diff options
Diffstat (limited to 'core/math')
-rw-r--r-- | core/math/basis.cpp | 18 | ||||
-rw-r--r-- | core/math/basis.h | 2 | ||||
-rw-r--r-- | core/math/math_defs.h | 20 | ||||
-rw-r--r-- | core/math/transform_3d.cpp | 32 | ||||
-rw-r--r-- | core/math/transform_3d.h | 81 |
5 files changed, 98 insertions, 55 deletions
diff --git a/core/math/basis.cpp b/core/math/basis.cpp index aa3831d4cf..b5e25fb837 100644 --- a/core/math/basis.cpp +++ b/core/math/basis.cpp @@ -1129,3 +1129,21 @@ void Basis::rotate_sh(real_t *p_values) { p_values[7] = -d3; p_values[8] = d4 * s_scale_dst4; } + +Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(p_target.is_equal_approx(Vector3()), Basis(), "The target vector can't be zero."); + ERR_FAIL_COND_V_MSG(p_up.is_equal_approx(Vector3()), Basis(), "The up vector can't be zero."); +#endif + Vector3 v_z = -p_target.normalized(); + Vector3 v_x = p_up.cross(v_z); +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(v_x.is_equal_approx(Vector3()), Basis(), "The target vector and up vector can't be parallel to each other."); +#endif + v_x.normalize(); + Vector3 v_y = v_z.cross(v_x); + + Basis basis; + basis.set(v_x, v_y, v_z); + return basis; +} diff --git a/core/math/basis.h b/core/math/basis.h index 2889a4aa5e..3db2227b70 100644 --- a/core/math/basis.h +++ b/core/math/basis.h @@ -242,6 +242,8 @@ public: operator Quaternion() const { return get_quaternion(); } + static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0)); + Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); }; Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); } diff --git a/core/math/math_defs.h b/core/math/math_defs.h index 7692e1be47..c3a8f910c0 100644 --- a/core/math/math_defs.h +++ b/core/math/math_defs.h @@ -81,6 +81,26 @@ enum VAlign { VALIGN_BOTTOM }; +enum InlineAlign { + // Image alignment points. + INLINE_ALIGN_TOP_TO = 0b0000, + INLINE_ALIGN_CENTER_TO = 0b0001, + INLINE_ALIGN_BOTTOM_TO = 0b0010, + INLINE_ALIGN_IMAGE_MASK = 0b0011, + + // Text alignment points. + INLINE_ALIGN_TO_TOP = 0b0000, + INLINE_ALIGN_TO_CENTER = 0b0100, + INLINE_ALIGN_TO_BASELINE = 0b1000, + INLINE_ALIGN_TO_BOTTOM = 0b1100, + INLINE_ALIGN_TEXT_MASK = 0b1100, + + // Presets. + INLINE_ALIGN_TOP = INLINE_ALIGN_TOP_TO | INLINE_ALIGN_TO_TOP, + INLINE_ALIGN_CENTER = INLINE_ALIGN_CENTER_TO | INLINE_ALIGN_TO_CENTER, + INLINE_ALIGN_BOTTOM = INLINE_ALIGN_BOTTOM_TO | INLINE_ALIGN_TO_BOTTOM +}; + enum Side { SIDE_LEFT, SIDE_TOP, diff --git a/core/math/transform_3d.cpp b/core/math/transform_3d.cpp index 51766b39f4..4f4943c8ef 100644 --- a/core/math/transform_3d.cpp +++ b/core/math/transform_3d.cpp @@ -71,40 +71,12 @@ void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_phi) { Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up) const { Transform3D t = *this; - t.set_look_at(origin, p_target, p_up); + t.basis = Basis::looking_at(p_target - origin, p_up); return t; } void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) { -#ifdef MATH_CHECKS - ERR_FAIL_COND(p_eye == p_target); - ERR_FAIL_COND(p_up.length() == 0); -#endif - // Reference: MESA source code - Vector3 v_x, v_y, v_z; - - /* Make rotation matrix */ - - /* Z vector */ - v_z = p_eye - p_target; - - v_z.normalize(); - - v_y = p_up; - - v_x = v_y.cross(v_z); -#ifdef MATH_CHECKS - ERR_FAIL_COND(v_x.length() == 0); -#endif - - /* Recompute Y = Z cross X */ - v_y = v_z.cross(v_x); - - v_x.normalize(); - v_y.normalize(); - - basis.set(v_x, v_y, v_z); - + basis = Basis::looking_at(p_target - p_eye, p_up); origin = p_eye; } diff --git a/core/math/transform_3d.h b/core/math/transform_3d.h index 3d8e70cec7..cadfdc13d1 100644 --- a/core/math/transform_3d.h +++ b/core/math/transform_3d.h @@ -75,16 +75,24 @@ public: bool operator!=(const Transform3D &p_transform) const; _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const; + _FORCE_INLINE_ AABB xform(const AABB &p_aabb) const; + _FORCE_INLINE_ Vector<Vector3> xform(const Vector<Vector3> &p_array) const; + + // NOTE: These are UNSAFE with non-uniform scaling, and will produce incorrect results. + // They use the transpose. + // For safe inverse transforms, xform by the affine_inverse. _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const; + _FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const; + _FORCE_INLINE_ Vector<Vector3> xform_inv(const Vector<Vector3> &p_array) const; + // Safe with non-uniform scaling (uses affine_inverse). _FORCE_INLINE_ Plane xform(const Plane &p_plane) const; _FORCE_INLINE_ Plane xform_inv(const Plane &p_plane) const; - _FORCE_INLINE_ AABB xform(const AABB &p_aabb) const; - _FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const; - - _FORCE_INLINE_ Vector<Vector3> xform(const Vector<Vector3> &p_array) const; - _FORCE_INLINE_ Vector<Vector3> xform_inv(const Vector<Vector3> &p_array) const; + // These fast versions use precomputed affine inverse, and should be used in bottleneck areas where + // multiple planes are to be transformed. + _FORCE_INLINE_ Plane xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const; + static _FORCE_INLINE_ Plane xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose); void operator*=(const Transform3D &p_transform); Transform3D operator*(const Transform3D &p_transform) const; @@ -130,30 +138,20 @@ _FORCE_INLINE_ Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const { (basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z)); } +// Neither the plane regular xform or xform_inv are particularly efficient, +// as they do a basis inverse. For xforming a large number +// of planes it is better to pre-calculate the inverse transpose basis once +// and reuse it for each plane, by using the 'fast' version of the functions. _FORCE_INLINE_ Plane Transform3D::xform(const Plane &p_plane) const { - Vector3 point = p_plane.normal * p_plane.d; - Vector3 point_dir = point + p_plane.normal; - point = xform(point); - point_dir = xform(point_dir); - - Vector3 normal = point_dir - point; - normal.normalize(); - real_t d = normal.dot(point); - - return Plane(normal, d); + Basis b = basis.inverse(); + b.transpose(); + return xform_fast(p_plane, b); } _FORCE_INLINE_ Plane Transform3D::xform_inv(const Plane &p_plane) const { - Vector3 point = p_plane.normal * p_plane.d; - Vector3 point_dir = point + p_plane.normal; - point = xform_inv(point); - point_dir = xform_inv(point_dir); - - Vector3 normal = point_dir - point; - normal.normalize(); - real_t d = normal.dot(point); - - return Plane(normal, d); + Transform3D inv = affine_inverse(); + Basis basis_transpose = basis.transposed(); + return xform_inv_fast(p_plane, inv, basis_transpose); } _FORCE_INLINE_ AABB Transform3D::xform(const AABB &p_aabb) const { @@ -231,4 +229,37 @@ Vector<Vector3> Transform3D::xform_inv(const Vector<Vector3> &p_array) const { return array; } +_FORCE_INLINE_ Plane Transform3D::xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const { + // Transform a single point on the plane. + Vector3 point = p_plane.normal * p_plane.d; + point = xform(point); + + // Use inverse transpose for correct normals with non-uniform scaling. + Vector3 normal = p_basis_inverse_transpose.xform(p_plane.normal); + normal.normalize(); + + real_t d = normal.dot(point); + return Plane(normal, d); +} + +_FORCE_INLINE_ Plane Transform3D::xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose) { + // Transform a single point on the plane. + Vector3 point = p_plane.normal * p_plane.d; + point = p_inverse.xform(point); + + // Note that instead of precalculating the transpose, an alternative + // would be to use the transpose for the basis transform. + // However that would be less SIMD friendly (requiring a swizzle). + // So the cost is one extra precalced value in the calling code. + // This is probably worth it, as this could be used in bottleneck areas. And + // where it is not a bottleneck, the non-fast method is fine. + + // Use transpose for correct normals with non-uniform scaling. + Vector3 normal = p_basis_transpose.xform(p_plane.normal); + normal.normalize(); + + real_t d = normal.dot(point); + return Plane(normal, d); +} + #endif // TRANSFORM_H |