diff options
Diffstat (limited to 'core/math/quaternion.h')
-rw-r--r-- | core/math/quaternion.h | 239 |
1 files changed, 239 insertions, 0 deletions
diff --git a/core/math/quaternion.h b/core/math/quaternion.h new file mode 100644 index 0000000000..35324323b3 --- /dev/null +++ b/core/math/quaternion.h @@ -0,0 +1,239 @@ +/*************************************************************************/ +/* quaternion.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef QUATERNION_H +#define QUATERNION_H + +#include "core/math/math_defs.h" +#include "core/math/math_funcs.h" +#include "core/math/vector3.h" +#include "core/string/ustring.h" + +class Quaternion { +public: + union { + struct { + real_t x; + real_t y; + real_t z; + real_t w; + }; + real_t components[4] = { 0, 0, 0, 1.0 }; + }; + + _FORCE_INLINE_ real_t &operator[](int idx) { + return components[idx]; + } + _FORCE_INLINE_ const real_t &operator[](int idx) const { + return components[idx]; + } + _FORCE_INLINE_ real_t length_squared() const; + bool is_equal_approx(const Quaternion &p_quaternion) const; + real_t length() const; + void normalize(); + Quaternion normalized() const; + bool is_normalized() const; + Quaternion inverse() const; + _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const; + real_t angle_to(const Quaternion &p_to) const; + + Vector3 get_euler_xyz() const; + Vector3 get_euler_yxz() const; + Vector3 get_euler() const { return get_euler_yxz(); }; + + Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const; + Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; + Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; + + _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { + r_angle = 2 * Math::acos(w); + real_t r = ((real_t)1) / Math::sqrt(1 - w * w); + r_axis.x = x * r; + r_axis.y = y * r; + r_axis.z = z * r; + } + + void operator*=(const Quaternion &p_q); + Quaternion operator*(const Quaternion &p_q) const; + + Quaternion operator*(const Vector3 &v) const { + return Quaternion(w * v.x + y * v.z - z * v.y, + w * v.y + z * v.x - x * v.z, + w * v.z + x * v.y - y * v.x, + -x * v.x - y * v.y - z * v.z); + } + + _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized."); +#endif + Vector3 u(x, y, z); + Vector3 uv = u.cross(v); + return v + ((uv * w) + u.cross(uv)) * ((real_t)2); + } + + _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const { + return inverse().xform(v); + } + + _FORCE_INLINE_ void operator+=(const Quaternion &p_q); + _FORCE_INLINE_ void operator-=(const Quaternion &p_q); + _FORCE_INLINE_ void operator*=(const real_t &s); + _FORCE_INLINE_ void operator/=(const real_t &s); + _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const; + _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const; + _FORCE_INLINE_ Quaternion operator-() const; + _FORCE_INLINE_ Quaternion operator*(const real_t &s) const; + _FORCE_INLINE_ Quaternion operator/(const real_t &s) const; + + _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const; + _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const; + + operator String() const; + + _FORCE_INLINE_ Quaternion() {} + + _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : + x(p_x), + y(p_y), + z(p_z), + w(p_w) { + } + + Quaternion(const Vector3 &p_axis, real_t p_angle); + + Quaternion(const Vector3 &p_euler); + + Quaternion(const Quaternion &p_q) : + x(p_q.x), + y(p_q.y), + z(p_q.z), + w(p_q.w) { + } + + Quaternion &operator=(const Quaternion &p_q) { + x = p_q.x; + y = p_q.y; + z = p_q.z; + w = p_q.w; + return *this; + } + + Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc + { + Vector3 c = v0.cross(v1); + real_t d = v0.dot(v1); + + if (d < -1.0 + CMP_EPSILON) { + x = 0; + y = 1; + z = 0; + w = 0; + } else { + real_t s = Math::sqrt((1.0 + d) * 2.0); + real_t rs = 1.0 / s; + + x = c.x * rs; + y = c.y * rs; + z = c.z * rs; + w = s * 0.5; + } + } +}; + +real_t Quaternion::dot(const Quaternion &p_q) const { + return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w; +} + +real_t Quaternion::length_squared() const { + return dot(*this); +} + +void Quaternion::operator+=(const Quaternion &p_q) { + x += p_q.x; + y += p_q.y; + z += p_q.z; + w += p_q.w; +} + +void Quaternion::operator-=(const Quaternion &p_q) { + x -= p_q.x; + y -= p_q.y; + z -= p_q.z; + w -= p_q.w; +} + +void Quaternion::operator*=(const real_t &s) { + x *= s; + y *= s; + z *= s; + w *= s; +} + +void Quaternion::operator/=(const real_t &s) { + *this *= 1.0 / s; +} + +Quaternion Quaternion::operator+(const Quaternion &q2) const { + const Quaternion &q1 = *this; + return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w); +} + +Quaternion Quaternion::operator-(const Quaternion &q2) const { + const Quaternion &q1 = *this; + return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w); +} + +Quaternion Quaternion::operator-() const { + const Quaternion &q2 = *this; + return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w); +} + +Quaternion Quaternion::operator*(const real_t &s) const { + return Quaternion(x * s, y * s, z * s, w * s); +} + +Quaternion Quaternion::operator/(const real_t &s) const { + return *this * (1.0 / s); +} + +bool Quaternion::operator==(const Quaternion &p_quaternion) const { + return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w; +} + +bool Quaternion::operator!=(const Quaternion &p_quaternion) const { + return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w; +} + +_FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) { + return p_quaternion * p_real; +} + +#endif // QUATERNION_H |