summaryrefslogtreecommitdiff
path: root/core/math/quaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/quaternion.h')
-rw-r--r--core/math/quaternion.h239
1 files changed, 239 insertions, 0 deletions
diff --git a/core/math/quaternion.h b/core/math/quaternion.h
new file mode 100644
index 0000000000..35324323b3
--- /dev/null
+++ b/core/math/quaternion.h
@@ -0,0 +1,239 @@
+/*************************************************************************/
+/* quaternion.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef QUATERNION_H
+#define QUATERNION_H
+
+#include "core/math/math_defs.h"
+#include "core/math/math_funcs.h"
+#include "core/math/vector3.h"
+#include "core/string/ustring.h"
+
+class Quaternion {
+public:
+ union {
+ struct {
+ real_t x;
+ real_t y;
+ real_t z;
+ real_t w;
+ };
+ real_t components[4] = { 0, 0, 0, 1.0 };
+ };
+
+ _FORCE_INLINE_ real_t &operator[](int idx) {
+ return components[idx];
+ }
+ _FORCE_INLINE_ const real_t &operator[](int idx) const {
+ return components[idx];
+ }
+ _FORCE_INLINE_ real_t length_squared() const;
+ bool is_equal_approx(const Quaternion &p_quaternion) const;
+ real_t length() const;
+ void normalize();
+ Quaternion normalized() const;
+ bool is_normalized() const;
+ Quaternion inverse() const;
+ _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const;
+ real_t angle_to(const Quaternion &p_to) const;
+
+ Vector3 get_euler_xyz() const;
+ Vector3 get_euler_yxz() const;
+ Vector3 get_euler() const { return get_euler_yxz(); };
+
+ Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const;
+ Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const;
+ Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
+
+ _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
+ r_angle = 2 * Math::acos(w);
+ real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
+ r_axis.x = x * r;
+ r_axis.y = y * r;
+ r_axis.z = z * r;
+ }
+
+ void operator*=(const Quaternion &p_q);
+ Quaternion operator*(const Quaternion &p_q) const;
+
+ Quaternion operator*(const Vector3 &v) const {
+ return Quaternion(w * v.x + y * v.z - z * v.y,
+ w * v.y + z * v.x - x * v.z,
+ w * v.z + x * v.y - y * v.x,
+ -x * v.x - y * v.y - z * v.z);
+ }
+
+ _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const {
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized.");
+#endif
+ Vector3 u(x, y, z);
+ Vector3 uv = u.cross(v);
+ return v + ((uv * w) + u.cross(uv)) * ((real_t)2);
+ }
+
+ _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const {
+ return inverse().xform(v);
+ }
+
+ _FORCE_INLINE_ void operator+=(const Quaternion &p_q);
+ _FORCE_INLINE_ void operator-=(const Quaternion &p_q);
+ _FORCE_INLINE_ void operator*=(const real_t &s);
+ _FORCE_INLINE_ void operator/=(const real_t &s);
+ _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const;
+ _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const;
+ _FORCE_INLINE_ Quaternion operator-() const;
+ _FORCE_INLINE_ Quaternion operator*(const real_t &s) const;
+ _FORCE_INLINE_ Quaternion operator/(const real_t &s) const;
+
+ _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const;
+ _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const;
+
+ operator String() const;
+
+ _FORCE_INLINE_ Quaternion() {}
+
+ _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
+ x(p_x),
+ y(p_y),
+ z(p_z),
+ w(p_w) {
+ }
+
+ Quaternion(const Vector3 &p_axis, real_t p_angle);
+
+ Quaternion(const Vector3 &p_euler);
+
+ Quaternion(const Quaternion &p_q) :
+ x(p_q.x),
+ y(p_q.y),
+ z(p_q.z),
+ w(p_q.w) {
+ }
+
+ Quaternion &operator=(const Quaternion &p_q) {
+ x = p_q.x;
+ y = p_q.y;
+ z = p_q.z;
+ w = p_q.w;
+ return *this;
+ }
+
+ Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc
+ {
+ Vector3 c = v0.cross(v1);
+ real_t d = v0.dot(v1);
+
+ if (d < -1.0 + CMP_EPSILON) {
+ x = 0;
+ y = 1;
+ z = 0;
+ w = 0;
+ } else {
+ real_t s = Math::sqrt((1.0 + d) * 2.0);
+ real_t rs = 1.0 / s;
+
+ x = c.x * rs;
+ y = c.y * rs;
+ z = c.z * rs;
+ w = s * 0.5;
+ }
+ }
+};
+
+real_t Quaternion::dot(const Quaternion &p_q) const {
+ return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w;
+}
+
+real_t Quaternion::length_squared() const {
+ return dot(*this);
+}
+
+void Quaternion::operator+=(const Quaternion &p_q) {
+ x += p_q.x;
+ y += p_q.y;
+ z += p_q.z;
+ w += p_q.w;
+}
+
+void Quaternion::operator-=(const Quaternion &p_q) {
+ x -= p_q.x;
+ y -= p_q.y;
+ z -= p_q.z;
+ w -= p_q.w;
+}
+
+void Quaternion::operator*=(const real_t &s) {
+ x *= s;
+ y *= s;
+ z *= s;
+ w *= s;
+}
+
+void Quaternion::operator/=(const real_t &s) {
+ *this *= 1.0 / s;
+}
+
+Quaternion Quaternion::operator+(const Quaternion &q2) const {
+ const Quaternion &q1 = *this;
+ return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
+}
+
+Quaternion Quaternion::operator-(const Quaternion &q2) const {
+ const Quaternion &q1 = *this;
+ return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
+}
+
+Quaternion Quaternion::operator-() const {
+ const Quaternion &q2 = *this;
+ return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w);
+}
+
+Quaternion Quaternion::operator*(const real_t &s) const {
+ return Quaternion(x * s, y * s, z * s, w * s);
+}
+
+Quaternion Quaternion::operator/(const real_t &s) const {
+ return *this * (1.0 / s);
+}
+
+bool Quaternion::operator==(const Quaternion &p_quaternion) const {
+ return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w;
+}
+
+bool Quaternion::operator!=(const Quaternion &p_quaternion) const {
+ return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w;
+}
+
+_FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) {
+ return p_quaternion * p_real;
+}
+
+#endif // QUATERNION_H