summaryrefslogtreecommitdiff
path: root/core/math
diff options
context:
space:
mode:
Diffstat (limited to 'core/math')
-rw-r--r--core/math/basis.cpp38
-rw-r--r--core/math/basis.h20
-rw-r--r--core/math/math_fieldwise.cpp4
-rw-r--r--core/math/quaternion.cpp (renamed from core/math/quat.cpp)68
-rw-r--r--core/math/quaternion.h (renamed from core/math/quat.h)106
-rw-r--r--core/math/quick_hull.cpp2
-rw-r--r--core/math/transform_2d.cpp7
-rw-r--r--core/math/transform_2d.h2
-rw-r--r--core/math/transform_3d.cpp6
9 files changed, 131 insertions, 122 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index 037378b9d7..7489da34d9 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -345,12 +345,12 @@ void Basis::rotate(const Vector3 &p_euler) {
*this = rotated(p_euler);
}
-Basis Basis::rotated(const Quat &p_quat) const {
- return Basis(p_quat) * (*this);
+Basis Basis::rotated(const Quaternion &p_quaternion) const {
+ return Basis(p_quaternion) * (*this);
}
-void Basis::rotate(const Quat &p_quat) {
- *this = rotated(p_quat);
+void Basis::rotate(const Quaternion &p_quaternion) {
+ *this = rotated(p_quaternion);
}
Vector3 Basis::get_rotation_euler() const {
@@ -367,7 +367,7 @@ Vector3 Basis::get_rotation_euler() const {
return m.get_euler();
}
-Quat Basis::get_rotation_quat() const {
+Quaternion Basis::get_rotation_quaternion() const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
@@ -378,7 +378,7 @@ Quat Basis::get_rotation_quat() const {
m.scale(Vector3(-1, -1, -1));
}
- return m.get_quat();
+ return m.get_quaternion();
}
void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
@@ -770,9 +770,9 @@ Basis::operator String() const {
return mtx;
}
-Quat Basis::get_quat() const {
+Quaternion Basis::get_quaternion() const {
#ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_rotation(), Quat(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quat() or call orthonormalized() instead.");
+ ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() instead.");
#endif
/* Allow getting a quaternion from an unnormalized transform */
Basis m = *this;
@@ -803,7 +803,7 @@ Quat Basis::get_quat() const {
temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
}
- return Quat(temp[0], temp[1], temp[2], temp[3]);
+ return Quaternion(temp[0], temp[1], temp[2], temp[3]);
}
static const Basis _ortho_bases[24] = {
@@ -945,13 +945,13 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
r_angle = angle;
}
-void Basis::set_quat(const Quat &p_quat) {
- real_t d = p_quat.length_squared();
+void Basis::set_quaternion(const Quaternion &p_quaternion) {
+ real_t d = p_quaternion.length_squared();
real_t s = 2.0 / d;
- real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
- real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
- real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
- real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
+ real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s;
+ real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs;
+ real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs;
+ real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs;
set(1.0 - (yy + zz), xy - wz, xz + wy,
xy + wz, 1.0 - (xx + zz), yz - wx,
xz - wy, yz + wx, 1.0 - (xx + yy));
@@ -997,9 +997,9 @@ void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) {
rotate(p_euler);
}
-void Basis::set_quat_scale(const Quat &p_quat, const Vector3 &p_scale) {
+void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) {
set_diagonal(p_scale);
- rotate(p_quat);
+ rotate(p_quaternion);
}
void Basis::set_diagonal(const Vector3 &p_diag) {
@@ -1018,8 +1018,8 @@ void Basis::set_diagonal(const Vector3 &p_diag) {
Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
//consider scale
- Quat from(*this);
- Quat to(p_to);
+ Quaternion from(*this);
+ Quaternion to(p_to);
Basis b(from.slerp(to, p_weight));
b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight);
diff --git a/core/math/basis.h b/core/math/basis.h
index 56f6227313..3736047dd3 100644
--- a/core/math/basis.h
+++ b/core/math/basis.h
@@ -31,7 +31,7 @@
#ifndef BASIS_H
#define BASIS_H
-#include "core/math/quat.h"
+#include "core/math/quaternion.h"
#include "core/math/vector3.h"
class Basis {
@@ -79,13 +79,13 @@ public:
void rotate(const Vector3 &p_euler);
Basis rotated(const Vector3 &p_euler) const;
- void rotate(const Quat &p_quat);
- Basis rotated(const Quat &p_quat) const;
+ void rotate(const Quaternion &p_quaternion);
+ Basis rotated(const Quaternion &p_quaternion) const;
Vector3 get_rotation_euler() const;
void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
- Quat get_rotation_quat() const;
+ Quaternion get_rotation_quaternion() const;
Vector3 get_rotation() const { return get_rotation_euler(); };
Vector3 rotref_posscale_decomposition(Basis &rotref) const;
@@ -108,8 +108,8 @@ public:
Vector3 get_euler_zyx() const;
void set_euler_zyx(const Vector3 &p_euler);
- Quat get_quat() const;
- void set_quat(const Quat &p_quat);
+ Quaternion get_quaternion() const;
+ void set_quaternion(const Quaternion &p_quaternion);
Vector3 get_euler() const { return get_euler_yxz(); }
void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
@@ -132,7 +132,7 @@ public:
void set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale);
void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale);
- void set_quat_scale(const Quat &p_quat, const Vector3 &p_scale);
+ void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale);
// transposed dot products
_FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
@@ -240,10 +240,10 @@ public:
#endif
Basis diagonalize();
- operator Quat() const { return get_quat(); }
+ operator Quaternion() const { return get_quaternion(); }
- Basis(const Quat &p_quat) { set_quat(p_quat); };
- Basis(const Quat &p_quat, const Vector3 &p_scale) { set_quat_scale(p_quat, p_scale); }
+ Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
+ Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
Basis(const Vector3 &p_euler) { set_euler(p_euler); }
Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); }
diff --git a/core/math/math_fieldwise.cpp b/core/math/math_fieldwise.cpp
index f2baef1a59..570c57e254 100644
--- a/core/math/math_fieldwise.cpp
+++ b/core/math/math_fieldwise.cpp
@@ -88,8 +88,8 @@ Variant fieldwise_assign(const Variant &p_target, const Variant &p_source, const
return target;
}
- case Variant::QUAT: {
- SETUP_TYPE(Quat)
+ case Variant::QUATERNION: {
+ SETUP_TYPE(Quaternion)
/**/ TRY_TRANSFER_FIELD("x", x)
else TRY_TRANSFER_FIELD("y", y)
diff --git a/core/math/quat.cpp b/core/math/quaternion.cpp
index 3982a0b993..8de3d0cc2a 100644
--- a/core/math/quat.cpp
+++ b/core/math/quaternion.cpp
@@ -1,5 +1,5 @@
/*************************************************************************/
-/* quat.cpp */
+/* quaternion.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
@@ -28,7 +28,7 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
-#include "quat.h"
+#include "quaternion.h"
#include "core/math/basis.h"
#include "core/string/print_string.h"
@@ -37,7 +37,7 @@
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses XYZ convention (Z is the first rotation).
-Vector3 Quat::get_euler_xyz() const {
+Vector3 Quaternion::get_euler_xyz() const {
Basis m(*this);
return m.get_euler_xyz();
}
@@ -46,7 +46,7 @@ Vector3 Quat::get_euler_xyz() const {
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses YXZ convention (Z is the first rotation).
-Vector3 Quat::get_euler_yxz() const {
+Vector3 Quaternion::get_euler_yxz() const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
#endif
@@ -54,7 +54,7 @@ Vector3 Quat::get_euler_yxz() const {
return m.get_euler_yxz();
}
-void Quat::operator*=(const Quat &p_q) {
+void Quaternion::operator*=(const Quaternion &p_q) {
real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;
real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;
real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;
@@ -64,45 +64,45 @@ void Quat::operator*=(const Quat &p_q) {
z = zz;
}
-Quat Quat::operator*(const Quat &p_q) const {
- Quat r = *this;
+Quaternion Quaternion::operator*(const Quaternion &p_q) const {
+ Quaternion r = *this;
r *= p_q;
return r;
}
-bool Quat::is_equal_approx(const Quat &p_quat) const {
- return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w);
+bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const {
+ return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w);
}
-real_t Quat::length() const {
+real_t Quaternion::length() const {
return Math::sqrt(length_squared());
}
-void Quat::normalize() {
+void Quaternion::normalize() {
*this /= length();
}
-Quat Quat::normalized() const {
+Quaternion Quaternion::normalized() const {
return *this / length();
}
-bool Quat::is_normalized() const {
+bool Quaternion::is_normalized() const {
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon
}
-Quat Quat::inverse() const {
+Quaternion Quaternion::inverse() const {
#ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The quaternion must be normalized.");
+ ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized.");
#endif
- return Quat(-x, -y, -z, w);
+ return Quaternion(-x, -y, -z, w);
}
-Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const {
+Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
#ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
- ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
+ ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
+ ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
#endif
- Quat to1;
+ Quaternion to1;
real_t omega, cosom, sinom, scale0, scale1;
// calc cosine
@@ -137,19 +137,19 @@ Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const {
scale1 = p_weight;
}
// calculate final values
- return Quat(
+ return Quaternion(
scale0 * x + scale1 * to1.x,
scale0 * y + scale1 * to1.y,
scale0 * z + scale1 * to1.z,
scale0 * w + scale1 * to1.w);
}
-Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const {
+Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const {
#ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
- ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
+ ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
+ ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
#endif
- const Quat &from = *this;
+ const Quaternion &from = *this;
real_t dot = from.dot(p_to);
@@ -162,29 +162,29 @@ Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const {
newFactor = Math::sin(p_weight * theta) * sinT,
invFactor = Math::sin((1.0 - p_weight) * theta) * sinT;
- return Quat(invFactor * from.x + newFactor * p_to.x,
+ return Quaternion(invFactor * from.x + newFactor * p_to.x,
invFactor * from.y + newFactor * p_to.y,
invFactor * from.z + newFactor * p_to.z,
invFactor * from.w + newFactor * p_to.w);
}
-Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const {
+Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
#ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
- ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized.");
+ ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
+ ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
#endif
//the only way to do slerp :|
real_t t2 = (1.0 - p_weight) * p_weight * 2;
- Quat sp = this->slerp(p_b, p_weight);
- Quat sq = p_pre_a.slerpni(p_post_b, p_weight);
+ Quaternion sp = this->slerp(p_b, p_weight);
+ Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight);
return sp.slerpni(sq, t2);
}
-Quat::operator String() const {
+Quaternion::operator String() const {
return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w);
}
-Quat::Quat(const Vector3 &p_axis, real_t p_angle) {
+Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
#ifdef MATH_CHECKS
ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
#endif
@@ -209,7 +209,7 @@ Quat::Quat(const Vector3 &p_axis, real_t p_angle) {
// (ax, ay, az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses YXZ convention (Z is the first rotation).
-Quat::Quat(const Vector3 &p_euler) {
+Quaternion::Quaternion(const Vector3 &p_euler) {
real_t half_a1 = p_euler.y * 0.5;
real_t half_a2 = p_euler.x * 0.5;
real_t half_a3 = p_euler.z * 0.5;
diff --git a/core/math/quat.h b/core/math/quaternion.h
index d9b130c050..796214b79e 100644
--- a/core/math/quat.h
+++ b/core/math/quaternion.h
@@ -1,5 +1,5 @@
/*************************************************************************/
-/* quat.h */
+/* quaternion.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
@@ -36,7 +36,7 @@
#include "core/math/vector3.h"
#include "core/string/ustring.h"
-class Quat {
+class Quaternion {
public:
union {
struct {
@@ -55,21 +55,21 @@ public:
return components[idx];
}
_FORCE_INLINE_ real_t length_squared() const;
- bool is_equal_approx(const Quat &p_quat) const;
+ bool is_equal_approx(const Quaternion &p_quaternion) const;
real_t length() const;
void normalize();
- Quat normalized() const;
+ Quaternion normalized() const;
bool is_normalized() const;
- Quat inverse() const;
- _FORCE_INLINE_ real_t dot(const Quat &p_q) const;
+ Quaternion inverse() const;
+ _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const;
Vector3 get_euler_xyz() const;
Vector3 get_euler_yxz() const;
Vector3 get_euler() const { return get_euler_yxz(); };
- Quat slerp(const Quat &p_to, const real_t &p_weight) const;
- Quat slerpni(const Quat &p_to, const real_t &p_weight) const;
- Quat cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const;
+ Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const;
+ Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const;
+ Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
_FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
r_angle = 2 * Math::acos(w);
@@ -79,11 +79,11 @@ public:
r_axis.z = z * r;
}
- void operator*=(const Quat &p_q);
- Quat operator*(const Quat &p_q) const;
+ void operator*=(const Quaternion &p_q);
+ Quaternion operator*(const Quaternion &p_q) const;
- Quat operator*(const Vector3 &v) const {
- return Quat(w * v.x + y * v.z - z * v.y,
+ Quaternion operator*(const Vector3 &v) const {
+ return Quaternion(w * v.x + y * v.z - z * v.y,
w * v.y + z * v.x - x * v.z,
w * v.z + x * v.y - y * v.x,
-x * v.x - y * v.y - z * v.z);
@@ -102,42 +102,42 @@ public:
return inverse().xform(v);
}
- _FORCE_INLINE_ void operator+=(const Quat &p_q);
- _FORCE_INLINE_ void operator-=(const Quat &p_q);
+ _FORCE_INLINE_ void operator+=(const Quaternion &p_q);
+ _FORCE_INLINE_ void operator-=(const Quaternion &p_q);
_FORCE_INLINE_ void operator*=(const real_t &s);
_FORCE_INLINE_ void operator/=(const real_t &s);
- _FORCE_INLINE_ Quat operator+(const Quat &q2) const;
- _FORCE_INLINE_ Quat operator-(const Quat &q2) const;
- _FORCE_INLINE_ Quat operator-() const;
- _FORCE_INLINE_ Quat operator*(const real_t &s) const;
- _FORCE_INLINE_ Quat operator/(const real_t &s) const;
+ _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const;
+ _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const;
+ _FORCE_INLINE_ Quaternion operator-() const;
+ _FORCE_INLINE_ Quaternion operator*(const real_t &s) const;
+ _FORCE_INLINE_ Quaternion operator/(const real_t &s) const;
- _FORCE_INLINE_ bool operator==(const Quat &p_quat) const;
- _FORCE_INLINE_ bool operator!=(const Quat &p_quat) const;
+ _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const;
+ _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const;
operator String() const;
- _FORCE_INLINE_ Quat() {}
+ _FORCE_INLINE_ Quaternion() {}
- _FORCE_INLINE_ Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
+ _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
x(p_x),
y(p_y),
z(p_z),
w(p_w) {
}
- Quat(const Vector3 &p_axis, real_t p_angle);
+ Quaternion(const Vector3 &p_axis, real_t p_angle);
- Quat(const Vector3 &p_euler);
+ Quaternion(const Vector3 &p_euler);
- Quat(const Quat &p_q) :
+ Quaternion(const Quaternion &p_q) :
x(p_q.x),
y(p_q.y),
z(p_q.z),
w(p_q.w) {
}
- Quat &operator=(const Quat &p_q) {
+ Quaternion &operator=(const Quaternion &p_q) {
x = p_q.x;
y = p_q.y;
z = p_q.z;
@@ -145,7 +145,7 @@ public:
return *this;
}
- Quat(const Vector3 &v0, const Vector3 &v1) // shortest arc
+ Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc
{
Vector3 c = v0.cross(v1);
real_t d = v0.dot(v1);
@@ -167,72 +167,72 @@ public:
}
};
-real_t Quat::dot(const Quat &p_q) const {
+real_t Quaternion::dot(const Quaternion &p_q) const {
return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w;
}
-real_t Quat::length_squared() const {
+real_t Quaternion::length_squared() const {
return dot(*this);
}
-void Quat::operator+=(const Quat &p_q) {
+void Quaternion::operator+=(const Quaternion &p_q) {
x += p_q.x;
y += p_q.y;
z += p_q.z;
w += p_q.w;
}
-void Quat::operator-=(const Quat &p_q) {
+void Quaternion::operator-=(const Quaternion &p_q) {
x -= p_q.x;
y -= p_q.y;
z -= p_q.z;
w -= p_q.w;
}
-void Quat::operator*=(const real_t &s) {
+void Quaternion::operator*=(const real_t &s) {
x *= s;
y *= s;
z *= s;
w *= s;
}
-void Quat::operator/=(const real_t &s) {
+void Quaternion::operator/=(const real_t &s) {
*this *= 1.0 / s;
}
-Quat Quat::operator+(const Quat &q2) const {
- const Quat &q1 = *this;
- return Quat(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
+Quaternion Quaternion::operator+(const Quaternion &q2) const {
+ const Quaternion &q1 = *this;
+ return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
}
-Quat Quat::operator-(const Quat &q2) const {
- const Quat &q1 = *this;
- return Quat(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
+Quaternion Quaternion::operator-(const Quaternion &q2) const {
+ const Quaternion &q1 = *this;
+ return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
}
-Quat Quat::operator-() const {
- const Quat &q2 = *this;
- return Quat(-q2.x, -q2.y, -q2.z, -q2.w);
+Quaternion Quaternion::operator-() const {
+ const Quaternion &q2 = *this;
+ return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w);
}
-Quat Quat::operator*(const real_t &s) const {
- return Quat(x * s, y * s, z * s, w * s);
+Quaternion Quaternion::operator*(const real_t &s) const {
+ return Quaternion(x * s, y * s, z * s, w * s);
}
-Quat Quat::operator/(const real_t &s) const {
+Quaternion Quaternion::operator/(const real_t &s) const {
return *this * (1.0 / s);
}
-bool Quat::operator==(const Quat &p_quat) const {
- return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w;
+bool Quaternion::operator==(const Quaternion &p_quaternion) const {
+ return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w;
}
-bool Quat::operator!=(const Quat &p_quat) const {
- return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w;
+bool Quaternion::operator!=(const Quaternion &p_quaternion) const {
+ return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w;
}
-_FORCE_INLINE_ Quat operator*(const real_t &p_real, const Quat &p_quat) {
- return p_quat * p_real;
+_FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) {
+ return p_quaternion * p_real;
}
#endif // QUAT_H
diff --git a/core/math/quick_hull.cpp b/core/math/quick_hull.cpp
index fe18cc3d41..0d77bfe933 100644
--- a/core/math/quick_hull.cpp
+++ b/core/math/quick_hull.cpp
@@ -112,7 +112,7 @@ Error QuickHull::build(const Vector<Vector3> &p_points, Geometry3D::MeshData &r_
}
}
- //fourth vertex is the one most further away from the plane
+ //fourth vertex is the one most further away from the plane
{
real_t maxd = 0;
diff --git a/core/math/transform_2d.cpp b/core/math/transform_2d.cpp
index 4a521b96ae..9189234d04 100644
--- a/core/math/transform_2d.cpp
+++ b/core/math/transform_2d.cpp
@@ -158,6 +158,13 @@ bool Transform2D::is_equal_approx(const Transform2D &p_transform) const {
return elements[0].is_equal_approx(p_transform.elements[0]) && elements[1].is_equal_approx(p_transform.elements[1]) && elements[2].is_equal_approx(p_transform.elements[2]);
}
+Transform2D Transform2D::looking_at(const Vector2 &p_target) const {
+ Transform2D return_trans = Transform2D(get_rotation(), get_origin());
+ Vector2 target_position = affine_inverse().xform(p_target);
+ return_trans.set_rotation(return_trans.get_rotation() + (target_position * get_scale()).angle());
+ return return_trans;
+}
+
bool Transform2D::operator==(const Transform2D &p_transform) const {
for (int i = 0; i < 3; i++) {
if (elements[i] != p_transform.elements[i]) {
diff --git a/core/math/transform_2d.h b/core/math/transform_2d.h
index 327d0f244f..715f013701 100644
--- a/core/math/transform_2d.h
+++ b/core/math/transform_2d.h
@@ -100,6 +100,8 @@ struct Transform2D {
Transform2D orthonormalized() const;
bool is_equal_approx(const Transform2D &p_transform) const;
+ Transform2D looking_at(const Vector2 &p_target) const;
+
bool operator==(const Transform2D &p_transform) const;
bool operator!=(const Transform2D &p_transform) const;
diff --git a/core/math/transform_3d.cpp b/core/math/transform_3d.cpp
index 2611d6accf..210f0b81bb 100644
--- a/core/math/transform_3d.cpp
+++ b/core/math/transform_3d.cpp
@@ -112,15 +112,15 @@ Transform3D Transform3D::interpolate_with(const Transform3D &p_transform, real_t
/* not sure if very "efficient" but good enough? */
Vector3 src_scale = basis.get_scale();
- Quat src_rot = basis.get_rotation_quat();
+ Quaternion src_rot = basis.get_rotation_quaternion();
Vector3 src_loc = origin;
Vector3 dst_scale = p_transform.basis.get_scale();
- Quat dst_rot = p_transform.basis.get_rotation_quat();
+ Quaternion dst_rot = p_transform.basis.get_rotation_quaternion();
Vector3 dst_loc = p_transform.origin;
Transform3D interp;
- interp.basis.set_quat_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.lerp(dst_scale, p_c));
+ interp.basis.set_quaternion_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.lerp(dst_scale, p_c));
interp.origin = src_loc.lerp(dst_loc, p_c);
return interp;