diff options
Diffstat (limited to 'core/math/quaternion.cpp')
-rw-r--r-- | core/math/quaternion.cpp | 151 |
1 files changed, 97 insertions, 54 deletions
diff --git a/core/math/quaternion.cpp b/core/math/quaternion.cpp index c681c60694..34e212a5b6 100644 --- a/core/math/quaternion.cpp +++ b/core/math/quaternion.cpp @@ -1,62 +1,48 @@ -/*************************************************************************/ -/* quaternion.cpp */ -/*************************************************************************/ -/* This file is part of: */ -/* GODOT ENGINE */ -/* https://godotengine.org */ -/*************************************************************************/ -/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ -/* */ -/* Permission is hereby granted, free of charge, to any person obtaining */ -/* a copy of this software and associated documentation files (the */ -/* "Software"), to deal in the Software without restriction, including */ -/* without limitation the rights to use, copy, modify, merge, publish, */ -/* distribute, sublicense, and/or sell copies of the Software, and to */ -/* permit persons to whom the Software is furnished to do so, subject to */ -/* the following conditions: */ -/* */ -/* The above copyright notice and this permission notice shall be */ -/* included in all copies or substantial portions of the Software. */ -/* */ -/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ -/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ -/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ -/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ -/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ -/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ -/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ -/*************************************************************************/ +/**************************************************************************/ +/* quaternion.cpp */ +/**************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/**************************************************************************/ +/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ +/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/**************************************************************************/ #include "quaternion.h" #include "core/math/basis.h" -#include "core/string/print_string.h" +#include "core/string/ustring.h" real_t Quaternion::angle_to(const Quaternion &p_to) const { real_t d = dot(p_to); return Math::acos(CLAMP(d * d * 2 - 1, -1, 1)); } -// get_euler_xyz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses XYZ convention (Z is the first rotation). -Vector3 Quaternion::get_euler_xyz() const { - Basis m(*this); - return m.get_euler(Basis::EULER_ORDER_XYZ); -} - -// get_euler_yxz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses YXZ convention (Z is the first rotation). -Vector3 Quaternion::get_euler_yxz() const { +Vector3 Quaternion::get_euler(EulerOrder p_order) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); #endif - Basis m(*this); - return m.get_euler(Basis::EULER_ORDER_YXZ); + return Basis(*this).get_euler(p_order); } void Quaternion::operator*=(const Quaternion &p_q) { @@ -79,6 +65,10 @@ bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const { return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w); } +bool Quaternion::is_finite() const { + return Math::is_finite(x) && Math::is_finite(y) && Math::is_finite(z) && Math::is_finite(w); +} + real_t Quaternion::length() const { return Math::sqrt(length_squared()); } @@ -112,10 +102,11 @@ Quaternion Quaternion::exp() const { Quaternion src = *this; Vector3 src_v = Vector3(src.x, src.y, src.z); real_t theta = src_v.length(); - if (theta < CMP_EPSILON) { + src_v = src_v.normalized(); + if (theta < CMP_EPSILON || !src_v.is_normalized()) { return Quaternion(0, 0, 0, 1); } - return Quaternion(src_v.normalized(), theta); + return Quaternion(src_v, theta); } Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { @@ -229,7 +220,58 @@ Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); Quaternion q2 = to_q * ln.exp(); - // To cancel error made by Expmap ambiguity, do blends. + // To cancel error made by Expmap ambiguity, do blending. + return q1.slerp(q2, p_weight); +} + +Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, + const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); +#endif + Quaternion from_q = *this; + Quaternion pre_q = p_pre_a; + Quaternion to_q = p_b; + Quaternion post_q = p_post_b; + + // Align flip phases. + from_q = Basis(from_q).get_rotation_quaternion(); + pre_q = Basis(pre_q).get_rotation_quaternion(); + to_q = Basis(to_q).get_rotation_quaternion(); + post_q = Basis(post_q).get_rotation_quaternion(); + + // Flip quaternions to shortest path if necessary. + bool flip1 = signbit(from_q.dot(pre_q)); + pre_q = flip1 ? -pre_q : pre_q; + bool flip2 = signbit(from_q.dot(to_q)); + to_q = flip2 ? -to_q : to_q; + bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q)); + post_q = flip3 ? -post_q : post_q; + + // Calc by Expmap in from_q space. + Quaternion ln_from = Quaternion(0, 0, 0, 0); + Quaternion ln_to = (from_q.inverse() * to_q).log(); + Quaternion ln_pre = (from_q.inverse() * pre_q).log(); + Quaternion ln_post = (from_q.inverse() * post_q).log(); + Quaternion ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + Quaternion q1 = from_q * ln.exp(); + + // Calc by Expmap in to_q space. + ln_from = (to_q.inverse() * from_q).log(); + ln_to = Quaternion(0, 0, 0, 0); + ln_pre = (to_q.inverse() * pre_q).log(); + ln_post = (to_q.inverse() * post_q).log(); + ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + Quaternion q2 = to_q * ln.exp(); + + // To cancel error made by Expmap ambiguity, do blending. return q1.slerp(q2, p_weight); } @@ -274,7 +316,7 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { // (ax, ay, az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). -Quaternion::Quaternion(const Vector3 &p_euler) { +Quaternion Quaternion::from_euler(const Vector3 &p_euler) { real_t half_a1 = p_euler.y * 0.5f; real_t half_a2 = p_euler.x * 0.5f; real_t half_a3 = p_euler.z * 0.5f; @@ -290,8 +332,9 @@ Quaternion::Quaternion(const Vector3 &p_euler) { real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); - x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3; - y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3; - z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3; - w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3; + return Quaternion( + sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, + sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, + -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, + sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } |