diff options
Diffstat (limited to 'core/math')
-rw-r--r-- | core/math/a_star.cpp | 24 | ||||
-rw-r--r-- | core/math/a_star.h | 2 | ||||
-rw-r--r-- | core/math/delaunay.cpp | 1 | ||||
-rw-r--r-- | core/math/delaunay.h | 145 | ||||
-rw-r--r-- | core/math/math_funcs.h | 18 | ||||
-rw-r--r-- | core/math/matrix3.cpp | 24 | ||||
-rw-r--r-- | core/math/matrix3.h | 4 | ||||
-rw-r--r-- | core/math/quat.cpp | 16 | ||||
-rw-r--r-- | core/math/quat.h | 4 | ||||
-rw-r--r-- | core/math/transform.cpp | 4 |
10 files changed, 211 insertions, 31 deletions
diff --git a/core/math/a_star.cpp b/core/math/a_star.cpp index 6908d7831d..021391da83 100644 --- a/core/math/a_star.cpp +++ b/core/math/a_star.cpp @@ -96,11 +96,11 @@ void AStar::remove_point(int p_id) { Point *p = points[p_id]; - for (int i = 0; i < p->neighbours.size(); i++) { + for (Set<Point *>::Element *E = p->neighbours.front(); E; E = E->next()) { - Segment s(p_id, p->neighbours[i]->id); + Segment s(p_id, E->get()->id); segments.erase(s); - p->neighbours[i]->neighbours.erase(p); + E->get()->neighbours.erase(p); } memdelete(p); @@ -115,10 +115,10 @@ void AStar::connect_points(int p_id, int p_with_id, bool bidirectional) { Point *a = points[p_id]; Point *b = points[p_with_id]; - a->neighbours.push_back(b); + a->neighbours.insert(b); if (bidirectional) - b->neighbours.push_back(a); + b->neighbours.insert(a); Segment s(p_id, p_with_id); if (s.from == p_id) { @@ -168,8 +168,8 @@ PoolVector<int> AStar::get_point_connections(int p_id) { Point *p = points[p_id]; - for (int i = 0; i < p->neighbours.size(); i++) { - point_list.push_back(p->neighbours[i]->id); + for (Set<Point *>::Element *E = p->neighbours.front(); E; E = E->next()) { + point_list.push_back(E->get()->id); } return point_list; @@ -242,9 +242,9 @@ bool AStar::_solve(Point *begin_point, Point *end_point) { bool found_route = false; - for (int i = 0; i < begin_point->neighbours.size(); i++) { + for (Set<Point *>::Element *E = begin_point->neighbours.front(); E; E = E->next()) { - Point *n = begin_point->neighbours[i]; + Point *n = E->get(); n->prev_point = begin_point; n->distance = _compute_cost(begin_point->id, n->id) * n->weight_scale; n->last_pass = pass; @@ -283,12 +283,10 @@ bool AStar::_solve(Point *begin_point, Point *end_point) { } Point *p = least_cost_point->self(); - // Open the neighbours for search - int es = p->neighbours.size(); - for (int i = 0; i < es; i++) { + for (Set<Point *>::Element *E = p->neighbours.front(); E; E = E->next()) { - Point *e = p->neighbours[i]; + Point *e = E->get(); real_t distance = _compute_cost(p->id, e->id) * e->weight_scale + p->distance; diff --git a/core/math/a_star.h b/core/math/a_star.h index f89e17c7bb..8c1b5f64cb 100644 --- a/core/math/a_star.h +++ b/core/math/a_star.h @@ -54,7 +54,7 @@ class AStar : public Reference { real_t weight_scale; uint64_t last_pass; - Vector<Point *> neighbours; + Set<Point *> neighbours; // Used for pathfinding Point *prev_point; diff --git a/core/math/delaunay.cpp b/core/math/delaunay.cpp new file mode 100644 index 0000000000..8cae92b7c0 --- /dev/null +++ b/core/math/delaunay.cpp @@ -0,0 +1 @@ +#include "delaunay.h" diff --git a/core/math/delaunay.h b/core/math/delaunay.h new file mode 100644 index 0000000000..09aebc773f --- /dev/null +++ b/core/math/delaunay.h @@ -0,0 +1,145 @@ +#ifndef DELAUNAY_H +#define DELAUNAY_H + +#include "math_2d.h" + +class Delaunay2D { +public: + struct Triangle { + + int points[3]; + bool bad; + Triangle() { bad = false; } + Triangle(int p_a, int p_b, int p_c) { + points[0] = p_a; + points[1] = p_b; + points[2] = p_c; + bad = false; + } + }; + + struct Edge { + int edge[2]; + bool bad; + Edge() { bad = false; } + Edge(int p_a, int p_b) { + bad = false; + edge[0] = p_a; + edge[1] = p_b; + } + }; + + static bool circum_circle_contains(const Vector<Vector2> &p_vertices, const Triangle &p_triangle, int p_vertex) { + + Vector2 p1 = p_vertices[p_triangle.points[0]]; + Vector2 p2 = p_vertices[p_triangle.points[1]]; + Vector2 p3 = p_vertices[p_triangle.points[2]]; + + real_t ab = p1.x * p1.x + p1.y * p1.y; + real_t cd = p2.x * p2.x + p2.y * p2.y; + real_t ef = p3.x * p3.x + p3.y * p3.y; + + Vector2 circum( + (ab * (p3.y - p2.y) + cd * (p1.y - p3.y) + ef * (p2.y - p1.y)) / (p1.x * (p3.y - p2.y) + p2.x * (p1.y - p3.y) + p3.x * (p2.y - p1.y)), + (ab * (p3.x - p2.x) + cd * (p1.x - p3.x) + ef * (p2.x - p1.x)) / (p1.y * (p3.x - p2.x) + p2.y * (p1.x - p3.x) + p3.y * (p2.x - p1.x))); + + circum *= 0.5; + float r = p1.distance_squared_to(circum); + float d = p_vertices[p_vertex].distance_squared_to(circum); + return d <= r; + } + + static bool edge_compare(const Vector<Vector2> &p_vertices, const Edge &p_a, const Edge &p_b) { + if (p_vertices[p_a.edge[0]].distance_to(p_vertices[p_b.edge[0]]) < CMP_EPSILON && p_vertices[p_a.edge[1]].distance_to(p_vertices[p_b.edge[1]]) < CMP_EPSILON) { + return true; + } + + if (p_vertices[p_a.edge[0]].distance_to(p_vertices[p_b.edge[1]]) < CMP_EPSILON && p_vertices[p_a.edge[1]].distance_to(p_vertices[p_b.edge[0]]) < CMP_EPSILON) { + return true; + } + + return false; + } + + static Vector<Triangle> triangulate(const Vector<Vector2> &p_points) { + + Vector<Vector2> points = p_points; + Vector<Triangle> triangles; + + Rect2 rect; + for (int i = 0; i < p_points.size(); i++) { + if (i == 0) { + rect.position = p_points[i]; + } else { + rect.expand_to(p_points[i]); + } + } + + float delta_max = MAX(rect.size.width, rect.size.height); + Vector2 center = rect.position + rect.size * 0.5; + + points.push_back(Vector2(center.x - 20 * delta_max, center.y - delta_max)); + points.push_back(Vector2(center.x, center.y + 20 * delta_max)); + points.push_back(Vector2(center.x + 20 * delta_max, center.y - delta_max)); + + triangles.push_back(Triangle(p_points.size() + 0, p_points.size() + 1, p_points.size() + 2)); + + for (int i = 0; i < p_points.size(); i++) { + //std::cout << "Traitement du point " << *p << std::endl; + //std::cout << "_triangles contains " << _triangles.size() << " elements" << std::endl; + + Vector<Edge> polygon; + + for (int j = 0; j < triangles.size(); j++) { + if (circum_circle_contains(points, triangles[j], i)) { + triangles[j].bad = true; + polygon.push_back(Edge(triangles[j].points[0], triangles[j].points[1])); + polygon.push_back(Edge(triangles[j].points[1], triangles[j].points[2])); + polygon.push_back(Edge(triangles[j].points[2], triangles[j].points[0])); + } + } + + for (int j = 0; j < triangles.size(); j++) { + if (triangles[j].bad) { + triangles.remove(j); + j--; + } + } + + for (int j = 0; j < polygon.size(); j++) { + for (int k = j + 1; k < polygon.size(); k++) { + if (edge_compare(points, polygon[j], polygon[k])) { + polygon[j].bad = true; + polygon[k].bad = true; + } + } + } + + for (int j = 0; j < polygon.size(); j++) { + + if (polygon[j].bad) { + continue; + } + triangles.push_back(Triangle(polygon[j].edge[0], polygon[j].edge[1], i)); + } + } + + for (int i = 0; i < triangles.size(); i++) { + bool invalid = false; + for (int j = 0; j < 3; j++) { + if (triangles[i].points[j] >= p_points.size()) { + invalid = true; + break; + } + } + if (invalid) { + triangles.remove(i); + i--; + } + } + + return triangles; + } +}; + +#endif // DELAUNAY_H diff --git a/core/math/math_funcs.h b/core/math/math_funcs.h index 20001bb9a6..f0c0268f31 100644 --- a/core/math/math_funcs.h +++ b/core/math/math_funcs.h @@ -182,8 +182,22 @@ public: static _ALWAYS_INLINE_ float abs(float g) { return absf(g); } static _ALWAYS_INLINE_ int abs(int g) { return g > 0 ? g : -g; } - static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) { return (p_x >= 0) ? Math::fmod(p_x, p_y) : p_y - Math::fmod(-p_x, p_y); } - static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) { return (p_x >= 0) ? Math::fmod(p_x, p_y) : p_y - Math::fmod(-p_x, p_y); } + static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) { + double value = Math::fmod(p_x, p_y); + if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) { + value += p_y; + } + value += 0.0; + return value; + } + static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) { + float value = Math::fmod(p_x, p_y); + if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) { + value += p_y; + } + value += 0.0; + return value; + } static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y * Math_PI / 180.0; } static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y * Math_PI / 180.0; } diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp index 202115e2ca..2371f49561 100644 --- a/core/math/matrix3.cpp +++ b/core/math/matrix3.cpp @@ -356,8 +356,7 @@ void Basis::rotate(const Quat &p_quat) { *this = rotated(p_quat); } -// TODO: rename this to get_rotation_euler -Vector3 Basis::get_rotation() const { +Vector3 Basis::get_rotation_euler() const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. @@ -371,6 +370,20 @@ Vector3 Basis::get_rotation() const { return m.get_euler(); } +Quat Basis::get_rotation_quat() const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = orthonormalized(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + return m.get_quat(); +} + void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). @@ -591,10 +604,9 @@ Basis::operator String() const { } Quat Basis::get_quat() const { - //commenting this check because precision issues cause it to fail when it shouldn't - //#ifdef MATH_CHECKS - //ERR_FAIL_COND_V(is_rotation() == false, Quat()); - //#endif +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(is_rotation() == false, Quat()); +#endif real_t trace = elements[0][0] + elements[1][1] + elements[2][2]; real_t temp[4]; diff --git a/core/math/matrix3.h b/core/math/matrix3.h index 63d4f5d79d..cd1b51baa6 100644 --- a/core/math/matrix3.h +++ b/core/math/matrix3.h @@ -84,9 +84,11 @@ public: void rotate(const Quat &p_quat); Basis rotated(const Quat &p_quat) const; - Vector3 get_rotation() const; + Vector3 get_rotation_euler() const; void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const; void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const; + Quat get_rotation_quat() const; + Vector3 get_rotation() const { return get_rotation_euler(); }; Vector3 rotref_posscale_decomposition(Basis &rotref) const; diff --git a/core/math/quat.cpp b/core/math/quat.cpp index b938fc3cfd..67c9048a41 100644 --- a/core/math/quat.cpp +++ b/core/math/quat.cpp @@ -139,15 +139,15 @@ bool Quat::is_normalized() const { Quat Quat::inverse() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(is_normalized() == false, Quat(0, 0, 0, 0)); + ERR_FAIL_COND_V(is_normalized() == false, Quat()); #endif return Quat(-x, -y, -z, w); } Quat Quat::slerp(const Quat &q, const real_t &t) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(is_normalized() == false, Quat(0, 0, 0, 0)); - ERR_FAIL_COND_V(q.is_normalized() == false, Quat(0, 0, 0, 0)); + ERR_FAIL_COND_V(is_normalized() == false, Quat()); + ERR_FAIL_COND_V(q.is_normalized() == false, Quat()); #endif Quat to1; real_t omega, cosom, sinom, scale0, scale1; @@ -192,7 +192,10 @@ Quat Quat::slerp(const Quat &q, const real_t &t) const { } Quat Quat::slerpni(const Quat &q, const real_t &t) const { - +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(is_normalized() == false, Quat()); + ERR_FAIL_COND_V(q.is_normalized() == false, Quat()); +#endif const Quat &from = *this; real_t dot = from.dot(q); @@ -211,7 +214,10 @@ Quat Quat::slerpni(const Quat &q, const real_t &t) const { } Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const { - +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(is_normalized() == false, Quat()); + ERR_FAIL_COND_V(q.is_normalized() == false, Quat()); +#endif //the only way to do slerp :| real_t t2 = (1.0 - t) * t * 2; Quat sp = this->slerp(q, t); diff --git a/core/math/quat.h b/core/math/quat.h index 3e1344a913..6dc8d66f60 100644 --- a/core/math/quat.h +++ b/core/math/quat.h @@ -84,7 +84,9 @@ public: } _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const { - +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(is_normalized() == false, v); +#endif Vector3 u(x, y, z); Vector3 uv = u.cross(v); return v + ((uv * w) + u.cross(uv)) * ((real_t)2); diff --git a/core/math/transform.cpp b/core/math/transform.cpp index 7cd186ca60..d1e190f4b9 100644 --- a/core/math/transform.cpp +++ b/core/math/transform.cpp @@ -120,11 +120,11 @@ Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) /* not sure if very "efficient" but good enough? */ Vector3 src_scale = basis.get_scale(); - Quat src_rot = basis.orthonormalized(); + Quat src_rot = basis.get_rotation_quat(); Vector3 src_loc = origin; Vector3 dst_scale = p_transform.basis.get_scale(); - Quat dst_rot = p_transform.basis; + Quat dst_rot = p_transform.basis.get_rotation_quat(); Vector3 dst_loc = p_transform.origin; Transform dst; //this could be made faster by using a single function in Basis.. |