator[](const int p_axis) const {
+ DEV_ASSERT((unsigned int)p_axis < 4);
+ return coord[p_axis];
+ }
+
+ _FORCE_INLINE_ int32_t &operator[](const int p_axis) {
+ DEV_ASSERT((unsigned int)p_axis < 4);
+ return coord[p_axis];
+ }
+
+ Vector4i::Axis min_axis_index() const;
+ Vector4i::Axis max_axis_index() const;
+
+ _FORCE_INLINE_ int64_t length_squared() const;
+ _FORCE_INLINE_ double length() const;
+
+ _FORCE_INLINE_ void zero();
+
+ _FORCE_INLINE_ Vector4i abs() const;
+ _FORCE_INLINE_ Vector4i sign() const;
+ Vector4i clamp(const Vector4i &p_min, const Vector4i &p_max) const;
+
+ /* Operators */
+
+ _FORCE_INLINE_ Vector4i &operator+=(const Vector4i &p_v);
+ _FORCE_INLINE_ Vector4i operator+(const Vector4i &p_v) const;
+ _FORCE_INLINE_ Vector4i &operator-=(const Vector4i &p_v);
+ _FORCE_INLINE_ Vector4i operator-(const Vector4i &p_v) const;
+ _FORCE_INLINE_ Vector4i &operator*=(const Vector4i &p_v);
+ _FORCE_INLINE_ Vector4i operator*(const Vector4i &p_v) const;
+ _FORCE_INLINE_ Vector4i &operator/=(const Vector4i &p_v);
+ _FORCE_INLINE_ Vector4i operator/(const Vector4i &p_v) const;
+ _FORCE_INLINE_ Vector4i &operator%=(const Vector4i &p_v);
+ _FORCE_INLINE_ Vector4i operator%(const Vector4i &p_v) const;
+
+ _FORCE_INLINE_ Vector4i &operator*=(const int32_t p_scalar);
+ _FORCE_INLINE_ Vector4i operator*(const int32_t p_scalar) const;
+ _FORCE_INLINE_ Vector4i &operator/=(const int32_t p_scalar);
+ _FORCE_INLINE_ Vector4i operator/(const int32_t p_scalar) const;
+ _FORCE_INLINE_ Vector4i &operator%=(const int32_t p_scalar);
+ _FORCE_INLINE_ Vector4i operator%(const int32_t p_scalar) const;
+
+ _FORCE_INLINE_ Vector4i operator-() const;
+
+ _FORCE_INLINE_ bool operator==(const Vector4i &p_v) const;
+ _FORCE_INLINE_ bool operator!=(const Vector4i &p_v) const;
+ _FORCE_INLINE_ bool operator<(const Vector4i &p_v) const;
+ _FORCE_INLINE_ bool operator<=(const Vector4i &p_v) const;
+ _FORCE_INLINE_ bool operator>(const Vector4i &p_v) const;
+ _FORCE_INLINE_ bool operator>=(const Vector4i &p_v) const;
+
+ operator String() const;
+ operator Vector4() const;
+
+ _FORCE_INLINE_ Vector4i() {}
+ Vector4i(const Vector4 &p_vec4);
+ _FORCE_INLINE_ Vector4i(const int32_t p_x, const int32_t p_y, const int32_t p_z, const int32_t p_w) {
+ x = p_x;
+ y = p_y;
+ z = p_z;
+ w = p_w;
+ }
+};
+
+int64_t Vector4i::length_squared() const {
+ return x * (int64_t)x + y * (int64_t)y + z * (int64_t)z + w * (int64_t)w;
+}
+
+double Vector4i::length() const {
+ return Math::sqrt((double)length_squared());
+}
+
+Vector4i Vector4i::abs() const {
+ return Vector4i(Math::abs(x), Math::abs(y), Math::abs(z), Math::abs(w));
+}
+
+Vector4i Vector4i::sign() const {
+ return Vector4i(SIGN(x), SIGN(y), SIGN(z), SIGN(w));
+}
+
+/* Operators */
+
+Vector4i &Vector4i::operator+=(const Vector4i &p_v) {
+ x += p_v.x;
+ y += p_v.y;
+ z += p_v.z;
+ w += p_v.w;
+ return *this;
+}
+
+Vector4i Vector4i::operator+(const Vector4i &p_v) const {
+ return Vector4i(x + p_v.x, y + p_v.y, z + p_v.z, w + p_v.w);
+}
+
+Vector4i &Vector4i::operator-=(const Vector4i &p_v) {
+ x -= p_v.x;
+ y -= p_v.y;
+ z -= p_v.z;
+ w -= p_v.w;
+ return *this;
+}
+
+Vector4i Vector4i::operator-(const Vector4i &p_v) const {
+ return Vector4i(x - p_v.x, y - p_v.y, z - p_v.z, w - p_v.w);
+}
+
+Vector4i &Vector4i::operator*=(const Vector4i &p_v) {
+ x *= p_v.x;
+ y *= p_v.y;
+ z *= p_v.z;
+ w *= p_v.w;
+ return *this;
+}
+
+Vector4i Vector4i::operator*(const Vector4i &p_v) const {
+ return Vector4i(x * p_v.x, y * p_v.y, z * p_v.z, w * p_v.w);
+}
+
+Vector4i &Vector4i::operator/=(const Vector4i &p_v) {
+ x /= p_v.x;
+ y /= p_v.y;
+ z /= p_v.z;
+ w /= p_v.w;
+ return *this;
+}
+
+Vector4i Vector4i::operator/(const Vector4i &p_v) const {
+ return Vector4i(x / p_v.x, y / p_v.y, z / p_v.z, w / p_v.w);
+}
+
+Vector4i &Vector4i::operator%=(const Vector4i &p_v) {
+ x %= p_v.x;
+ y %= p_v.y;
+ z %= p_v.z;
+ w %= p_v.w;
+ return *this;
+}
+
+Vector4i Vector4i::operator%(const Vector4i &p_v) const {
+ return Vector4i(x % p_v.x, y % p_v.y, z % p_v.z, w % p_v.w);
+}
+
+Vector4i &Vector4i::operator*=(const int32_t p_scalar) {
+ x *= p_scalar;
+ y *= p_scalar;
+ z *= p_scalar;
+ w *= p_scalar;
+ return *this;
+}
+
+Vector4i Vector4i::operator*(const int32_t p_scalar) const {
+ return Vector4i(x * p_scalar, y * p_scalar, z * p_scalar, w * p_scalar);
+}
+
+// Multiplication operators required to workaround issues with LLVM using implicit conversion.
+
+_FORCE_INLINE_ Vector4i operator*(const int32_t p_scalar, const Vector4i &p_vector) {
+ return p_vector * p_scalar;
+}
+
+_FORCE_INLINE_ Vector4i operator*(const int64_t p_scalar, const Vector4i &p_vector) {
+ return p_vector * p_scalar;
+}
+
+_FORCE_INLINE_ Vector4i operator*(const float p_scalar, const Vector4i &p_vector) {
+ return p_vector * p_scalar;
+}
+
+_FORCE_INLINE_ Vector4i operator*(const double p_scalar, const Vector4i &p_vector) {
+ return p_vector * p_scalar;
+}
+
+Vector4i &Vector4i::operator/=(const int32_t p_scalar) {
+ x /= p_scalar;
+ y /= p_scalar;
+ z /= p_scalar;
+ w /= p_scalar;
+ return *this;
+}
+
+Vector4i Vector4i::operator/(const int32_t p_scalar) const {
+ return Vector4i(x / p_scalar, y / p_scalar, z / p_scalar, w / p_scalar);
+}
+
+Vector4i &Vector4i::operator%=(const int32_t p_scalar) {
+ x %= p_scalar;
+ y %= p_scalar;
+ z %= p_scalar;
+ w %= p_scalar;
+ return *this;
+}
+
+Vector4i Vector4i::operator%(const int32_t p_scalar) const {
+ return Vector4i(x % p_scalar, y % p_scalar, z % p_scalar, w % p_scalar);
+}
+
+Vector4i Vector4i::operator-() const {
+ return Vector4i(-x, -y, -z, -w);
+}
+
+bool Vector4i::operator==(const Vector4i &p_v) const {
+ return (x == p_v.x && y == p_v.y && z == p_v.z && w == p_v.w);
+}
+
+bool Vector4i::operator!=(const Vector4i &p_v) const {
+ return (x != p_v.x || y != p_v.y || z != p_v.z || w != p_v.w);
+}
+
+bool Vector4i::operator<(const Vector4i &p_v) const {
+ if (x == p_v.x) {
+ if (y == p_v.y) {
+ if (z == p_v.z) {
+ return w < p_v.w;
+ } else {
+ return z < p_v.z;
+ }
+ } else {
+ return y < p_v.y;
+ }
+ } else {
+ return x < p_v.x;
+ }
+}
+
+bool Vector4i::operator>(const Vector4i &p_v) const {
+ if (x == p_v.x) {
+ if (y == p_v.y) {
+ if (z == p_v.z) {
+ return w > p_v.w;
+ } else {
+ return z > p_v.z;
+ }
+ } else {
+ return y > p_v.y;
+ }
+ } else {
+ return x > p_v.x;
+ }
+}
+
+bool Vector4i::operator<=(const Vector4i &p_v) const {
+ if (x == p_v.x) {
+ if (y == p_v.y) {
+ if (z == p_v.z) {
+ return w <= p_v.w;
+ } else {
+ return z < p_v.z;
+ }
+ } else {
+ return y < p_v.y;
+ }
+ } else {
+ return x < p_v.x;
+ }
+}
+
+bool Vector4i::operator>=(const Vector4i &p_v) const {
+ if (x == p_v.x) {
+ if (y == p_v.y) {
+ if (z == p_v.z) {
+ return w >= p_v.w;
+ } else {
+ return z > p_v.z;
+ }
+ } else {
+ return y > p_v.y;
+ }
+ } else {
+ return x > p_v.x;
+ }
+}
+
+void Vector4i::zero() {
+ x = y = z = w = 0;
+}
+
+#endif // VECTOR4I_H