summaryrefslogtreecommitdiff
path: root/core/math
diff options
context:
space:
mode:
Diffstat (limited to 'core/math')
-rw-r--r--core/math/basis.cpp18
-rw-r--r--core/math/basis.h2
-rw-r--r--core/math/math_defs.h20
-rw-r--r--core/math/transform_3d.cpp32
-rw-r--r--core/math/transform_3d.h81
5 files changed, 98 insertions, 55 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp
index aa3831d4cf..b5e25fb837 100644
--- a/core/math/basis.cpp
+++ b/core/math/basis.cpp
@@ -1129,3 +1129,21 @@ void Basis::rotate_sh(real_t *p_values) {
p_values[7] = -d3;
p_values[8] = d4 * s_scale_dst4;
}
+
+Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V_MSG(p_target.is_equal_approx(Vector3()), Basis(), "The target vector can't be zero.");
+ ERR_FAIL_COND_V_MSG(p_up.is_equal_approx(Vector3()), Basis(), "The up vector can't be zero.");
+#endif
+ Vector3 v_z = -p_target.normalized();
+ Vector3 v_x = p_up.cross(v_z);
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V_MSG(v_x.is_equal_approx(Vector3()), Basis(), "The target vector and up vector can't be parallel to each other.");
+#endif
+ v_x.normalize();
+ Vector3 v_y = v_z.cross(v_x);
+
+ Basis basis;
+ basis.set(v_x, v_y, v_z);
+ return basis;
+}
diff --git a/core/math/basis.h b/core/math/basis.h
index 2889a4aa5e..3db2227b70 100644
--- a/core/math/basis.h
+++ b/core/math/basis.h
@@ -242,6 +242,8 @@ public:
operator Quaternion() const { return get_quaternion(); }
+ static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0));
+
Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
diff --git a/core/math/math_defs.h b/core/math/math_defs.h
index 7692e1be47..c3a8f910c0 100644
--- a/core/math/math_defs.h
+++ b/core/math/math_defs.h
@@ -81,6 +81,26 @@ enum VAlign {
VALIGN_BOTTOM
};
+enum InlineAlign {
+ // Image alignment points.
+ INLINE_ALIGN_TOP_TO = 0b0000,
+ INLINE_ALIGN_CENTER_TO = 0b0001,
+ INLINE_ALIGN_BOTTOM_TO = 0b0010,
+ INLINE_ALIGN_IMAGE_MASK = 0b0011,
+
+ // Text alignment points.
+ INLINE_ALIGN_TO_TOP = 0b0000,
+ INLINE_ALIGN_TO_CENTER = 0b0100,
+ INLINE_ALIGN_TO_BASELINE = 0b1000,
+ INLINE_ALIGN_TO_BOTTOM = 0b1100,
+ INLINE_ALIGN_TEXT_MASK = 0b1100,
+
+ // Presets.
+ INLINE_ALIGN_TOP = INLINE_ALIGN_TOP_TO | INLINE_ALIGN_TO_TOP,
+ INLINE_ALIGN_CENTER = INLINE_ALIGN_CENTER_TO | INLINE_ALIGN_TO_CENTER,
+ INLINE_ALIGN_BOTTOM = INLINE_ALIGN_BOTTOM_TO | INLINE_ALIGN_TO_BOTTOM
+};
+
enum Side {
SIDE_LEFT,
SIDE_TOP,
diff --git a/core/math/transform_3d.cpp b/core/math/transform_3d.cpp
index 51766b39f4..4f4943c8ef 100644
--- a/core/math/transform_3d.cpp
+++ b/core/math/transform_3d.cpp
@@ -71,40 +71,12 @@ void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_phi) {
Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
Transform3D t = *this;
- t.set_look_at(origin, p_target, p_up);
+ t.basis = Basis::looking_at(p_target - origin, p_up);
return t;
}
void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
-#ifdef MATH_CHECKS
- ERR_FAIL_COND(p_eye == p_target);
- ERR_FAIL_COND(p_up.length() == 0);
-#endif
- // Reference: MESA source code
- Vector3 v_x, v_y, v_z;
-
- /* Make rotation matrix */
-
- /* Z vector */
- v_z = p_eye - p_target;
-
- v_z.normalize();
-
- v_y = p_up;
-
- v_x = v_y.cross(v_z);
-#ifdef MATH_CHECKS
- ERR_FAIL_COND(v_x.length() == 0);
-#endif
-
- /* Recompute Y = Z cross X */
- v_y = v_z.cross(v_x);
-
- v_x.normalize();
- v_y.normalize();
-
- basis.set(v_x, v_y, v_z);
-
+ basis = Basis::looking_at(p_target - p_eye, p_up);
origin = p_eye;
}
diff --git a/core/math/transform_3d.h b/core/math/transform_3d.h
index 3d8e70cec7..cadfdc13d1 100644
--- a/core/math/transform_3d.h
+++ b/core/math/transform_3d.h
@@ -75,16 +75,24 @@ public:
bool operator!=(const Transform3D &p_transform) const;
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
+ _FORCE_INLINE_ AABB xform(const AABB &p_aabb) const;
+ _FORCE_INLINE_ Vector<Vector3> xform(const Vector<Vector3> &p_array) const;
+
+ // NOTE: These are UNSAFE with non-uniform scaling, and will produce incorrect results.
+ // They use the transpose.
+ // For safe inverse transforms, xform by the affine_inverse.
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
+ _FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const;
+ _FORCE_INLINE_ Vector<Vector3> xform_inv(const Vector<Vector3> &p_array) const;
+ // Safe with non-uniform scaling (uses affine_inverse).
_FORCE_INLINE_ Plane xform(const Plane &p_plane) const;
_FORCE_INLINE_ Plane xform_inv(const Plane &p_plane) const;
- _FORCE_INLINE_ AABB xform(const AABB &p_aabb) const;
- _FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const;
-
- _FORCE_INLINE_ Vector<Vector3> xform(const Vector<Vector3> &p_array) const;
- _FORCE_INLINE_ Vector<Vector3> xform_inv(const Vector<Vector3> &p_array) const;
+ // These fast versions use precomputed affine inverse, and should be used in bottleneck areas where
+ // multiple planes are to be transformed.
+ _FORCE_INLINE_ Plane xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const;
+ static _FORCE_INLINE_ Plane xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose);
void operator*=(const Transform3D &p_transform);
Transform3D operator*(const Transform3D &p_transform) const;
@@ -130,30 +138,20 @@ _FORCE_INLINE_ Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const {
(basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z));
}
+// Neither the plane regular xform or xform_inv are particularly efficient,
+// as they do a basis inverse. For xforming a large number
+// of planes it is better to pre-calculate the inverse transpose basis once
+// and reuse it for each plane, by using the 'fast' version of the functions.
_FORCE_INLINE_ Plane Transform3D::xform(const Plane &p_plane) const {
- Vector3 point = p_plane.normal * p_plane.d;
- Vector3 point_dir = point + p_plane.normal;
- point = xform(point);
- point_dir = xform(point_dir);
-
- Vector3 normal = point_dir - point;
- normal.normalize();
- real_t d = normal.dot(point);
-
- return Plane(normal, d);
+ Basis b = basis.inverse();
+ b.transpose();
+ return xform_fast(p_plane, b);
}
_FORCE_INLINE_ Plane Transform3D::xform_inv(const Plane &p_plane) const {
- Vector3 point = p_plane.normal * p_plane.d;
- Vector3 point_dir = point + p_plane.normal;
- point = xform_inv(point);
- point_dir = xform_inv(point_dir);
-
- Vector3 normal = point_dir - point;
- normal.normalize();
- real_t d = normal.dot(point);
-
- return Plane(normal, d);
+ Transform3D inv = affine_inverse();
+ Basis basis_transpose = basis.transposed();
+ return xform_inv_fast(p_plane, inv, basis_transpose);
}
_FORCE_INLINE_ AABB Transform3D::xform(const AABB &p_aabb) const {
@@ -231,4 +229,37 @@ Vector<Vector3> Transform3D::xform_inv(const Vector<Vector3> &p_array) const {
return array;
}
+_FORCE_INLINE_ Plane Transform3D::xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const {
+ // Transform a single point on the plane.
+ Vector3 point = p_plane.normal * p_plane.d;
+ point = xform(point);
+
+ // Use inverse transpose for correct normals with non-uniform scaling.
+ Vector3 normal = p_basis_inverse_transpose.xform(p_plane.normal);
+ normal.normalize();
+
+ real_t d = normal.dot(point);
+ return Plane(normal, d);
+}
+
+_FORCE_INLINE_ Plane Transform3D::xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose) {
+ // Transform a single point on the plane.
+ Vector3 point = p_plane.normal * p_plane.d;
+ point = p_inverse.xform(point);
+
+ // Note that instead of precalculating the transpose, an alternative
+ // would be to use the transpose for the basis transform.
+ // However that would be less SIMD friendly (requiring a swizzle).
+ // So the cost is one extra precalced value in the calling code.
+ // This is probably worth it, as this could be used in bottleneck areas. And
+ // where it is not a bottleneck, the non-fast method is fine.
+
+ // Use transpose for correct normals with non-uniform scaling.
+ Vector3 normal = p_basis_transpose.xform(p_plane.normal);
+ normal.normalize();
+
+ real_t d = normal.dot(point);
+ return Plane(normal, d);
+}
+
#endif // TRANSFORM_H