diff options
Diffstat (limited to 'core/math')
-rw-r--r-- | core/math/a_star.cpp | 2 | ||||
-rw-r--r-- | core/math/aabb.cpp | 2 | ||||
-rw-r--r-- | core/math/aabb.h | 6 | ||||
-rw-r--r-- | core/math/basis.cpp | 527 | ||||
-rw-r--r-- | core/math/basis.h | 46 | ||||
-rw-r--r-- | core/math/bvh_logic.inc | 50 | ||||
-rw-r--r-- | core/math/camera_matrix.cpp | 22 | ||||
-rw-r--r-- | core/math/color.cpp | 96 | ||||
-rw-r--r-- | core/math/color.h | 4 | ||||
-rw-r--r-- | core/math/convex_hull.cpp | 20 | ||||
-rw-r--r-- | core/math/face3.cpp | 2 | ||||
-rw-r--r-- | core/math/face3.h | 14 | ||||
-rw-r--r-- | core/math/geometry_2d.h | 2 | ||||
-rw-r--r-- | core/math/geometry_3d.cpp | 16 | ||||
-rw-r--r-- | core/math/geometry_3d.h | 2 | ||||
-rw-r--r-- | core/math/math_defs.h | 8 | ||||
-rw-r--r-- | core/math/math_funcs.h | 21 | ||||
-rw-r--r-- | core/math/plane.cpp | 2 | ||||
-rw-r--r-- | core/math/plane.h | 6 | ||||
-rw-r--r-- | core/math/quaternion.cpp | 13 | ||||
-rw-r--r-- | core/math/quaternion.h | 10 | ||||
-rw-r--r-- | core/math/rect2.h | 10 | ||||
-rw-r--r-- | core/math/transform_2d.cpp | 4 | ||||
-rw-r--r-- | core/math/transform_2d.h | 2 | ||||
-rw-r--r-- | core/math/transform_3d.cpp | 6 | ||||
-rw-r--r-- | core/math/triangulate.cpp | 11 | ||||
-rw-r--r-- | core/math/vector2.cpp | 9 | ||||
-rw-r--r-- | core/math/vector3.cpp | 9 | ||||
-rw-r--r-- | core/math/vector3.h | 27 |
29 files changed, 438 insertions, 511 deletions
diff --git a/core/math/a_star.cpp b/core/math/a_star.cpp index d59dbf1ba8..1079da75ef 100644 --- a/core/math/a_star.cpp +++ b/core/math/a_star.cpp @@ -239,7 +239,7 @@ bool AStar::are_points_connected(int p_id, int p_with_id, bool bidirectional) co const Set<Segment>::Element *element = segments.find(s); return element != nullptr && - (bidirectional || (element->get().direction & s.direction) == s.direction); + (bidirectional || (element->get().direction & s.direction) == s.direction); } void AStar::clear() { diff --git a/core/math/aabb.cpp b/core/math/aabb.cpp index 51a1309f0e..f3e78c0080 100644 --- a/core/math/aabb.cpp +++ b/core/math/aabb.cpp @@ -33,7 +33,7 @@ #include "core/string/print_string.h" #include "core/variant/variant.h" -real_t AABB::get_area() const { +real_t AABB::get_volume() const { return size.x * size.y * size.z; } diff --git a/core/math/aabb.h b/core/math/aabb.h index 97d92fbe37..02ce2501a0 100644 --- a/core/math/aabb.h +++ b/core/math/aabb.h @@ -46,8 +46,8 @@ public: Vector3 position; Vector3 size; - real_t get_area() const; /// get area - _FORCE_INLINE_ bool has_no_area() const { + real_t get_volume() const; + _FORCE_INLINE_ bool has_no_volume() const { return (size.x <= 0 || size.y <= 0 || size.z <= 0); } @@ -200,7 +200,7 @@ Vector3 AABB::get_support(const Vector3 &p_normal) const { (p_normal.x > 0) ? half_extents.x : -half_extents.x, (p_normal.y > 0) ? half_extents.y : -half_extents.y, (p_normal.z > 0) ? half_extents.z : -half_extents.z) + - ofs; + ofs; } Vector3 AABB::get_endpoint(int p_point) const { diff --git a/core/math/basis.cpp b/core/math/basis.cpp index a7f89522d7..3d893afb4d 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -58,8 +58,8 @@ void Basis::invert() { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; real_t det = elements[0][0] * co[0] + - elements[0][1] * co[1] + - elements[0][2] * co[2]; + elements[0][1] * co[1] + + elements[0][2] * co[2]; #ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); #endif @@ -288,10 +288,7 @@ Vector3 Basis::get_scale() const { // // The rotation part of this decomposition is returned by get_rotation* functions. real_t det_sign = SGN(determinant()); - return det_sign * Vector3( - Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), - Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), - Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); + return det_sign * get_scale_abs(); } // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S. @@ -354,7 +351,7 @@ void Basis::rotate(const Quaternion &p_quaternion) { *this = rotated(p_quaternion); } -Vector3 Basis::get_rotation_euler() const { +Vector3 Basis::get_euler_normalized(EulerOrder p_order) const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. @@ -365,7 +362,7 @@ Vector3 Basis::get_rotation_euler() const { m.scale(Vector3(-1, -1, -1)); } - return m.get_euler(); + return m.get_euler(p_order); } Quaternion Basis::get_rotation_quaternion() const { @@ -424,218 +421,203 @@ void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) cons p_angle = -p_angle; } -// get_euler_xyz returns a vector containing the Euler angles in the format -// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last -// (following the convention they are commonly defined in the literature). -// -// The current implementation uses XYZ convention (Z is the first rotation), -// so euler.z is the angle of the (first) rotation around Z axis and so on, -// -// And thus, assuming the matrix is a rotation matrix, this function returns -// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates -// around the z-axis by a and so on. -Vector3 Basis::get_euler_xyz() const { - // Euler angles in XYZ convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cy*cz -cy*sz sy - // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx - // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy - - Vector3 euler; - real_t sy = elements[0][2]; - if (sy < (1.0 - CMP_EPSILON)) { - if (sy > -(1.0 - CMP_EPSILON)) { - // is this a pure Y rotation? - if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { - // return the simplest form (human friendlier in editor and scripts) - euler.x = 0; - euler.y = atan2(elements[0][2], elements[0][0]); - euler.z = 0; +Vector3 Basis::get_euler(EulerOrder p_order) const { + switch (p_order) { + case EULER_ORDER_XYZ: { + // Euler angles in XYZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz -cy*sz sy + // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx + // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy + + Vector3 euler; + real_t sy = elements[0][2]; + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { + // is this a pure Y rotation? + if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = 0; + euler.y = atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } else { + euler.x = Math::atan2(-elements[1][2], elements[2][2]); + euler.y = Math::asin(sy); + euler.z = Math::atan2(-elements[0][1], elements[0][0]); + } + } else { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = -Math_PI / 2.0; + euler.z = 0.0; + } } else { - euler.x = Math::atan2(-elements[1][2], elements[2][2]); - euler.y = Math::asin(sy); - euler.z = Math::atan2(-elements[0][1], elements[0][0]); + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = Math_PI / 2.0; + euler.z = 0.0; + } + return euler; + } break; + case EULER_ORDER_XZY: { + // Euler angles in XZY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy -sz cz*sy + // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx + // cy*sx*sz cz*sx cx*cy+sx*sz*sy + + Vector3 euler; + real_t sz = elements[0][1]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = Math::asin(-sz); + } else { + // It's -1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + return euler; + } break; + case EULER_ORDER_YXZ: { + // Euler angles in YXZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy + // cx*sz cx*cz -sx + // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx + + Vector3 euler; + + real_t m12 = elements[1][2]; + + if (m12 < (1 - CMP_EPSILON)) { + if (m12 > -(1 - CMP_EPSILON)) { + // is this a pure X rotation? + if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = atan2(-m12, elements[1][1]); + euler.y = 0; + euler.z = 0; + } else { + euler.x = asin(-m12); + euler.y = atan2(elements[0][2], elements[2][2]); + euler.z = atan2(elements[1][0], elements[1][1]); + } + } else { // m12 == -1 + euler.x = Math_PI * 0.5; + euler.y = atan2(elements[0][1], elements[0][0]); + euler.z = 0; + } + } else { // m12 == 1 + euler.x = -Math_PI * 0.5; + euler.y = -atan2(elements[0][1], elements[0][0]); + euler.z = 0; } - } else { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = -Math_PI / 2.0; - euler.z = 0.0; - } - } else { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = Math_PI / 2.0; - euler.z = 0.0; - } - return euler; -} - -// set_euler_xyz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// The current implementation uses XYZ convention (Z is the first rotation). -void Basis::set_euler_xyz(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - //optimizer will optimize away all this anyway - *this = xmat * (ymat * zmat); -} - -Vector3 Basis::get_euler_xzy() const { - // Euler angles in XZY convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cz*cy -sz cz*sy - // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx - // cy*sx*sz cz*sx cx*cy+sx*sz*sy - - Vector3 euler; - real_t sz = elements[0][1]; - if (sz < (1.0 - CMP_EPSILON)) { - if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = Math::atan2(elements[0][2], elements[0][0]); - euler.z = Math::asin(-sz); - } else { - // It's -1 - euler.x = -Math::atan2(elements[1][2], elements[2][2]); - euler.y = 0.0; - euler.z = Math_PI / 2.0; - } - } else { - // It's 1 - euler.x = -Math::atan2(elements[1][2], elements[2][2]); - euler.y = 0.0; - euler.z = -Math_PI / 2.0; - } - return euler; -} - -void Basis::set_euler_xzy(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = xmat * zmat * ymat; -} - -Vector3 Basis::get_euler_yzx() const { - // Euler angles in YZX convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx - // sz cz*cx -cz*sx - // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx - - Vector3 euler; - real_t sz = elements[1][0]; - if (sz < (1.0 - CMP_EPSILON)) { - if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(-elements[1][2], elements[1][1]); - euler.y = Math::atan2(-elements[2][0], elements[0][0]); - euler.z = Math::asin(sz); - } else { - // It's -1 - euler.x = Math::atan2(elements[2][1], elements[2][2]); - euler.y = 0.0; - euler.z = -Math_PI / 2.0; - } - } else { - // It's 1 - euler.x = Math::atan2(elements[2][1], elements[2][2]); - euler.y = 0.0; - euler.z = Math_PI / 2.0; - } - return euler; -} - -void Basis::set_euler_yzx(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = ymat * zmat * xmat; -} - -// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, -// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned -// as the x, y, and z components of a Vector3 respectively. -Vector3 Basis::get_euler_yxz() const { - // Euler angles in YXZ convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy - // cx*sz cx*cz -sx - // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx - - Vector3 euler; - - real_t m12 = elements[1][2]; - if (m12 < (1 - CMP_EPSILON)) { - if (m12 > -(1 - CMP_EPSILON)) { - // is this a pure X rotation? - if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { - // return the simplest form (human friendlier in editor and scripts) - euler.x = atan2(-m12, elements[1][1]); - euler.y = 0; + return euler; + } break; + case EULER_ORDER_YZX: { + // Euler angles in YZX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx + // sz cz*cx -cz*sx + // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx + + Vector3 euler; + real_t sz = elements[1][0]; + if (sz < (1.0 - CMP_EPSILON)) { + if (sz > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(-elements[1][2], elements[1][1]); + euler.y = Math::atan2(-elements[2][0], elements[0][0]); + euler.z = Math::asin(sz); + } else { + // It's -1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = -Math_PI / 2.0; + } + } else { + // It's 1 + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = 0.0; + euler.z = Math_PI / 2.0; + } + return euler; + } break; + case EULER_ORDER_ZXY: { + // Euler angles in ZXY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx + // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx + // -cx*sy sx cx*cy + Vector3 euler; + real_t sx = elements[2][1]; + if (sx < (1.0 - CMP_EPSILON)) { + if (sx > -(1.0 - CMP_EPSILON)) { + euler.x = Math::asin(sx); + euler.y = Math::atan2(-elements[2][0], elements[2][2]); + euler.z = Math::atan2(-elements[0][1], elements[1][1]); + } else { + // It's -1 + euler.x = -Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.z = 0; + } + } else { + // It's 1 + euler.x = Math_PI / 2.0; + euler.y = Math::atan2(elements[0][2], elements[0][0]); euler.z = 0; + } + return euler; + } break; + case EULER_ORDER_ZYX: { + // Euler angles in ZYX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy + // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx + // -sy cy*sx cy*cx + Vector3 euler; + real_t sy = elements[2][0]; + if (sy < (1.0 - CMP_EPSILON)) { + if (sy > -(1.0 - CMP_EPSILON)) { + euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.y = Math::asin(-sy); + euler.z = Math::atan2(elements[1][0], elements[0][0]); + } else { + // It's -1 + euler.x = 0; + euler.y = Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); + } } else { - euler.x = asin(-m12); - euler.y = atan2(elements[0][2], elements[2][2]); - euler.z = atan2(elements[1][0], elements[1][1]); + // It's 1 + euler.x = 0; + euler.y = -Math_PI / 2.0; + euler.z = -Math::atan2(elements[0][1], elements[1][1]); } - } else { // m12 == -1 - euler.x = Math_PI * 0.5; - euler.y = atan2(elements[0][1], elements[0][0]); - euler.z = 0; + return euler; + } break; + default: { + ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)"); } - } else { // m12 == 1 - euler.x = -Math_PI * 0.5; - euler.y = -atan2(elements[0][1], elements[0][0]); - euler.z = 0; } - - return euler; + return Vector3(); } -// set_euler_yxz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// The current implementation uses YXZ convention (Z is the first rotation). -void Basis::set_euler_yxz(const Vector3 &p_euler) { +void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) { real_t c, s; c = Math::cos(p_euler.x); @@ -650,102 +632,29 @@ void Basis::set_euler_yxz(const Vector3 &p_euler) { s = Math::sin(p_euler.z); Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - //optimizer will optimize away all this anyway - *this = ymat * xmat * zmat; -} - -Vector3 Basis::get_euler_zxy() const { - // Euler angles in ZXY convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx - // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx - // -cx*sy sx cx*cy - Vector3 euler; - real_t sx = elements[2][1]; - if (sx < (1.0 - CMP_EPSILON)) { - if (sx > -(1.0 - CMP_EPSILON)) { - euler.x = Math::asin(sx); - euler.y = Math::atan2(-elements[2][0], elements[2][2]); - euler.z = Math::atan2(-elements[0][1], elements[1][1]); - } else { - // It's -1 - euler.x = -Math_PI / 2.0; - euler.y = Math::atan2(elements[0][2], elements[0][0]); - euler.z = 0; + switch (p_order) { + case EULER_ORDER_XYZ: { + *this = xmat * (ymat * zmat); + } break; + case EULER_ORDER_XZY: { + *this = xmat * zmat * ymat; + } break; + case EULER_ORDER_YXZ: { + *this = ymat * xmat * zmat; + } break; + case EULER_ORDER_YZX: { + *this = ymat * zmat * xmat; + } break; + case EULER_ORDER_ZXY: { + *this = zmat * xmat * ymat; + } break; + case EULER_ORDER_ZYX: { + *this = zmat * ymat * xmat; + } break; + default: { + ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)"); } - } else { - // It's 1 - euler.x = Math_PI / 2.0; - euler.y = Math::atan2(elements[0][2], elements[0][0]); - euler.z = 0; } - return euler; -} - -void Basis::set_euler_zxy(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = zmat * xmat * ymat; -} - -Vector3 Basis::get_euler_zyx() const { - // Euler angles in ZYX convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy - // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx - // -sy cy*sx cy*cx - Vector3 euler; - real_t sy = elements[2][0]; - if (sy < (1.0 - CMP_EPSILON)) { - if (sy > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(elements[2][1], elements[2][2]); - euler.y = Math::asin(-sy); - euler.z = Math::atan2(elements[1][0], elements[0][0]); - } else { - // It's -1 - euler.x = 0; - euler.y = Math_PI / 2.0; - euler.z = -Math::atan2(elements[0][1], elements[1][1]); - } - } else { - // It's 1 - euler.x = 0; - euler.y = -Math_PI / 2.0; - euler.z = -Math::atan2(elements[0][1], elements[1][1]); - } - return euler; -} - -void Basis::set_euler_zyx(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = zmat * ymat * xmat; } bool Basis::is_equal_approx(const Basis &p_basis) const { @@ -770,8 +679,8 @@ bool Basis::operator!=(const Basis &p_matrix) const { Basis::operator String() const { return "[X: " + get_axis(0).operator String() + - ", Y: " + get_axis(1).operator String() + - ", Z: " + get_axis(2).operator String() + "]"; + ", Y: " + get_axis(1).operator String() + + ", Z: " + get_axis(2).operator String() + "]"; } Quaternion Basis::get_quaternion() const { @@ -792,9 +701,9 @@ Quaternion Basis::get_quaternion() const { temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s); temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); } else { - int i = m.elements[0][0] < m.elements[1][1] ? - (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : - (m.elements[0][0] < m.elements[2][2] ? 2 : 0); + int i = m.elements[0][0] < m.elements[1][1] + ? (m.elements[1][1] < m.elements[2][2] ? 2 : 1) + : (m.elements[0][0] < m.elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; diff --git a/core/math/basis.h b/core/math/basis.h index eb107d7e4e..e2fdb95685 100644 --- a/core/math/basis.h +++ b/core/math/basis.h @@ -85,40 +85,35 @@ public: void rotate(const Quaternion &p_quaternion); Basis rotated(const Quaternion &p_quaternion) const; - Vector3 get_rotation_euler() const; + enum EulerOrder { + EULER_ORDER_XYZ, + EULER_ORDER_XZY, + EULER_ORDER_YXZ, + EULER_ORDER_YZX, + EULER_ORDER_ZXY, + EULER_ORDER_ZYX + }; + + Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const; void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const; void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const; Quaternion get_rotation_quaternion() const; - Vector3 get_rotation() const { return get_rotation_euler(); }; void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction); Vector3 rotref_posscale_decomposition(Basis &rotref) const; - Vector3 get_euler_xyz() const; - void set_euler_xyz(const Vector3 &p_euler); - - Vector3 get_euler_xzy() const; - void set_euler_xzy(const Vector3 &p_euler); - - Vector3 get_euler_yzx() const; - void set_euler_yzx(const Vector3 &p_euler); - - Vector3 get_euler_yxz() const; - void set_euler_yxz(const Vector3 &p_euler); - - Vector3 get_euler_zxy() const; - void set_euler_zxy(const Vector3 &p_euler); - - Vector3 get_euler_zyx() const; - void set_euler_zyx(const Vector3 &p_euler); + Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const; + void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ); + static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) { + Basis b; + b.set_euler(p_euler, p_order); + return b; + } Quaternion get_quaternion() const; void set_quaternion(const Quaternion &p_quaternion); - Vector3 get_euler() const { return get_euler_yxz(); } - void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); } - void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const; void set_axis_angle(const Vector3 &p_axis, real_t p_phi); @@ -250,9 +245,6 @@ public: Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); }; Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); } - Basis(const Vector3 &p_euler) { set_euler(p_euler); } - Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); } - Basis(const Vector3 &p_axis, real_t p_phi) { set_axis_angle(p_axis, p_phi); } Basis(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_phi, p_scale); } static Basis from_scale(const Vector3 &p_scale); @@ -332,7 +324,7 @@ Vector3 Basis::xform_inv(const Vector3 &p_vector) const { real_t Basis::determinant() const { return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) - - elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) + - elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]); + elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) + + elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]); } #endif // BASIS_H diff --git a/core/math/bvh_logic.inc b/core/math/bvh_logic.inc index afab08f151..c65002a9fd 100644 --- a/core/math/bvh_logic.inc +++ b/core/math/bvh_logic.inc @@ -42,24 +42,24 @@ BVHABB_CLASS _logic_abb_merge(const BVHABB_CLASS &a, const BVHABB_CLASS &b) { //-------------------------------------------------------------------------------------------------- /** -@file q3DynamicAABBTree.h -@author Randy Gaul -@date 10/10/2014 - Copyright (c) 2014 Randy Gaul http://www.randygaul.net - This software is provided 'as-is', without any express or implied - warranty. In no event will the authors be held liable for any damages - arising from the use of this software. - Permission is granted to anyone to use this software for any purpose, - including commercial applications, and to alter it and redistribute it - freely, subject to the following restrictions: - 1. The origin of this software must not be misrepresented; you must not - claim that you wrote the original software. If you use this software - in a product, an acknowledgment in the product documentation would be - appreciated but is not required. - 2. Altered source versions must be plainly marked as such, and must not - be misrepresented as being the original software. - 3. This notice may not be removed or altered from any source distribution. -*/ + * @file q3DynamicAABBTree.h + * @author Randy Gaul + * @date 10/10/2014 + * Copyright (c) 2014 Randy Gaul http://www.randygaul.net + * This software is provided 'as-is', without any express or implied + * warranty. In no event will the authors be held liable for any damages + * arising from the use of this software. + * Permission is granted to anyone to use this software for any purpose, + * including commercial applications, and to alter it and redistribute it + * freely, subject to the following restrictions: + * 1. The origin of this software must not be misrepresented; you must not + * claim that you wrote the original software. If you use this software + * in a product, an acknowledgment in the product documentation would be + * appreciated but is not required. + * 2. Altered source versions must be plainly marked as such, and must not + * be misrepresented as being the original software. + * 3. This notice may not be removed or altered from any source distribution. + */ //-------------------------------------------------------------------------------------------------- // This function is based on the 'Balance' function from Randy Gaul's qu3e @@ -67,7 +67,7 @@ BVHABB_CLASS _logic_abb_merge(const BVHABB_CLASS &a, const BVHABB_CLASS &b) { // It is MODIFIED from qu3e version. // This is the only function used (and _logic_abb_merge helper function). int32_t _logic_balance(int32_t iA, uint32_t p_tree_id) { - // return iA; // uncomment this to bypass balance + //return iA; // uncomment this to bypass balance TNode *A = &_nodes[iA]; @@ -75,12 +75,12 @@ int32_t _logic_balance(int32_t iA, uint32_t p_tree_id) { return iA; } - /* A - / \ - B C - / \ / \ - D E F G - */ + /* A + * / \ + * B C + * / \ / \ + * D E F G + */ CRASH_COND(A->num_children != 2); int32_t iB = A->children[0]; diff --git a/core/math/camera_matrix.cpp b/core/math/camera_matrix.cpp index 8066a59281..48984c4d5b 100644 --- a/core/math/camera_matrix.cpp +++ b/core/math/camera_matrix.cpp @@ -35,17 +35,17 @@ float CameraMatrix::determinant() const { return matrix[0][3] * matrix[1][2] * matrix[2][1] * matrix[3][0] - matrix[0][2] * matrix[1][3] * matrix[2][1] * matrix[3][0] - - matrix[0][3] * matrix[1][1] * matrix[2][2] * matrix[3][0] + matrix[0][1] * matrix[1][3] * matrix[2][2] * matrix[3][0] + - matrix[0][2] * matrix[1][1] * matrix[2][3] * matrix[3][0] - matrix[0][1] * matrix[1][2] * matrix[2][3] * matrix[3][0] - - matrix[0][3] * matrix[1][2] * matrix[2][0] * matrix[3][1] + matrix[0][2] * matrix[1][3] * matrix[2][0] * matrix[3][1] + - matrix[0][3] * matrix[1][0] * matrix[2][2] * matrix[3][1] - matrix[0][0] * matrix[1][3] * matrix[2][2] * matrix[3][1] - - matrix[0][2] * matrix[1][0] * matrix[2][3] * matrix[3][1] + matrix[0][0] * matrix[1][2] * matrix[2][3] * matrix[3][1] + - matrix[0][3] * matrix[1][1] * matrix[2][0] * matrix[3][2] - matrix[0][1] * matrix[1][3] * matrix[2][0] * matrix[3][2] - - matrix[0][3] * matrix[1][0] * matrix[2][1] * matrix[3][2] + matrix[0][0] * matrix[1][3] * matrix[2][1] * matrix[3][2] + - matrix[0][1] * matrix[1][0] * matrix[2][3] * matrix[3][2] - matrix[0][0] * matrix[1][1] * matrix[2][3] * matrix[3][2] - - matrix[0][2] * matrix[1][1] * matrix[2][0] * matrix[3][3] + matrix[0][1] * matrix[1][2] * matrix[2][0] * matrix[3][3] + - matrix[0][2] * matrix[1][0] * matrix[2][1] * matrix[3][3] - matrix[0][0] * matrix[1][2] * matrix[2][1] * matrix[3][3] - - matrix[0][1] * matrix[1][0] * matrix[2][2] * matrix[3][3] + matrix[0][0] * matrix[1][1] * matrix[2][2] * matrix[3][3]; + matrix[0][3] * matrix[1][1] * matrix[2][2] * matrix[3][0] + matrix[0][1] * matrix[1][3] * matrix[2][2] * matrix[3][0] + + matrix[0][2] * matrix[1][1] * matrix[2][3] * matrix[3][0] - matrix[0][1] * matrix[1][2] * matrix[2][3] * matrix[3][0] - + matrix[0][3] * matrix[1][2] * matrix[2][0] * matrix[3][1] + matrix[0][2] * matrix[1][3] * matrix[2][0] * matrix[3][1] + + matrix[0][3] * matrix[1][0] * matrix[2][2] * matrix[3][1] - matrix[0][0] * matrix[1][3] * matrix[2][2] * matrix[3][1] - + matrix[0][2] * matrix[1][0] * matrix[2][3] * matrix[3][1] + matrix[0][0] * matrix[1][2] * matrix[2][3] * matrix[3][1] + + matrix[0][3] * matrix[1][1] * matrix[2][0] * matrix[3][2] - matrix[0][1] * matrix[1][3] * matrix[2][0] * matrix[3][2] - + matrix[0][3] * matrix[1][0] * matrix[2][1] * matrix[3][2] + matrix[0][0] * matrix[1][3] * matrix[2][1] * matrix[3][2] + + matrix[0][1] * matrix[1][0] * matrix[2][3] * matrix[3][2] - matrix[0][0] * matrix[1][1] * matrix[2][3] * matrix[3][2] - + matrix[0][2] * matrix[1][1] * matrix[2][0] * matrix[3][3] + matrix[0][1] * matrix[1][2] * matrix[2][0] * matrix[3][3] + + matrix[0][2] * matrix[1][0] * matrix[2][1] * matrix[3][3] - matrix[0][0] * matrix[1][2] * matrix[2][1] * matrix[3][3] - + matrix[0][1] * matrix[1][0] * matrix[2][2] * matrix[3][3] + matrix[0][0] * matrix[1][1] * matrix[2][2] * matrix[3][3]; } void CameraMatrix::set_identity() { diff --git a/core/math/color.cpp b/core/math/color.cpp index dc86cacf8f..8310c342ed 100644 --- a/core/math/color.cpp +++ b/core/math/color.cpp @@ -107,6 +107,39 @@ uint64_t Color::to_rgba64() const { return c; } +String _to_hex(float p_val) { + int v = Math::round(p_val * 255); + v = CLAMP(v, 0, 255); + String ret; + + for (int i = 0; i < 2; i++) { + char32_t c[2] = { 0, 0 }; + int lv = v & 0xF; + if (lv < 10) { + c[0] = '0' + lv; + } else { + c[0] = 'a' + lv - 10; + } + + v >>= 4; + String cs = (const char32_t *)c; + ret = cs + ret; + } + + return ret; +} + +String Color::to_html(bool p_alpha) const { + String txt; + txt += _to_hex(r); + txt += _to_hex(g); + txt += _to_hex(b); + if (p_alpha) { + txt += _to_hex(a); + } + return txt; +} + float Color::get_h() const { float min = MIN(r, g); min = MIN(min, b); @@ -249,20 +282,6 @@ Color Color::hex64(uint64_t p_hex) { return Color(r, g, b, a); } -Color Color::from_rgbe9995(uint32_t p_rgbe) { - float r = p_rgbe & 0x1ff; - float g = (p_rgbe >> 9) & 0x1ff; - float b = (p_rgbe >> 18) & 0x1ff; - float e = (p_rgbe >> 27); - float m = Math::pow(2, e - 15.0 - 9.0); - - float rd = r * m; - float gd = g * m; - float bd = b * m; - - return Color(rd, gd, bd, 1.0f); -} - static int _parse_col4(const String &p_str, int p_ofs) { char character = p_str[p_ofs]; @@ -428,43 +447,24 @@ Color Color::from_string(const String &p_string, const Color &p_default) { } } -String _to_hex(float p_val) { - int v = Math::round(p_val * 255); - v = CLAMP(v, 0, 255); - String ret; - - for (int i = 0; i < 2; i++) { - char32_t c[2] = { 0, 0 }; - int lv = v & 0xF; - if (lv < 10) { - c[0] = '0' + lv; - } else { - c[0] = 'a' + lv - 10; - } - - v >>= 4; - String cs = (const char32_t *)c; - ret = cs + ret; - } - - return ret; +Color Color::from_hsv(float p_h, float p_s, float p_v, float p_alpha) { + Color c; + c.set_hsv(p_h, p_s, p_v, p_alpha); + return c; } -String Color::to_html(bool p_alpha) const { - String txt; - txt += _to_hex(r); - txt += _to_hex(g); - txt += _to_hex(b); - if (p_alpha) { - txt += _to_hex(a); - } - return txt; -} +Color Color::from_rgbe9995(uint32_t p_rgbe) { + float r = p_rgbe & 0x1ff; + float g = (p_rgbe >> 9) & 0x1ff; + float b = (p_rgbe >> 18) & 0x1ff; + float e = (p_rgbe >> 27); + float m = Math::pow(2, e - 15.0 - 9.0); -Color Color::from_hsv(float p_h, float p_s, float p_v, float p_a) const { - Color c; - c.set_hsv(p_h, p_s, p_v, p_a); - return c; + float rd = r * m; + float gd = g * m; + float bd = b * m; + + return Color(rd, gd, bd, 1.0f); } Color::operator String() const { diff --git a/core/math/color.h b/core/math/color.h index a95dbf4f60..ffd0fd8f6e 100644 --- a/core/math/color.h +++ b/core/math/color.h @@ -51,6 +51,7 @@ struct Color { uint64_t to_rgba64() const; uint64_t to_argb64() const; uint64_t to_abgr64() const; + String to_html(bool p_alpha = true) const; float get_h() const; float get_s() const; float get_v() const; @@ -189,8 +190,7 @@ struct Color { static String get_named_color_name(int p_idx); static Color get_named_color(int p_idx); static Color from_string(const String &p_string, const Color &p_default); - String to_html(bool p_alpha = true) const; - Color from_hsv(float p_h, float p_s, float p_v, float p_a) const; + static Color from_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0); static Color from_rgbe9995(uint32_t p_rgbe); _FORCE_INLINE_ bool operator<(const Color &p_color) const; //used in set keys diff --git a/core/math/convex_hull.cpp b/core/math/convex_hull.cpp index f67035c803..f6560f1bea 100644 --- a/core/math/convex_hull.cpp +++ b/core/math/convex_hull.cpp @@ -265,8 +265,7 @@ public: } int32_t get_sign() const { - return ((int64_t)high < 0) ? -1 : (high || low) ? 1 : - 0; + return ((int64_t)high < 0) ? -1 : ((high || low) ? 1 : 0); } bool operator<(const Int128 &b) const { @@ -594,8 +593,6 @@ private: IntermediateHull() { } - - void print(); }; enum Orientation { NONE, @@ -737,8 +734,6 @@ int32_t ConvexHullInternal::Rational64::compare(const Rational64 &b) const { return 0; } - // return (numerator * b.denominator > b.numerator * denominator) ? sign : (numerator * b.denominator < b.numerator * denominator) ? -sign : 0; - #ifdef USE_X86_64_ASM int32_t result; @@ -759,10 +754,9 @@ int32_t ConvexHullInternal::Rational64::compare(const Rational64 &b) const { : "=&b"(result), [tmp] "=&r"(tmp), "=a"(dummy) : "a"(denominator), [bn] "g"(b.numerator), [tn] "g"(numerator), [bd] "g"(b.denominator) : "%rdx", "cc"); - return result ? result ^ sign // if sign is +1, only bit 0 of result is inverted, which does not change the sign of result (and cannot result in zero) - // if sign is -1, all bits of result are inverted, which changes the sign of result (and again cannot result in zero) - : - 0; + // if sign is +1, only bit 0 of result is inverted, which does not change the sign of result (and cannot result in zero) + // if sign is -1, all bits of result are inverted, which changes the sign of result (and again cannot result in zero) + return result ? result ^ sign : 0; #else @@ -795,8 +789,7 @@ int32_t ConvexHullInternal::Rational128::compare(const Rational128 &b) const { int32_t ConvexHullInternal::Rational128::compare(int64_t b) const { if (is_int_64) { int64_t a = sign * (int64_t)numerator.low; - return (a > b) ? 1 : (a < b) ? -1 : - 0; + return (a > b) ? 1 : ((a < b) ? -1 : 0); } if (b > 0) { if (sign <= 0) { @@ -1448,8 +1441,7 @@ void ConvexHullInternal::merge(IntermediateHull &p_h0, IntermediateHull &p_h1) { c1->edges = e; return; } else { - int32_t cmp = !min0 ? 1 : !min1 ? -1 : - min_cot0.compare(min_cot1); + int32_t cmp = !min0 ? 1 : (!min1 ? -1 : min_cot0.compare(min_cot1)); #ifdef DEBUG_CONVEX_HULL printf(" -> Result %d\n", cmp); #endif diff --git a/core/math/face3.cpp b/core/math/face3.cpp index 045ab67ce8..31a853e1a9 100644 --- a/core/math/face3.cpp +++ b/core/math/face3.cpp @@ -229,7 +229,7 @@ bool Face3::intersects_aabb(const AABB &p_aabb) const { axis.normalize(); real_t minA, maxA, minB, maxB; - p_aabb.project_range_in_plane(Plane(axis, 0), minA, maxA); + p_aabb.project_range_in_plane(Plane(axis), minA, maxA); project_range(axis, Transform3D(), minB, maxB); if (maxA < minB || maxB < minA) { diff --git a/core/math/face3.h b/core/math/face3.h index 9e9026e54e..0a8c1c6041 100644 --- a/core/math/face3.h +++ b/core/math/face3.h @@ -48,13 +48,13 @@ public: Vector3 vertex[3]; /** - * - * @param p_plane plane used to split the face - * @param p_res array of at least 3 faces, amount used in function return - * @param p_is_point_over array of at least 3 booleans, determining which face is over the plane, amount used in function return - * @param _epsilon constant used for numerical error rounding, to add "thickness" to the plane (so coplanar points can happen) - * @return amount of faces generated by the split, either 0 (means no split possible), 2 or 3 - */ + * + * @param p_plane plane used to split the face + * @param p_res array of at least 3 faces, amount used in function return + * @param p_is_point_over array of at least 3 booleans, determining which face is over the plane, amount used in function return + * @param _epsilon constant used for numerical error rounding, to add "thickness" to the plane (so coplanar points can happen) + * @return amount of faces generated by the split, either 0 (means no split possible), 2 or 3 + */ int split_by_plane(const Plane &p_plane, Face3 *p_res, bool *p_is_point_over) const; diff --git a/core/math/geometry_2d.h b/core/math/geometry_2d.h index 8e5830f9b3..6010159597 100644 --- a/core/math/geometry_2d.h +++ b/core/math/geometry_2d.h @@ -37,8 +37,6 @@ #include "core/templates/vector.h" class Geometry2D { - Geometry2D(); - public: static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) { Vector2 d1 = q1 - p1; // Direction vector of segment S1. diff --git a/core/math/geometry_3d.cpp b/core/math/geometry_3d.cpp index 6628b760e0..88d2656025 100644 --- a/core/math/geometry_3d.cpp +++ b/core/math/geometry_3d.cpp @@ -819,11 +819,9 @@ Vector<Plane> Geometry3D::build_sphere_planes(real_t p_radius, int p_lats, int p planes.push_back(Plane(normal, p_radius)); for (int j = 1; j <= p_lats; j++) { - // FIXME: This is stupid. - Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized(); - Vector3 pos = angle * p_radius; - planes.push_back(Plane(pos, angle)); - planes.push_back(Plane(pos * axis_neg, angle * axis_neg)); + Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized(); + planes.push_back(Plane(plane_normal, p_radius)); + planes.push_back(Plane(plane_normal * axis_neg, p_radius)); } } @@ -852,10 +850,10 @@ Vector<Plane> Geometry3D::build_capsule_planes(real_t p_radius, real_t p_height, planes.push_back(Plane(normal, p_radius)); for (int j = 1; j <= p_lats; j++) { - Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized(); - Vector3 pos = axis * p_height * 0.5 + angle * p_radius; - planes.push_back(Plane(pos, angle)); - planes.push_back(Plane(pos * axis_neg, angle * axis_neg)); + Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized(); + Vector3 position = axis * p_height * 0.5 + plane_normal * p_radius; + planes.push_back(Plane(plane_normal, position)); + planes.push_back(Plane(plane_normal * axis_neg, position * axis_neg)); } } diff --git a/core/math/geometry_3d.h b/core/math/geometry_3d.h index 766689e222..6a59b34585 100644 --- a/core/math/geometry_3d.h +++ b/core/math/geometry_3d.h @@ -36,8 +36,6 @@ #include "core/templates/vector.h" class Geometry3D { - Geometry3D(); - public: static void get_closest_points_between_segments(const Vector3 &p1, const Vector3 &p2, const Vector3 &q1, const Vector3 &q2, Vector3 &c1, Vector3 &c2) { // Do the function 'd' as defined by pb. I think it's a dot product of some sort. diff --git a/core/math/math_defs.h b/core/math/math_defs.h index c3a8f910c0..900e90a598 100644 --- a/core/math/math_defs.h +++ b/core/math/math_defs.h @@ -116,10 +116,10 @@ enum Corner { }; /** - * The "Real" type is an abstract type used for real numbers, such as 1.5, - * in contrast to integer numbers. Precision can be controlled with the - * presence or absence of the REAL_T_IS_DOUBLE define. - */ + * The "Real" type is an abstract type used for real numbers, such as 1.5, + * in contrast to integer numbers. Precision can be controlled with the + * presence or absence of the REAL_T_IS_DOUBLE define. + */ #ifdef REAL_T_IS_DOUBLE typedef double real_t; #else diff --git a/core/math/math_funcs.h b/core/math/math_funcs.h index 4e4f566517..b3eabd3e7a 100644 --- a/core/math/math_funcs.h +++ b/core/math/math_funcs.h @@ -159,7 +159,7 @@ public: } ieee754; ieee754.f = p_val; return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 && - ((unsigned)ieee754.u == 0); + ((unsigned)ieee754.u == 0); #else return isinf(p_val); #endif @@ -291,6 +291,19 @@ public: return is_zero_approx(range) ? min : value - (range * Math::floor((value - min) / range)); } + static _ALWAYS_INLINE_ float fract(float value) { + return value - floor(value); + } + static _ALWAYS_INLINE_ double fract(double value) { + return value - floor(value); + } + static _ALWAYS_INLINE_ float pingpong(float value, float length) { + return (length != 0.0f) ? abs(fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f; + } + static _ALWAYS_INLINE_ double pingpong(double value, double length) { + return (length != 0.0) ? abs(fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0; + } + // double only, as these functions are mainly used by the editor and not performance-critical, static double ease(double p_x, double p_c); static int step_decimals(double p_step); @@ -461,7 +474,7 @@ public: mantissa = 0; } hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) | - (uint16_t)(mantissa >> 13); + (uint16_t)(mantissa >> 13); } // check if exponent is <= -15 else if (exp <= 0x38000000) { @@ -474,8 +487,8 @@ public: hf = 0; //denormals do not work for 3D, convert to zero } else { hf = (((uint16_t)sign) << 15) | - (uint16_t)((exp - 0x38000000) >> 13) | - (uint16_t)(mantissa >> 13); + (uint16_t)((exp - 0x38000000) >> 13) | + (uint16_t)(mantissa >> 13); } return hf; diff --git a/core/math/plane.cpp b/core/math/plane.cpp index 3c78b55b90..59f7918258 100644 --- a/core/math/plane.cpp +++ b/core/math/plane.cpp @@ -88,7 +88,7 @@ bool Plane::intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r *r_result = ((vec3_cross(normal1, normal2) * p_plane0.d) + (vec3_cross(normal2, normal0) * p_plane1.d) + (vec3_cross(normal0, normal1) * p_plane2.d)) / - denom; + denom; } return true; diff --git a/core/math/plane.h b/core/math/plane.h index 2267b28c53..18be5d5d12 100644 --- a/core/math/plane.h +++ b/core/math/plane.h @@ -85,8 +85,8 @@ public: normal(p_a, p_b, p_c), d(p_d) {} - _FORCE_INLINE_ Plane(const Vector3 &p_normal, real_t p_d); - _FORCE_INLINE_ Plane(const Vector3 &p_point, const Vector3 &p_normal); + _FORCE_INLINE_ Plane(const Vector3 &p_normal, real_t p_d = 0.0); + _FORCE_INLINE_ Plane(const Vector3 &p_normal, const Vector3 &p_point); _FORCE_INLINE_ Plane(const Vector3 &p_point1, const Vector3 &p_point2, const Vector3 &p_point3, ClockDirection p_dir = CLOCKWISE); }; @@ -109,7 +109,7 @@ Plane::Plane(const Vector3 &p_normal, real_t p_d) : d(p_d) { } -Plane::Plane(const Vector3 &p_point, const Vector3 &p_normal) : +Plane::Plane(const Vector3 &p_normal, const Vector3 &p_point) : normal(p_normal), d(p_normal.dot(p_point)) { } diff --git a/core/math/quaternion.cpp b/core/math/quaternion.cpp index 3f1d2c58e5..944474686a 100644 --- a/core/math/quaternion.cpp +++ b/core/math/quaternion.cpp @@ -44,7 +44,7 @@ real_t Quaternion::angle_to(const Quaternion &p_to) const { // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_xyz() const { Basis m(*this); - return m.get_euler_xyz(); + return m.get_euler(Basis::EULER_ORDER_XYZ); } // get_euler_yxz returns a vector containing the Euler angles in the format @@ -56,7 +56,7 @@ Vector3 Quaternion::get_euler_yxz() const { ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); #endif Basis m(*this); - return m.get_euler_yxz(); + return m.get_euler(Basis::EULER_ORDER_YXZ); } void Quaternion::operator*=(const Quaternion &p_q) { @@ -189,6 +189,15 @@ Quaternion::operator String() const { return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")"; } +Vector3 Quaternion::get_axis() const { + real_t r = ((real_t)1) / Math::sqrt(1 - w * w); + return Vector3(x * r, y * r, z * r); +} + +float Quaternion::get_angle() const { + return 2 * Math::acos(w); +} + Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); diff --git a/core/math/quaternion.h b/core/math/quaternion.h index 35324323b3..d8d0c06672 100644 --- a/core/math/quaternion.h +++ b/core/math/quaternion.h @@ -72,6 +72,9 @@ public: Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; + Vector3 get_axis() const; + float get_angle() const; + _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = 2 * Math::acos(w); real_t r = ((real_t)1) / Math::sqrt(1 - w * w); @@ -83,13 +86,6 @@ public: void operator*=(const Quaternion &p_q); Quaternion operator*(const Quaternion &p_q) const; - Quaternion operator*(const Vector3 &v) const { - return Quaternion(w * v.x + y * v.z - z * v.y, - w * v.y + z * v.x - x * v.z, - w * v.z + x * v.y - y * v.x, - -x * v.x - y * v.y - z * v.z); - } - _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized."); diff --git a/core/math/rect2.h b/core/math/rect2.h index 2557959fa2..26e202589d 100644 --- a/core/math/rect2.h +++ b/core/math/rect2.h @@ -118,8 +118,8 @@ struct Rect2 { inline bool encloses(const Rect2 &p_rect) const { return (p_rect.position.x >= position.x) && (p_rect.position.y >= position.y) && - ((p_rect.position.x + p_rect.size.x) <= (position.x + size.x)) && - ((p_rect.position.y + p_rect.size.y) <= (position.y + size.y)); + ((p_rect.position.x + p_rect.size.x) <= (position.x + size.x)) && + ((p_rect.position.y + p_rect.size.y) <= (position.y + size.y)); } _FORCE_INLINE_ bool has_no_area() const { @@ -257,7 +257,7 @@ struct Rect2 { return Vector2( (p_normal.x > 0) ? -half_extents.x : half_extents.x, (p_normal.y > 0) ? -half_extents.y : half_extents.y) + - ofs; + ofs; } _FORCE_INLINE_ bool intersects_filled_polygon(const Vector2 *p_points, int p_point_count) const { @@ -367,8 +367,8 @@ struct Rect2i { inline bool encloses(const Rect2i &p_rect) const { return (p_rect.position.x >= position.x) && (p_rect.position.y >= position.y) && - ((p_rect.position.x + p_rect.size.x) < (position.x + size.x)) && - ((p_rect.position.y + p_rect.size.y) < (position.y + size.y)); + ((p_rect.position.x + p_rect.size.x) < (position.x + size.x)) && + ((p_rect.position.y + p_rect.size.y) < (position.y + size.y)); } _FORCE_INLINE_ bool has_no_area() const { diff --git a/core/math/transform_2d.cpp b/core/math/transform_2d.cpp index 496a557844..df43c605f9 100644 --- a/core/math/transform_2d.cpp +++ b/core/math/transform_2d.cpp @@ -298,6 +298,6 @@ Transform2D Transform2D::operator*(const real_t p_val) const { Transform2D::operator String() const { return "[X: " + elements[0].operator String() + - ", Y: " + elements[1].operator String() + - ", O: " + elements[2].operator String() + "]"; + ", Y: " + elements[1].operator String() + + ", O: " + elements[2].operator String() + "]"; } diff --git a/core/math/transform_2d.h b/core/math/transform_2d.h index 6ed3af2ba7..8a0e876d96 100644 --- a/core/math/transform_2d.h +++ b/core/math/transform_2d.h @@ -164,7 +164,7 @@ Vector2 Transform2D::xform(const Vector2 &p_vec) const { return Vector2( tdotx(p_vec), tdoty(p_vec)) + - elements[2]; + elements[2]; } Vector2 Transform2D::xform_inv(const Vector2 &p_vec) const { diff --git a/core/math/transform_3d.cpp b/core/math/transform_3d.cpp index 4f4943c8ef..78ef117443 100644 --- a/core/math/transform_3d.cpp +++ b/core/math/transform_3d.cpp @@ -175,9 +175,9 @@ Transform3D Transform3D::operator*(const real_t p_val) const { Transform3D::operator String() const { return "[X: " + basis.get_axis(0).operator String() + - ", Y: " + basis.get_axis(1).operator String() + - ", Z: " + basis.get_axis(2).operator String() + - ", O: " + origin.operator String() + "]"; + ", Y: " + basis.get_axis(1).operator String() + + ", Z: " + basis.get_axis(2).operator String() + + ", O: " + origin.operator String() + "]"; } Transform3D::Transform3D(const Basis &p_basis, const Vector3 &p_origin) : diff --git a/core/math/triangulate.cpp b/core/math/triangulate.cpp index fa1588dbc5..28f1d96b14 100644 --- a/core/math/triangulate.cpp +++ b/core/math/triangulate.cpp @@ -42,18 +42,13 @@ real_t Triangulate::get_area(const Vector<Vector2> &contour) { return A * 0.5; } -/* - is_inside_triangle decides if a point P is Inside of the triangle - defined by A, B, C. - */ - +/* `is_inside_triangle` decides if a point P is inside the triangle + * defined by A, B, C. */ bool Triangulate::is_inside_triangle(real_t Ax, real_t Ay, real_t Bx, real_t By, real_t Cx, real_t Cy, real_t Px, real_t Py, - bool include_edges) - -{ + bool include_edges) { real_t ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy; real_t cCROSSap, bCROSScp, aCROSSbp; diff --git a/core/math/vector2.cpp b/core/math/vector2.cpp index 16e43d7d06..6259bdead0 100644 --- a/core/math/vector2.cpp +++ b/core/math/vector2.cpp @@ -160,10 +160,11 @@ Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, c real_t t3 = t2 * t; Vector2 out; - out = 0.5 * ((p1 * 2.0) + - (-p0 + p2) * t + - (2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 + - (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3); + out = 0.5 * + ((p1 * 2.0) + + (-p0 + p2) * t + + (2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 + + (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3); return out; } diff --git a/core/math/vector3.cpp b/core/math/vector3.cpp index fa212c178a..42e3da0b27 100644 --- a/core/math/vector3.cpp +++ b/core/math/vector3.cpp @@ -93,10 +93,11 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, c real_t t3 = t2 * t; Vector3 out; - out = 0.5 * ((p1 * 2.0) + - (-p0 + p2) * t + - (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3) * t2 + - (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3); + out = 0.5 * + ((p1 * 2.0) + + (-p0 + p2) * t + + (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3) * t2 + + (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3); return out; } diff --git a/core/math/vector3.h b/core/math/vector3.h index e65ac31c02..dc9aa60458 100644 --- a/core/math/vector3.h +++ b/core/math/vector3.h @@ -32,9 +32,9 @@ #define VECTOR3_H #include "core/math/math_funcs.h" +#include "core/math/vector2.h" #include "core/math/vector3i.h" #include "core/string/ustring.h" - class Basis; struct Vector3 { @@ -103,6 +103,31 @@ struct Vector3 { Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const; Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const; + _FORCE_INLINE_ Vector2 octahedron_encode() const { + Vector3 n = *this; + n /= Math::abs(n.x) + Math::abs(n.y) + Math::abs(n.z); + Vector2 o; + if (n.z >= 0.0) { + o.x = n.x; + o.y = n.y; + } else { + o.x = (1.0 - Math::abs(n.y)) * (n.x >= 0.0 ? 1.0 : -1.0); + o.y = (1.0 - Math::abs(n.x)) * (n.y >= 0.0 ? 1.0 : -1.0); + } + o.x = o.x * 0.5 + 0.5; + o.y = o.y * 0.5 + 0.5; + return o; + } + + static _FORCE_INLINE_ Vector3 octahedron_decode(const Vector2 &p_oct) { + Vector2 f(p_oct.x * 2.0 - 1.0, p_oct.y * 2.0 - 1.0); + Vector3 n(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y)); + float t = CLAMP(-n.z, 0.0, 1.0); + n.x += n.x >= 0 ? -t : t; + n.y += n.y >= 0 ? -t : t; + return n.normalized(); + } + _FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const; _FORCE_INLINE_ real_t dot(const Vector3 &p_b) const; Basis outer(const Vector3 &p_b) const; |